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Abstract

Building probabilistic models of language is a central task in natural language and
speech processing allowing to integrate the syntactic and/or semantic (and recently
pragmatic) constraints of the language into the systems. Probabilistic language
models are an attractive alternative to the more traditional rule-based systems,
such as context free grammars, because of the recent availability of massive amount
of text corpora which can be used to efficiently train the models and because instead
of binary grammaticality judgement offered by the rule-based systems, likelihood of
any sequence of lexical units can be obtained, which is a crucial factor in such tasks
as speech recognition. Probabilistic language models also find their application in
part-of-speech tagging, machine translation, semantic disambiguation and numerous
other fields.

The most widely used language models are based on the estimation of the proba-
bility of observing a given lexical unit conditioned on the observations of n−1 preced-
ing lexical units, and are known as n-gram models. When the n-gram estimates are
poor, whatever the reason for that may be, a technique called smoothing is applied
to adjust the estimates and hopefully produce more accurate model. Smoothing
techniques may be roughly divided into the backing-off and interpolation. In the
first case, the best n-gram model in the current context is selected, whereas in the
second case all the n-gram models of different specificities are combined together to
form a better predictor.

In this thesis, a recently proposed novel interpolation scheme is investigated,
namely, the log-linear interpolation. Unlike the original publication, however, which
dealt with combining the models of unrelated nature, the aim of this thesis is to
formulate the theoretical framework for smoothing the n-gram probability estimates
obtained from similar language models with different levels of specificity on the same
corpus, which will be called log-linear n-gram smoothing, and compare it to the
well-established linear interpolation and back-off methods. The framework being
proposed includes probability combination, parameter optimisation, dealing with
data sparsity and parameter clustering.

The resulting technique is shown to outperform the conventional linear interpo-
lation and back-off techniques when applied to the n-gram smoothing tasks.

ii



Acknowledgements

First and foremost I would like to thank my supervisor, Dr Thomas Niesler who
has encouraged, supported and guided my language modelling endeavours during
every step of the way and without whose sound and friendly advice completion of
this dissertation would not be possible. My deepest professional gratitude goes to
him.

I owe gratitude to William Lee of Department of Earth Sciences for proofread-
ing this thesis and making several insightful comments on mathematical aspects of
presentation without which this thesis would not appear as it appears now, and to
Valerie Dorrzapf of Department of English and Applied Linguistics, who supplied
interesting insights on the things I have been doing from the theoretical linguistics
perspective.

Completion of the experiments described herein has been made possible by
Patrick Gosling who continues to maintain excellent facilities for the Speech Group
here at Fallside Laboratory.

I would also like to thank people who first introduced me to language modelling
in speech and natural language processing, namely Dr Ted Briscoe for his excellent
course of lectures on stochastic context free and unification based grammars and
Phil Woodland for his expert professional coverage of language modelling for speech
recognition, as well as following people, postgraduates and members of staff alike,
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CHAPTER 1

Introduction

Language modelling is the attempt to characterise, capture and exploit syntactic, se-
mantic and pragmatic regularities exhibited by natural language. It is being widely
used in many domains including speech recognition, optical character recognition,
handwriting recognition, machine translation, part-of-speech tagging, dialog mod-
elling and spelling correction. In its simplest form, a language model may be a
representation of the list of the sentences belonging to a language, while the more
complex models may also try to describe the structure and meaning underlying the
sentences in a natural language.

Techniques for modelling the language historically fall into two categories. The
first type of models are the traditional grammars, such as context free and unification
based grammars, which although being rigorously defined from linguistic perspec-
tive, suffer from the typical deficiencies of the rule-based systems. They are difficult
to maintain, adapt to the new domains and languages, and their computation com-
plexity is too high to be efficiently employed in time critical applications, such as
large vocabulary continuous speech recognition. Although linguistically appealing,
these models are out of scope in this thesis. In more recent years, the second lan-
guage model category, namely the corpus-based shallow probabilistic models, based
on statistical representation of the natural language, have gained common usage.

A statistical language model describes probabilistically the constraints on word
order found in language: typical word sequences are assigned high probabilities,
while atypical ones are assigned low probabilities. Statistical models of language
may be evaluated by measuring the predicted probability of unseen test utterances:
models that generate high average word probability (equivalent to low novelty or
low entropy or low perplexity) are considered superior. The perplexity measure
is commonly used as a measure of “goodness” of such a model. The most widely
used statistical model of language is the n-gram model, in which an estimate of
the likelihood of a word wn is made solely on the identity of the preceding n − 1
words in the utterance. The strengths of the n-gram model come from its success
at capturing local constraints, the ease by which it may be constructed from text
corpora, and from its computational efficiency in use.

One of the problems exhibited by the statistical prediction of the natural lan-
guage is the problem of data sparseness arising the uneven distribution of lexical
units in language. For n-gram models, for instance, most of the possible n-tuple
events are never encountered in the text corpus used to train the model, regardless
of the size of the corpus and in order for such a language model to be reliable, it
must be ensured that the probabilities that this model assigns to the word strings

1



1.1. Scope of the Thesis 2

are nonzero, otherwise the “unseen” word sequences in question will be rendered
improbable and will not be hypothesised. A technique used in language modelling
for obtaining accurate probability estimates when there is insufficient amount of
training data is called smoothing. Smoothing overcomes the shortcomings of the
conventional probability estimates by taking into the account the following consid-
erations

• All word combinations are possible, i.e. there is not a single word sequence
with zero probability.

• Because of the nonlinear distribution of words in natural language, the amount
of training data can always be assumed to be small, even if its size is in millions
of words, i.e. there are always going to be events in the evaluation corpora
which are unobserved in the training corpus.

The simplest smoothing techniques achieve this effect by pretending that each n-
gram occurs once more than it actually did, while the more complicated ones define
complex discounting frameworks.

In this thesis, the discussion is restricted to the smoothing of an n-gram models,
where the structure of the model is unchanged but where the method used to es-
timate the probabilities of the model is modified. There are numerous other types
of the language models to which smoothing can be applied, such as class-based lan-
guage models [9], maximum entropy models [64], decision tree based models [1] and
stochastic grammars [69] [8] and it remains to be seen whether improved smoothing
techniques for the n-gram language modelling can lead to improved performance for
these other models.

Language model smoothing frameworks usually fall into two basic categories, the
first based on selecting the best model in the current context among the available
ones as a predictor, with probably the best known model being the back-off model
suggested by Katz [37], while the second ones usually combine all of the language
models together to obtain a probability estimate, with linear interpolation used by
Jelinek [32] being the typical representative.

This thesis is concerned with the special case of smoothing belonging to the
second basic category, namely combination of all the language models. In this
work, a novel interpolation technique called log-linear interpolation is investigated.

1.1 Scope of the Thesis

The problems that have been selected investigate the use of log-linear interpola-
tion for n-gram language model smoothing at following different levels: framework
for accurate probability estimation, efficient parameter optimisation and parameter
tying.

Accurate probability estimation framework is important because the task of a
language model is to supply reliable estimates, even under the exceptional condi-
tions, such as manifestations of data sparsity problem. In particular, when there is
not enough data available, log-linear interpolation attempts to remedy this by using
the combination of lower-order models. Several additional issues addressed concern
choice and calculation of the normalisation factors for the model.

The parameters of a log-linear interpolation model should be optimal with re-
spect to the training data, and yield satisfactory performance on the test corpora.
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Different optimisation algorithms are proposed which make such an efficient param-
eter estimation possible.

Finally, in order for the log-linear interpolation parameters controlling the per-
formance of the model to be estimated reliably, there should be enough training data
made available to the model. If the amount of the training data is not sufficient,
the problem is solved by constraining certain groups of the parameters to have the
same value, i.e. tying them. In this context, possible parameter tying algorithm for
log-linear interpolation is proposed.

Because of the widespread use of the aforementioned linear interpolation and
back-off language models, they were selected as the baseline models with which the
theoretical and experimental results obtained for the log-linear interpolation are
compared.

1.2 Thesis Organisation

This dissertation is organised as follows: Chapter 2 provides a necessary background
to language modelling, chapter 3 discusses the conventional smoothing techniques
prevalent in language modelling, chapter 4 provides the theoretical framework for
linear and log-linear interpolation in the context of smoothing, namely the tech-
niques for parameter clustering, optimisation and efficient probability estimation
and chapter 5 describes the experiments carried out with the interpolation models
developed in this dissertation and presents some interesting results obtained for the
novel log-linear smoothing framework for language modelling. Finally, chapter 6
presents summary and conclusion.



CHAPTER 2

Background to Language Modelling

The task of language modelling is to assign a probability value to every possible word
in a text stream based on its likelihood of occurrence in the context in which it finds
itself. This task is fundamental to speech and optical character recognition, as well
as to many areas of natural language processing, such as word sense disambiguation
and probabilistic parsing.

In speech recognition there is need to calculate probabilities P (w) of word strings
w = w1, . . . , wn, where each word wi belongs to a fixed and known vocabulary. Using
the definition of conditional probabilities following decomposition can be obtained

P (w) =
n∏

i=1

P (wi|w1, . . . , wi−1) , (2.1)

where P (wi|w1, . . . , wi−1) is the probability of a word wi being spoken given that
words w1, . . . , wi−1 were uttered previously. The task of a statistical language model,
therefore, is to provide the decoder with adequate estimates of the probabilities
P (wi|w1, . . . , wi−1).

The word string w1, . . . , wi−1 in (2.1) is usually referred to as history of the
word wi. It should be noted that for a vocabulary of size N there are N i−1 possible
distinct histories and N i values are needed for complete specification of probabilities
P (wi|w1, . . . , wi−1). For practical vocabulary sizes such an astronomical number of
estimates can neither be stored nor accessed efficiently.

2.1 Equivalence Classification of History

In order to avoid the problem mentioned above, all possible conditioning histories
w1, . . . , wi−1 must be distinguished as belonging to some manageable number NH

of equivalence classes [32]. It is therefore desirable to define a many-to-one (in some
applications many-to-many [9] [29] [59]) mapping operator H(·) that would classify
a given history w1, . . . , wi−1 of word wi as belonging to one of NH subsets hk, i.e.

H(w1, . . . , wi−1) = hk k ∈ [0, NH − 1] ,

where the set of equivalence classes H is given by

H = {h0, . . . , hNH−1} .

4
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For many-to-one mapping, conditional probabilities given in (2.1) may now be esti-
mated as

P (w) =
n∏

i=1

P (wi|H(w1, . . . , wi−1)) . (2.2)

The problem therefore is to define an appropriate mapping operator to be used
in (2.2). The most popular approach is to assume that the dependence of the
conditional probability of observing a word wi at position i is restricted to its prior
local context, i.e. to its immediate n predecessor words wi−n, . . . , wi−1. This is
essentially a Markov chain assumption which leads directly to notion of n-gram
language models for which

H(w1, . . . , wi−1) , wi−n+1, . . . , wi−1 . (2.3)

The most widely used n-gram models are obtained for n = 1 (bigram) and n = 2
(trigram).

Number of alternative equivalence classifiers, which lie outside the scope of this
discussion, have been developed over the past decade, e.g. application of decision
trees to clustering of the word histories [1] [6] [24].

2.2 Statistical Estimation

Given a training corpus of size N representing some language of interest and history
equivalence classification that divides the training corpus into NH subsets, the sec-
ond goal is to find out a way to derive a reliable probability estimates for the words
in the corpus given their histories. The following sections describe various spe-
cialised statistical techniques to obtain such estimates. Before commencing, several
notions should be defined. Throughout the chapter, counts will be used to describe
the training data w1, . . . , wi, . . . , wN . As an example, trigram counts N(u, v, w) are
obtained by counting how often the particular word trigram (u, v, w) occurs in the
training data1

N(u, v, w) =
∑

i:(wi−2,wi−1,wi)=(uvw)

1 .

Following count definitions are used:

N(h, w) number of observations for joint event (h, w);
N(w) number of observations for word w;
N(h) number of observations for history h;

N total number of observations.

In addition, count-counts or frequencies of frequencies nr and nr(h) are defined as
how often a certain count r has occurred, i.e.

nr(h) number of distinct words w that were seen following history h
exactly r times;

nr total number of distinct joint events (h, w) that occurred
exactly r times.

For r = 0 the events are called unseen (never observed in the training data) and for
r = 1 the events are called singleton events (observed exactly once). As we shall see
later n0 and n1 play crucial role in estimation from sparse data.

