Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges.

R Nau, H W Prange, P Muth, G Mahr, S Menck, H Kolenda and F Sörgel

Updated information and services can be found at: http://aac.asm.org/content/37/7/1518

CONTENT ALERTS

These include:

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Passage of Cefotaxime and Ceftriaxone into Cerebrospinal Fluid of Patients with Uninflamed Meninges

ROLAND NAU,¹* HILMAR W. PRANGE,¹ PETER MUTH,² GERHARD MAHR,² SYLVIA MENCK,¹ HERBERT KOLENDA,³ AND FRITZ SORGEL²

Department of Neurology¹ and Department of Neurosurgery,³ University of Göttingen, Robert-Koch-Strasse 40, D-3400 Göttingen, and Institute for Biomedical & Pharmaceutical Research, Schleifweg 3, D-8501 Nürnberg-Heroldsberg,² Germany

Received 9 December 1992/Accepted 9 May 1993

Cefotaxime and ceftriaxone have proven to be effective in pyogenic infections of the central nervous system. Since in some bacterial central nervous system infections the blood-cerebrospinal fluid (CSF) barrier is either minimally impaired or recovers in the course of the illness, we studied the penetration of both antibiotics in the absence of inflamed meninges. Patients who had undergone external ventriculostomies for noninflammatory occlusive hydrocephalus received either cefotaxime (2 g/30 min) or ceftriaxone (2 g/30 min) to treat extracerebral infections. Serum and CSF were drawn repeatedly after the first dose. With ceftriaxone, they were also drawn after the last dose. The concentrations of cefotaxime, its metabolite desacetylcefotaxime, and ceftriaxone were determined by high-performance liquid chromatography with UV detection. Maximum concentrations of cefotaxime in CSF were reached 0.5 to 8 h (median = 3 h; n = 6) after the end of the infusion and ranged from 0.14 to 1.81 mg/liter (median = 0.44 mg/liter; n = 6). Maximum levels of ceftriaxone in CSF ranging from 0.18 to 1.04 mg/liter (median = 0.43 mg/liter; n = 5) were seen 1 to 16 h (median = 12 h; n = 5) after the infusion. The elimination half-life of cefotaxime in CSF was 5.0 to 26.9 h (median = 9.3 h; n = 5), and that of ceftriaxone was 15.7 to 18.4 h (median = 16.8 h; n = 3). It is concluded that a single dose of 2 g, maximal concentrations of cefotaxime and ceftriaxone in CSF do not differ substantially. The long elimination half-lives guarantee uniform concentrations in CSF. These concentrations reliably inhibit highly susceptible bacteria but cannot be relied on to inhibit staphylococci and penicillin G-resistant Streptococcus pneumoniae.

Because of its morbidity and lethality, bacterial meningitis remains a major medical concern throughout the world. The emergence of bacteria not susceptible to standard antibacterial agents in meningitis of children and immunocompromised adults has stimulated the search for alternative drugs. Broad-spectrum cephalosporins have a broad range of in vitro antibacterial activities, including that against most organisms responsible for purulent meningitis (6, 7, 19), and have been successfully applied as single agents for this indication in children and adults (3, 9, 29, 34, 37). Cefotaxime and ceftriaxone have been recommended by several authors for initial therapy of unidentified purulent meningitis in children and adults (for examples, see references 15 and 41).

In the presence of inflamed meninges, therapeutic concentrations of both cefotaxime and ceftriaxone in cerebrospinal fluid (CSF) have been reported previously (3, 9, 22, 34). However, in encephalitis, in Lyme borreliosis, in some cases of brain abscess and early meningitis, or in the course of meningitis, when the blood-CSF barrier begins to recover, only minor impairment of the blood-CSF barrier may be present (2, 31). Similarly, dexamethasone, recommended recently for adjunctive therapy of bacterial meningitis, rapidly reduced meningeal inflammation (21) and thereby decreased drug penetration into CSF. To ensure successful therapy and to prevent a relapse in these conditions, any antibiotic suggested for the treatment of central nervous system infections should also attain therapeutic concentrations in CSF with uninflamed meninges. The present study was performed in order to evaluate whether cefotaxime and ceftriaxone comply with this demand and to characterize their pharmacokinetics in CSF.

