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Abstract. We propose a modeling language for structured specification
of interacting components with both hybrid and stochastic dynamics.
The behavior of a stochastic hybrid agent is described using a hybrid au-
tomaton whose dynamics is specified by stochastic differential equations
and probabilistic jumps. Stochastic hybrid agents interact with other
agents using shared variables. The operations of parallel composition,
instantiation and hiding are defined to allow hierarchical descriptions of
complex agents. We report on a stochastic extension of the modeling
environment Charon for hybrid systems, a simulation tool, and case
studies using the tool.

1 Introduction

Hybrid systems models combine discrete dynamics expressed using extended
state machines with continuous dynamics expressed using algebraic and differ-
ential equations (see [15, 1, 14, 3] for sample models). In many applications, from
embedded avionics controllers to biomolecular gene regulatory networks, there is
some uncertainty inherent in the physical world that can be most appropriately
described using stochastic concepts. In this paper, we extend the hybrid systems
modeling with stochastic constructs for both continuous evolution and discrete
switching.

Stochastic modeling is an extensively studied area. Models such as Piece-
wise Deterministic Markov Processes [6], Switched Diffusion Processes [8], and
Stochastic Hybrid Systems [11] allow integrating discrete switching, continu-
ous dynamics, and stochastic behavior in some manner (see [20] for a recent
overview). The previous research in this area has focussed on mathematical prop-
erties such as computing the distributions for switching times. Our motivation
is orthogonal, namely, developing a modeling language that will allow modular
descriptions of complex systems. Modular descriptions with compositional se-
mantics has been a central theme in concurrency theory dating back to process
algebras such as CCS [17] and CSP [10]. Modularity has been studied, and ex-
ploited by analysis tools, for hybrid systems (for example, Charon [2], hybrid
I/O automata [14]), and for timed probabilistic systems (c.f. [13, 5]). However,
we are not aware of any concurrency formalisms that allow continuous evolution
using stochastic differential equations.

⋆ This research was supported by NSF award ITR/SY 0121431.



We develop our model by extending the modeling language Charon, a de-
sign environment for specification and analysis of embedded systems [3, 2]. In
Charon, the building block for describing the system architecture is an agent
that communicates with its environment via shared variables. The language sup-
ports the operations of composition of agents to model concurrency, hiding of
variables to restrict sharing of information, and instantiation of agents to support
reuse. The stochastic extension of Charon retains this hierarchical structure. A
stochastic agent has private, output, and input variables, and its behavior is de-
scribed using modes. A mode is annotated with stochastic differential equations
that specify the continuous evolution of variables, and invariants that specify the
region of the state-space where the current dynamics is valid. Mode switches are
triggered when the invariant is violated, and are specified by probabilistic jumps
with discrete distributions over the target modes and continuous distributions
over the updated states.

In Section 2, we present our notion of a stochastic hybrid agent, define the
underlying stochastic process for closed agents, and define the operations on
agents. In Section 3, we describe the prototype implementation in Charon,
along with the simulation tool. In Section 4, we present two modeling case stud-
ies and simulation-based analysis. The first example, inspired by the case study
in [9], involves maneuvers by two aircrafts, and we estimate the minimum dis-
tance between them using simulations. The second example, inspired by the case
study in [18], models power management strategy in a hard drive, and we use
simulations to estimate the average power consumption.

2 Model

In this section we give a definition of an agent — a formal description of a
component in a hybrid system, define its execution, specify conditions when
execution is a stochastic process, and state the properties of this process.

Let R
n, n ≥ 1 be the n-dimensional space of reals. For a finite set X of

variables, each of which ranges over R, V (X) = R
|X| is the valuation space of X ,

and ∆(X) is the set of all open convex sets in V (X). Given a set U , we denote by
∂U its boundary. Our modeling of continuous-time stochastic evolution builds
on standard models of white noise: we use Wn

t to denote the n-dimensional
standard Wiener process, the generalized derivative of this process is called the
Gaussian white noise.

