Hypotensive and bradycardic effects of centrally administered vasopressin in stroke-prone spontaneously hypertensive rats.
Y Imai, K Abe, S Sasaki, N Minami, T Nobunaga, H Sekino and K Yoshinaga

Hypertension. 1987;10:346-349
doi: 10.1161/01.HYP.10.3.346

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/10/3/346

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Hypertension

Rapid Communication

Hypotensive and Bradycardic Effects of Centrally Administered Vasopressin in Stroke-Prone Spontaneously Hypertensive Rats

YUTAKA IMAI, KEISHI ABE, SHUICHI SASAKI, NAOYOSHI MINAMI, TOSHIMA NOBUNAGA, HIROSHI SEKINO, AND KAORU YOSHINAGA

The cardiovascular effects of centrally administered arginine vasopressin were studied in stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats. Arginine vasopressin was infused intracerebroventricularly into conscious rats at a rate of 2 pg/kg/min (4.6 µl/hr) for 21 hours, and blood pressure and heart rate were monitored. Arginine vasopressin caused transient hypertension and tachycardia in Wistar-Kyoto rats, whereas it induced delayed hypotension and bradycardia in stroke-prone spontaneously hypertensive rats. The effects on the latter lasted for 24 to 72 hours after cessation of the infusion. Intravenous administration of arginine vasopressin at a rate of 2 pg/kg/min did not cause any change in blood pressure and heart rate in these rats. These results suggest that arginine vasopressin acts centrally to depress cardiovascular activities, at least in stroke-prone spontaneously hypertensive rats. (Hypertension 10: 346-349, 1987)

KEY WORDS • arginine vasopressin • intracerebroventricular administration • stroke-prone spontaneously hypertensive rats • blood pressure • heart rate • Wistar-Kyoto rats

RECENT studies have shown that there are extensive extrahypothalamic axonal projections of vasopressin neurons from the nuclei producing arginine vasopressin (AVP) precursor, the supraoptic nucleus and the paraventricular nucleus. The major projections appear to be to brainstem nuclei, including the nucleus tractus solitarii and dorsal vagal nucleus, and the intermediolateral nucleus of the spinal cord.1 2 Recently, the presence of AVP-containing cells has also been reported in nonhypothalamic nuclei in rats.3 4 All of these sites are known to be involved in central cardiovascular regulation, and this suggests that central vasopressin may act as a neuromodulator or a neurotransmitter (or both) involved in the central cardiovascular regulatory mechanisms. Furthermore, spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) of the Okamoto-Aoki strain have been reported to have a lower concentration of AVP in brainstem and hypothalamic nuclei when compared with the normotensive parent strain, Wistar-Kyoto rats (WKY).5 6

Despite this circumstantial evidence, the putative role of central vasopressinergic mechanisms in cardiovascular regulation has not been fully elucidated. Recently, AVP has been shown to have specific and direct effects on the baroreceptor reflex function (see the recent review by Johnston8). Liard et al.9 proposed that the locus of these effects is in the central nervous system. It has been observed that Brattleboro rats with hereditary hypothalamic diabetes insipidus have suppressed baroreceptor reflex function, and exogenous AVP administered systemically or centrally restored this function to the range in Long-Evans rats, the normal parent strain of Brattleboro rats.10 Reduced baroreceptor reflex function has also been demonstrated in SHR.11 Inhibition of central baroreceptor reflex pathways is generally considered to raise blood pressure.12

From the Department of Medicine (Y. Imai, K. Abe, S. Sasaki, N. Minami, K. Yoshinaga) and the Institute for Experimental Animals (T. Nobunaga), Tohoku University, and the Artificial Kidney Center (H. Sekino), Kohjinkai Central Hospital, Sendai, Japan.

Supported by a grant-in-aid for scientific research from the Ministry of Education, Science, and Culture of Japan (61570401), by the Japan Research Foundation for Clinical Pharmacology, and by the Miyagi Prefectural Kidney Association.

Address for reprints: Yutaka Imai, M.D., Department of Medicine, Tohoku University School of Medicine, 1-1 Seiryocho, Sendai 980, Japan.

