
We see plants nearly everywhere in our
environment. They dominate outdoor

scenes and most interior scenes as well. So why do we
only have a few satisfactory plant models? We think it’s
because, so far, creating plants is a job for experts who
can handle the large structural and geometrical com-
plexity of these models.

In this article we present a mod-
eling method that allows easy gen-
eration of many branching objects
including flowers, bushes, trees, and
even nonbotanical things. A set of
components describing structural
and geometrical elements of plants
maps to a graph that forms the
description of a specific plant and
generates the geometry. Users get
immediate feedback on what
they’ve created—geometrical para-
meters, tropisms, and free-form
deformations can control the over-

all shape of a plant. We’ll demonstrate that our method
handles the complexity of most real plants.

Before we discuss related work on interactive aspects
of plant modeling systems, we want to stress that plant
modeling aims to achieve two distinct goals. One is bio-
logically motivated—people try to simulate the devel-
opment of natural plants. The other seeks to generate
only visually correct shapes of plants. This reflects the
need for good geometric models in many computer
graphics applications. Our method focuses on the sec-
ond goal and tries to give users as much modeling power
as possible for creating different plants.

In the beginning, work on plant generation was bio-
logically motivated. Pioneering work by Lindenmayer
and later by Prusinkiewicz described the structure of
plants by string rewriting systems (L-systems) operat-
ing on a set of rules.1 The approach includes context sen-
sitivity as well as stochastic behavior and was recently
extended to let plants adapt to environmental effects.2

L-systems specify plants in terms of local growth rules.
This may be intuitive for biologists, but from the model-

ing point of view we’re interested in dealing directly with
the global characteristics of plants. Lindenmayer and
Prusinkiewicz created a virtual laboratory for L-systems
that lets users customize the models by specifying simu-
lation parameters graphically.1 However, controlling the
global aspects of the shape directly still proves difficult.
Also, users get no direct feedback because they must
rerun the simulation after changing the parameters.

To provide more intuitive parameters and to ease con-
trol over the models, others have developed customiz-
able procedural plant models. Oppenheimer3 presented
a fractal tree model where, in each branch, users can
specify parameters like branching angle, the size ratio
between the main stem and branch, or the number of
branches per stem.

De Reffye et al.4 developed a procedural model based
on the birth and death of growing buds that lets users
control the generation of plants by some parameters.
AMAP, a commercial library of plants (particularly trees)
and generation procedures, builds on this idea (see
http://www.cirad.fr/amap/amap.html). The user edits
a plant type’s parameters and runs the simulation to pro-
duce the desired geometry.

Holton’s5 procedural model of trees assigns a strand
to any path from the root to a tree’s leaves. The number
of strands in a fork determines the branches’ fork angle,
length, and taper. This lets the models be parameter-
ized on the level of various tropisms that control growth.
After specifying the parameters, the models are ren-
dered—a time-consuming process that makes interac-
tion difficult.

While the authors listed above concentrated on find-
ing efficient descriptions that fit into botanical princi-
ples, Weber and Penn6 focused on the second goal of
generating a visually favorable geometry without adher-
ing strictly to botanical laws—they put special empha-
sis on modeling the overall shape of a tree. Specifying
the shape geometrically and restricting the model to
grow within the bounds of the shape accomplished this.
A set of textually edited parameters described the geom-
etry for each branching level of the tree.

Onyx Computing’s TreeMaker (http://www.onyxtree.

Bernd Lintermann
Center for Media Arts and Technology Karlsruhe

Oliver Deussen
Otto-von-Guericke University of Magdeburg

Interactive
Modeling of Plants

0272-1716/99/$10.00 © 1999 IEEE

Feature Article

2 January/February 1999

Combining a rule-based

approach with traditional

geometric modeling

techniques enables the fast

and comfortable generation

of plants.

com), a highly interactive system for generating trees, lets
users customize a tree’s branching levels graphically. For
example, users can cut a stem and receive immediate
feedback on the newly created geometry. This system
makes it easy to generate and modify the models, but is
restricted to trees.