To be able to define probability measures on the state space of an agent,
let us briefly review some terminology. Suppose that Ω is a set and T is a
topology on Ω. Then for the topological space (Ω, T ) the minimal σ-algebra
which is generated by the open sets of T is called the Borel σ-algebra and
denoted by B(Ω). Recall that for R

n there exists the usual topology TRn induced
by all open rectangles in R

n, and that for any finite set Q we can consider
the discrete topology TQ such that every subset of Q is, by definition, open in
TQ. We denote by B(Rn) and B(Q) Borel σ-algebras of (Rn, TRn) and (Q, TQ)
respectively. Now we define B(Q × R

n) to be the product topology TQ×Rn =



{U1×U2 : U1 is open in TQ, U2 is open in TRn}. The spaceQ×R
n and its σ-algebra

B(Q × R
n) form a measurable space and therefore we can define probability

measures on (Q× R
n,B(Q× R

n)) in the standard way (c.f. [6]).

Definition 1. An agent A is a tuple (Q,Xp, Xo, Xe, Inv , F,G, Init , Jump) where

– Q is a finite set of modes;
– Xp is a finite set of private variables;
– Xo is a finite set of observable variables (or outputs); let Xc = Xp ∪ Xo

be the set of controlled variables;
– Xe is a finite set of external variables (or inputs); let X = Xc ∪Xe be the

set of all variables.
– Inv : Q → ∆(X) maps each mode q to an invariant on the variables of the

agent.
Let S = Q × V (X) be the set of all states, Sc = Q × V (Xc) be the set of
controlled states, and D = ∪q∈Q(q × Inv(q)), D ⊆ S be the set of states
satisfying the invariant.

– F = {fx : D → R|x ∈ Xc} and G = { gx : D → R
|Xc||x ∈ Xc} are sets of

functions specified for every variable in Xc. Each fx(·, ·) ∈ F and gx(·, ·) ∈ G
is bounded and Lipschitz continuous in the second argument;

– Init : B(Sc) → [0, 1] is an initial probability measure on (Sc,B(Sc));
– Jump : S \ D → (B(Sc) → [0, 1]) is called jump measure and maps every

state s, s ∈ S \D, to a probability measure on (Sc,B(Sc)). We require that
for a fixed U ∈ B(Sc), Jump(·)(U) is a measurable function.

Private and observable variables are controlled by the agent. Each external
variable x ∈ Xe is an observable variable of some other agent Ax, and similarly
the observable variables in Xo may be external variables of other agents. Such
shared variables allow interaction among the agents. On the other hand, the
variables inXp are private, and their evolutions are hidden from the other agents.
We say that a state s ∈ S is a flow state if s ∈ D and a jump state otherwise.
An agent A is called closed iff Xe = ∅. Notice, that in this case S = Sc. In
Section 2.2 we introduce the composition operation that allows the combination
of all agents of a hybrid system into a single closed agent.

The execution of a closed agent A is the evolution of its (controlled) variables
over time. Initially, the valuations for the variables in Xc are chosen according
to the probability measure Init . In a flow state s = (q, y) ∈ D the dynamics of
the variables in Xc coincides with a (continuous) realization of an n-dimensional
Itô diffusion x̄(t) = (x1(t), . . . , xn(t)), n = |Xc|, xi(t) corresponds to a variable
xi ∈ Xc. The diffusion is defined by the system of stochastic differential equations
(SDEs):

dxi(t) = fxi
(q, x̄(t))dt+ gxi

(q, x̄(t))dWn
t , i = 1, . . . , n .

The conditions on the functions in F and G guarantee the existence and unique-
ness of the diffusion (see, for example, [19]). Since x̄(t) is Markov, we can choose
the initial condition to be x̄(0) = y. During this evolution the mode q stays
unchanged.



If A reaches a jump state s then the next state snew is chosen according
to the probability measure Jump(s)(·). The state snew = (qnew , ynew) may be
either a flow or a jump state. If it is a flow state then the evolution is determined,
as before, by the corresponding SDEs with the initial condition x̄(0) = ynew ; if
it is a jump state then the next state is chosen according to Jump(snew )(·). A
sequence of successive jump states in an execution is called a jump sequence. We
assume that jump sequences occur instantaneously.

To exclude aberrant executions we introduce the following definition.

Definition 2. A closed agent A is well-formed if it satisfies the following:

– A flow state is reachable from every jump state in a finite number of jumps
with probability one. Thus every jump sequence almost surely terminates.