Received April 8, 1987; accepted June 3, 1987.

346

Downloaded from http://hyper.ahajournals.org/ by guest on April 23, 2014
These links between blood pressure, baroreceptor reflex function, and AVP have prompted us to investigate whether centrally administered AVP depresses the blood pressure in SHR, especially in SHRSP.

Materials and Methods

We used male and female SHRSP (age, 19.5 ± 0.5 weeks; n = 7) and age-matched WKY (age, 20.2 ± 0.3 weeks; n = 7), obtained from the Institute for Experimental Animals, Tohoku University, Sendai, Japan. A cannula (PE-20 polyethylene tubing, 4.6 cm long with a volume of approximately 4.6 μl) was implanted into the left lateral ventricle with the rats under pentobarbital anesthesia. Coordinates for implantation with respect to the bregma were 1.0 mm posterior, 1.5 mm lateral, and 5 mm deep. The cannula was filled with artificial cerebrospinal fluid (ACSF) and fixed in place with stainless steel anchoring screws and orthopedic bone cement. Seven days after the cerebroventricular cannulation, the left femoral artery and vein were cannulated using polyethylene tubing (tapered PE-100 tubing for artery and PE-20 tubing for vein). The catheters were passed subcutaneously and brought out on the neck. The arterial catheter was connected to a hydraulic, swivel-tethering system, and each rat was placed in an individual plastic metabolic cage and housed under conditions of constant temperature (23°C) and humidity (60%), with a 12-hour light/dark cycle. To keep the arterial catheter patent, heparinized saline solution (100 U/ml) was continuously infused at a rate of 80 μl/hr.

The animals were fed a commercial diet and water ad libitum. Blood pressure was recorded from the femoral artery catheter using a P231b Statham pressure transducer (Oxford, CA, USA) and strain-gauge amplifier (Model 1257; NEC-San-ei, Tokyo, Japan). Heart rate was counted from phasic pressure wave by a cardiotachometer (Model 1321; NEC-San-ei). The analog signals of phasic pressure, mean arterial pressure, and heart rate were fed to an analog/digital converter (Mark 1; N.C.C., Tokyo, Japan). Digital signals of mean arterial pressure and heart rate from this converter were fed to a microcomputer (Model HP-9816; Hewlett-Packard, Fort Collins, CO, USA). Analog signals of phasic pressure, mean arterial pressure, and heart rate were recorded from a hydraulic, swivel-tethering system, and each rat was placed in an individual plastic metabolic cage and housed under conditions of constant temperature (23°C) and humidity (60%), with a 12-hour light/dark cycle. To keep the arterial catheter patent, heparinized saline solution (100 U/ml) was continuously infused at a rate of 80 μl/hr.

The basal mean arterial pressures in WKY and SHRSP were 118 ± 2 and 187 ± 12 mm Hg, respectively, and basal heart rates were 370 ± 6 and 356 ± 15 beats/min, respectively. The i.c.v. infusions of ACSF did not cause any cardiovascular changes. The time course of changes in mean arterial pressure (F1, 314 = 0.24, p > 0.8) and heart rate (F1, 314 = 0.59, p > 0.4) in response to i.c.v. ACSF infusion was sufficiently reproducible. The i.c.v. infusions of AVP induced a gradual decrease in mean arterial pressure in six of seven SHRSP (time control vs i.c.v. AVP infusion: F1, 299 = 96.9, p < 0.0001). In the remaining rats, only an initial, transient increase in mean arterial pressure was observed. The i.c.v. infusions of AVP also induced a transient tachycardia followed by bradycardia in all SHRSP. The bradycardic effect reached its nadir 6 hours after the start of the infusion and was followed by gradual recovery to the initial level (time control vs i.c.v. AVP infusion: F1, 299 = 32.0, p < 0.0001; Figure 1). In contrast to the response seen in SHRSP, i.c.v. infusions of AVP in WKY induced elevations of blood pressure and tachycardia that returned to the initial levels after 10 and 7 hours, respectively (see Figure 1). No significant hypotension (WKY vs SHRSP: F1, 299 = 194.2, p < 0.0001) and bradycardia (WKY vs SHRSP: F1, 299 = 75.1, p < 0.0001) were observed in WKY.