We aimed to combine the power of a rule-based
approach with the intuitiveness of generic tree meth-
ods. Also, we wanted to have a general modeling tech-
nique that could generate nearly all kinds of plants by
using one consistent description. For modeling purpos-
es, we also needed a highly interactive system with
direct feedback.

Our solution uses a graph description. The nodes of
the graph are components that represent parts of a
plant, and the edges denote creation dependencies.
Hart7 used a similar graph to describe fractal geome-
tries and a limited class of L-systems. In his approach,
the nodes describe instances of geometrical primitives
and the edges also denote creation dependencies. Hart’s
system traverses the graph to produce the geometry.

In our approach,8 we divide the generation of geom-
etry into two steps (see http://www.greenworks.de).
First, we expand the graph to a tree. We do this because
structural information is represented by the graph struc-
ture and by a special class of components that multiplies
its children algorithmically. Second, our system tra-
verses the tree to produce the geometry.

Modeling with components
In our approach, components encapsulate data and

algorithms for generating plant elements. Generally three
categories exist: one group of components creates graph-
ical objects like stems, twigs, leaves, or geometric primi-
tives; the second multiplies other components; and the
third applies global modeling techniques. All components
own a set of parameters to control their behavior.

Our technique builds on the idea that graph-based

systems generate structures powerfully. If a graph gen-
erates plant parts represented by components, then we
can conserve this power and combine it with individu-
ally optimized algorithms for generating and multiply-
ing geometry. Also, the description proves much more
intuitive because it consists of high-level units only.

Within each component, the procedural modeling
method specifies its behavior. A graphical dialog can be
used at this point to optimize the interaction (see Fig-
ure 1). For example, our system’s Leaf component uses
polygons to specify a leaf’s outline. Applying values or
editing a spline curve lets users define the leaf’s lateral
and longitudinal curvature.

In many cases, objects must be distributed algorith-
mically. For instance, placing objects on a surface accord-
ing to the golden section (such as distributing seeds on
a sunflower) is a classical example for this need. Multi-
plying components, the second component group, helps
achieve such an algorithmic distribution. One parame-
ter of this component is the number of multiplied com-
ponents; others control their placement and orientation.

We can now establish the complete plant description
by connecting component prototypes in a directed graph
called the prototype graph, or p-graph. When our sys-
tem traverses the p-graph, it builds a temporary tree of
component instances that we call the i-tree. This tree is
used to generate the geometry.

Each link between two component prototypes in the
p-graph denotes a creation dependency. If the source
prototype was copied to create an instance, the system
does the same thing with the target prototype and con-
nects both instances by a link.

The main difference between classical rule-based
approaches and the graph-based object instancing par-
adigm7 is that structural information is represented in
two ways. One representation is given by the p-graph’s
links, and the other is specified by the parameters of
multiplying components.

IEEE Computer Graphics and Applications 3

1 The modeler’s main dialog win-
dows. The plant’s structural descrip-
tion is modeled in the upper left,
and the results appear on the right.
The parameters of each component
can be changed with special
dialogs. Here the outline of a leaf is
created, as shown in the center
shape-spline box.

If a multiplying component is part of the graph, dur-
ing the expansion the system creates as many instances
of all subsequent components as defined in the multi-
plying component. All instances of the child components
link to the instance of the multiplier.

To obtain children that differ in geometry, the proto-
type of a multiplying component stores several parame-
ters (for example, the size of its children) as ranges. The
system interpolates values to obtain the specific value for
each instance of a child. If the parameter range is
[v0, v1], the value of the i-th child out of n is vi = v0 +
i(v1 − v0)/(n − 1). Before the system uses this parameter
value, it applies an arbitrary function that the user spec-
ifies. This lets us introduce randomness to the models and
vary the shape individually for different components.

Each component prototype has a parameter defining
the highest recursion depth. If defined within the p-
graph, a recursion transforms into a subtree by produc-
ing instances that depend on the recursion depth.

Now all the instances form the i-tree. The i-tree’s root
component is enforced to produce its output, and it
forces all its children to do the same. This proceeds until
the system has traversed the whole tree.