1Sometimes counts are referred to as relative frequencies.
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2.2.1 Maximum Likelihood estimation

For each word wi in a position i of a text corpus w1, . . . , wi, . . . , wN its conditioning
history hi is known. To arrive at maximum likelihood estimate for the set of condi-
tional probabilities {P (w|h)} consider the logarithm of the likelihood G({P (w|h)})
which has to be optimised over the set {P (w|h)} [58]:

G({P (w|h)}) = log
N∏

i=1

P (wi|hi)

=
N∑

i=1

log P (wi|hi)

=
∑

h,w

N(h, w) log P (w|h) , (2.4)

where in the last line of (2.4) the summation index has been changed by using the
count definitions N(h, w). In addition, following normalisation constraint must be
observed while optimising log-likelihood function

∑

w

P (w|h) = 1, ∀h ∈ H . (2.5)

Given (2.4) and (2.5), following function which includes the constraints is optimised
using the method of Lagrangian multipliers

G̃({P (w|h); µh}) =
∑

h,w

N(h, w) log P (w|h) −
∑

h

µh

[
∑

w

P (w|h) − 1

]
. (2.6)

By taking partial derivatives with respect to each of the probabilities P (w|h) in
(2.6) and each of the Lagrangian multipliers µh and equating them to zero we
obtain following set of equations

∂G̃

∂P (w|h)
=

N(h, w)

P (w|h)
− µh = 0 ,

∂G̃

∂µh

=
∑

w

P (w|h) − 1 = 0 . (2.7)

As can be seen, the second equation in (2.7) expresses exactly the normalisation
constraint for each history h. By some straightforward manipulations maximum
likelihood estimate for word w given its history h thus becomes

PML(w|h) =
N(h, w)∑
w′ N(h, w′)

=
N(h, w)

N(h)
. (2.8)

It can be seen that such an estimate assigns the highest probability to the training
corpus and does not waste any probability mass on events not observed during
the training. Therefore it follows that estimator of the form (2.8) will assign zero
probability to any event not seen in the training corpus. The problem of unseen
events is linked directly to the notion of data sparseness.
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2.2.2 Sparse data problem

The fundamental problem of language modelling is the problem of data sparseness.
While a few words in a language of interest are common, the vast majority of
words are very uncommon - and longer n-grams involving them are thus much rarer
again. Such n-grams will be assigned zero probabilities by the maximum likelihood
estimator if such n-grams were not seen during the training. These zero probabilities
will then be propagated in (2.2) which will result in wrong estimates for sentences.
Experiments with training corpus of 1.5 million words described in [3] have shown
that 23% of the trigram tokens found in further test corpus (which only contained
300.000 words) were previously unseen.

Assuming that the size of the corpus is not big enough one might hope that by
collecting more data it would be possible to avoid the problem of data sparseness.
While this may initially seem plausible (by increasing the coverage of the training
corpus it is possible to refine the existing probability estimates and obtain additional
ones) there is no general solution to the problem. While there is a limited number
of frequent events in the language under investigation, there is a seemingly never
ending tail to the probability distribution of rarer and rarer events and by simply
collecting more and more data one would never reach the end of the tail.

This phenomenon was first observed by Zipf [74] [75] who uncovered the following
pattern of statistical distribution of language: By obtaining the counts for each word
type in a corpus and sorting the word types in order of their frequency of occurrence,
the relationship between counts (frequency) for a word N(wi) and its position in
the list (known as rank order of frequency) r(wi) is roughly a reciprocal curve, i.e.

N(wi) ∝
1

r(wi)

or equivalently, there exists a constant k such that for all different word types wi in
the corpus,

N(wi)r(wi) = k . (2.9)

While (2.9) is only a rough approximation (for an attempt to find a closer fit to
the empirical distribution of words consult Mandelbrot [48] [49] and Sichel [67]), it
is still useful as a description of the frequency distribution of words in human lan-
guages: there are few very common words, a middling number of medium frequency
words and many low frequency words. Figure 2.1 shows rank-frequency plots of
the words for two different corpora where 2.1(a) corresponds to a small evaluation
corpus consisting of approximately 47×103 word tokens and 3000 word types and
2.1(b) corresponds to a bigger training corpus consisting of 3.6×106 word tokens and
28×103 word types. These specific text corpora are described in detail in section
5.1.

As can be seen, even after the significant increase in size of the corpus, same form
of statistical distribution underlying the language is obtained, rendering approaches
based on maximum likelihood impractical. Therefore there is need to devise better
estimators that allow for possibility of observing the yet unseen events and making
all word combinations possible (i.e. by assigning non-zero probabilities) even if the
amount of training data is insufficient.

There is still an ongoing debate about the nature of the processes described by
Zipf’s law, best summarised by a renowned linguist George Miller, who wrote in
1965 [75]:
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(b) Hub5-Train00 training corpus

Figure 2.1: Rank-frequency plot of the words (unigrams) on doubly logarithmic axes for
small evaluation and big training corpora showing the same pattern of underlying Zipfian
distribution.
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Faced with this massive statistical regularity, you have two alternatives.
Either you can assume that it reflects some universal property of human
mind, or you can assume that it represents some necessary consequence
of the laws of probabilities. Zipf chose the synthetic hypothesis and
searched for a principle of least effort that would explain the appar-
ent equilibrium between uniformity and diversity of our use of words.
Many others who were subsequently attracted to the problems chose the
analytic hypothesis and searched for a probabilistic explanation...

Some of the recent findings supporting the synthetic hypothesis can be found in [70],
while the arguments supporting the analytic hypothesis are presented in [45], [46]
and [36]. Paper by Silagadze [68] contains an interesting overview of the research
efforts in other, non-linguistic areas where Zipf’s law still applies.

2.3 Quality Assessment of Language Models

The most common evaluation techniques for language modelling are based on in-
formation theory. Assuming that a language is an information source emitting a
sequence of symbols w from a finite vocabulary V (i.e. viewing it as a stochastic
process), it is characterised by its inherent entropy H which is defined as the amount
of non-redundant information conveyed per word, on average, by a certain language
L in question. The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑

x∈X

P (x) log P (x) = −EP (log P (X)) , (2.10)

where the log is to the base of 2 expressing the entropy in bits and EP is an expec-
tation of a random variable log P (X).

For the two probability mass functions P (X) and Q(X) their relative entropy

or Kullback-Leibler distance is given by

D(P‖Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
= EP

(
log

P (X)

Q(X)

)
. (2.11)

The quantity in (2.11) is always non-negative and equals to zero if and only if the
two probability distributions P (X) and Q(X) are identical [19].

The cross-entropy between a random variable X with true probability distribu-
tion P (X) and another probability distribution Q(X) is defined as

H(X, Q) = H(X) + D(P‖Q) = −
∑

x∈X

P (x) log Q(x) .

It is therefore possible to introduce the cross-entropy of a language L described by
PL(X) with respect to a certain model M as

H(PL, PM ) = −
∑

x∈X

PL(x) log PM (x) . (2.12)

According to Shannon-McMillan-Breiman theorem2 [19] the entropy of equation
(2.10) can be defined as

H(X) = − lim
n→∞

1

n
log P (X1, X2, . . . , Xn) ,

2Also known as Asymptotic Equipartition Property.
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which allows to rewrite the cross-entropy in (2.12) as

H(PL, PM ) = − lim
n→∞

1

n

∑

x1,x2,...,xn

PL(x1, x2, . . . , xn) log PM (x1, x2, . . . , xn)

= − lim
n→∞

1

n
EPL

(log PM (x1, x2, . . . , xn)) .

Assuming that PL is ergodic, this simplifies to

H(PL, PM ) = − lim
n→∞

1

n
log PM (X1, X2, . . . , Xn) ,

which for a “sufficiently” large sample size n can be simplified as

H(PL, PM ) ≈ −
1

n
log PM (X1, X2, . . . , Xn) . (2.13)

The above quantity is very useful since it specifies an upper bound on the unknown
true entropy H(PL) of the language, i.e. for any model M ,

H(PL) ≤ H(PL, PM ) ,

where the difference between H(PL, PM ) and H(PL) is a measure of inaccuracy of
the model M with respect to the true model L.

Cross-entropy estimate of (2.13) is the most commonly used metric for evaluating
the performance of language models. Given the test corpus T , composed of nT

sentences w1, . . . ,wnT , which is disjoint from the data used to train the model M ,
equation (2.2) is used to calculate the probability of a sentence wi given the model
allowing to calculate the cross-entropy of the test corpus T using the following

H(PT , PM ) = −
1

ST
log

nT∏

i=1

P (wi) , (2.14)

where ST is the total number of word tokens in T .
By using simple trigram models, smoothed using the linear interpolation, trained

on slightly more than half a billion words drawn from various corpora assumed to be
reasonable representative sample of English and tested on Brown corpus [41] [21] of
one million words, Brown et al. [10] give an upper bound of 1.75 bits per character
for the entropy of English, which is actually higher than the original Shannon’s
[66] estimate of 1.3 bits per character, who used human subjects for obtaining this
gambling estimate.

An alternative metric, directly related to cross-entropy, is perplexity [32] defined
as a reciprocal of the geometric average probability assigned by the model M to
each word in the test corpus T , i.e.

PPM (T ) = 2H(PT ,PM ) ,

where the log is assumed to have the base of 2, which need not necessarily be,
however3. Given the probability estimate of a sentence of size n defined in (2.1) and
using the cross-entropy estimate from (2.13), the perplexity can now be expressed
as

PPM (T ) = 2−
1
n

log
Qn

i=1 PM (wi|w1,...,wi−1)

= 2−
1
n

Pn
i=1 log PM (wi|w1,...,wi−1)

= PM (w1, . . . , wn)−
1
n ,

3In consequent experiments log is taken to have the base of 10.
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which can be thought of as measure of complexity of a task of recognising a text
with PPM (T ) equally likely words presented to a language model.

Minimising the perplexity is analogous to minimising the cross-entropy of the
model with respect to the test set. The goal of statistical language modelling there-
fore can be viewed as minimising the perplexity (cross-entropy) so as to bring it
down as close as possible to the true entropy of the language.



CHAPTER 3

Overview of Smoothing Techniques

This chapter described some of the most popular techniques used in language mod-
elling for obtaining more reliable probability estimates by applying the technique
called smoothing. Section 3.1 presents various discounting techniques used as a basis
for forming the statistical estimators and section 3.2 presents the models comprised
of the combination of statistical language model estimators using various methods
of discounting which usually yield more reliable and robust predictors.

3.1 Discounting Methods

This section presents an overview of the discounting methods prevalent in language
modelling which try to remedy the data sparseness problem manifested by the nat-
ural languages.

3.1.1 Basic discounting

An alternative form of maximum likelihood estimate in (2.8) for a given n-gram
(h, w) is

PML(h, w) =
N(h, w)

N
. (3.1)

Therefore the probability estimate for an n-gram seen r times becomes

PML(N(h, w) = r) =
r

N
. (3.2)

The basic idea behind the following approaches is to remove some probability mass
from the observed events and assign it for events which were unseen during the
training. The oldest solution is to employ Laplace’s law of succession (sometimes
referred to as adding one) [43] [44] which adds one (phantom) observation to every
frequency count required to obtain MLE for a given model. Then (3.1) becomes

PLap(h, w) =
N(h, w) + 1

N + S
, (3.3)

where S is the set of all distinct n-grams being considered (i.e. the number of
phantom observations). Expressed in notation of (3.2) the modified frequency count
may be written as

r∗ = PLap(r)N =
(r + 1)N

N + S
. (3.4)

12
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Since S ≫ N , given the Zipfian distributions with long tails of infrequent events,
(3.4) tends to assign too much of the probability mass to the unseen events.

A variant of Laplace’s law defined in (3.3) usually involves adding some positive
value of δ smaller than one. This technique is known as Lidstone’s law [30] [44] [63]
for which

PLid(h, w) =
N(h, w) + δ

N + δS
(3.5)

and

r∗ =
(r + δ)N

N + δS
. (3.6)

While (3.3) and (3.4) have effect of assuming a uniform uninformative prior on
events and applying a Bayes estimator, (3.5) and (3.6) can be viewed as linear
interpolation between an MLE estimate and a uniform prior [7].

Although Lidstone’s law seems to help to avoid the problem, manifested by
Laplace’s approach, of taking too much probability mass off the observed events
by choosing a small value of δ, two major objections prove its ineffectiveness: (i)
there should be some way of guessing an appropriate value of δ in advance, and (ii)
such simple discounting schemes yield probability estimates linear in MLE frequency,
which is not a good match to the empirical distribution at low frequency [49]. Overall
both techniques mentioned above have been shown to perform poorly [22].

3.1.2 Good–Turing estimate

The Good–Turing estimator is central to many smoothing techniques. The initial
development was the derivation of this important formula for the field of biology
where it has been widely used [27]. The result can be stated as a theorem which
is presented below (both formulation of the theorem and its rigorous proof may be
found in [17] and [23]) to place the subsequent developments in the proper context.
At the end of this section some implications of this important result are discussed.

Let sv, v = 1, . . . , S be a finite collection of types (words, bigrams or species
of animals). For each type, tokens (examples of words or bigrams, etc.) can be
sampled1. Let B(N ; p1, . . . , pS) denote a sample of size N 2 drawn from S types,
each type sv having a binomial distribution with probability Pv. Let nr be the
number of types frequency of which in a sample is r and let rv denote the frequency
of the vth type.

Good’s Theorem: When two independent marginally binomial sam-

ples B1(N ; p1, . . . , ps) and B2(N ; p1, . . . , ps) are drawn, the expected fre-

quency r∗ in the sample B2 of types occurring r times in B1 is

r∗ =
(r + 1)

(1 + 1/N)

E(nr+1|B(N + 1; p1, . . . , ps))

E(nr|B(N ; p1, . . . , ps))
.