MATERIALS AND METHODS

Thirteen patients who had undergone external ventriculostomies for occlusive hydrocephalus received either cefotaxime (n = 6) or ceftriaxone (n = 7) to treat extracerebral infections. Patients with inflammatory central nervous system diseases or major impairment of their renal functions (serum creatinine > 0.015 g/liter) were not included. In all cases, cerebrovascular accidents were the underlying diseases. Both groups were similar with respect to age, sex, protein content of CSF, and CSF/serum albumin ratio (33) as measures of blood-CSF barrier impairment. For further details on the patients studied, see Table 1. Medication varied according to clinical necessity and consisted of catecholamines, sedatives, corticosteroids, antibiotics, diuretics, osmotherapeutic agents, antihypertensive agents, and H₂-receptor blockers.

Two grams of cefotaxime (Claforan; Hoechst AG, Frankfurt/M, Germany) or 2 g of ceftriaxone (Rocephin; Hoffmann-La Roche, Grenzach-Wyhlen, Germany) was infused intravenously within 30 min. Single-dose pharmacokinetics were determined after the first infusion for six patients receiving cefotaxime and six patients receiving ceftriaxone. To obtain a 24-h time course with cefotaxime, the second infusion was administered 24 h after the first dose. Thereafter, therapy was continued with 2 g three times a day or twice a day. For this reason, patients with pneumonia or fever greater than 38.5°C during the 24-h interval before the...
initiation of cephalosporin treatment were assigned to receive ceftriaxone, which was administered (2 g) every 24 h. Simultaneous blood and CSF samples were drawn at the end and 5, 15, and 30 min and 1, 2, 4, 6, 8, 10, 12, 14, 16, and 24 h after the termination of the antibiotic infusion. For three patients receiving ceftriaxone, elimination of the drug was studied by drawing three to six serum and CSF samples in 12-h intervals after the last dose. As cefotaxime was metabolized by blood and CSF (ca. 20% decline of cefotaxime within 5 h at 37°C in CSF), samples were cooled in ice water immediately after being drawn. They were then centrifuged at 3,000 × g for 5 min and stored at −70°C for less than 3 months. Six months of storage of cefotaxime-containing CSF at −70°C resulted in a conversion of ca. 5% cefotaxime to desacetylcefotaxime. Ceftriaxone stored at −70°C was stable in serum and CSF for more than 6 months.

The study protocol was approved by the Ethics Committee of the Medical Faculty of the University of Göttingen; informed consent to the participation was obtained from the patient or the nearest relative.

Concentrations in serum and CSF were measured by high-performance liquid chromatography using isocratic systems: separation of deproteinized cefotaxime and ceftriaxone samples (injection volume, 30 μl) was performed at 35°C on C18 reverse-phase columns (Spherisorb ODS II, 250 by 4.6 mm) with mobile phases containing phosphate buffer, acetonitrile, and ion-pairing reagents. Cefotaxime was eluted at 10.8 min, and desacetylcefotaxime was eluted at 5.5 min; they were detected by UV absorption at 254 nm. Ceftriaxone was eluted at 4.9 min and was detected with 274-nm UV light. Peak areas of the samples quantitated by using personal computer integrator software (Nelson Analytical, Cupertino, Calif.) were compared with the areas of serum and CSF samples spiked with standard solutions of cefotaxime, desacetylcefotaxime, and ceftriaxone processed identically.

A full standard curve was constructed with each batch of samples. Except in patient 12, comedication did not interfere with the assays, as ensured by running control serum and CSF drawn from each patient before starting the antibiotic infusion. The quantification limits of cefotaxime and desacetylcefotaxime were 0.2 and 0.08 mg/liter, respectively, in serum and 0.08 and 0.03 mg/liter, respectively, in CSF. The interday coefficients of variation on replicated determinations in serum were 2.7% at 51.4 mg of cefotaxime per liter, 2.7% at 0.38 mg of cefotaxime per liter, 4.0% at 10.0 mg of desacetylcefotaxime per liter, and 9.5% at 0.15 mg of desacetylcefotaxime per liter (n = 6). The corresponding values in CSF were 2.8% at 5.2 mg of cefotaxime per liter, 6.6% at 0.17 mg of cefotaxime per liter, 8.1% at 1.02 mg of desacetylcefotaxime per liter, and 11.1% at 0.07 mg of desacetylcefotaxime per liter. The quantification limits of ceftriaxone were 0.8 mg/liter in serum and 0.08 mg/liter in CSF. The interday coefficients of variation were 2.0% at 99.7 and 6.8% at 1.55 mg/liter in serum and 3.3% at 16.2 and 6.4% at 0.16 mg/liter in CSF (n = 6).