– Expectation of Nt, which is the number of jump sequences in [0, t], is finite
for all t. This condition guarantees time-divergence.

There exist sufficient tests to verify the conditions above. For example, the
first condition is satisfied if ∃ε > 0 such that for all jump states s ∈ S \ D,
Jump(s)(D) > ε. The second condition is satisfied if ∃ε, δ : ε > 0, 0 ≤ δ < 1
such that for every jump state sjump, Jump(sjump)(S \ Dε) = 1, where Dε =
{s ∈ D|Pr(t⋆(s) < ε) > δ}, t⋆(s) is the time required for the diffusion to reach
∂D from s. The requirement ensures that if a flow state s is reached then, with
strictly positive probability, the next jump state will be reached only after the
time t⋆(s) ≥ ε elapses.

The execution of a well-formed agent A can be seen as a trajectory of a
stochastic process PA. The state space of PA is S. The initial state sinit =
(qinit , yinit ) is chosen according to Init . Without loss of generality, we assume
that sinit is a flow state. Starting from sinit , the process continuously evolves
in the mode qinit . Suppose there is a stopping time T1 such that x̄(T−

1 ) =
limt↑T1

x̄(t) and (qinit , x̄(T
−
1 )) is a jump state. Now PA starts a jump sequence.

The jump sequences are Markov chains on the continuous space that are stopped
when they reach a state in D. For every s ∈ S\D, U ∈ B(D) we define transition
kernel K(s, U), which is the probability to reach U starting from s. In general
we may have a sequence of stopping times T1, . . . , Tm, . . . such that during an
interval [Ti, Ti+1) the process continuously evolves in a mode qi, and these con-
tinuous evolutions are “glued”together by K(·, ·). Applying results from [16] (as
shown in [4]) we obtain:

Theorem 1. For a well-formed stochastic hybrid agent A, PA is a right contin-
uous strong Markov process.

2.1 Relation to Other Models

In this section we briefly look at other stochastic hybrid models considered in [20]
and show (informally) how they can be expressed in our framework. It should be
noted that none of the models have a notion of inputs, outputs, and composition.



Piecewise Deterministic Markov Processes: A PDMP P (see [6]) is a tuple
(Q, d, Inv , f,Init , λ, Jump) where Q is a countable set of modes, each q ∈ Q
is associated with its invariant Inv(q), which is an open set in R

d(q). Let
D = ∪q∈Q(q×Inv(q)) then the state space of P is S = D∪∂D. The initial state is
chosen according to the probability measure Init concentrated on D. A Lipschitz
vector field f : D → R

d(·) gives deterministic dynamics dx̄(t) = f(q, x̄(t))dt for
P in D. The process makes a jump in two cases: when it reaches the boundary
of the invariant and according to a generalized Poisson process with a transition
rate function λ : S → R

+. The state after a jump is chosen according to a prob-
ability measure Jump : S → (B(D) → [0, 1]); the probability measure depends
on the state before the jump and is concentrated on D.

For P to be well-defined, Davis assumes that for any t ≥ 0, E(Nt) < ∞
where Nt is the number of jumps in the time interval [0, t].

Our framework allows modeling of a PDMP with a finite number of modes
as a well-formed agent. Modeling of Q, d, Inv , f , Init , and Jump is straightfor-
ward. To model Poisson switches we can use the following trick inspired by [6]:
Suppose we are given a Poisson process R with rate function λ(x̄(t)), x̄(t) is an
n-dimensional flow. It is known that the survivor function for a jump time T of
R is

S(t) = Pr(T > t) = e−
∫

t

0
λ(x̄(s))ds .

We can simulate a random variable T with the survival function S(t) by
generating a random variable U uniformly distributed on [0, 1] and setting T =
S−1(U). Equivalently, T = inf{t : S(t) ≤ U} (S(t) is a decreasing function).
Now to simulate the time of a jump we generate U and define the process Z(t) =

−U + e−
∫

t

0
λ(x̄(s))ds. When Z(t) hits 0, a jump occurs. We can model Z(t) using

an algebraic variable and U by modifying the jump measure.