For a practical sizes of samples N , it immediately follows that

r∗ ≈ (r + 1)
E(nr+1|B(N))

E(nr|B(N))
. (3.7)

1For a unigram case, S would essentially be equal to the size of the vocabulary |V|, for a bigram
case, S = |V|2, etc.

2e.g. a text corpus
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This assumption introduces a relative error of 1/N . For a practical computation,
the expectations in (3.7) are estimated by smoothed values S(·) yielding

r∗ ≈ (r + 1)
S(nr+1)

S(nr)
. (3.8)

For the unsmoothed count-counts, (3.8) takes the form of a Turing estimator [54]

r∗ = (r + 1)
nr+1

nr

, (3.9)

whereas (3.8) is referred to as Good–Turing estimator, which may alternatively be
derived using cross-validation approaches described in [33] and [58] discussed later
in this chapter.

Substitution of the empirical estimates nr for the expectations E(nr) cannot be
done uniformly since nr will be unreliable for the high values of r. In particular,
the most frequent type would be estimated by (3.9) to have probability zero, since
the number of types with frequency one greater than it is zero. This prevents (3.9)
from being used directly.

The original solution proposed in [27] is to fit some function S(·) through the
observed values of (r, nr) and to use the smoothed values for the expectations,
leading to (3.8). Many different Good–Turing estimators are possible depending
on how the smoothing is performed. Note that the calculation for r = 0 rests on
knowing n0, the number of types not observed during the training, which can be
calculated given the vocabulary size |V|. As an example, consider bigrams for which
the total universe of types to estimate is S = |V|2. Therefore

n0 = |V|2 −
∑

r>0

nr ≈ |V|2,
∑

r>0

nr < N ≪ |V|2 , (3.10)

where for practical size of the vocabulary, approximation in (3.10) is a safe assump-
tion.

An interesting theoretical and empirical comparison between Good–Turing esti-
mator and Zipf’s Law can be found in [65].

3.1.3 Cross-validation (deleted estimation)

The result presented in Sect.3.1.2 is derived under the assumption that the distri-
bution of each type is binomial, which essentially means that events occur indepen-
dently of each other [30]3.

An empirical realisation of Good’s result is the held-out estimator [35] [33] for
which the available training corpus is divided into retained and held-out parts (the
general name given to methods using held-out and retained sets is cross-validation

[20]). The assumption behind this and the following methods is weaker than Good’s
binomial assumption and simply states that both parts of the text are generated by
the same process [17]. The basic held-out estimation is done as follows: Denoting
by N1(·) and N2(·) the counts for the retained and held-out sets respectively and
letting nr denote the number of n-grams with frequency r in the retained set, all
occurrences of all the n-grams with frequency r in the held-out set are counted as

cr ,
∑

{hw:N1(h,w)=r}

N2(h, w)

3This is not necessarily a good assumption.
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and the adjusted frequency r∗ is calculated as

r∗ =
cr

nr

. (3.11)

Rather than using some of the training data only for frequency counts and some
only for smoothing probability estimates, more efficient schemes are possible where
each part of the training data is used both as initial training (retained) data and
as held-out data. A method which makes more efficient use of training data than
the basic held-out estimation is deleted estimation [35] [33]. Denoting the two parts
of the training data by 0 and 1, n0

r is the number of types occurring r times in
the 0th part and c01

r is the total number of occurrences of these types in the 1st
part. Likewise, n1

r is defined as number of types occurring r times in the 1st part of
training data and c10

r number of occurrences of these types in the 0th part. The two
basic held-out estimates are c01

r /n0
r and c10

r /n1
r which are then combined to yield an

equation for deleted estimator

r∗ =
c01
r + c10

r

n0
r + n1

r

. (3.12)

Experiments described in [17] and [13] have shown the deleted estimator (3.12) to
outperform the basic held-out estimator (3.11) on large training corpora, with both
methods being inferior to Good–Turing estimate of (3.9).

An alternative extension to cross-validation is leaving-one-out method [55] for
which the training corpus of size N is split into a training part consisting of (N −1)
tokens and the held-out part consisting of only one token which is then used for a
sort of simulated testing. This process is repeated N times so that all N tokens
are used as the held-out part. The advantage of this training approach is that all
N tokens are used both for the training and the held-out part, efficiently exploiting
the whole training corpus. In particular, this method explores the effect of how the
model changes if any particular token had not been observed.

Both deleted estimation and leaving-one-out approaches can be shown to lead
to Good–Turing estimates [33] [58]. Derivation of a Good–Turing estimate using
leaving-one-out method will be discussed in Sect.3.1.5. First, the unconstrained
discounting model is presented.

3.1.4 Unconstrained discounting model

As it was shown in Sect.3.1.2, applying Turing estimate (3.9) is not a feasible solution
because of the problem of high-frequency types. An alternative to original Good’s
smoothing solution is to use Good–Turing re-estimation only for frequencies r < k
for some k. Low frequency words are quite numerous, so substitution of the observed
r for the expectations will be quite an accurate approximation, while the regular
MLE estimates for high frequencies will be accurate without need for discounting.

An unconstrained model for discounting can also be constructed heuristically
without need to resort to Good–Turing analysis. By letting k be the maximum
count and λr the count dependent discounting factors for r < k, given the normali-
sation constraint the gained probability mass has to be redistributed over the unseen
events. Thus following model for joint probability of events (h, w) is proposed in
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[58]

P (h, w) =






N(h, w)

N
N(h, w) ≥ k

[
1 − λN(h,w)

] N(h, w)

N
0 < N(h, w) < k




∑

h′w′:0<N(h′,w′)<k

[
λN(h′,w′)

N(h′, w′)

N

]

 1

n0
N(h, w) = 0 ,

where n0 is the estimated number of unseen events defined in (3.10). By examin-
ing the previous definition and somewhat simplifying the count notation following
equations are obtained

∑

h,w

N(h, w) =
k∑

r=0

rnr =
k∑

r=1

rnr = N ,

∑

hw:0<N(h,w)<k

λN(h,w)
N(h, w)

N
=

k−1∑

r=1

λr
rnr

N
. (3.13)

Equations in (3.13) will be useful for deriving the closed form solution for optimal
discounting factors λr in the next section.

3.1.5 Leaving-one-out estimate for joint probabilities

The N events are the joint events (h, w) obtained from the training corpus T , where

T : w1, . . . , wi, . . . , wN ,

by isolating the word wi and its history hi in each of the N text positions. Consider
the process of removing a certain observation (hi, wi) = (h, w) from N observations
and using it as a held-out part. Let the original count be r = N(h, w). After
removing one observation there are (r − 1) observations of the same type left in
(N − 1) training observations. Therefore, for the held-out part of the data, count
(r − 1) and discounting factor λr−1 must be used. From (3.13) it follows that there
are rnr observations used as held-out data with parameter λr−1. Therefore by
summing up over all the counts r ∈ [1, k], the full log-likelihood function F̃ ({λr})
of leaving-one-out method is defined as

F̃ ({λr}) =
∑

h,w

N(h, w) log P (h, w)

=
∑

hw:N(h,w)=1

1 · log P (h, w) +
∑

hw:1<N(h,w)<k

N(h, w) log P (h, w)

=
∑

hw:N(h,w)=1

1 · log

[
1

n0

k−1∑

r=1

λr
rnr

N − 1

]
+

∑

hw:1<N(h,w)<k

N(h, w) log

([
1 − λN(h,w)−1

] N(h, w) − 1

N − 1

)
.

The decomposition of log-likelihood function F̃ (·) into two parts (one part for all
events with r = 1 and another for all events with 1 < r < k) is essential, since
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after holding out one count, the form of probability function for all the original
singleton events becomes the form defined for unseen events while the second part
of decomposition reflects the probability for the rest of the counts which stay non-
zero. Partial log-likelihood F ({λr}) which is used to find the optimal values of {λr}
is constructed by considering only the λr-dependent parts of F̃ (·), i.e.

F ({λr}) =
∑

hw:N(h,w)=1

log

[
k−1∑

r=1

λrrnr

]
+

∑

hw:1<N(h,w)<k

N(h, w) log
[
1 − λN(h,w)−1

]

=
∑

hw:N(h,w)=1

log

[
k−1∑

r=1

λrrnr

]
+

k∑

r=2




∑

hw:N(h,w)=r

r log [1 − λr−1]





= n1 log

[
k−1∑

r=1

λrrnr

]
+

k∑

r=2

rnr log [1 − λr−1]

= n1 log

[
k−1∑

r=1

λrrnr

]
+

k−1∑

r=1

(r + 1)nr+1 log [1 − λr] , (3.14)

where the definitions from (3.13) have been used. Taking partial derivatives with
respect to each λr where r ∈ [1, k−1] in (3.14) and equating them to zero, following
system of (k − 1) equations for (k − 1) unknown parameters is obtained

∂F

∂λr

= n1
rnr∑k−1

s=1 λssns

−
(r + 1)nr+1

1 − λr

= 0 . (3.15)

By exploiting the fact that the sum in (3.15) does not depend on r index of λr to
be found, following closed-form solution is obtained

λr = 1 −

[∑k−1
s=1 sns∑k
s=1 sns

]
(r + 1)nr+1

rnr

= 1 −

[
1 −

knk

N

]
(r + 1)nr+1

rnr

. (3.16)

Therefore, by plugging in λr from (3.16) for the events (h, w) with r 6= k into the
unconstrained discounting model, following probability estimates are obtained

r 6= k : PLOO(N(h, w) = r) =

[
1 −

knk

N

]
(r + 1)nr+1

Nnr

. (3.17)

The probability mass of unseen events therefore is

∑

hw:N(h,w)=0

PLOO(h, w) =

[
1 −

knk

N

]
n1

N

and the total probability mass of events that were seen in training (r > 0) is given
by

∑

hw:N(h,w)=r

PLOO(h, w) =

[
1 −

knk

N

]
(r + 1)nr+1

N
.
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Given the leaving-one-out probability estimate in (3.17), ignoring the probability
mass of counts r = k and assuming

knk

N
≪ 1

we obtain Good–Turing estimate

PGT(h, w) ≈
1

N

(r + 1)nr+1

nr

,

from which the following Good–Turing discounting factor is obtained

λr ≈ 1 −
(r + 1)nr+1

rnr

and the Good–Turing estimate of the probability mass of the unseen events becomes

∑

hw:N(h,w)=0

PGT(h, w) ≈
n1

N
, (3.18)

which is a very useful equation for checking the coverage of the vocabulary.

3.2 Combination of Estimators

All of the techniques described so far make use of raw count r of an n-gram as a
base for prediction. These methods assign the same probability for all n-grams that
never appeared or appeared only rarely, which is not desirable. In theory we would
like to estimate different probabilities for n-grams with the same frequency in order
to account better for occurrences of different word patterns in natural language. For
example, in such cases, one might hope to produce better estimates by looking at the
frequency of (n−1)-grams found in n-gram. This will supply additional information
which then can be used to refine estimates. One of the initial developments in this
area is described in [17] where the estimates for the unseen bigrams are shown to
be refined in terms of probabilities of unigrams that compose them using the bins
describing disjoint groups, with each bin treated as a separate distribution and
Good–Turing estimation is performed on each, giving corrected counts which are
normalised to yield probabilities.

In this section the problem of combining probability estimates from different
models is presented and several popular solutions are described.

3.2.1 Katz’s backing-off

Katz smoothing [37] extends the intuitions of Good–Turing estimate by adding
combination of different models which are consulted in order depending on their
specificity. The most detailed model that is able to provide sufficiently reliable
information about the current context is used and models are defined recursively in
terms of lower order models.

Using Katz’s unconstrained model, the count-dependent discounting factors λr

are applied only for r ≤ k, where k is some integer constant (Katz suggests k =
5). To satisfy the normalisation constraint, the gained probability mass has to be
computed separately for each history and then distributed over the unseen events
using a more general (lower-order) distribution Q(·) in the process of backing-off.
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A generalised history ĥ for the n-gram (h, w) is defined as (n − 1)-gram (ĥ, w) (for
example, a bigram history of a trigram (h, w) = (w1, w2, w3) would have a unigram
(ĥ, w) = (w2, w3) as generalised history). Therefore a more general distribution
Q(w|ĥ) is conditioned on generalised history ĥ.

In Katz’s model the estimate for conditional probability is defined as

P (w|h) =






N(h, w)

N(h)
N(h, w) > k

[
1 − λN(h,w)

] N(h, w)

N(h)
1 ≤ N(h, w) ≤ k


∑

w′:0≤N(h,w′)≤k

[
λN(h,w′)

N(h, w′)

N(h)

]

 Q(w|ĥ)∑

w′:N(h,w′)=0

Q(w′|ĥ)

N(h, w) = 0 ,

which is subject to usual normalisation constraint
∑

w P (w|h) = 1. The large counts
N(h, w) > k are taken to be reliable and are not discounted.