The hypotensive effect of i.c.v. AVP infusion in SHRSP persisted long after cessation of the infusion. In one rat it took 72 hours to recover the initial blood pressure level, while in the remaining rats the initial level was recovered within 48 hours. Figure 2 shows the time course of the changes in blood pressure during and after an i.c.v. infusion of AVP in a single experiment with SHRSP. The intravenous infusion of AVP at a rate of 2 pg/kg/min in SHRSP had no effect on blood pressure and heart rate (data not shown).

The catheters were passed subcutaneously and brought out on the neck. The arterial catheter was connected to a hydraulic, swivel-tethering system, and each rat was placed in an individual plastic metabolic cage and housed under conditions of constant temperature (23°C) and humidity (60%), with a 12-hour light/dark cycle. To keep the arterial catheter patent, heparinized saline solution (100 U/ml) was continuously infused at a rate of 80 μl/hr.

The basal mean arterial pressures in WKY and SHRSP were 118 ± 2 and 187 ± 12 mm Hg, respectively, and basal heart rates were 370 ± 6 and 356 ± 15 beats/min, respectively. The i.c.v. infusions of ACSF did not cause any cardiovascular changes. The time course of changes in mean arterial pressure (F1, 314 = 0.24, p > 0.8) and heart rate (F1, 314 = 0.59, p > 0.4) in response to i.c.v. ACSF infusion was sufficiently reproducible. The i.c.v. infusions of AVP induced a gradual decrease in mean arterial pressure in six of seven SHRSP (time control vs i.c.v. AVP infusion: F1, 299 = 96.9, p < 0.0001). In the remaining rats, only an initial, transient increase in mean arterial pressure was observed. The i.c.v. infusions of AVP also induced a transient tachycardia followed by bradycardia in all SHRSP. The bradycardic effect reached its nadir 6 hours after the start of the infusion and was followed by gradual recovery to the initial level (time control vs i.c.v. AVP infusion: F1, 299 = 32.0, p < 0.0001; Figure 1). In contrast to the response seen in SHRSP, i.c.v. infusions of AVP in WKY induced elevations of blood pressure and tachycardia that returned to the initial levels after 10 and 7 hours, respectively (see Figure 1). No significant hypotension (WKY vs SHRSP: F1, 299 = 194.2, p < 0.0001) and bradycardia (WKY vs SHRSP: F1, 299 = 75.1, p < 0.0001) were observed in WKY.

The hypotensive effect of i.c.v. AVP infusion in SHRSP persisted long after cessation of the infusion. In one rat it took 72 hours to recover the initial blood pressure level, while in the remaining rats the initial level was recovered within 48 hours. Figure 2 shows the time course of the changes in blood pressure during and after an i.c.v. infusion of AVP in a single experiment with SHRSP. The intravenous infusion of AVP at a rate of 2 pg/kg/min in SHRSP had no effect on blood pressure and heart rate (data not shown).
FIGURE 1. Time course of changes in mean arterial pressure (MAP) and heart rate (HR) induced by i.c.v. infusions of artificial cerebrospinal fluid and of arginine vasopressin (AVP) at a rate of 2 pg/kg/min for 20 hours in WKY and SHRSP. Symbols and vertical bars represent the means and SEM. Asterisk indicates a significant difference (p<0.05) compared with control values (Hour 0), by Duncan's multiple range test.

Discussion

The present study clearly demonstrates that protracted i.c.v. infusions of AVP in a low dose dramatically decrease blood pressure and heart rate in SHRSP and transiently increase these parameters in normal WKY. Previous studies found that centrally administered AVP caused hypertension and tachycardia in rats.13-16 In these earlier studies, however, huge amounts of AVP were administered centrally for short periods to anesthetized or unanesthetized rats. In the present study we infused a small amount of AVP for a long period in a minimum infusion volume. Since rats weighing 300 g may have 400 μl of cerebrospinal fluid17 and as the half-life of AVP in cerebrospinal fluid is only a few minutes,18 the AVP concentration in cerebrospinal fluid of rats would attain a steady state concentration of 15 to 20 pg/ml according to the one-compartment-open model when AVP is administered i.c.v. at a rate of 2 pg/kg/min. This cerebrospinal fluid concentration of AVP might still be unphysiologically high, but it is certainly much closer to physiological levels as compared with those expected in previous short-term experiments.