Switching Diffusion Processes: A SDP P (see [8]) is a tuple (Q,S, f, σ, Init , λij).
The state space of P is S = Q×R

n, Q is a finite set of modes. The initial state
is chosen according to the probability measure Init on S. For each mode q ∈ Q,
the evolution of P is given by the continuous solution of the SDEs: dx̄(t) =
f(q, x̄(t))dt+ σ(q, x̄(t))dWn

t . Transitions between modes happen according to a
compound Poisson process and the transition rate function for switching between
modes qi and qj is λij : S → R

+. Notice that switches affect only the current
mode — the trajectory in R

n remains continuous.
P can be modeled in our framework. The components Q, S, f , σ, Init have

their immediate counterparts and for λij we can apply the same trick as we used
for PDMPs.

Stochastic Hybrid Systems: A SHS P (see [11]) is a tuple (Q,S, Inv , f, σ,
Init , G, Jump). The state space is S = Q × R

n, Q is a countable set of
modes. The map Inv assigns each q ∈ Q with an open set Inv(q) in R

n. Let
D = ∪q∈Q(q × Inv(q)). The initial state is chosen according to the probability
measure Init concentrated on D. The dynamics in D is given by the Lipschitz,
bounded vector fields f and σ: dx̄(t) = f(q, x̄(t))dt+σ(q, x̄(t))dWn

t . The process



jumps when it reaches a point in ∂D. For each q the map G partitions ∂Inv(q)
into disjoint measurable sets G(q, q′), which called guards. For each pair of q
and q′, Jump(q, q′) maps every point s ∈ G(q, q′) to a corresponding probability
measure on S which is concentrated on q′ × Inv(q′).

We can model P with a finite number of modes as a closed agent by special-
izing Jump in our definition.

2.2 Operations

In this section we define three operations on the agents to facilitate structured
description of systems.

Given an agent A and variables x ∈ Xo∪Xe, x′ 6∈ X , we denote by A[x := x′]
a new agent in which all occurrences of x are replaced with the variable x′.
This operation is called renaming and it is used to create instances of the same
definition.

Being a component of a stochastic hybrid system, an agent interacts with
other agents. In our framework an agent uses its observable and external variables
as interface to the other agents. Suppose that a variable x is an external variable
of an agent A and an observable variable of some other agent A′, then the
evolution of x in A is completely determined and coincides with its evolution in
A′. Thus observable variables provide output for the other agents, and external
variables serve as the inputs from the rest of the system.

Suppose that the agents A and A′ interact using two variables x1 ∈ Xo
A∩Xe

A′

and x2 ∈ Xo
A′ ∩Xe

A. A typical scenario is the following. The variables of both
A and A′ are initialized and evolve over the flow states. Then A first reaches
a jump state, the agent updates its state according to its jump measure. The
value of x1 changes in A. The new value of x1 is not in the invariant of A′;
therefore the state of A′ changes according to its jump measure. As a result,
variable x2 obtains a new value in A′ and A. If the new value of x2 does not
satisfy the invariant of A then a new jump occurs. In general, there may be a
(finite) sequence of jumps until the agents settle for the new flow states and the
evolution of their variables becomes continuous again.

Before defining composition formally, we notice that the Jump relation of an
agent can be extended to another relation GJump defined on the entire state
space S of the agent, i.e. GJump : S → (B(Sc) → [0, 1]). Given a set of variables
Y and a state s = (q, y) in S, we denote by y[Y ] projection of y on V (Y ). Then
for every state s = (q, y) and U ∈ B(Sc):

GJump(s)(U) =







Jump(s)(U) if s ∈ S \D,
1 if s ∈ D and (q, y[Xc]) ∈ U,
0 if s ∈ D and (q, y[Xc]) /∈ U .

Suppose we are given two agents

Ak = (Qk, X
p
k , X

o
k , X

e
k, Invk, Fk, Gk, Initk, Jumpk), k = 1, 2 .

We want to define an agent A which is the composition of A1 and A2 (we
use notation A = A1||A2). We require that Xc

1 ∩Xc
2 = ∅.