Using the following count-counts

nr(h) ,
∑

w:N(h,w)=r

1

nr ,
∑

h

nr(h)

for which
∑

w:1≤N(h,w)≤k

λN(h,w)
N(h, w)

N(h)
=

k∑

r=1

λr
rnr(h)

N(h)
,

leaving-one-out method [58] constructs the log-likelihood function in a way similar
to section 3.1.5 in order to obtain optimal values for discounting coefficients λr

arriving at the following closed-form solution

λr = 1 −

[∑k
s=1 sns∑k+1
s=1 sns

]
(r + 1)nr+1

rnr

, (3.19)

which is virtually identical to leaving-one-out discounting in the case of joint prob-
abilities from (3.16).

The original solution for λr [37] requires the total probability mass of unseen
events to equal the Good–Turing estimate for unseen events from (3.18), i.e.

k∑

r=1

λr
rnr

N
=

n1

N

and λr are defined by re-normalising the corresponding Good–Turing factors with
a factor µ

λr = µ

[
1 −

(r + 1)nr+1

rnr

]
≈ µ

[
1 −

r∗

r

]
,
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obtaining the final estimates

λr =
1 −

(r + 1)nr+1

rnr

1 −
(k + 1)nk+1

n1

≈
1 −

r∗

r

1 −
(k + 1)nk+1

n1

. (3.20)

Note that the developments leading to derivations of (3.19) and (3.20) given the
Katz’s model so far have assumed that generalised distribution Q(w|ĥ) is known.
It is obvious, however, that there is needed some way of estimating the generalised
distribution itself. For the standard model [37], the relative frequency estimates of
lower-order events are advocated, i.e.

Q(w|ĥ) =
N(ĥ, w)

∑
w′ N(ĥ, w′)

. (3.21)

This move is justified since the estimate in (3.21) is a conventional maximum like-
lihood estimate.

3.2.2 Linear discounting

In linear discounting [55] [57] the non-zero maximum likelihood estimates are scaled
by a constant slightly less than one and the remaining probability mass is redis-
tributed across novel events

P (w|h) =






(1 − α)
N(h, w)

N(h)
N(h, w) > 0

α
Q(w|ĥ)

P
w′:N(h,w′)=0 Q(w′|ĥ)

N(h, w) = 0 .

In general, leaving-one-out method is used in [57] to obtain a following closed-form
solution for α

α =
n1

N
,

which is identical to Good–Turing probability estimate for the unseen events.
This model has been shown to perform rather poorly [56] [50] since both high

and low frequencies are discounted by the same constant factor but it is well known
that the higher the frequency, the more accurate a raw maximum likelihood estimate
is, property which is not reflected by linear discounting.

3.2.3 Absolute discounting

Absolute discounting method [57] attempts to leave the non-zero counts virtually
unchanged. The heuristic justification for this may be found in [58] where it is
argued that the count r for a certain event (h, w) does not change significantly with
the replacement of the training corpus of size N with another corpus of the same
size and the variation of r can be expected to be in range [r − 1, r + 1]. This leads
to introduction of average (non-integer) count offset b independent of the count r
itself. Subject to normalisation constraint, the model thus takes the following form

P (w|h) =






N(h, w) − b

N(h)
N(h, w) > 0

b
S − n0(h)

N(h)
Q(w|ĥ)

P
w′:N(h,w′)=0 Q(w′|ĥ)

N(h, w) = 0 ,
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where the constraint on b is 0 < b < 1 and S is the size of the universe of the events.
Using leaving-one-out estimation no closed-form solution can be obtained and

the approximation of an upper bound on b is found to be

bLOO =
n1

n1 + 2n2
.

Using the approach taken in [58], Good–Turing probability mass for unseen events
leads to another possible estimate of b

bGT =
n1∑

r≥1 nr

.

Several enhancements to absolute discounting are possible. In [58] usage of two
discounting parameters (one for singleton events with r = 1 and another for r > 1)
is advocated which leads to improved performance. Additional refinement suggested
is to apply an absolute discounting only to low counts, similar to Katz model, and
use MLE estimates for high frequencies.

3.2.4 Kneser-Ney smoothing

In the approaches presented so far, the lower-order distribution is taken to be a
smoothed version of the lower-order maximum likelihood distribution. However,
the lower-order distribution Q(w|ĥ) becomes an important factor only when there
are few or no counts present in the higher-order distribution. Method presented in
this section tries to simulate this condition.

Kneser and Ney [40] note that for word bigrams such as bona fide or Sri Lanka

(and many other collocations [18] and proper names [52]) the second word is strongly
coupled with the first one and thus its unigram count will be high if its predecessor
word occurs often in the corpus. But in backing-off case we know exactly that a
predecessor word has not occurred. As a result, the relative frequencies of word un-
igrams over-estimate the true probabilities. To solve this problem, authors propose
to use the generalised singleton distribution, i.e. computing lower-order distribution
only from those word bigrams that were seen only once

Q(w|ĥ) ≈
N1(ĥ, w)

∑
w′ N1(ĥ, w′)

,

where
N1(ĥ, w) =

∑

h∈bh:N(h,w)=1

1 .

Such smoothing can be applied to any of the backing-off methods discussed above
and its derivation is described in detail in [40] and [58]. Several experiments with
language models improved by incorporating a singleton backing-off distribution are
described in [25].

In recent experiments [14] [15] Kneser-Ney smoothing and its variants (some
of them based on interpolation) were found to consistently outperform all other
approaches.

3.2.5 Linear interpolation

An important alternative to back-off models described so far is linear interpolation
technique, in which higher-order models are mixed with lower-order models that
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suffer less from data sparseness. The basic form of linear interpolation can be
obtained from floor method [55] related to Lidstone’s law (3.5), for which instead of
adding a constant floor value, some value proportional to a less specific distribution
Q(·) is added, i.e.

PFloor(h, w) =
N(h, w) + δhQ(ĥ, w)

N(h) + δh

, (3.22)

where δh is dependent on history. By introducing a new constant λ′
h for which

λ′
h =

δh

N(h) + δh

, 0 < λ′
h ≤ 1

equation (3.22) becomes the linear interpolation formula proposed by Jelinek [31]
[32]

PLI(h, w) = (1 − λ′
h)

N(h, w)

N(h)
+ λ′

hQ(ĥ, w) ,

which for conditional probabilities may be rewritten as

PLI(w|h) = (1 − λh)
N(h, w)

N(h)
+ λhQ(w|ĥ) . (3.23)

An alternative way to arrive to the same result (3.23) is to replace concept of backed-
off linear discounting described in Sect.3.2.2 by interpolation [57].

The reason for making the interpolation parameters λh history-dependent be-
comes apparent upon considering a fact that for higher counts the higher distribution
is more reliable, therefore smaller value of λ in (3.23) will be appropriate, whereas
for low counts setting a larger λ is desirable.

The smoothing parameters λh are chosen to maximise the probability estimate
PLI(·) in (3.23). The solution advocated in [31] is to use Baum-Welsh (EM) algo-
rithm which is guaranteed to converge to a local optimum. This method approaches
a language model smoothing problem from a rigorous Hidden Markov Model (HMM)
point of view [3] [31] [11] and exploits the training corpus in a process of deleted

interpolation, which is similar to deleted estimation method of Sect.3.1.3.
An alternative derivation of estimation equations for linear interpolation is given

in [57], where authors use the leaving-one-out formalism to arrive at formulae which
happen to produce the correct iteration equations, but without the convergence
guarantee of Baum-Welsh algorithm. In this case the re-estimation equation for
interpolation parameter is given by

λ̂h =
1

N(h)



n1(h) +
∑

w:N(h,w)>1

N(h, w)
λhQ(w|ĥ)

(1 − λh)
N(h, w) − 1

N(h) − 1
+ λhQ(w|ĥ)



 ,

where the influence of singleton distribution n1(h) is evident.

3.2.6 Unified view on backing-off and linear interpolation

As noted in [40], most existing smoothing methods can be described by the following
back-off equation

PBO(w|h) =

{
α(w|h) N(h, w) > 0

γ(h)Q(w|ĥ) N(h, w) = 0 ,
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where α(w|h) is some reliable estimate of probability (e.g. ML), Q(w|ĥ) is a less
specific distribution and γ(h) is the scaling factor determined completely by α(·)
and Q(·).

Another group of smoothing methods is expressed as linear interpolation of
higher and lower-order models and is given by (3.23), which can be rewritten as

PLI(w|h) = α′(w|h) + γ(h)Q(w|ĥ) ,

where

α′(w|h) = (1 − λh)
N(h, w)

N(h)

and γ(h) = λh. By taking

α(w|h) = α′(w|h) + γ(h)Q(w|ĥ) (3.24)

equation (3.24) can be placed in the above back-off form.
A common approach to place the interpolated model into the back-off framework

is to take
α(w|h) = α′(w|h)

and adjust the normalisation factor γ(h) so that probabilities sum to one.

3.2.7 Parameter tying

In order to reduce the number of free history-dependent parameters λh in the context
of linear interpolation they need to be pooled across different histories. Placing the
interpolation model in back-off context, as described in previous section, we obtain

P (w|h) =






(1 − λh)
N(h, w)

N(h)
N(h, w) > 0

λh

[
Q(w|ĥ)

P
w′:N(h,w)=0 Q(w′|ĥ)

]
N(h, w) = 0 .

Using leaving-one-out formalism following possible estimates are obtained by Ney
[58] for different types of tying:

No tying: For each history h,

λh =
n1(h)

N(h)
.

History count tying: The assumption is that the parameters λh depend on history
h only via the history count N(h), i.e. for r ∈ {N(h) : h}

λr =

∑
h:N(h)=r n1(h)

∑
h:N(h)=r N(h)

.

Often the tying process is carried further by dividing the history counts into
moderate number of partitions or bins and using separate parameter λ for each
bin [34], approach taken in the experiments described below. Extension to this
approach, namely the average-count method proposed by Chen [13], for which
parameters are tied according to the average number of counts per non-zero
element in the history, was reported to yield an even better performance.
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No history dependence: Results in linear discounting model of Sect.3.2.2 and

λ =

∑
h n1(h)∑
h N(h)

=
n1

N
.

Full (h, w)-tuple dependence: Results in Katz’s model of Sect.3.2.1.

As it can be seen, different types of tying result in different smoothing models. In
general, having too many interpolation paramaters is not desirable, since this defeats
purpose of cross-validation which in this case does not differ from conventional
learning [58]. It is therefore recommended to use reasonable amount of tying to
improve the robustness of the model with respect to the new data.



CHAPTER 4

Interpolation of Language Models

This chapter presents the theoretical framework for linear and log-linear interpo-
lation, which are the two different ways of combining any n-gram probability esti-
mates. In particular, in the scope of this thesis, we are interested in developing the
frameworks for linear and log-linear interpolation of the n-gram language models
of the same nature (i.e. built using the same concept and text corpus) but with
varying degree of specificity. Efficient ways of probability estimation, parameter
optimisation and tying are presented, along with theoretical comparative analysis
of both techniques. Section 4.1 presents the linear interpolation while section 4.2
presents the log-linear interpolation.

4.1 Linear Smoothing

Linear smoothing of probability estimates, known in statistical NLP as linear inter-

polation and as mixture models elsewhere, has been probably the most widely used
technique for combining the language models. Linear interpolation has been briefly
introduced in the previous chapter in the general framework of language modelling
smoothing. In this section it is discussed in more detail.

The most basic way to linearly combine the m probability estimates is to take

PLI(w|h) =
m∑

k=1

λkPk(w|h) , (4.1)

where
∀k ∈ [1, m] : 0 ≤ λk ≤ 1,

∑

k

λk = 1 .

Linear interpolation cannot hurt. The optimally interpolated model given by (4.1)
is guaranteed to be no worse than any of its components. This is because each of the
components can be viewed as a special case of the interpolation, with a weight of 1
for that component and 0 for the others. This is only guaranteed for a held-out data,
not for a new data. But if the held-out data is large enough and representative, the
result will carry over to the test data as well.

Since this is a general technique, it has been frequently applied to combining the
stochastic models of different nature. Some of its recent applications include com-
bination of parser models [12], topic-dependent models [71], back-off and maximum
entropy models [51] and interpolation of cache, Kneser-Ney smoothed, high-order
n-gram, skipping and sentence-based models [28].

25
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Within the context of this paper, we are concerned with linearly combining
probability estimates P (·) of the n-gram models obtained from the same corpus.
Expressed in terms of the n-grams, the estimate in (4.1) can be expressed as

PLI(wi|w
i−1
i−n+1) = λ1P (wi|w

i−1
i−n+1) + . . . + λnP (wi) (4.2)

with the same constraints imposed for the interpolation weights λk. By assuming
the history-dependence of the parameters, introduced in Sect.3.2.5, an alternative
functional form to that of (4.2) is to define the linear interpolation recursively [13]
in the following way

PLI(wi|w
i−1
i−n+1) = (1 − λ

wi−1
i−n+1

)P (wi|w
i−1
i−n+1) +

λ
wi−1

i−n+1
PLI(wi|w

i−1
i−n+2) . (4.3)

This allows us to define a smoothed n-gram model recursively as linear interpolation
between the nth-order actual probability estimate and (n − 1)th-order smoothed
model. Recursion is terminated by either taking the 1st-order smoothed model to
be a unigram probability estimate as it is done in this work,

PLI(wi|wi−1) = (1 − λwi−1)P (wi|wi−1) + λwi−1P (wi)

or by taking the 0th-order smoothed model to be a uniform distribution (zerogram)
as follows

PLI(wi) = (1 − λ0)P (wi) + λ0
1

|V|
,

where |V| is the vocabulary size. This approach was taken by Brown [10] and Chen
[13]. It remains to be shown which one of the two approaches is more advantageous.