A geometry generation example
A short example may clarify the process. Component

prototype A is the root. Prototype B is a geometry-
producing component and should generate a stem. C is
a multiplying component that should produce three
instances of its children and no geometry. Prototype D
produces part of a twig and has a recursion depth of
three. Xi denotes the instances of component X.

Figure 2a shows the components (A to D) that form
the p-graph, and Figure 2b shows the resulting i-tree.
Component prototype C generates three instances of D,
namely D1, D2, and D3, according to its local multiplica-
tion parameter and connects C1 to them. The recursion
defined on prototype D forms a sequence of three

Feature Article

4 January/February 1999

Here are the different component types that our
modeler uses. Figure A shows the icons for each
component.

Simple
All components offer a basic set of parameters

that define a geometric primitive and transform
the data of child components in the p-graph. The
Simple component has only this basic parameter
set, and it creates simple geometries.

Revo
Revo, another kind of geometric primitive,

produces a surface of revolution. In addition to the
basic parameters, the user can specify the outline
of the surface of revolution.

Horn
The geometry produced by the Horn

component forms the basis for all kinds of stems or
twigs. Oppenheimer3 as well as Todd and Latham11

did this similarly: a sequence of primitives is
generated either along a spline or by defining
relative transformations between primitives.

If the primitives are selected as tubes, the Horn
creates a sequence of point sets. These are
interpreted as cross-sections of a closed volume
and are triangulated later. In this case, the
geometry forms a generalized cylinder. Figure B
shows the process and gives two examples.

Other components like the Simple component
can also produce single point sets. The point sets
generated by subsequent instances in the i-tree
are triangulated. This lets us achieve a wide variety
of surfaces. The parameters of the Horn
component specify the shape, direction, and
length of the generated geometry.

Leaf
Leaf components define natural-looking leaves

and petals. Similar to Horn components, they
produce sequences of primitives or point sets. In
this case, the point sets are open and define a

Component Types of the Modeler

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)

A The different component types of our modeler:
(1) Simple, (2) Revo, (3) Horn, (4) Leaf, (5) Tree,
(6) Hydra, (7) Wreath, (8) Phiball, (9) FFD,
(10) Hyperpatch, and (11) World.

T2

T1

(1) (2) (3)

B Geometry definition used by a Horn component:
(1) point sets are defined relative to preceding sets;
(2) the triangulation forms the outline; (3) two exam-
ples of a Horn geometry.

instances—Di1, Di2, and Di3. This
causes nine instances of D to take
place in the final tree. Figure 2b
shows the i-tree, and Figure 2c
shows the geometrical output.

Local coordinate systems—calcu-
lated separately for each child
instance of a multiplication compo-
nent—produce the differences in
the orientation of the nine instances’
geometries. Additionally, each com-
ponent executes a geometry gener-
ation method triggered by its
parameters.

Component types and their combination
Here we’ll focus on the different kinds of components

and their parameters. The sidebar “Component Types
of the Modeler” explains all the system’s components.

As mentioned previously, we distinguish among three
component categories: geometry generating, multiply-
ing, and global modeling.

Each component offers a basic set of parameters that
defines a geometric primitive and transforms the child

IEEE Computer Graphics and Applications 5

A

B

C

D

n = 3

Depth = 3

(a)

A1 D11 D12 D13

B1

C1

D21 D22 D2 3

D31 D32 D33

(b) (c)

2 To generate a
plant, the user
constructs the
p-graph (a),
which expands
to form the
desired i-tree
(b). The tree
then produces
the desired
geometry (c).

surface. The main difference to
the Horn component is the
method affecting the generated
geometry. Several deformations
can be applied and the leaf’s
outline can be specified as a
polygonal curve.

It’s also possible to apply a
phototropism. The scalar value
determines how much the local
coordinate system of the leaf
should be rotated in order to lie
perpendicular to a given global
light field vector (defined by the
World component listed below).

Practical experience showed us
that using textured leaves is
important for all kind of plants. If we use a texture,
it’s projected on the geometry produced by the
Leaf component.

Tree
The Tree component is a mixture between

geometry-producing and multiplying
components. Like the Horn component, it creates
a horn-like geometry by default. The difference to
the Horn component lies in how subsequent
components in the p-graph are treated. The Tree
component can be instructed to multiply them as
branches of its stem. This lets the user define a
whole tree by a cascade of Tree components or by
a recursive definition.