Let X1→2 and X2→1 be the set of variables that the agents use to in-
teract, i.e. X1→2 = Xo

1 ∩ Xe
2 , and X2→1 = Xo

2 ∩ Xe
1 . Then A is the tuple

(Q,Xp, Xo, Xe, Inv , F,G, Init , Jump) such that:

– Q = Q1 ×Q2;
– Xp = Xp

1 ∪Xp
2 ;

– Xo = Xo
1 ∪Xo

2 and Xc = Xc
1∪ Xc

2 ;
– Xe = (Xe

1 ∪Xe
2)\(X1→2 ∪X2→1).

As before, Xk = Xc
k ∪Xe

k, Sc
k = Qk × V (Xc

k), for k = 1, 2; X = Xc ∪Xe,
Sc = Q× V (Xc), S = Q× V (X), and D = ∪q∈Q(q × Inv(q)).

– Let s = (q, y) be a state in S, q = (q1, q2), q1 ∈ Q1 and q2 ∈ Q2. Then
y ∈ Inv(q) iff y[X1] ∈ Inv1(q1) and y[X2] ∈ Inv2(q2);

– F = F1 ∪ F2 and G = G1 ∪G2;
– Let U = U1×U2, Uk ∈ B(Sc

k), k = 1, 2. Then Init(U) = Init1(U1)×Init2(U2).
It is known, that we can uniquely extend Init(·) to the entire B(Sc).

– Let s = (q, y) be a state in S \D, q = (q1, q2), q1 ∈ Q1 and q2 ∈ Q2. Then
for U = U1 × U2, Uk ∈ B(Sc

k), k = 1, 2:

Jump(s)(U) = GJump(q1, y[X1])(U1) × GJump(q2, y[X2])(U2) .

Again, we are able to uniquely extend the product probability measure
Jump(s)(·) to the entire B(Sc).

Theorem 2. The composition operation is associative, i.e. for any agents A1,
A2, A3, (A1||A2)||A3 and A1||(A2||A3) are isomorphic.

Finally, we consider the hiding operation. Given an agentA and an observable
variable x, we write A′ = Hide x in A. The agent A′ has the same structure as A
except its sets of private and observable variables are changed: Xp

A′ = Xp
A ∪ {x}

and Xo
A′ = Xo

A\{x}. This operation is useful to restrict the scoping of variables.

3 Implementation in Charon

Charon is a language for modular specification of interacting hybrid systems
based on the notions of agents and modes. The language supports the opera-
tions of agent composition for concurrency, hiding of variables for information
encapsulation, and instantiation of agents for reuse. For more details please visit
http://www.cis.upenn.edu/mobies/charon/.

3.1 Charon Extension

Syntax Extension To make Charon suitable for our purposes, we extended
the current version with the syntax for specifying initial probability measures,
jumps, and SDEs.

The syntax for specifying an invariant is: inv <condition> where condition
depends on the variables of the agent.

The syntax for specifying a jump is:



jump from <source_mode> when <guard>

( to <destination_mode> do { <update_1>; ... ;<update_k> }

weight <weight> )+

where the guard depends on the variables of the agent and defines a part of
the complement of the invariant assigned to the source mode. The union of all
guards of a mode must be equivalent to the complement of the invariant of
that mode, and the guards must be pairwise disjoint. A jump may have multiple
transition branches. Each branch is specified by its destination mode, a sequence
of updates, and the weight assigned to it. The weight can depend on the variables
of the agent. The probability for a branch to be executed is proportional to its
weight:

Pr(branch) =
weight of the branch

the sum of the weights of all branches
.

Updates <update_1>; ... ;<update_k> are assignments of the form
variable_name = f(...) where f is a random variable whose distribution can
depend on the variables of the agent. The whole sequence of updates specifies
the probability measure on the set of the variable valuations of the destination
mode.

Random variables with the following predefined distributions can be used to
construct f :

– randExp(parameter) specifies exponential distribution;
– randNorm(mean,variance) specifies normal distribution;
– randUniform(begin,end) specifies uniform distribution on the interval

[begin,end];
– randPareto(parameter_a,parameter_b) specifies Pareto distribution.

Random variables with arbitrary distributions can be obtained by calling
external Java functions.

The syntax for specifying a stochastic differential equation is:

SDE { d(<variable name>) == f(...)*dt + g(...)*dW(t) }

where f(. . .) and g(. . .) are functions which depend on the variables of the
agent.