For noncompartmental and compartmental pharmacokinetic analyses, the programs Excel 2.2 (Microsoft Co., Redmond, Wash.) and Topfit 1.0 (Gödecke-Scheringer-Thomae, Freiburg-Berlin-Biberach, Germany) were used.

Peak concentrations in serum and CSF (CmaxS and CmaxCSF, respectively) and time from the end of the infusion to the peak concentrations (TmaxS and TmaxCSF) were taken directly from the concentration-time curves. Elimination rate constants (kel) were determined by log-linear regression analysis, and half-lives at the rapid elimination phase (t1/2S) were determined as ln2/kel. The areas under the concentration-time curves in serum and CSF up to the last measurable drug concentration (AUCS and AUCCSF, respectively) were estimated by the linear trapezoidal rule. Extrapolation to infinity was done by dividing the last measurable drug concentration (Ci) by kel. For the assessment of the areas under the CSF concentration-time curves from zero to infinity (AUCCSF) with cefotaxime, CI CSF was divided by kelCSF obtained from the individual patient. Since with ceftriaxone kelCSF was not assessable from patients studied after the first dose, CICSF was divided by the median value of the individual elimination rate constants estimated after the last dose. The total clearance in serum (CL) was calculated as dose/AUCS, and the apparent volume of distribution (V) was calculated as dose/AUCS × kel (36).

Compartmental analysis was necessary to characterize distribution and elimination of cefotaxime in serum. For this purpose, the weighting function g(y) = 1/y was employed, and the serum concentration-time curves for all cefotaxime

TABLE 1. Characterization of investigated patients

<table>
<thead>
<tr>
<th>Drug and patient no.</th>
<th>Body wt (kg)</th>
<th>Age/sex</th>
<th>Diseases</th>
<th>CSF protein (mg/liter)</th>
<th>QCSF (10^6)</th>
<th>Level in CSF of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WBC/mm³</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>65/F</td>
<td>SAH, RTI</td>
<td>770</td>
<td>13.9</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>52/F</td>
<td>SAH, UTI</td>
<td>1,239</td>
<td>6.6</td>
<td>113</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>54/M</td>
<td>ICB, RTI</td>
<td>2,400</td>
<td>27.1</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>79/M</td>
<td>ICB, RTI</td>
<td>273</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>53/M</td>
<td>SAH, RTI</td>
<td>421</td>
<td>4.8</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>76/F</td>
<td>IIN, UTI, RTI</td>
<td>73</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>76/F</td>
<td>SAH, RTI</td>
<td>850</td>
<td>15.3</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>55/F</td>
<td>SAH, RTI</td>
<td>304</td>
<td>5.7</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>85</td>
<td>63/M</td>
<td>IIN, RTI</td>
<td>99</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>63/M</td>
<td>ICB, RTI</td>
<td>636</td>
<td>9.0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>49/M</td>
<td>ICB, RTI</td>
<td>264</td>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>53/M</td>
<td>IIN, RTI</td>
<td>208</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>85</td>
<td>60/F</td>
<td>SAH, RTI</td>
<td>334</td>
<td>5.2</td>
<td>8</td>
</tr>
</tbody>
</table>

* SAH, subarachnoid hemorrhage; ICB, intracerebral bleeding; IIN, infratentorial ischemic infarction; QCSF/serum albumin ratio; RTI, respiratory tract infection; UTI, urinary tract infection; WBC, leukocytes; RBC, erythrocytes; M, male; F, female.
patients were analyzed by two- and three-compartment models. The Akaike Information Criterion was used for model discrimination.