4.1.1 Parameter tying

As it was briefly mentioned before, from an intuitive point of view, parameters
λh should be different for different histories h. If a context h was seen sufficient
number of times to reliably estimate the parameter this should be reflected by an
appropriately low value of λh making the contribution of a particular probability
distribution P (·) in (4.3) more significant and, analogously, if there was not enough
times context h had appeared during the training, λh should be higher, giving more
probability mass to the lower-order smoothed model.

It is not generally feasible to accurately train each interpolation parameter λh

independently since an enormous amount of data would be needed for such an
estimation. Jelinek [31] suggested to divide the parameters λh into the moderate
number of bins, constraining all the parameters λh in the same bin to have the same
value. The mapping between the history h = wi−1

i−n+1 and a bin Bk is via the number
of times this history has appeared in the training corpus, i.e.

∀h ∈ T : if N(h) ∈ Bk ⇒ λh = λ(Bk), Bk ∈ B ,

where B is the collection of all possible bins. Therefore the number of interpolation
parameters is equal to the total number of bins. Intuitively, each bin Bk should be
made as small as possible to only cluster together the most similar n-grams while
remaining large enough to accurately estimate the corresponding parameter λ(Bk).

Bins are built using the clustering method often referred to as wall of bricks [47]
in which bins are created so that each bin contains at least Nmin n-gram history
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counts. By starting from the minimal possible value of N(h) and assigning the
increasing values of N(h) to this bin (updating the bin boundaries appropriately)
the process continues until the minimum count Nmin is reached, at which point
process is repeated for the remaining history counts until all the possible values of
N(h) are clustered (i.e. assigned to corresponding bins). The clustering is done
separately for all the n-gram models, yielding n different bin spaces B.

Typically, for histories with low counts, the bins will contain a large number
of histories, whereas for higher history count values each bin will contain a small
number of histories.

4.1.2 Parameter optimisation

The method adopted in this work for the purpose of describing the training and
optimisation framework for linear interpolation is the held-out estimation, briefly
described in Sect.3.1.3, in which one reserves a section of a training data, called
the kept or retained data which is used for obtaining the n-gram probability es-
timates and determining the clustering parameters, while the remaining (usually
much smaller) part of the training data, the held-out data, is used for optimising
the interpolation weights and, in general, simulate the unseen test corpora. In alter-
native method, called deleted interpolation or deleted estimation, different parts of
training data rotate simulating either the retained or held-out part and the results
are then combined together 1.

Let KT denote the kept, and HT the held-out parts of the training corpus T
respectively, with the following being true for the sizes of the corpora

|KT | + |HT | = |T |

and

δ ≡
|HT |

|KT |
< 1 ,

where δ may be defined either intuitively, by corresponding to one’s notion of what
a kept and a held-out corpora size should be (the kept part should be big enough to
reliably estimate the probabilities and the clustering parameters while the held-out
part should be reasonably representative of the possible unseen test corpora and have
a size which is sufficient for accurate parameter optimisation) or experimentally, by
dividing the total training data T into the kept and held-out sets in such a way as to
achieve the smallest perplexity of the model with respect to the second held-out set
which is disjoint from the overall training data2. For instance, Chen and Goodman
[14] [15] divide the overall training data into one kept set and two held-out sets,
with the first held-out set being used for parameter optimisation while the second
held-out set is solely used for cross-entropy calculation.

Using the recursive formalism defined in (4.3) it can be noted that it is sufficient
to estimate the weight λh corresponding to history h independently for each bin Bk

into which the history count N(h) falls. Given the bins Bk ∈ B estimated using
the kept part of the training corpus KT , the interpolation parameter optimisation
is carried out on the held-out corpus HT as shown in Alg.4.1. The per-bin log-
likelihood function to be optimised is defined as

L(Bn,k) =
∑

h:C(h)∈Bn,k

∑

w

C(h, w) log
[
(1 − λ)P (w|h) + λPLI(w|ĥ)

]
, (4.4)

1Leaving-out-one can be seen as a special case of deleted estimation
2The choice of δ = 6

7
proved to be reasonable.
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for all n-gram history orders n starting with bigrams (n = 1) do

for all bins Bn,k in a collection Bn do

Find λ(Bn,k) maximising the log-likelihood L(Bn,k) defined by (4.4).
end for

end for

Algorithm 4.1: Log-likelihood optimisation for all the clusters (bins).

where C(·) denotes the counts obtained from the held-out set3 and ĥ is a generalised
((n − 1)th-order) history. Notation was simplified slightly by denoting the bin-
dependent weight λ(Bn,k) by λ. Summation in (4.4) is carried for all the events w
in all the contexts h in held-out set HT such that their history counts fall into the
bin Bn,k, which is defined by the kept set KT .

The log-likelihood function L(Bn,k) is optimised in a bottom-up fashion in terms

of n-gram history orders. For the initial (bigram) case PLI(w|ĥ) is equivalent to a
unigram probability estimate P (w), whereas for the higher-order histories n > 1 it
is equal to the lower-order linearly smoothed estimate.

It can be shown for the special case when the probability distributions being
smoothed are maximum likelihood estimates, that optimising the log-likelihood
function in (4.4) with respect to the kept set is, in fact, equivalent to assigning
maximum weight, i.e. λ(Bn,k) = 0, to the higher-order maximum likelihood distri-
bution [33], since in this case the procedure is essentially similar to the one leading
to the maximum likelihood estimation, as shown in Sect.2.2.1, maximising the log-
likelihood of a model with respect to itself.

Log-likelihood function L(Bn,k) can be proven to represent a convex function
of λ in the range 0 ≤ λ ≤ 1 and from this property it immediately follows that
it has a unique local maximum in this range. Consequently, since log-likelihood is
a monotonic function, the likelihood function also has a unique local maximum in
this range. Taking the derivative of (4.4) with respect to λ, following expression is
obtained

d

dλ
L(Bn,k) =

∑

h:C(h)∈Bn,k

∑

w

C(h, w)

[
λ +

PLI(w|ĥ)

PML(w|h) − PLI(w|ĥ)

]−1

. (4.5)

Following from the property of convex functions, the log-likelihood function must
attain its maximum value at either one of the boundary points λ = 0 (in which
case this is a monotonically decreasing function in this range) or λ = 1 (in which
case the function monotonically increases in the range), or at any interior point
0 < λ < 1 (in which case the function monotonically increases from 0 to λopt and
then monotonically decreases to 1), Bahl et al. [2] present a fast algorithm for
finding the optimal value λopt of λ by searching for the root of the derivative of
log-likelihood function given by (4.5). Since second derivative given by

d2

dλ2
L(Bn,k) =

∑

h:C(h)∈Bn,k

∑

w

C(h, w)

[
λ +

PLI(w|ĥ)

PML(w|h) − PLI(w|ĥ)

]−2

is always non-positive, this solution is guaranteed to be local maximum. The al-
gorithm, which employs technique for dividing the search interval the authors call

3Recall that N(·) refer to counts from the kept set.
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Require: nmax = − log2 ǫ − 1
where ǫ = 2−(nmax+1) is the required tolerance.
if D(0) ≤ 0 then

λopt = 0. Stop.
else if D(1) ≥ 0 then

λopt = 1. Stop.
end if

l = 0, r = 1
for n = 0 to nmax do

m = (l + r)/2
if n = nmax or D(m) = 0 then

λopt = m. Stop.
else if D(m) > 0 then

l = m
else if D(m) > 0 then

r = m
end if

end for

Algorithm 4.2: Interval search for an optimal λ.

binary chopping search, shown4 in Alg.4.2, was reported to be one or two orders of
magnitude faster than the standard forward-backward (EM) algorithm (employed,
for instance, by Peto [61] and Rosenfeld [64]) and can be thought of as a faster per-
forming variant of bisection method for root finding, with the only difference being
that no initial bracketing constraints on the root are imposed, since the behaviour
of the function is initially known. Additional improvements in performance which
can be obtained by using the Newton-Raphson method with second derivatives [62],
were not attempted since performance of an algorithm seemed to be satisfactory
enough.

4.2 Log-Linear Smoothing

An alternative way of combining the language models may be derived using the
following framework which exploits the constrained conditional relative entropy ap-
proach. Given the n probability distributions Pi(w|h) to be combined, i ∈ [1, n], the
conditional relative entropy of the unknown target model P (w|h) with respect to
each of the given models is defined by the following non-symmetric Kullback-Leibler
distance measure

D(P (w|h)‖Pi(w|h)) =
∑

h

P (h)
∑

w

P (w|h) log
P (w|h)

Pi(w|h)
= di ,

where D(·) is a relative entropy between conditional probability distributions P (w|h)
and Pi(wh) and di are the constraints on the system. The target probability distri-
bution should be minimised in terms of its conditional relative entropy with respect
to some additional model P0(w|h). Using Lagrangian multipliers γi the constrained

4The notation is simplified by denoting d
dλ

L(Bn,k) by D(λ).
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system function DΓ(P (w|h)) to be minimised can be expressed as

DΓ(P (w|h)) = D(P (w|h)‖P0(w|h)) +
∑

i

γi (D(P (w|h)‖Pi(w|h)) − di) ,

where Γ = {γ1 . . . γn}. Taking partial derivatives with respect to γi and equating
them to zero following equation is obtained

∂DΓ

∂γi

= D(P (w|h)‖Pi(w|h)) − di = 0 .

Similarly, with respect to the target model,

∂DΓ

∂P (w|h)
=

∑

h

P (h)
∑

w

(
1 + log

P (w|h)

P0(w|h)

)
+

∑

i

γi

∑

h

P (h)
∑

w

(
1 + log

P (w|h)

Pi(w|h)

)
= 0 .

Rearranging the terms yields

∑

h

P (h)
∑

w

[
1 + log

P (w|h)

P0(w|h)
+
∑

i

γi

(
1 + log

P (w|h)

Pi(w|h)

)]
= 0 . (4.6)

Assuming that
∀h ∈ V : P (h) 6= 0

and equating the inner sum of (4.6) to zero yields

(1 +
∑

i

γi) log P (w|h) + 1 − log P0(w|h) +
∑

i

γi(1 − log Pi(w|h)) = 0 . (4.7)

Assuming P0 to be a uniform distribution5, taking the exponential and making some
trivial rearrangements yields

P (w|h) = exp

(
−1 −

log |V|

1 +
∑

i γi

)∏

i

Pi(w|h)

γi

1 +
∑

i γi . (4.8)

Let
λi ,

γi

1 +
∑

i γi

denote the interpolation weights. The first term in the above product (4.8) is only
dependent on the weights {λi} and is denoted as Z0(Λ), which allows to express the
target model as

P (w|h) = Z0(Λ)
∏

i

Pi(w|h)λi , Λ = {λ1 . . . λn} . (4.9)

In order for (4.9) to define a proper probability distribution it should be properly
normalised. By introducing the history-dependent normalisation factor Zh(Λ) fol-
lowing equation is obtained

PLLI(w|h) =
1

Zh(Λ)

∏

i

Pi(w|h)λi , (4.10)

5i.e., P0(w|h) = 1
|V|

, where |V| is the size of the vocabulary.
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where Z0(·) has been absorbed into the normalisation factor Zh(Λ) for which fol-
lowing is true

Zh(Λ) =
∑

w

∏

i

Pi(w|h)λi ,

therefore obtaining

PLLI(w|h) =

∏
i Pi(w|h)λi

∑
w

∏
i Pi(w|h)λi

.

Equation (4.10) has been introduced by Klakow [39] and can be viewed as linear
interpolation in log domain, where in contrast with regular linear interpolation
described in the preceding section, no explicit constraints appear on the log-linear
interpolation weights.

As can be seen, the log-linear interpolation estimate of (4.10) is not reliable if
the probability estimates to be smoothed are maximum likelihoods. In case where
at least one of the events w was not observed in a certain context h, the correspond-
ing maximum likelihood estimate becomes zero and the total log-linear estimate is
assigned a zero value, which is undesirable since this constitutes a badly smoothed
estimate. Additional problem, which may arise during the optimisation of the in-
terpolation parameters, is when at least one of the interpolation parameters and
its corresponding estimate are equal to zero, in which case the quantity in equa-
tion (4.10) becomes undefined. It is therefore desirable to use nonzero probability
estimates for smoothing (e.g., back-off estimates).

4.2.1 Formal framework

Following factors need to be considered in order to define an efficient framework for
log-linear interpolation:

• The interpolation parameters Λ need to be made history dependent in order
to better account for the data sparsity, the less sparse the back-off estimates
for the history h, the bigger the corresponding parameter λh.