To specify the initial probability measure we use the following syntax:

jump from default when true

(to <destination_mode> do { <update_1>; ... ;<update_k> }

weight <weight>)+

which is similar to jumps but with the source mode defined by the keyword
default and the trivial guard.

A sample stochastic hybrid agent coded in Charon is shown in Fig. 1. The
agent system is composed of two agents: agent1 and agent2. The agent agent1
has an observable variable y which becomes an observable variable of the com-
posite agent system. The agent agent2 controls the dynamics for the external
variable x of agent1.



agent system() {
private variable x;

agent agent1 = agent1();
agent agent2 = agent2();

}

agent agent1() {

external variable x;
observable variable y;

private variable z;

mode mode1 = agent1_mode1()
mode mode2 = agent1_mode2()
mode mode3 = agent1_mode3()

jump from default when true

to mode1
do { y = randUniform(1,2); z=0 }

jump from mode1 when x=<0 || x>=2

to mode2
do { z = randUniform(2,3) } weight 2

to mode3
do { z = randUniform(1,2) } weight 3

jump from mode2 when z=<0
to mode1

jump from mode3 when z=<0

to mode1
}

mode agent1_mode1() {
SDE { d(y) == 2*dt + dW(t) }

SDE { d(z) == 0 }
inv x>0 && x<2

}

mode agent1_mode2() {
SDE { d(y) == dt + 3*dW(t) }
SDE { d(z) == -dt }

inv z>0
}

mode agent1_mode3() {

SDE { d(y)=0 }
SDE { d(z) == -dt }
inv z>0

}

agent agent2() {
observable variable x;

mode mode1 = agent2_mode1();
mode mode2 = agent2_mode2();

jump from default when true
to mode1

do { x = 1 + randExp(0.5) }
jump from mode1 when x=<0

to mode2
do { x = randExp(1) }

jump from mode2 when x=<0
to mode1

do { x = randUniform(1,3) }

}

mode agent2_mode1() {
SDE { d(x) == -dt + dW(t) }
inv x>0

}

mode agent2_mode2() {
SDE { d(x) == -2*dt + 3*dW(t) }

inv x>0
}

Fig. 1. Sample stochastic hybrid system in charon syntax

The initial probability measure for agent1 is defined in such a way that the
agent always starts in mode1, y is chosen according to the uniform distribution
on [1, 2], and z is set to zero. In mode1 the dynamics of y is specified by an SDE
and z remains constant.

When the value of the external variable x is outside of the interval (0, 2), the
agent jumps to either mode2 with probability 2/5 or to mode3 with probability
3/5, as specified by the weights of these two branches. With this jump the agent
picks a value for z according to the distribution specified in the chosen branch
of the transition. In mode2, the dynamics for y is specified by another SDE and
z plays the role of a clock. It linearly decreases, and when it hits the boundary
of the invariant z > 0, the agent jumps back to mode1. In mode3, y remains
constant, and z plays the same role as in mode2. When z becomes zero the agent
jumps to mode1.

As defined in Fig. 1, agent2 has two modes: mode1 and mode2. It always starts
in mode1 and jumps from mode1 to mode2 and back when x hits the boundary



of the corresponding invariant, and sets the new value of x according to the
specified distributions. The evolution of x in each mode is given by a stochastic
differential equation.

3.2 Simulator

Charon simulator consists of two main components: the part responsible for
jumps and the part responsible for modeling stochastic differential equations.

To model a jump we need to pick a branch and execute the updates associated
with the branch. For this, the simulator generates a random variable NB that
determines which branch to choose. NB takes its values in the set {1, . . . , k},
where k is the number of branches in the transition. The probability to pick a
particular value is proportional to the weight of the corresponding branch.

When a branch is chosen, the updates associated with the branch are exe-
cuted. These updates can be constructed from random variables with exponen-
tial, normal, uniform, Pareto, or user-defined distributions.

To obtain realizations of solutions of stochastic differential equations the sim-
ulator uses Euler-Maruyama method. Consider a stochastic differential equation

dx(t) = f(x̄(t))dt+ g(x̄(t))dWn
t , x(0) = x0, 0 ≤ t ≤ T .