RESULTS

Maximum concentrations of cefotaxime and ceftriaxone in serum were attained at the end of the drug infusions; levels of desacetylcefotaxime in serum were maximal 0 to 1 h after the end of the infusions (median = 0.08 h).

The distribution and elimination of cefotaxime in serum were adequately described by a three-compartment model: after a short distribution phase, the elimination half-life of the early phase ($t_{1/2a}$) was 0.45 to 0.95 h (median = 0.50 h; $n = 6$), and that of the late phase ($t_{1/2R}$) was 1.15 to 4.15 h (median = 2.09 h; $n = 6$). The application of a two-compartment model resulted in an inaccurate fitting of the late measured concentrations to the concentration-time curves of the model. With five of the six patients, the Akaike Information Criterion favored the three-compartment model over the two-compartment analysis. The elimination of desacetylcefotaxime and ceftriaxone in serum approximated a single exponential decay ($t_{1/2a}$): desacetylcefotaxime was 1.49 to 7.17 h (median = 2.29 h; $n = 6$), and $t_{1/2a}$ of ceftriaxone ranged from 7.5 to 16.5 h (median = 10.2 h; $n = 7$). The AUC$_{0-\infty}$, CL, and V of cefotaxime, desacetylcefotaxime, and ceftriaxone are presented in Tables 2 through 6.

Antibiotic concentrations in CSF were maximal after the end of the infusions and indicated slow drug passage into CSF: the respective T_{max} of cefotaxime, desacetylcefotaxime, and ceftriaxone were 0.5 to 8 h (median = 3 h; $n = 6$), 0.25 to 16 h (median = 8 h; $n = 5$), and 1 to 16 h (median = 12 h; $n = 5$). Elimination rates of cefotaxime, desacetylcefotaxime, and ceftriaxone from CSF were compatible with a first-order elimination (Fig. 1 and 2). The elimination half-life of cefotaxime in CSF ($t_{1/2aCSF}$) was estimated to be 5.0 to 26.9 h (median = 9.3 h; $n = 5$), and that of ceftriaxone was estimated as 15.7 to 18.4 h (median = 16.8 h; $n = 3$). With cefotaxime, $t_{1/2aCSF}$ exceeded the corresponding serum parameter by a factor of 10 to 41, and with ceftriaxone $t_{1/2aCSF}$ was 1.5 to 2.5 times greater than $t_{1/2a}$ (Tables 2 through 6).

Because of the different shapes of the concentration-time curves, the ratio between corresponding antibiotic concentrations in CSF and serum (C_{CSF}/C_S) was not constant but increased with time. The hysteresis loops of patient 1 (cefotaxime) and patient 7 (ceftriaxone) illustrate this fact (Fig. 3). When the AUC$_{CSF}$ was related to the AUC$_S$, the AUC$_{CSF}/$AUC$_S$ ratio ranged from 0.02 to 0.19 (median = 0.08; $n = 5$) with cefotaxime and from 0.002 to 0.008 (median = 0.003; $n = 5$) with ceftriaxone. When AUC$_{0-\infty}$ of cefotaxime was related to AUC$_{0-\infty}$, the AUC$_{0-\infty}$/AUC$_{0-\infty}$ ratio of cefotaxime was 0.03 to 0.21 (median = 0.12; $n = 5$) compared with 0.006 to 0.018 (median = 0.007; $n = 5$) for ceftriaxone.

The AUC$_{CSF}$ of desacetylcefotaxime amounted to 0.18 to 0.41 (median = 0.31; $n = 5$) of the AUC$_{CSF}$ of cefotaxime. In serum, the AUC desacetylcefotaxime/cefotaxime ratio was almost identical, ranging from 0.14 to 0.48 (median = 0.28; $n = 6$).

The AUC$_{0-\infty}$/AUC$_{0-\infty}$ ratio representing the overall penetration of cefotaxime and ceftriaxone into CSF correlated with parameters used in clinical practice to characterize the condition of the blood-CSF barrier, e.g., the protein content of CSF (for cefotaxime, Spearman’s rank correlation coefficient $r_S = 0.71$, $P < 0.05$; for ceftriaxone, $r_S = 0.50$, $P > 0.05$). The difference in the AUC$_{0-\infty}$/AUC$_{0-\infty}$ ratios for the patients receiving ceftriaxone and those for patients receiving cefotaxime was statistically significant ($P < 0.01$, Mann-Whitney U test).