In contrast to L-systems, which work by using
local growth rules, this mechanism lets users
modify global characteristics of the plant directly.
For example, the branching angle controls the
angle of branches along the whole stem (Figure
C4). It’s easy to change the angle of the lower
branches only, if desired.

The other parameters control the density of
branches along the stem, the deviation of the
stem away from its main axis, the shape of the
stem, the phototropism or gravitropism to apply,
or the outline (curvature) of the stem.

The system generates the shape, curvature,
deviation, gnarled look, and tropisms of the stem
by changing the positions of the triangulated
point sets used for geometry definition (Figure B).
The curvature parameter defines the direction of
the stem directly, while deviation changes the
direction of the stem if a branch is generated.
Tropisms (in Figure C5 applied to the twigs) are
generated by changing the local point sets of the
tubes (Figure B1) in order to lie perpendicular to a
given light or gravitational field vector (see World
component below).

Hydra and Wreath
The Hydra component multiplies subsequent

components of the p-graph and places them in a

(1) (2) (3) (4) (6)(5)

C Parameter variations in a tree component: (1) default outline; (2)
gnarled branches; (3) branching density; (4) branching angle; (5) pho-
totropism; and (6) stem curvature.

continued on p. 6

components’ data in the p-graph. One parameter is the
geometrical primitive. Beneath standard primitives like
cubes, balls, and so on, we implemented two special types
of primitives, called Area and Tube. They define open and
closed point sets that will be triangulated in a later step.
Other parameters concern the transformation, color and
texture of subsequent geometry, and recursion depth.
The Simple component—one of the five entities that form
the geometry-producing components—offers only this
basic parameter set. Others handle more complex tasks:
Revo for creating surfaces of revolution, Horn for twigs
and stems, Leaf for leaves, and Tree for modeling trees.

The Tree component also offers multiplying func-
tionality because twigs can be multiplied around the
stem. Other multipliers are Wreath, Hydra, and Phiball.
Three components handle global modeling and form

the last group of components: FFD (free-form defor-
mation), Hyperpatch, and World, which all affect the
generated plant’s overall shape.

These components combine to form p-graphs (see
Figure 3) of various models. Each p-graph has an addi-
tional root component, represented by a camera icon.
Parameters of this component control the view and posi-
tions of light sources.

During the creation of a p-graph, the user chooses
components from a graphical toolbox, which are auto-
matically placed next to the graph. Selecting a compo-
nent and moving it onto another component establishes
a link. Three types of links can be used, as follows:

■ Child link: The standard link. The component’s geom-
etry is placed relative to the preceding component’s
geometry. The p-graph displays these links as thin
lines.

■ Branch link: The child component is multiplied as a
branch if the parent is a Tree component. In all other
cases it’s treated as child link. These links appear as
bold lines.

■ Leaf link: If the parent component is part of a recur-
sion, the child is created only once after the recursion
terminates (the target is a leaf in the structural sense).
These links appear as dashed lines.

Feature Article

6 January/February 1999

star-like arrangement. The Wreath component
arranges multiplied children similar to candles on
a Christmas wreath. Figures D1 and D2 show
placement and orientation of the multiplied
components. Both components specify the
number of generated children. Additionally, the
user can edit the radius as well as the opening and
closing angle of the circle.

Phiball
Components multiplied by a Phiball component

are arranged on a section of a sphere by the
golden section algorithm. Instead of using a
collision-based model,10,11 we found an analytical
solution for multiplying components on a spherical
section. We describe the calculation in detail in the
sidebar “Golden Section Placement on a Sphere.”

Given parameters include the number of
multiplied children, the radius and the opening
and closing angle of the spherical section, and the
size of the children and their influence on the
placement.

FFD and Hyperpatch
Both component types define a FFD on a

portion of the produced geometric data. The
system supplies several methods for defining FFDs.
While the FFD component specifies free-form
deformations by functions, the Hyperpatch
component does this by moving control points of
a 3D Bézier function.