The Euler-Maruyama simulation scheme of this SDE, over the interval [0, T ]
divided into L subintervals of the equal length ∆t, has the form

xk = xk−1 + f(x̄k−1)∆t+ g(x̄k−1) · (Wn
τk

−Wn
τk−1

), k = 1, . . . , L

where τ0 = 0, τk = τk−1 +∆t. Each of the n components in the vector Wn
τk

−
Wn

τk−1
is simulated as a random variable

√
∆tN(0, 1) where N(0, 1) is a random

variable with the standard normal distribution.

4 Examples

We present two examples in which we use Stochastic Charon to model a system
and perform Monte-Carlo simulations to obtain statistical information. In the
first example, we model a system of two aircrafts taking off simultaneously from
two airports and estimate the probability that these aircrafts will come, during
their flights, to a particular minimum distance. In the second example we sim-
ulate a model of a hard drive for three different values of a parameter which
determines the power management policy and estimate the probability that a
service request is lost.

In the examples we use the following notation presented in Fig. 2. When we
write stay for randDistr(params) in a mode, we mean that when an agent
enters the mode, we pick time according to the specified distribution and jump
from the mode when that time has elapsed.



x=<0 ?dx=−dt

x>0

x:=randDistr(params)

randDistr(params)

stay for

Fig. 2. Notation

observable variables

x1 y1

,x1 y1 ,x2 y2

Aircraft−II
Aircraft(100000,0,135,225)

System()

Distance Monitor
Monitor()
external variables , ,x2 y2

Aircraft−I
Aircraft(0,0,−45,45)

observable variables

,

Fig. 3. System of two aircrafts

4.1 Air Traffic Control

Models for automatic air traffic management systems are important since they
can be used for conflict prediction, conflict resolution, and validation of conflict
detection and resolution strategies [9].

We model a pair of aircrafts flying from two airports located 100 kilometers
apart. The motion of each aircraft is determined by the system of stochastic
differential equations derived from the basic aerodynamics, and the stochastic
part of the motion is due to the changing wind.

The aircrafts have their initial directions chosen randomly from a specified
interval. During their flights each aircraft performs two turns to randomly chosen
new directions. Using Monte-Carlo simulations we estimate the percentage of
flights in which the minimum distance between the aircrafts reaches rmin for
rmin = 1, . . . , 50 kilometers. The parameters of the model are realistic and taken
from BADA database [7] for a particular aircraft. However, the flight trajectories
are artificial and have the purpose to illustrate our framework.

Aircraft Model We model Airbus A300-B4 flying at 20000 feet altitude with
the speed V = 250 knots (130 m/sec). The system of SDEs we use to model
the motion of the aircraft is due to [9]. Let X , Y , and V denote the position of
the aircraft and its speed. Let ψ be the flight path angle, φ be the bank angle,
and γ be the angle of attack. Then the aircraft motion can be modeled by the
following system of SDEs:

dX = V cos(ψ) sin(γ)dt+WxdWt

dY = V sin(ψ) sin(γ)dt+WydWt

dh = V sin(γ)dt

dV = (T/m− CDSρV
2/2m− gsin(γ))dt

dψ = (CLSρV sin(φ)/(2m))dt

dm = −ηTdt
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where the concrete parameters to use in the model can be found in BADA
database.

Notice that the bank angle φ affects the path angle ψ, and therefore it can
be used to change the direction of the flight.

System The system is presented in Fig. 3. It consists of two instances of the
same agent that models the dynamics of an aircraft. The aircrafts take off from
the airports A and B and move towards each other. The distance between the
airports is 100 kilometers. On (x, y)-plane the airport A is located at the origin.
The airportB is located at (100000, 0). These values are assigned to the positions
of the aircrafts during instantiation of the aircraft agents in the composite agent
system.

The agent that specifies the aircraft is shown in Fig. 4. It starts flying from
the airport A or B depending on the initial parameters x_init and y_init. We
consider only the flights in which the angle between the initial direction and the
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x-axis of the first aircraft is restricted to the interval [−450, 450], and the angle
of the second aircraft is restricted to the interval [1350, 2250].