TABLE 2. Single-dose pharmacokinetics of cefotaxime in serum

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>C_{max} (mg/liter)</th>
<th>T_{max} (h)</th>
<th>$t_{1/2a}$ (h)</th>
<th>$t_{1/2R}$ (h)</th>
<th>CL (ml/min)</th>
<th>V (liters)</th>
<th>AUC$_{0-\infty}$ (mg·h/liter)</th>
<th>AUC$_{0-\infty}$ (%)</th>
<th>AUC$_{a}$ (%)</th>
<th>AUC$_{b}$ (%)</th>
<th>AUC$_{T}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.4</td>
<td>0.08</td>
<td>0.50</td>
<td>1.15</td>
<td>474</td>
<td>41.3</td>
<td>70</td>
<td>10.0</td>
<td>56.3</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>95.1</td>
<td>0.06</td>
<td>0.50</td>
<td>4.15</td>
<td>419</td>
<td>24.1</td>
<td>80</td>
<td>23.8</td>
<td>70.4</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>127.5</td>
<td>0.05</td>
<td>0.48</td>
<td>1.93</td>
<td>301</td>
<td>29.5</td>
<td>111</td>
<td>24.6</td>
<td>57.6</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90.7</td>
<td>0.05</td>
<td>0.66</td>
<td>2.34</td>
<td>212</td>
<td>40.7</td>
<td>157</td>
<td>7.8</td>
<td>27.8</td>
<td>64.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>95.8</td>
<td>0.12</td>
<td>0.45</td>
<td>1.34</td>
<td>273</td>
<td>14.7</td>
<td>122</td>
<td>9.2</td>
<td>32.2</td>
<td>58.6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>111.8</td>
<td>0.15</td>
<td>0.95</td>
<td>2.24</td>
<td>239</td>
<td>42.7</td>
<td>140</td>
<td>21.2</td>
<td>61.3</td>
<td>17.4</td>
<td></td>
</tr>
</tbody>
</table>

* $t_{1/2a}$ half-life of the distribution phase; AUC$_{a}$, AUC$_{b}$, and AUC$_{T}$ relative AUC of the a, b, and T-phases in percent of AUC$_{0-\infty}$.

TABLE 3. Single-dose pharmacokinetics of cefotaxime in CSF

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>C_{max} (mg/liter)</th>
<th>T_{max} (h)</th>
<th>$t_{1/2a}$ (h)</th>
<th>AUC (mg·h/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.81</td>
<td>0.5</td>
<td>5.0</td>
<td>13.4</td>
</tr>
<tr>
<td>2</td>
<td>0.56</td>
<td>6.13</td>
<td>7.9</td>
<td>11.5</td>
</tr>
<tr>
<td>3</td>
<td>0.54</td>
<td>2.88</td>
<td>9.0</td>
<td>13.1</td>
</tr>
<tr>
<td>4</td>
<td>0.34</td>
<td>26.9</td>
<td>6.9</td>
<td>16.3</td>
</tr>
<tr>
<td>5</td>
<td>0.27</td>
<td>8.9</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>6</td>
<td>0.14</td>
<td>2.1</td>
<td>1.0</td>
<td>2.73</td>
</tr>
</tbody>
</table>

TABLE 4. Single-dose pharmacokinetics of desacetylcefotaxime in serum and CSF

<table>
<thead>
<tr>
<th>Site and patient no.</th>
<th>C_{max} (mg/liter)</th>
<th>T_{max} (h)</th>
<th>$t_{1/2a}$ (h)</th>
<th>AUC (mg·h/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0.08</td>
<td>1.99</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
<td>0.08</td>
<td>1.49</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>8.4</td>
<td>0.0</td>
<td>1.56</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>8.3</td>
<td>0.0</td>
<td>7.17</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
<td>1.0</td>
<td>2.59</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>3.3</td>
<td>0.5</td>
<td>2.73</td>
<td>19</td>
</tr>
<tr>
<td>CSF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.38</td>
<td>8</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>0.26</td>
<td>6</td>
<td>7.4</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>0.25</td>
<td>14.2</td>
<td>1.7</td>
</tr>
<tr>
<td>4</td>
<td>0.09</td>
<td>16</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>10</td>
<td>37.4</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>BOL*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* BOL*, below quantification limit (desacetylcefotaxime, 0.03 mg/liter).
Table 5. Single-dose pharmacokinetics of ceftriaxone in serum