• Since interpolation parameters are history dependent, the normalisation fac-
tors are also history dependent, and, in addition, depend on the choice of the
interpolation weights. However, because of the definition of the normalisa-
tion factor as being the summation of probability factors over all the events
in the vocabulary given the specific history, no immediate way of clustering
the normalisation factors is available, i.e. normalisation factors are strictly
history-dependent, unlike the interpolation parameters which may be made
cluster-dependent.

• Special handling is needed for the cases where the requested history is not
found in the training set, in which case no normalisation factor nor one or
more interpolation weights are available, in which case lower order linear in-
terpolation model should be used.

The aforementioned considerations result in proposing the following framework for
obtaining the reliable n-gram log-linear probability estimates,

PLLI(wi|w
i−1
i−n+1) =






[
Z

wi−1
i−n+1

(Λ)
]−1

n∏

j=1

P (wi|w
i−1
i−n+j)

λj(w
i−1
i−n+1) N(wi−1

i−n+1) > 0

PLLI(wi|w
i−1
i−n+2) otherwise ,
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where P (·) are the probability estimates to be combined and the normalisation fac-
tor depends on the interpolation weights corresponding to each of the probability
estimates. In case the context was not found in the training data, the probability
estimates are taken from the lower order model, for which there is its own normali-
sation factor and interpolation weights. The log-linear interpolation estimate for a
unigram is taken to be just a single unigram probability estimate, i.e.

PLLI(wi) = P (wi)

since there is no need for normalisation factor.

4.2.2 Parameter Tying

As noted above, the clustering scheme for estimating the log-linear interpolation
parameters is similar to the corresponding linear interpolation scheme described in
Sect.4.1.1. Since the interpolation weight is taken to only depend on a particular
history and all the observed histories are clustered into a manageable number of bins,
there is a separate interpolation parameter for each bin. The difference between the
clustering methods, however, is in the way the interpolation weights are used. Let
the mapping between the history h = wi−1

i−n+1 of an n-gram wi
i−n+1 and a bin Bk be

via the number of times this history has appeared in the kept part of the training
corpus, similarly to linear smoothing,

∀h ∈ KT : if N(h) ∈ Bk ⇒ Ch = C(Bk), Bk ∈ B ,

where B is the collection of all possible bins, Bk is a certain bin into which the
history count N(h) falls and Ch is defined as a collection of parameters associated
with a bin Bk. For the linear case, the collection Ch consists of only one interpolation
weight λ(Bk). In the log-linear framework however, given a certain n-gram history
wi−1

i−n+1 of length n − 1 there are n log-linear interpolation weights associated with
it, i.e.

∀h Λ(h) =

{
λ1(h), . . . , λn(h) N(h) > 0

λ1(ĥ), . . . , λk(ĥ) N(h) = 0, N(ĥ) > 0, k < n ,

where ĥ is a lower-order history. In addition, there is a normalised parameter
associated with each history which is strictly dependent on both the history and the
interpolation parameters associated with the history, i.e.,

Z = Zh(Λ(Bk)) .

Therefore the log-linear parameter collection for a certain Bk can be defined as
follows

∀h ∈ KT : if N(h) ∈ Bk ⇒ Ch = C(Bk) = {Λ(Bk), Zh(Λ(Bk))}, Bk ∈ B ,

where the normalisation factors are strictly history dependent with the number of
normalisation factors equal to the number of distinct histories in kept part of the
training corpus.

The process of building the clusters used to estimate Λ is carried out using the
wall of bricks clustering, described in Sect.4.1.1, and in this respect is similar to the
process used for linear interpolation.
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4.2.3 Multidimensional optimisation

Function to be optimised was chosen to be the log-likelihood of log-linear probability
distribution which is expressed as follows

L(Bn,k) =
∑

h:C(h)∈Bn,k

∑

w

C(h, w)

[
− log Zh(Λ) +

n∑

i=1

λi(h) log P (w|ĥi)

]
, (4.11)

where Λ(Bk) = λ1(Bk), . . . , λn(Bk), ĥi are histories of different specificity6 and C(·)
denote the counts obtained from the held-out set. Conventional held-out estimation
is performed using the divided training data, with the kept set used for estimating
the probabilities and the held-out set used for the interpolation weights optimisation.
The optimisation framework as defined by (4.11) is more complicated than that of
linear interpolation one due to the presence of normalisation score, which ensures
that the log-likelihood being optimised is a log-likelihood of a proper probability
distribution, expressed as

log Zh(Λ) = log
∑

w∈KT

PLLI(w|h) , (4.12)

where the summation is over all the words in the vocabulary of the kept part of the
training corpus.

Because of the non-linear nature of the expression in (4.11), no closed-form
solution for the first derivative exists. Unlike the linear smoothing, no fast root-
finding algorithm exploiting the functional form of the log-linear log-likelihood func-
tion can be employed. However, since the expression in (4.11) describes as convex
function and the second derivative may be shown to be negative, any hill-climbing
unconstrained optimisation can be used. In the experiments described below, two
multidimensional optimisation algorithms from a family of direct search methods
not requiring derivatives were used. The first, also reported to be used by Klakow
[39], is a Nelder-Mead multidimensional minimisation, also known as simplex, which
is probably the most widely used method for nonlinear unconstrained optimisa-
tion7, maintains at each step a non-degenerative simplex, a geometrical figure in
n dimensions of nonzero volume that is the convex hull of n + 1 vertices. It is a
very computationally attractive method since it typically requires only one or two
function evaluations to construct a new simplex. The rigorous theoretical analysis
treating the Nelder-Mead method has recently been published by Lagarias et al.

[42]. Despite its attractiveness, however, there are certain families of strictly convex
functions for which Nelder-Mead method converges to a non-stationary point, as
shown by McKinnon [53], who considered certain functions of two variables. Some
remedies for detection of non-optimality were proposed by Kelley [38]. Due to this
recent evidence of potential problems with Nelder-Mead method, it has been applied
in experiments on the bigger, less sparse corpora, whereas for the smaller corpora,
a generally slower, but more robust Powell method was employed, a direction set
method whose choice of successive directions does not require the calculation of a
gradient and which employs Brent one-dimensional search in each direction [62]. It
is not clear, however, whether the log-likelihood family of functions can produce
functions which may cause problems for unconstrained direct search optimisation.

6With a zero length history corresponding to a unigram.
7Not to be confused with Dantzig’s simplex algorithm for linear programming.
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No convergence problems whatsoever with both of the techniques were observed
during the experiments.

The log-likelihood optimisation is carried out in top-down fashion, in case of
trigram smoothing starting with the trigrams and ending with the bigrams, as shown
in Alg.4.3. There are several important points which are worth mentioning. Firstly,
unlike linear smoothing, where all the histories from the held-out set (except those,
obviously, which are not found in the kept set) are used in optimisation, because
there is only one weight corresponding to a certain history of an n-gram of length
m, whereas in case of log-linear smoothing, for a certain n-gram history of length m
there are m weights associated with it, namely one for each of the m sub-histories of
an n-gram. Therefore, when optimising the trigrams, for instance, not only a specific
weight for a trigram is optimised, but also the weights for each of the lower-order
n-gram models (namely bigram and unigram). While optimising bigrams, however,
it is desirable to exclude all the bigram histories with corresponding weights which
were already optimised during the trigram optimisation stage in order to avoid
duplication of the data for the log-likelihood optimisation. Hence, for the trigram
log-linear interpolation model, following information is included in optimisation:

trigram optimisation is carried out for all the trigram histories (and, consequently,
for the corresponding lower-order bigram histories) in the held-out set which
were also found in the kept set.

bigram optimisation is done for all the bigram histories common to the kept and
the held-out set which are subset of the held-out set trigrams that were not
found in the kept set.

This way of collecting the histories ensures that the sets of data used for trigram
and bigram-level optimisation are disjoint.

In addition, as can be seen from equation (4.11), in the actual optimisation
process, the histories belonging to a kept set which are not found in the held-
out set, do not influence the optimisation process (because their associated counts
C(·) are zero). Therefore, during the actual optimisation, the normalisation factors
given by (4.12) are only calculated for those histories that are common to both the
held-out and the kept set. After the optimisation for a certain bin is finished, the
normalisation factors are calculated for the rest of the histories belonging to a bin
using the optimal weights. This dramatically reduces the computational complexity
of that part of the algorithm which recalculates the normalisation factors for the
histories in a certain bin.

The sole computational bottleneck of the log-linear algorithm, which makes it
orders of magnitude slower than linear smoothing, is the calculation of normalisation
scores over the whole vocabulary. An interesting alternative is suggested by Chen et

al. [16] and is applicable to all forms of exponential language models requiring nor-
malisation. The proposed method is to ignore the normalisation factors completely
and consider scores (with special processing required to prevent scores from rising
above 1) instead of probabilities, which makes the model as fast as conventional
language models and can easily be used to calculate the Word Error Rate (WER)
in expensive speech recognition tasks such as lattice rescoring. The major disad-
vantage of the suggested technique is that it is not possible anymore to calculate
the perplexity of the model.
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for all n-gram history orders m starting with n-grams (m = n − 1) do

Collect and cluster the histories h from the held-out set HT corresponding to
n-grams history length m:
for all histories {h} of length m from the held-out set HT do

if h is a subset of a higher order history already observed during the previous
iteration of optimisation then

Do not include such history h in optimisation.
else

Include h in optimisation.
end if

end for

Perform the per-bin optimisation:
for all bins Bn,k in a collection Bn do

Given the current bin Bn,k, run optimisation where:
for each guess of interpolation weights Λ(Bn,k) do

for all histories h from HT which were not previously excluded from op-
timisation and which fall into a bin Bn,k do

Calculate normalisation scores log Zh(Λ(Bn,k)) given by (4.12) over the
kept set KT vocabulary.

end for

Obtain the next guess Λ′(Bn,k) maximising the log-likelihood L(Λ′(Bn,k))
defined by (4.11).

end for

Given the final estimates of Λ(Bn,k), calculate normalisation factors for all

the histories h from the kept set KT belonging to a bin Bn,k.
end for

end for

Algorithm 4.3: Top-down log-likelihood optimisation for an n-gram log-linear interpola-
tion model.

4.2.4 Similarity to Maximum Entropy models

The goal of maximum entropy language modelling is to construct a model of the
process that generated the training data P̃ (h, w) [4]. The expected value of binary
indicator function (also known as feature function) f (f ∈ {0, 1}) with respect to
the empirical distribution P̃ (h, w) is

P̃ (f) ,
∑

h,w

P̃ (h, w)f(h, w) .

The baseline maximum entropy models usually use nested trigram, bigram and
unigram features with (h, w) = (u, v, w) where the trigram feature, for instance, is
defined as

fuvw(ũ, ṽ, w̃) =

{
1 if w = w̃ and v = ṽ and u = ũ
0 otherwise .

When the statistic which is considered to be “useful” is discovered, its importance is
acknowledged by requiring the model to accord with it by constraining the expected
value that the model assigns to the corresponding feature function f . The expected
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value of f with respect to the model P (w|h) is

P (f) ,
∑

h,w

P̃ (h)P (w|h)f(h, w) ,

where P̃ (h) is the empirical distribution of histories h in the training data. This
expected value is then constrained to be the same as the expected value of f in the
training data by requiring

P (f) = P̃ (f) .

Combining the above three equations yields
∑

h,w

P̃ (h)P (w|h)f(h, w) =
∑

h,w

P̃ (h, w)f(h, w) ,

which is a constraint that excludes from consideration all those models which do
not agree with the training data on how often the output of a process should exhibit
the feature f . Given the n feature functions fi which determine the statistics one
feels are important in modelling the process, the idea is to make the model accord
with these statistics. The conditional entropy of the distribution P (w|h) is

H(P (w|h)) = −
∑

h,w

P̃ (h)P (w|h) log P (w|h) (4.13)

and according to the principle of the maximum entropy the model maximising the
entropy in (4.13) should be selected from a set C of allowed probability distributions.
The problem is treated as constrained optimisation problem, with each feature fi

being assigned a Lagrangian multiplier γi, with the optimisation function given by

L(P (w|h), Γ) , H(P (w|h)) +
∑

i

γi(P (fi) − P̃ (fi)) . (4.14)

Holding Γ = {γi} fixed, the unconstrained maximum of (4.14) is given by

PΓ(w|h) =
1

ZΓ(h)
exp

(
∑

i

γifi(h, w)

)
, (4.15)

where the normalisation is defined as

ZΓ(h) =
∑

w

exp

(
∑

i

γifi(h, w)

)

and the value of L(P (w|h), Γ), also known as dual function, at maximum can be
shown to be

Ψ(Γ) = −
∑

h

P̃ (h) log ZΓ(h) +
∑

i

γiP̃ (fi) .

The maximum entropy language model can thus be defined as a model which is
subject to the constraints C, has the parametric form of (4.15), with the optimal
parameters Γopt determined by maximising the dual function Ψ(Γ), i.e.

Γopt = arg max
Γ

Ψ(Γ) .