Under such experimental conditions the previously reported hypertensive effect of centrally administered AVP was also observed in the present study in WKY. This effect may be mediated by midbrain or brainstem cardiovascular control mechanisms since microinjection of AVP to the nucleus tractus solitarii or locus ceruleus produces tachycardia and hypertension.19,20 However, vasopressinergic neuronal projections are not restricted to these regions; they are also found in other central cardiovascular centers, such as the anteroverentral third ventricle of the hypothalamus, the dorsal vagal nucleus of the brainstem, and the intermediolateral nucleus of the spinal cord.1,2 These varied sites suggest that central vasopressinergic mechanisms have a dual function: to produce 1) cardiovascular stimulation and 2) cardiovascular depression. Central vasopressinergic neuronal mechanisms have been reported to attenuate the centrally mediated pressor responses to electrical stimulation of the mesencephalic reticular formation.21 Furthermore, central injection of AVP causes bradycardia or hypotension, or both, in cats22 and dogs.23 More recently, Imai et al.24 reported that centrally administered AVP caused hypotension.

FIGURE 2. Time course of changes in mean arterial pressure (MAP) in a single experiment during and after an i.c.v. arginine vasopressin (AVP) infusion at a rate of 2 pg/kg/min. Each vertical bar represents ± 1 SD of MAP averaged over 10 minutes. The numbers at the top of each panel are rat identification numbers.
and bradycardia in rats with hereditary hypothalamic diabetes insipidus (Brattleboro) but not in normal Long-Evans rats. These lines of evidence are consistent with the hypothesis that decreased AVP levels in several brain loci of SHR contribute to the induction and maintenance of high blood pressure in this strain of rat.

The precise reason why centrally administered AVP causes hypotension and bradycardia only in SHRSP is uncertain; however, the AVP-sensitive cardiovascular depressor center in SHRSP may be more sensitive to exogenous AVP than that in WKY. In normal WKY, endogenous AVP may occupy or desensitize the region where exogenous AVP induces cardiovascular depression in SHRSP; thus, additional AVP stimulation would cause no further decrease in blood pressure and heart rate. This hypothesis is supported by the evidence that the AVP content of the brainstem and hypothalamic nuclei in SHR and SHRSP is less than that in the normotensive strain. One might even argue that AVP in certain central regions may protect against the development and maintenance of hypertension in rats.

The precise mechanism by which AVP modulates central cardiovascular centers has not been elucidated, although a number of studies have attempted to solve this question. For example, vasopressin has been shown to influence preganglionic sympathetic neurons to change phosphatidylinositol turnover and calcium kinetics in sympathetically ganglia and to modulate catecholamine turnover and metabolism in medullary brain nuclei (see the recent review by Johnston). We observed that the hypotensive effect of i.c.v. AVP infusion in SHRSP persisted long after cessation of the infusion. Meisenberg and Simmons reported that AVP in cerebrospinal fluid is easily destroyed by aminopeptidases and that its half-life in cerebrospinal fluid is only a few minutes. Two possibilities may explain the long-lasting hypotensive effect of AVP: 1) The activity of aminopeptidases may be attenuated in SHRSP. 2) Some metabolite of AVP may act centrally to cause hypotension. Some of the central effects of AVP, including those on behavior and memory, are very long lasting. A protracted inhibitory effect of lysine vasopressin on the centrally mediated pressor response has also been reported. The results of the present study are consistent with these earlier results, although we have no evidence to support either of the possible explanations.

Acknowledgment
Professor Toshima Nobunaga is responsible for breeding and maintaining SHRSP at the Institute for Experimental Animals, Tohoku University, Sendai, Japan.

References

Downloaded from http://hyper.ahajournals.org/ by guest on April 23, 2014