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Cmax (mg/liter)</th>
<th>t1/2 (h)</th>
<th>CL (ml/min)</th>
<th>V (liter)</th>
<th>AUC0-5 (mg·h/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>271.7</td>
<td>10.9</td>
<td>14.3</td>
<td>13.5</td>
<td>2,332</td>
</tr>
<tr>
<td>8</td>
<td>247.9</td>
<td>9.9</td>
<td>14.0</td>
<td>12.0</td>
<td>2,373</td>
</tr>
<tr>
<td>9</td>
<td>199.3</td>
<td>16.5</td>
<td>13.9</td>
<td>19.8</td>
<td>2,406</td>
</tr>
<tr>
<td>10</td>
<td>251.3</td>
<td>10.2</td>
<td>20.2</td>
<td>17.8</td>
<td>1,652</td>
</tr>
<tr>
<td>11</td>
<td>259.5</td>
<td>10.2</td>
<td>33.8</td>
<td>29.8</td>
<td>986</td>
</tr>
<tr>
<td>12</td>
<td>172.2</td>
<td>7.5</td>
<td>37.2</td>
<td>24.0</td>
<td>896</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-life determined after last dose; no determination of Cmax.

Table 6. Single-dose pharmacokinetics of ceftriaxone in CSF

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Cmax (mg/liter)</th>
<th>tmax (h)</th>
<th>AUC0-5 (mg·h/liter)</th>
<th>AUC0-5/Cmax (mg·h/liter)</th>
<th>Result determined after first dose</th>
<th>C1/2* (mg/liter)</th>
<th>t1/2 (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.04</td>
<td>16</td>
<td>18.1</td>
<td>41.3</td>
<td>0.018</td>
<td>0.30</td>
<td>16.8</td>
</tr>
<tr>
<td>8</td>
<td>0.66</td>
<td>12</td>
<td>16.1</td>
<td>19.5</td>
<td>0.008</td>
<td>0.53</td>
<td>18.4</td>
</tr>
<tr>
<td>9</td>
<td>0.43</td>
<td>12</td>
<td>8.1</td>
<td>17.3</td>
<td>0.007</td>
<td>1.03</td>
<td>15.7</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>12</td>
<td>4.4</td>
<td>10.5</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.18</td>
<td>1</td>
<td>2.3</td>
<td>5.8</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concentrations 12 h after the end of the last infusion.

a PI, peaks could not be quantified for peak interference.

DISCUSSION

The $t_{1/2}$ of ceftriaxone in serum (median = 10.2 h) was slightly higher than that reported before (7, 19, 28). This may be due to the fact that we studied only critically ill patients. In contrast to results of several previous investigations (7, 19), cefotaxime elimination in serum did not approximate a single-exponential decay; $t_{1/2}$ was shorter and $t_{1/2}$ was longer than the $t_{1/2}$ found by others (7, 19). They were close to the early and terminal $t_{1/2}$ estimated by Ings et al. (17) after measuring cefotaxime concentrations in serum by a microbiologic assay. Since the rate of decline slowed at concentrations in serum below 1 mg/liter, $t_{1/2}$ is not noticed with less sensitive assays and may be of clinical relevance only with very sensitive pathogens. Similarly, a slow elimination phase has recently been described for penicillin G (11). Desacetylcefotaxime in serum followed a first-order elimination.

Maximum levels in CSF achieved after a single dose (2 g/30 min) of cefotaxime or ceftriaxone did not differ substantially in the present study. In contrast, the $AUC_{0-5}\text{CSF}/AUC_{0-5}$ ratio was 1 order of magnitude lower with cefotaxime than with ceftriaxone. The main reasons for this behavior probably were the high serum protein binding of ceftriaxone (90 to 95% compared with 40% for cefotaxime) (7, 19) and the higher molecular weight of ceftriaxone (598.5 versus 425.5) (40).