As can be seen, there are some obvious parametric similarities between the
log-linear probability estimate given by (4.10) and the maximum entropy equation
(4.15). In addition, both techniques employ the same functional form of normalisa-
tion.
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4.2.5 Significance of log-linear interpolation weights

As it was noted above, the log-linear interpolation weights can have any value since
they are in essence the redefined Lagrangian multipliers. It is interesting to check
how the log-linear interpolation weights influence the exponential term in the prod-
uct (4.10). According to the different possible ranges into which λ might fall, there
are several possible scenarios, shown in Table 4.1. In this particular context, there
are two possible cases. The first case shown in Figure 4.1(A), when the absolute
value of λ is less than one in which case the values of λ used in the graph are 0.1 and
−0.1. In such a case, for strictly positive weights the contribution of the small prob-
abilities is strongly attenuated and for the negative weights the small probabilities
are strongly boosted. In the asymptotic case, which occurs for higher probabilities,
their overall contribution tends to one. The simplest case is when the log-linear
interpolation weight is zero, which essentially means that the term in question be-
comes equal to one, which is equivalent to ignoring this particular probability in the
product given by equation (4.10). In the case when the weight is equal to one, the
probability estimate is accurate enough and is neither boosted nor attenuated.

The second interesting case, shown in Figure 4.1(B), occurs when the absolute
value of λ is bigger than one or equal to minus one. In case of a negative weight
λ ≤ −1, the small probabilities are very strongly boosted with weak boosting for
bigger probabilities. However, the boosting is still stronger than in the first case,
even for the big probabilities. For positive weight, as can be seen from the graph,
such a weight effectively cancels the small probabilities, with the overall contribution
of such probabilities becoming very small, while boosting the bigger probabilities.

In order to investigate the behaviour of the expression P λ and its related coun-
terpart in the log-linear domain, namely λ log P , a function of the two variables P
and λ was investigated. The overall behaviour of the function P λ and its logarithmic
counterpart λ log P as a function of probability and log-linear interpolation weights
is summarised in Figure 4.2. It should be noted that the singularities of the function
has been avoided by ensuring that no probability P and weight λ can be both equal
to zero at the same time. The boosting and attenuation effects of different weight
and probability ranges are evident on both of the graphs.

At this stage it can be concluded that the log-linear interpolation weights have
different interpretation from that of the regular linear interpolation weights. By not
constraining the log-linear interpolation weights to be in the certain range, there are
more possible cases to consider when analysing the specific log-linear interpolation
model.
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Figure 4.1: Plot of the unnormalised log-linear interpolation term as function of proba-
bility P with the weight values λ being taken from different ranges.
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Figure 4.2: Unnormalised log-linear interpolation term surface as a function of both the
probability P and the log-linear weight λ.



CHAPTER 5

Performance Evaluation

This chapter presents some of the experimental results obtained for linear and log-
linear interpolation of trigram models. Section 5.1 describes the text corpora used
in the experiments, section 5.2 describes the baseline back-off models with which
the resulting linear and log-linear interpolation models are compared, section 5.3
describes the experiments with the trigram linear interpolation model and compares
it with the performance of trigram Katz back-off model and section 5.4 describes the
results obtained for log-linear interpolation experiments and compares them with
the results for linear interpolation and back-off models.

5.1 Language Modelling Corpora

In this section the language modelling corpora used for training and testing the
language models are described. The two text corpora selected from the wide range of
the corpora available for language modelling, are the transcriptions of conversational
telephone speech, also known as Switchboard, and the archive of Wall Street Journal
articles. The first corpus is a good sample of real conversational speech, whereas the
second is a wide coverage representation of a newswire text. It can also be noted
that the sizes of the corpora are different, with the Switchboard data being smaller,
which is important for testing the behaviour of the language models on corpora of
different sizes.

5.1.1 Transcriptions of Conversational Telephone Speech

Current experiments for conversational telephone speech are often conducted on
three corpora distributed by the Linguistic Data Consortium (LDC): Switchboard-I,
Switchboard-II and Callhome English. Both Switchboard corpora consist of tele-
phone conversations within the USA between strangers. These corpora are the sub-
ject of the yearly Hub5 evaluation for large vocabulary continuous speech recognition
(Hub5-LVCSR) conducted by the National Institute for Standards and Technology
(NIST).

The Switchboard Telephone Speech Corpus was originally collected by Texas
Instruments in 1990-1, under DARPA sponsorship. The first release of the corpus
was published by NIST and distributed by the LDC in 1992-3 [26]. Since that
release, a number of corrections have been made to the data files. Switchboard-I
is a collection of about 2400 two-sided telephone conversations among 543 speakers
(302 male, 241 female) from all areas of the United States. A computer-driven “robot

40
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Table 5.1: Hub5 language modelling corpus details (sizes of the corpora are shown in total
number of words).

Set Size (words) Vocabulary size

Hub5-Train00 3,636,489 27,754
Hub5-Eval97 48,456 3,262
Hub5-Eval98 47,084 3,003

operator” system handled the calls, giving the caller appropriate recorded prompts,
selecting and dialling another person (the callee) to take part in a conversation,
introducing a topic for discussion and recording the speech from the two subjects
into separate channels until the conversation was finished. About 70 topics were
provided, of which about 50 were used frequently. Selection of topics and callees
was constrained so that no two speakers would converse together more than once
and no one spoke more than once on a given topic.

Switchboard-II consists of 3,638 5-minute telephone conversations involving 657
participants. This corpus was collected by the Linguistic Data Consortium (LDC),
in support of a project on Speaker Recognition sponsored by the U.S. Department of
Defence. Each recruit was asked to participate in at least 10, 5-minute phone calls.
Ideally each participant would receive 5 calls at a designated number and make 5
calls from phones with different telephone numbers (ANI codes). A suggested topic
of discussion was given (read by the automated operator), although participants
could chat about whatever they preferred.

From both of the aforementioned Hub5 Switchboard transcriptions, approxi-
mately 3.6 million words were available for language model training, and the two
transcriptions of evaluation sets 1997 Hub5 and 1998 Hub5 were used for testing.
Table 5.1 shows the details for the training portion of the Hub5 language mod-
elling corpus, denoted by Hub5-Train00, and for the two evaluation sets, denoted
by Hub5-Eval97 and Hub5-Eval98.

5.1.2 The Wall Street Journal (WSJ) Corpus

The WSJ corpus contains newspaper text collected from the Wall Street Journal
over the period 1987-1989 inclusive [60]. Since this corpus is considerably bigger
than the Hub5 Switchboard language modelling corpus, findings made using it are
expected to hold also for larger corpora such as North American Broadcast News
(NAB), on which many state-of-the-art speech recognition systems have been based
[72].

The portion of the corpus selected for training consists of 1988 Wall Street
Journal archive denoted as WSJ-Train88 and the three evaluation sets from years
1987 to 1989, denoted as WSJ-Eval87, WSJ-Eval88 and WSJ-Eval89, with the details
the training and evaluation sets shown in Table 5.2. In the following experiments
with the WSJ corpora following settings were used:

• Standard vocabulary of 65,464 words (as used in [73], where significant reduc-
tion in the OOV rate was reported in comparison with the CMU vocabulary
of 20,000 words) from North American Broadcast News (NAB) corpus used
for training the models.
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Table 5.2: WSJ language modelling corpus details (sizes of the corpora are shown in total
number of words).

Set Size (words) Vocabulary size

WSJ-Train88 17,057,940 107,065
WSJ-Eval87 22,452 3,793
WSJ-Eval88 21,947 4,092
WSJ-Eval89 22,489 4,036

Table 5.3: Total number of words in the kept and held-out portions of the training data
for Hub5-Train00 and WSJ-Train88 together with the wordlist sizes.

Set Kept Set |KT | Held-out Set |HT | Vocabulary |V|

Hub5-Train00 3,527,238 109,251 27k
WSJ-Train88 16,989,671 68,240 65k

• All the singleton events were discarded.

• All the evaluation sets were obtained from the WSJ language model develop-
ment data for the corresponding year and constrained to have approximately
20,000 words.

• Symbol marking the beginning of a sentence was not predicted during the
language model testing.

5.2 Baseline Models

The division of the training data T necessary for using the cross-validation, was
done for both the 2000 Hub5 language modelling training data (Hub5-Train00) and
the 1988 WSJ training data (WSJ-Train88), with the sizes of the kept parts KT and
the held-out parts HT shown in Table 5.3 together with the corresponding word
list sizes |V| used in the experiments. As can be seen from the table, the held-out
portion of a larger WSJ training corpus is smaller than the held-out portion of the
Switchboard language model training corpus. There was no particular reason for
such a division, with the only consideration being that the held-out set should be
significantly smaller than the kept set.

The baseline model for the Hub5 evaluation was chosen to be the trigram back-
off model using the Good-Turing discounting with frequency of frequencies (FoF)
discounting range of 8 and no event or context cutoffs. The baseline model for
the WSJ evaluations was chosen to be the trigram back-off model with FoF range
of 8 and with the singleton events cutoffs applied to trigrams and bigrams. Both
back-off models were built on the whole training corpus T to ensure that back-off
models and linear and log-linear interpolation models use the same overall amount
of training data. Perplexities of the back-off models with respect to the evaluation
sets described in previous section are shown in Table 5.4.
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Table 5.4: Perplexities of the baseline back-off models trained on 2000 Hub5 language
model training data and on 1988 WSJ training data, tested on the respective evaluation
sets.

Model Test Set Perplexity

Hub5-Train00 Hub5-Eval97 98.2
Hub5-Eval98 97.5

WSJ-Train88 WSJ-Eval87 165.2
WSJ-Eval88 199.3
WSJ-Eval89 198.0
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Figure 5.1: Influence of cluster size Nmin on the performance of linear interpolation of
maximum likelihood estimates.

5.3 Linear Interpolation

In this section the experiments with trigram linear interpolation models carried
over Hub5 Switchboard and Wall Street Journal language modelling corpora are
described. The results are presented for two different cases, the first one concerning
the linear smoothing of the maximum likelihood estimates and the second one the
linear smoothing of Katz back-off models.

Maximum likelihood estimates

First, the optimal clustering scheme for linear interpolation of maximum likelihood
estimates, was selected by experimenting with different values of clustering con-
straint Nmin defined in Sect.4.1.1, which essentially defines the bins for the interpo-
lation weights. Influence of this parameter on the overall performance of the linear
interpolation model on two of the abovementioned data sets is shown in Figure 5.1.
The worst result is obtained when no clustering is used at all, corresponding to
Nmin = 1, by keeping a separate interpolation weight for each n-gram history. In
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Figure 5.2: Influence of cluster size Nmin on the performance of linear interpolation of
Katz back-off models.

this case there is never going to be enough data to accurately estimate such an enor-
mous number of parameters and the resulting perplexities are high. The optimal
perplexities, obtained on both test sets and found to correspond to Nmin = 104, are
shown in Table 5.5, with perplexity on the Hub5-Eval97 test set equal to 99.3 and
the perplexity on the Hub5-Eval98 test set equal to 98.1, both slightly higher than
the corresponding baseline back-off model perplexities.

Back-off estimates

According to the expectations, the linear interpolation of the back-off probability
estimates should perform at least as well as the back-off model itself. In order to
check this claim, recursive model consisting of linear combination of back-off scores,
where the recursion is terminated by taking the back-off probability estimate of a
unigram, defined similarly to (4.3) as

PLI(wi|w
i−1
i−n+1) = (1 − λ

wi−1
i−n+1

)PBO(wi|w
i−1
i−n+1) +

λ
wi−1

i−n+1
PLI(wi|w

i−1
i−n+2) (5.1)

was built and tested. Each back-off estimate was obtained from the conventional
Katz smoothing model, introduced in Sect.3.2.11, with the basic Good-Turing dis-
counting applied to small counts. Similarly to the maximum likelihood case dis-
cussed above, the probability estimates were obtained from the kept part of the
training set and the interpolation parameters were trained on the held-out set. Fig-
ure 5.2 shows the results of the optimal clustering experiment conducted on the two
Hub5 test sets. By comparing the performance of the conventional back-off model
trained using the whole training corpus (both held-out and kept parts) with the lin-
ear combination of back-off estimators presented above, the superiority of the latter

1The discounting frequency used was k = 8 and no context or event cut-offs were applied.
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Table 5.5: Performance of the linear interpolation models (maximum likelihood and back-
off estimates) with clustering constraint of Nmin = 104 and back-off language model on the
two test sets from Hub5.

Models Perplexity
Hub5-Eval97 Hub5-Eval98

back-off 98.2 97.5
linear interp. (ML) 99.3 98.1

linear interp. (back-off) 94.5 93.6

model is evident regardless of the clustering criteria. The optimal clustering param-
eter Nmin, for which the biggest perplexity reduction was achieved, was yet again
found to be Nmin ≈ 104. The value of optimal clustering parameter depends on the
size of the training set and on the ratio δ between the held-out set and the kept set
sizes. It may be expected that the value of the optimal parameter corresponding to
the different layout of the training data will be different.

The optimal perplexities of both best models, corresponding to clustering cri-
terion of Nmin = 104, on two test sets are shown in Table 5.5. As can be seen,
although the back-off model outperforms the linear interpolation of maximum like-
lihood estimates on the both test sets, the differences in perplexities are small.
Linear interpolation of back-off estimates, however, consistently outperforms the
back-off model and the reduction of perplexity achieved over the baseline back-off
model is 3.7% on the Hub5-Eval97 test corpus and 4% on Hub5-Eval98 test corpus.