After choosing the initial direction, the flight of each aircraft proceeds as
follows. An aircraft flies in the cruise mode (without attempting to change the
direction) for a duration of time distributed uniformly from 1 to 5 minutes. Af-
ter that it performs a turn. The turn can be to the left or to the right with the
equal probability. During the turn the bank angle φ is set either to −300 or to
300 for the left or for the right turn respectively, as specified by BADA. The
aircraft performs the turn for a random time, which is uniformly distributed
from 10 to 60 seconds, providing a random new direction. After that it re-
turns to the cruise mode and flies along the new direction for an additional
duration distributed uniformly from 1 to 5 minutes. After that it performs the
second identical turn and continues the final course. A sample motion of two
aircrafts is depicted in Fig. 6. The Charon code for the example can be found at
http://www.math.upenn.edu/~rsharyki/.

Simulation The minimum distance is measured by the monitor presented in
Fig. 5. It starts with the minimum distance equal to 50 kilometers and each time
the distance becomes smaller than the current minimum distance the monitor
updates it by subtracting one kilometer. At the end of the simulation, monitor’s
observable variable r contains the minimum distance that appeared during the
simulation. It has precision of 1 kilometer.

We performed 1000 simulation runs of the system evolving for 20 minutes to
estimate the percentage of the flights during which the aircrafts will approach
to a particular minimum distance.

The simulations took 3 hours on a Celeron 1.8 GHz laptop with 512 megabytes
of memory. The results are presented in Fig. 7.
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4.2 Hard Drive Modeling

Portable systems have very strict constraints on energy consumption. To reduce
system’s power consumption and increase the battery life, system-level dynamic
power-management algorithms are used. These algorithms shut down idle run-
ning components and awake them when necessary.

A hard drive model presented in this section is adopted from [18]. The model
in [18] uses constant jump rates between modes. To make it more precise, we
specify jump rates according to the results in [21].

The structure of the system is depicted in Fig. 8. The system consists of four
agents: Service Requester (SR), Queue (Q), Service Provider (SP), and Power
Manager(PM). SR generates signal request to Q. The distribution of the time
between consecutive requests is exponential. Q increases queue_length by one
when it receives a request from SR. Q decreases queue_length when it receives
a signal request_served from SP. If queue_length exceeds 20, the queue sets
the signal request_lost to on. SP can be in two modes: active and stand-by.
The time of the transitions from active to stand-by and from stand-by to active
have uniform distributions. SP serves requests in active mode with the service
time distributed exponentially. Stand-by mode is characterized by low energy
consumption. PM’s policy is the following one. SP starts in stand-by mode.
PM watches the queue length. When the queue length reaches some particular
value Qon, PM issues command go-to-active to SP. When the queue length
becomes zero PM issues command go-to-standby to SP. The Charon code for
the example can be found at http://www.math.upenn.edu/~rsharyki/.

Simulation We implemented the model of the hard drive described above in
Charon and used Monte-Carlo simulations to estimate the percentage of the
simulation runs during which a request is lost at time t due to overflow of the
queue for three different values of the awakening queue length parameter Qon of
Power Manager.



Fig. 9. Percentage of the simulation runs with a request lost up to a particular time

The simulations took 6 hours and the results are presented in Fig. 9. The x-
axis represents time and y-axis represents the estimated percentage of simulation
runs during which a request has been lost up to this time. The three curves depict
the results obtained for the values of the awakening queue length: Qon = 14,
Qon = 16, and Qon = 18. We performed 50 simulation runs for each value of
the parameter. During the simulations the system was modeled for 200 seconds.
As the results show, a slight change in the parameter Qon leads to considerable
changes in the percentage of simulation runs during which a request has been
lost.

5 Future Work

We have presented a modeling language that allows structured modeling of inter-
acting stochastic hybrid components, and a prototype implementation in a simu-
lation toolkit. Combining ideas from concurrency theory and theory of stochastic
processes leads to a rich research agenda, and there are many directions for fu-
ture work. First, developing a useful compositional semantics and refinement
calculus in presence of all these features is a challenging problem. Second, we
are investigating techniques for accurate event detection in simulating stochastic
differential equations so that jumps are accurately simulated. Finally, we believe
that systems biology will be a fruitful application domain for stochastic hybrid
systems [12], and we are constructing models of gene regulatory processes in our
toolkit.
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