The C_{max} levels measured by us were considerably smaller than concentrations reported for ceftriaxone in lumber CSF with uninfamed meninges (5) but were comparable to concentrations reported for cefotaxime in CSF with intact meninges (6, 18) and in Lyme disease (31, 32). C_{max} was attained later with ceftriaxone than with cefotaxime. In fully developed bacterial meningitis in children and adults, both antibiotics achieved concentrations in CSF several times higher than those in the present study (1, 3, 4, 6, 9, 10, 16, 20, 22, 30).

Elimination of both antibiotics in CSF was considerably slower than that in serum. On average, the $t_{1/2}$ of ceftriaxone was slower (median = 16.8 h) than the $t_{1/2}$ of cefotaxime (median = 9.3 h). In one neonate receiving ceftriaxone, the decay in CSF paralleled the plasma concentration-time curve (22). In contrast, previous work (7, 24–27) and the present results indicate that the rate of decline of drug concentrations is slower in CSF than in blood. This is consistent with physiological evidence. A lag of elimination from CSF compared with that from blood originates from the slow CSF turnover and from the even slower drainage of interstitial brain fluid into CSF (8, 35). Similarly, in human brain abscesses the ratio of concentrations of cefotaxime and desacetylcefotaxime in abscesses to those in plasma increased with the time interval between cefotaxime dosing and abscess fluid sampling (39).

Ceftriaxone and cefotaxime have identical antimicrobial spectra. The maximum concentrations of both drugs in CSF achieved in the present study exceeded the MICs for highly susceptible bacteria (Neisseria meningitidis, Haemophilus influenzae, penicillin G-sensitive Streptococcus pneumoniae, Borrelia burgdorferi, and some members of the family Enterobacteriaceae) approximately 10-fold (7, 13, 14, 19, 32) and therefore should be bactericidal in vivo. However, these levels should not be relied on to inhibit the growth of moderately susceptible bacteria, including relatively or fully penicillin G-resistant S. pneumoniae (MIC for 90% of the relatively penicillin G-resistant strains tested, 0.25 mg/liter; MIC for 90% of fully penicillin G-resistant strains tested; 1.0 [ceftriaxone] and 2.0 [cefotaxime] mg/liter) (23) and Klebsiella, Enterobacter, and Serratia spp. (MIC for 90% of strains tested, 0.13 to 0.65 mg/liter) (13). They are inadequate for many strains of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa (MIC for 90% of strains tested, >1 mg/liter) (7, 13, 19). A limited increase of concentrations in CSF can be attained by increasing doses. The low toxicity of both cefotaxime and ceftriaxone permits doubling of the usual daily dose (i.e., 12 g of cefotaxime or 4 g of ceftriaxone per 24 h), and doubling has been recommended for therapy of meningitis (41). Listeria monocytogenes and Streptococcus faecalis, which are responsible for up to 7% of bacterial meningitis in unselected
adults (38, 42), are resistant to newer cephalosporins (6, 7, 19).

Desacetylcefotaxime, the main metabolite of cefotaxime, possesses independent antibacterial activity. It is less active than the parent compound (19). Desacetylcefotaxime and cefotaxime act synergistically in a 1:1 ratio but not in a 0.2:1 ratio (14). In the present study, the desacetylcefotaxime/cefotaxime ratios varied, usually increasing with time after
the end of the infusion. Ratios of the AUC_{CSF} of desacetyl-
cefotaxime and cefotaxime in the individual patients ranged
from 0.18 to 0.41. Because of the variability of the ratios, the
synergy between cefotaxime and desacetylcefotaxime cannot
be counted upon in the clinical routine.