5.4 Log-Linear Interpolation

In the following experiments, the probability estimates to be smoothed are taken
to be conventional Katz back-off estimates using Good-Turing discounting. The
experiments were conducted on both Hub5 Switchboard and WSJ corpora.

5.4.1 Performance on Hub5 1997/1998 evaluation sets

Trigram log-linear interpolation model was built using the 2000 Hub5 language mod-
elling data Hub5-Train00, which was divided into the kept and held-out portions,
as described in Sect.5.2, where similarly to linear smoothing, kept part of the corpus
was used for obtaining the trigram, bigram and unigram Katz back-off probability
estimates, and the held-out portion was used for optimising the log-linear smooth-
ing weights. Powell multidimensional direct search [62] was used for the parameter
optimisation.

The influence of the clustering constraint Nmin on the performance of the model
on the two test sets against the baseline linear smoothing models (described in pre-
vious section) is shown in Figure 5.3. As can be noted from the figure, the log-linear
smoothing is better behaved for the high values of clustering parameters Nmin with
the smaller rate of increase in perplexity than in the linear smoothing case. For
smaller values of clustering parameters, however, linear smoothing performs in a
more stable manner. Both linear and log-linear smoothing models outperform the
baseline back-off models by 3.5% to 4%, with the log-linear interpolation model
performing slightly worse than its linear counterpart on the Hub5-Eval98 test set
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Figure 5.3: Influence of cluster size Nmin on the performance of log-linear interpolation
of Katz back-off estimates on the Hub5 1997/1998 language modelling evaluation sets.

Table 5.6: Perplexity of log-linear smoothing model built on 2000 Hub5 language modelling
data using Nmin = 104 versus its linear counterpart.

Models Perplexity
Hub5-Eval97 Hub5-Eval98

linear (back-off) 94.6 93.7
log-linear (back-off) 94.5 93.9

and slightly better on the Hub5-Eval97 test set. The perplexities of the best log-
linear interpolation model selected among all of the interpolation models built on
the 2000 Hub5 language modelling corpus and the corresponding best linear in-
terpolation baseline model, both interpolating Katz back-off estimates, given the
best clustering parameter Nmin = 104 are summarised in Table 5.6. As can be
seen from the table, the reduction in perplexity of the best log-linear model on the
Hub5-Eval97 test set with respect to the best linear model is tiny.

The next experiment investigated the influence of the size of the kept portion of
2000 Hub5 training data on the performance of the log-linear interpolation model,
which involved changing of the kept set size while keeping the held-out set size fixed.
The performance of the resulting linear and log-linear interpolated language models
with respect to baseline back-off model is shown in Figure 5.4. It can be noted that
increasing the size of the kept set in depicted range of the corpus sizes improves the
performance of the models with respect to the baseline back-off model which was
trained on the maximum amount of training data available.

It is interesting to compare the optimal weights obtained both linear and log-
linear smoothing methods. Optimal weights for the the case when all the histories
fall into one cluster are shown in Table 5.7. Because of the recursive definition of
the linear smoothing framework of Sect.4.1, the weights of the lower-order model
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(a) Hub5-Eval97: Baseline back-off perplexity is 98.2
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Figure 5.4: Influence of the size of the kept portion of 2000 Hub5 training set on the
performance of linearly and log-linearly smoothed Katz back-off estimates.
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Table 5.7: Optimal linear and log-linear interpolation weights trained on 2000 Hub5
language model training corpus with Nmin = 106, with the pair of interpolation weights
corresponding to bigram model, and the 3-tuple to the trigram model.

Weights
Smoothing bigram trigram

λbi
0 λbi

1 λtri
0 λtri

1 λtri
2

linear 0.012123 0.987877 0.0017154 0.139786 0.858498
log-linear −0.014994 0.967262 0.0023987 0.037057 0.896499

are reused in a higher-order model. In trigram case, for instance,

λtri
2 = 1 − λtri

λtri
1 = λtriλbi

1

λtri
0 = λtri(1 − λbi

1 )

and, for bigrams

λbi
1 = 1 − λbi

λbi
0 = λbi ,

where the two weights λbi and λtri uniquely define the trigram linear interpolation
model. In case of log-linear smoothing, unlike linear interpolation, there is no ap-
parent relation between the weights, they do not necessarily sum to one and can be
negative which can be explained by the specific way in which the log-linear frame-
work was defined, in which all the five weights are essential for defining the model.
However, by examining the table, it can be noted that the absolute value of all the
log-linear weights is less than one, and although they do not necessarily sum to one,
they are not very different from the corresponding linear smoothing weights. An
additional interesting observation that has been made during the experiments con-
cerns the values of the log-linear weights and is summarised in Table 5.8, where the
total number of optimal weights whose absolute value is bigger than one is shown
against the total number of optimal weights calculated for each level of a trigram
log-linear model. An overall statistic for the Hub5 corpus shows that absolute val-
ues of approximately 21% of the total number of weights calculated exhibited the
property of being more than one. In particular, the upper bound on such absolute
values was found to be approximately equal to 1.3.

5.4.2 Performance on 1987–1989 WSJ evaluation sets

For the experiments with the Wall Street Journal archives, the trigram log-linear
interpolation models were built using the 1988 WSJ archive WSJ-Train88, where the
Katz back-off estimates to be smoothed were obtained from the kept portion of the
training data, 65k vocabulary was used and event cutoffs were applied to singleton
bigram and unigram distributions. Nelder–Mead multidimensional direct search was
used for optimising the smoothing weights. In order to compare the performance
of the log-linear smoothing on this corpus, the baseline linear interpolation models
and Katz back-off models were built using the same settings.
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Table 5.8: Total number of optimal log-linear smoothing weights calculated for each level
of all the log-linear trigram language models trained during the experiments against the
total number of optimal weights whose absolute values exceeded unity for Hub5 1997/1998
language model evaluation sets.

Model Level # λ # |λ| > 1

bigram 2008 456
trigram 3669 726

overall 5677 1182

Table 5.9: Optimal linear and log-linear interpolation weights trained on 1988 WSJ lan-
guage model training corpus with Nmin = 107, with the pair of interpolation weights corre-
sponding to bigram model, and the 3-tuple to the trigram model.

Weights
Smoothing bigram trigram

λbi
0 λbi

1 λtri
0 λtri

1 λtri
2

linear 0.0066299 0.993370 0.0003469 0.05198306 0.94767
log-linear 0.0017205 0.965193 0.0225268 −0.0262599 0.94396

Optimal weights obtained for the case where all the histories fall into one bin,
corresponding to Nmin = 107, for both linear and non-linear smoothing are shown
in Table 5.9. Similar to a Hub5 case, the absolute values of the vast majority of the
weights obtained were less than 1.

Figure 5.5 displays the performance of the trigram log-linear model on the
three evaluation sets from the WSJ corpus. The performance of the corresponding
baseline linear interpolation models is displayed on the same plot for convenience.
Performance of the log-linear model, as compared to the baseline Katz back-off and
linear interpolation, on the three test sets is summarised in Table 5.10. As can
be seen, log-linear interpolation compares favourably with the baseline techniques,
with the perplexity reduction of 2.3% on the WSJ-Eval87 test set, 2.5% on the
WSJ-Eval88 test set and 3.2% on the WSJ-Eval89 test set with respect to the Katz
back-off baseline model. Moreover, log-linear interpolation outperforms linear inter-
polation, with the reduction in perplexity of 2% on the WSJ-Eval89 test set, 2.1%

Table 5.10: Performance of the log-linear smoothing model built on 1988 WSJ language
modelling data using versus its back-off and linear counterparts (best models, in terms of
the clustering criterion) were selected).

Models Perplexity
WSJ-Eval87 WSJ-Eval88 WSJ-Eval89

back-off 165.2 199.3 198.0
linear (back-off) 164.6 198.5 196.8

log-linear (back-off) 161.4 194.4 191.7
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Figure 5.5: Performance of trigram log-linear and linear interpolation models on
1987/88/89 WSJ evaluation sets.
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Table 5.11: Value of clustering parameter Nmin for which the optimal perplexities are
obtained on the three WSJ evaluation sets for linear and log-linear interpolation models.

Models Nopt
min

WSJ-Eval87 WSJ-Eval88 WSJ-Eval89

linear (back-off) 50,000 20,000 20,000
log-linear (back-off) 1,000,000 1,000,000 1,000,000

on the WSJ-Eval88 test set and 2.6% on the WSJ-Eval89 test set.
From this graph it can be seen that for all the three experiments carried out

on three different test corpora, the values of clustering parameters for which the
optimal perplexities for linear and log-linear interpolation models are obtained are
not necessarily coinciding. The values of optimal clustering parameters Nopt

min yield-
ing optimal perplexities on the three test sets for linear and log-linear interpolation
models are shown in Table 5.11. The difference in values for optimal clustering
parameters can be explained by the fact that although the histories are clustered
according to the same criterion, the way the histories are pooled across the held-out
set is different for the two interpolation schemes and, eventually, different number of
histories end up in the the bin whose characteristics, according the kept set counts,
are identical for the linear and log-linear interpolation models.

5.5 Discussion

In this chapter, the performance of log-linear interpolation of language models as a
smoothing technique for n-gram probability estimates has been measured through
the perplexity of the test corpora, the models were trained and tested on the Hub5
Switchboard language modelling corpora and the Wall Street Journal archives. The
baseline models were chosen to be the conventional Katz back-off and linear inter-
polation models. Whenever the performance of the log-linear interpolation model
was compared to that of a particular baseline model, a care was taken not to dis-
criminate one model against the other. When comparing with linear interpolation
it was ensured that both models had exactly the same amount of training data
available to them and that the sizes of the kept and held-out sets were the same.
In case of a back-off baseline model, it was trained on the whole training set, since
such model does not require use of cross-validation for training. Both linear and
log-linear interpolation models were used to smooth Katz back-off language model
estimates.

For the smaller corpus, namely the Hub5 Switchboard corpus, multiple runs
were performed and an attempt was made to completely characterise the relative
performance of the log-linear interpolation with respect to the baseline models in
terms of log-linear interpolation model parameters, namely the clustering criteria,
and the training set sizes. It was discovered that for this corpus the log-linear
interpolation performs almost as well as the linear interpolation, and in some cases
slightly better, with the differences of perplexities being negligible. Both linear and
log-linear interpolation models consistently outperformed the baseline Katz back-off
model by 3.7%.

For the bigger Wall Street Journal corpus, the log-linear interpolation model
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outperformed the linear interpolation by 2% to 2.6% and the back-off language
model by 2.3% to 3.2% in terms of perplexity calculated over the three evaluation
sets.

According to these findings it is possible to assume that log-linear smoothing
of n-gram language models performs as well as linear interpolation on the small
corpora and outperforms it on the bigger corpora, with both interpolation models
achieving performance which is constistently superior to that of the unsmoothed
back-off language model.

While an attempt has been made to systematically explore the log-linear smooth-
ing for n-grams, there remain many directions that need to be explored, for example,
it is interesting to see how the division of the training data into the kept and held-out
sets (i.e. the ratio between the held-out and kept set sizes) affects the performance
of log-linear language model. When the size of the held-out set is too small, the
deterioration of the performance can be expected due to the fact that there is not
enough data to estimate the interpolation weights, whereas if the kept set size is
too small, the deterioration in the performance can be explained by the insufficient
amount of data for obtaining the probability estimates to be smoothed.



CHAPTER 6

Summary and Conclusion

In this work a novel smoothing technique for n-gram language modelling, namely
the log-linear interpolation was investigated. Log-linear interpolation of an n-gram
language models is a technique which allows to form an exponential combination of
probability estimates obtained for n-grams of different specificity trained on some
text corpus. The resulting combination is guaranteed to perform no worse than the
probability estimates comprising the model provided that these n-gram probability
estimates are reliable enough, i.e. some form of discounting was used to obtain them
in order to ensure that the probabilities are nonzero. Maximum likelihood estimates
do not satisfy this condition and therefore are not considered in this work.

Log-linear interpolation was introduced by Klakow [39] who used it for combining
different language models. This technique, interpolating the conventional n-grams
and another type of language models called distance n-grams was successfully ap-
plied by Beyerlein et al. [5] to the broadcast news transcription task. Unlike the
publications mentioned above, which essentially propose a general purpose method
for combining the arbitrary language models, the aim of this work was to investi-
gate the applicability of the technique to the special case of smoothing of n-gram
probability estimates, and to attempt a rigorous derivation of theoretical framework
within which the log-linear interpolation could be placed as a possible smoothing
method. As a result, the framework for obtaining the log-linear interpolation proba-
bility estimates, including the techniques for parameter optimisation and clustering,
was proposed.

In consequent experiments carried over the two popular language modelling cor-
pora, the log-linear interpolation has shown to perform as well as linear interpolation
when produced on a small corpus and outperform the linear interpolation on a big
corpus, with both models outperforming the baseline back-off language model.

The log-linear interpolation of language models, as it has been shown in this
work, seems to be a promising technique which can be successfully employed in the
tasks of smoothing the language model probability estimates.
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