FFD components can also switch off the
influence of preceding free-form deformations.
This makes it possible to deform stems and twigs
of a tree but not the leaves. One parameter of the
FFD component can switch between deforming all
the triangles generated by subsequent
components or just the skeleton. Also, users can
specify the degree of the 3D Bézier patch (linear to
quartic).

World
Tree and Leaf components can be forced to

produce geometry according to gravitropism and
phototropism. By default, the corresponding field
vectors are defined in the positive and negative z-
direction. By using a World component, these
definitions can be substituted by arbitrary
functions.

(1) (2) (3)

D Placement and orientation of multiplied compo-
nents: (1) multiplication by a Hydra component;
(2) by a Wreath component; and (3) by a Phiball
component.

continued from p. 5

(a) (b) (c) (d)

3 Methods in combining compo-
nents: (a) child link (thin line); (b)
branch link (bold line); (c) recursive
combination (double line); and (d)
recursive combination with addi-
tional leaf link (dashed line).

In the system’s display the arrows are omitted denoting
the direction of the links in Figure 3 because all links point
away from the camera icon. In addition, links that are
part of a recursion are drawn as double lines and the back-
pointing links are omitted. The system duplicated and
appended the first component to the end of the recursive
part. This makes it possible to display the p-graph as a
tree (see Figures 3c and 3d), which avoids many graph
drawing problems and is visually more pleasant.

Some examples
Now that we’ve described components and parame-

ters as well as their combinations, we’ll give three exam-
ples of how to model plants. A flower, a bush, and a
whole tree demonstrate the generality of our approach.

Sunflower
First, we’ll model a small sunflower. A sunflower’s nat-

ural leaf is scanned and applied as a texture to the Leaf
component’s surface (see Figure 4a, next page). A tiny
stalk is connected to the leaf. So far, the p-graph con-

sists of three components—the camera, a Horn for the
stalk, and a Leaf. By editing splines, users can choose
the appropriate curvature and scale of the Horn and
Leaf to create a typical outline of a small leaf.

Next, the system iterates the leaves as branches of a
Tree describing the plant’s stalk (Figure 4d). The top of
the stalk is opened to form the head of the flower. Fig-
ure 4b shows this process, where a Phiball iterates some
leaves and places them on the top of the stalk (here the
thin line between the Tree and Phiball indicates that it’s
a child link).

Similarly, two Phiball components construct the blos-
som of the sunflower—one for arranging the petals and
the other for arranging the seeds (Figure 4c). Finally,
everything is connected to the full p-graph (Figure 4e).

Rhododendron
A rhododendron is a good example for modeling a

medium-sized bush. Here the geometric complexity
increases. The focus is on the branching structure rather
than on geometric properties of leaves and blossoms.

IEEE Computer Graphics and Applications 7

To derive the mechanism for a spherical
placement according to the golden section, we
first assume the distributed objects have the same
size. The sphere has a rotation axis z. We want to
place N objects around the z-axis with angle
Φi = i ×dΦ for the i-th object and dΦ =
2π/((1+√ 5)/2), the golden section. Each object is
also rotated around an axis perpendicular to the z-
axis by angle θi, which will be determined below.
First, we compute the height of a spherical
section that provides space for N objects with an
area AE. On a sphere with radius R, the section
S(θ1, θ2), 0 ≤ θ1<θ2 occupies an area of A=2πRh
with h=R(cos(θ1)−cos(θ2)).

To place N objects with an area AN = N AE, a
sphere with radius

is needed. For computing θi within the i-th
iteration, we express the area occupied by i
objects Ai = iAE as a function of the section’s
height. We make no assumption about the shape
of the objects and assume that they can be
packed tight, which is generally not the case if all
objects have the same shape. In this case, the
uncovered area has to be incorporated into Ai

heuristically.