In conclusion, with highly susceptible organisms, both
cefotaxime and ceftriaxone achieve therapeutic levels in
CSF with inflamed and uninfamed meninges. With moder-
ately susceptible bacteria, the levels in CSF observed in this
study after infusion of 2 g of cefotaxime or ceftriaxone were
probably subtherapeutic. This may compromise therapy
when meningeal inflammation is less pronounced or resolves
in the course of the illness. With cefotaxime, maximum
concentrations in CSF were attained earlier than with cef-
triaxone. Although the long persistence of both ceftriaxone
and cefotaxime in CSF would permit long dosage intervals,
the rapid elimination of cefotaxime in blood suggests dis-
tances between the single infusions of not more than 8 h with
mенинgitis. The lack of a decisive advantage of one drug
when they were compared with each other under the condi-
tions studied by us is paralleled by clinical studies of bac-
terial meningitis and Lyme disease in which they were
equally effective (12, 29, 32).

ACKNOWLEDGMENTS

This work was supported in part by Hoechst AG, Frankfurt,
Germany, and by Hoffmann-La Roche, Grenzach-Wyhlen, Ger-
many.

REFERENCES

1. Asmar, B. I., M. C. Thirumooorthi, J. A. Buckley, D. M. Kobos,
and A. S. Dajani. 1985. Cefotaxime diffusion into cerebrospinal
fluid of children with meningitis. Antimicrob. Agents Chemo-
ther. 28:138–140.

2. Barling, R. W. A., and J. B. Selkon. 1978. The penetration of
antibiotics into cerebrospinal fluid and brain tissue. J. Antimi-

4. Bryan, J. P., H. Rocha, H. R. Da Silva, A. Taveres, M. A. Sande,
and W. M. Scheld. 1985. Comparison of ceftriaxone and ampi-
cillin plus chlormphenicol for the therapy of acute bacterial

5. Chandrasekar, P. H., K. V. I. Rolston, B. R. Smith, and J. L.
LeFrock. 1984. Diffusion of ceftriaxone into the cerebrospinal

Landesman, and G. Humbert. 1982. Treatment of Gram-nega-
tive bacillary meningitis: role of the new cephalosporin antibi-

7. Cherubin, C. E., R. H. K. Eng, R. Norbry, J. Modai, G. Humbert,
and G. Overturf. 1989. Penetration of newer cephalosporins into

Efflux of radiolabeled polyethylene glycol and albumin from rat

A. Spector. 1988. Treatment of bacterial meningitis with once
645.

Shelton. 1982. Pharmacokinetics and cerebrospinal fluid bac-
tericidal activity of ceftriaxone in the treatment of pediatric
patients with bacterial meningitis. Antimicrob. Agents Chem-
other. 22:622–627.

Evidence for a slow elimination phase for penicillin G. J. Infect.

1991. Antibiotic concentrations in liquor compared to the mini-
mal inhibitory concentrations in pediatric bacterial meningitis.
Chemotherapy 37:1–5.

13. Emmerson, A. M., P. A. Lamport, D. S. Reeves, M. J. Bywater,
vivo antibacterial activity of ceftriaxone in comparison with nine

15. Helwig, H. 1984. Empfehlungen der Arbeitsgemeinschaft "Men-
ingitis" der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V.
zur Diagnostik und Therapie der bakteriellen Meningitis. Z.

Concentration of cefotaxime and the desacetyl metabolite in
serum and CSF of patients with meningitis. J. Antimicrob.

Humbert. 1982. The pharmacokinetics of cefotaxime and its
metabolites in subjects with normal and impaired renal function.

otaxime concentrations in cerebrospinal fluid. J. Antimicrob.
Chemother. 4(Scpl):A:119–120.

d., p. 443–485, 510–524. William Heinemann Medical Books,
London.

21. Lebel, M. H., B. J. Preij, G. A. Syriogianopoulos, D. F. Chrane,
M. J. Hoyt, S. M. Stewart, B. D. Kennard, K. D. Olsen, and
G. H. McCracken. 1988. Dexamethasone therapy for bacterial
meningitis: results of two double-blind, placebo-controlled tri-

FIG. 3. Hysteresis loop of concentrations of cefotaxime (patient
1 [triangles]) and ceftriaxone (patient 2 [squares]) in CSF versus
those in serum after the first 2-g dose. Measurements were taken
simultaneously. The numbers near the points represent the intervals
between sample withdrawal and termination of the antibiotic
infusion.