Now we compute the angle θi by

If objects vary in size, let aj be the area of the
object j. In this case the variables Ai and AN of the
equation above are computed by

For objects with constant size, we determine the
angle by

θ θ θ θi
i
N

= − −arcsin(cos() (cos() cos()))1 1 2

A a A aN j

j

N

i j

j

i

= =
= =

∑ ∑and
1 1

θ

θ

θ θ θ

i
i

i

N

i

N

R h l
R

R R
A h
A

R

A
A

= − +





=
− − −















= − −

arcsin
()

arcsin
(cos())

arcsin(cos() (cos() cos()))

1

1

1 1 2

1

A R l l
A
R

A h
Ai i i

i i

N

= = =2
2

2
2

π
π

with

R
AN=

−2 1 2π θ θ(cos() cos())

Golden Section Placement on a Sphere

hi

θi

Φi

θ2

θ1

h1 h2

z

y

x

E Placing points on a sphere by the golden section.

Again, we’ll first create a single leaf by scanning a natural
leaf and using it in the Leaf component (see Figure 5a;
Figure 5e shows the complete p-graph).

Next, the system creates a twig. It builds the top of the
twig separately since the Rhododendron’s leaves are
specially arranged around the blossoms. We use a
Phiball to multiply the leaves and place a blossom inside
(Figure 5b). At this point, the p-graph consists of six
components (these are inside the dotted region of Fig-
ure 5e where 5b is referenced). A Tree multiplies the
leaves around the stalk, and two additional components

are connected to the Tree component by child links: a
Phiball for multiplying the leaves around the blossom
and a Hydra for the petals. This component arranges the
blossom’s leaves. The corresponding Leaf is the child of
the second Phiball. Also, the normal leaves are con-
nected to the first Phiball as children.

Constructing the whole twig presents a fundamental
problem. The twig branches for leaves and tiny twigs,
but we don’t want to have a twig at every leaf position
and vice versa. Similar problems arise when we want to
model exceptions—for example, a tree with some dead

Feature Article

8 January/February 1999

(a)

(b)

(c) (d) (e)

4 Parts of a
sunflower with
corresponding
p-graphs.

(a)

(b) (c) (d) (e)

5c

5b

5a

5 Modeling a rhododendron: (a) Leaf with texture; (b) a tiny twig with blossom; (c) a main twig that branches in leaves and in two
tiny twigs; (d) the whole bush, and (e) p-graphs of the rhododendron (the numbers of the dashed regions indicate the figures corre-
sponding to the subgraphs).

twigs or a flower with some irregularly formed leaves.
We solved this problem by introducing a list of flags

for each component. Every multiplied component
receives a parameter value from the multiplier that indi-
cates its iteration number. The list indicates if an itera-
tion number should be created by a multiplying
component or not. If two subgraphs are connected to a
multiplier, and one list forces the creation of compo-
nents without the numbers 2 and 13, and the other list
has the complementary set (in this case the iteration
numbers 2 and 13), we get the desired result. This is
exactly how we created a twig for the rhododendron,
which branches for two tiny twigs and some dozen
leaves (see Figure 5c).

The last step is to arrange some of these twigs (we
used 20) around the center of the bush. Adding a Phiball
component to the root of our p-graph accomplishes this,
although the twigs must be scaled a bit to achieve the
overall shape of a rhododendron. Figure 5d shows the
final image (we also created the container with the
modeler).

Chestnut tree
The overall p-graph structure of most trees we’ve

modeled so far is quite uniform. A cascade of Tree com-
ponents represents the branching structure. Leaves, nee-
dles, or blossoms multiply as branches of the last Tree
component.

To model a chestnut tree, we again use a scanned nat-
ural leaf to get the right texture for our Leaf component.
This has the advantage that just a few triangles can cre-
ate the geometry of a single leaf. This is an important
fact, since a full tree may have up to several hundreds
of thousands of leaves.

By combining two Tree components we get a simple
tree. Changes in the parameters for the number of
branches, the spacing of the branches, the branching

angle, and shape lead to a more naturalistic tree (see
Figure 6a). Now, we add two more Tree components to
model the tiny twigs (Figure 6b). Finally, we add the
leaves and apply a texture to the stem (Figure 6c).

Though it sounds very simple, modeling a real tree is
difficult. An experienced user takes several hours to
model a tree from scratch. Nevertheless, our system is
very fast compared to other modeling methods. For
example, the very complex maple tree shown in Figure
7 was modeled in five hours. What’s more, models can
easily be reused and changed in order to get new tree
models.

Shape modeling
Often a scene requires more than just modeling a

plant—sometimes it calls for specific shaping, such as a
tree growing beneath a wall or a plant that’s partially

IEEE Computer Graphics and Applications 9

(a) (b) (c)

(d)

6a

6b

6 A tree modeled by a sequence of Tree components. (a) First, two components are combined and the parameters
are adjusted. (b) Two more branching levels are constructed. (c) Adding the leaves yields the final tree. (d) P-graphs
of the chestnut tree (the numbers of the dashed regions indicate the figures corresponding to the subgraphs).

7 Experienced
users can model
very complex
trees, such as
the one shown
here, in a few
hours.

shadowed or moved by the wind. Experiences with our
approach showed us that just four additional modeling
methods suffice to generate a wide variety of shapes and
desired artifacts.

We’ve already mentioned one method: modeling of
exceptions with a list of flags. Some kind of context sen-
sitivity must be introduced here, because the multipli-
er specifies a context by generating the iteration number
indicating if a multiplied component has been generat-
ed or not.

The three other modeling features are functional
modeling, tropisms, and free-form deformations, which
we’ll discuss next.

Functional modeling
Our system can introduce randomness and other

functionally specified properties to our models. Wher-
ever a component prototype uses a parameter interval—
for example, the scaling of multiplied components or
the curvature of a leaf—a function can be applied before
the system uses the interpolated parameters of that
interval.

Standard mathematical functions, like sine, cosine,
and so on can be applied, but so can a random function.
Parameters such as recursion depth or iteration num-
ber can be used inside these functions. The user can also
define arbitrary functions for each parameter interval.
Figure 8 shows an agave that demonstrates this effect.
The almost vertical leaves are less curved than the oth-
ers. We did this by using the iteration number that the
Phiball component set during multiplying. Adding a ran-
dom offset helps achieve a natural appearance.

Tropisms
We mentioned Tropisms when we discussed the para-

meters of the Tree and World components. They speci-
fy the sensitivity of a plant or a part of a plant to the
global influence of gravity and light direction.

Tropisms can model some very different effects. While
we used a traditional gravitropism to create the weep-
ing willow in Figure 9a, we introduced a cylindrical tro-
pism for modeling a philodendron around a stick in
Figure 9b. Similarly, the influence of wind can be simu-
lated by a horizontal tropism, or a plant can be forced
to grow along a wall.

Free-form deformations
We can use free-form deformations (FFDs) as anoth-

er way to change the entire model’s shape. As mentioned
previously, the Hyperpatch component uses a 3D cube
for that purpose. The user selects one or more points
and moves them parallel to the viewing plane. The
points are control points of a 3D Bézier function, which
defines the desired deformation.

Often, only parts of the model should be deformed.
For example, the twists of a tree should be deformed,
but not the leaves or needles. Placing another FFD or
Hyperpatch component in the subtree affected by a free-

Feature Article

10 January/February 1999

8 The curva-
ture of the
leaves can be
defined by
depending on
the iteration
number and a
random func-
tion.

(a) (b)

9 Two exam-
ples of tropisms:
(a) a weeping
willow with a
strong gravitro-
pism and (b) a
philodendron
growing around
a stick.

(a) (b) (c)

10 Free-form deformation applied to a pine: (a) undeformed model; (b) deformation of the twigs (the needles
remain unchanged); and (c) deformation of the whole tree.

form deformation accomplishes this. These components
separate the deformations defined above.

Figure 10 shows an example of a partial free-form
deformation. In Figure 10b the twists of the pine are
deformed, but the needles remain unchanged. Figure
10c shows the result of deforming the whole tree. Here,
the needles on the right appear too big—a result of the
strong deformation.

Conclusion
We presented a new and powerful method for mod-

eling plants. In contrast to previous approaches our
method lets users design a wide variety of plants by
mostly intuitive mechanisms.

Nearly all parameters can be changed graphically. We
evaluated8 the user interface and tested the modeler by
constructing large models with millions of polygons and
very complex structure. Recently, the modeler was used
in a project that dealt with generating whole ecosys-
tems.12

In future work we’ll focus on a better interface for
some parameters and the implementation of other mul-
tiplication components. Also, we’ll extend the set of
existing models. We must also work on a more detailed
analysis of our method in comparison to other plant-
generating methods. ■

Acknowledgments
Many thanks to Przemyslaw Prusinkiewicz for his con-

structive suggestions regarding this article. We also
thank Alfred Schmitt (University of Karlsruhe), Jeffrey
Shaw (Center for Media Arts and Technology, Karl-
sruhe), and Thomas Strothotte (University of Magde-
burg) for supporting our work. Sylvia Zabel and Michiel
Smid (University of Magdeburg) helped proofread this
article.

References
1. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic

Beauty of Plants, Springer-Verlag, New York, 1990.
2. R. Méch and P. Prusinkiewicz, “Visual Models of Plants

Interacting with their Environment,” Computer Graphics
(Proc. Siggraph 96), ACM Press, New York, 1996, pp. 397-
410.

3. P.E. Oppenheimer, “Real-Time Design and Animation of
Fractal Plants and Trees,” Computer Graphics (Proc. Sig-
graph 86), Vol. 20, ACM Press, New York, 1986, pp. 55-64.

4. P. de Reffye et al., “Plant Models Faithful to Botanical Struc-
ture and Development,” Computer Graphics (Proc. Sig-
graph 88), Vol. 22, ACM Press, New York, 1988, pp.
151-158.

5. M. Holton, “Strands, Gravity, and Botanical Tree Imagery,”
Computer Graphics Forum, Vol. 13, No. 1, 1994, pp. 57-67.

6. J. Weber and J. Penn, “Creation and Rendering of Realis-
tic Trees,” Computer Graphics (Proc. Siggraph 95), ACM
Press, New York, 1995, pp. 119-128.

7. J. Hart, “The Object Instancing Paradigm for Linear Frac-
tal Modeling,” Proc. Graphics Interface 92, Morgan Kauf-
mann, San Francisco, 1992, pp. 224-231.

8. O. Deussen and B. Lintermann, “A Modeling Method and
User Interface for Creating Plants,” Proc. Graphics Interface
97, Morgan Kaufmann, San Francisco, 1997, pp. 189-197.

9. S. Todd and W. Latham, Evolutionary Art and Computers,
Academic Press, London, 1992.

10. D.R. Fowler, J. Hanan, and P. Prusinkiewicz, “Modeling
Spiral Phyllotaxis,” Computers and Graphics, Vol. 13, No.
3, 1989, pp. 291-296.

11. D.R. Fowler, P. Prusinkiewicz, and J. Battjes, “A Collision-
Based Model of Spiral Phyllotaxis,” Computer Graphics
(Proc. Siggraph 92), Vol. 26, ACM Press, New York, 1992,
pp. 361-368.

12. O. Deussen et al., “Realistic Modeling and Rendering of
Plant Ecosystems,” Computer Graphics (Proc. Siggraph 98),
ACM Press, New York, 1998, pp. 275-286.

Bernd Lintermann is a graphics
programmer and artist at the Center
for Art and Media Technology Karl-
sruhe (ZKM). His research interests
include methods for modeling, ani-
mation, and genetic evolution of
organic objects and their use in the

arts. He created several media art works for internation-
al exhibitions.

Oliver Deussen is working on his
habilitation at the Otto-von-Guer-
icke University of Magdeburg. His
research interests include the simu-
lation, modeling, and visualizing of
complex biological objects; nonpho-
torealistic rendering; human-com-

puter interaction; and synthetic holography. He received
his PhD in computer science from the University of Karl-
sruhe in 1996. He is a member of ACM Siggraph, IEEE, and
Eurographics.

Readers may contact Deussen at the Faculty of Com-
puter Science, Department of Simulation and Graphics,
Otto von Guericke University, D-39016 Magdeburg, Ger-
many, e-mail deussen@isg.cs.uni-magdeburg.de,
http://isgwww.cs.uni-magdeburg.de/~deussen.

IEEE Computer Graphics and Applications 11

