
Template Detection for Large Scale Search Engines

Liang Chen
Department of Electronic

Engineering
Tsinghua University

Beijing, 100084, P.R.China

liang@compass.net.edu.cn

Shaozhi Ye
Department of Computer

Science
University of California, Davis

CA 95616, USA
sye@udavis.edu

Xing Li
Department of Electronic

Engineering
Tsinghua University

Beijing, 100084, P.R.China

xing@cernet.edu

ABSTRACT
Templates in web sites hurt search engine retrieval perfor-
mance, especially in content relevance and link analysis.
Current template removal methods suffer from processing
speed and scalability when dealing with large volume web
pages. In this paper, we propose a novel two-stage template
detection method, which combines template detection and
removal with the index building process of a search engine.
First, web pages are segmented into blocks and blocks are
clustered according to their style features. Second, simi-
lar contents sharing the common layout style are detected
during the index building process. The blocks with simi-
lar layout style and content are identified as templates and
deleted. Our experiment on eight popular web sites shows
that our method achieves 20-40% faster than shingle and
SST methods with close accuracy.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

General Terms
Algorithms, Experimentation

Keywords
Template detection, web page segmentation, clustering

1. INTRODUCTION
Templates are common parts shared by many web pages

in a web site. Typical templates include navigation bars,
advertisement, privacy policy and contact information, etc.
Although templates are widely used in web site design, they
are negative factors for information retrieval. First, the
words in template hurt relevance computation by their irrel-
evant content. Second, the link distribution of web pages is
skewed by the duplicated links in templates. The templates
problem has been demonstrated in [1, 2, 3, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

Much work has been done on template detection and re-
moval [1, 2, 3, 4]. Although these methods achieve high
accuracy, they have two major drawbacks: speed and scala-
bility. The bottleneck for speed is to identify similar content.
There are three methods to compare content: (1) compare
the shingle (fingerprint of a string) of the content [1, 2]; (2)
compare the keywords [3]; (3) exactly match the contents by
word [4]. All these methods cost much computation over-
head, making the template detection time consuming.

In this paper, we propose an approach to combine tem-
plate detection and removal with index building process of
a search engine. Our method is based on the following two
assumptions: (1) templates in a site share a common lay-
out style; (2) templates share similar contents. Correspond-
ing to these two assumptions, our method consists of two
stages. In the first stage, in order to capture common lay-
out style, web pages are segmented into blocks and then
clustered according to their layout styles. In the second
stage, our method uses the word offset distribution to iden-
tify similar contents, which can be obtained during the index
building process of a search engine. When index is being
built, the word offset distributions are computed in each
block. The blocks sharing close distributions are identified
as similar contents. Blocks having both common layout style
and similar content are identified as templates and deleted
from index. This combination is promising to solve the tem-
plate problem in large scale search engines. First, it costs
less computation overhead to measure the similarity between
contents. Second, it is scalable for large scale search engines
by adding a pipeline stage into the index building process,
which just costs some computation and does not compete
the index builder with disk I/O.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the previous work on template detection. Sec-
tion 3 describes our approach and the experiment result is
presented in Section 4. We conclude the paper with Section
5.

2. RELATED WORK
Many methods have been proposed for the template prob-

lem. [1] employs a notion of pagelet to segment a web page.
A pagelet is determined by the number of hyperlinks in a
HTML element. The pagelet whose frequency exceeds a
threshold is identified as template. However, the partition
only depends on the number of hyperlinks in an HTML el-
ement, and thus may not reflect the layout of a web page.
Poor segmentation will cause the failure of template detec-
tion. A similar method is proposed in [2], which partitions

web pages based on HTML tag <TABLE>.
[3] employs the same partition method as [2]. Keywords of

each block content are extracted to compute entropy for the
block. Blocks with small entropy are identified as templates.
The approach faces two problems: (1) its accuracy relies on
feature selection. (2) it is time consuming to extract features
for all the blocks.

In [4], a tree structure, site style tree (SST), is introduced
to capture the common presentation style of web pages. SST
is a tree that merges all the DOM Trees of all web pages.
Entropy of SST element is computed to determine which
element is template. Compared with other methods, SST
achieves a higher accuracy. However, several drawbacks
limit its scalability: (1) when a new DOM Tree is merged,
the content of each DOM Tree’s element must be compared
with all the branches in SST to determine whether it is a
new branch or an existed one. This process costs much com-
putation. (2) When dealing with large volume web pages,
SST can not fit into memory.

Besides the research on template detection, there are many
other related studies: web segmentation [5], fragment detec-
tion [6], block-leveled search [7, 8], block-leveled link analy-
sis [9], and content extraction [10]. Some studies propose
other methods to solve similar problems, e.g. statistical
method [11] and machine learning [12, 13].

3. OUR APPROACH
The primary goal of our method is to detect and remove

templates from indices of search engines. Our method con-
sists of two stages. First, web pages are segmented into
blocks, and blocks with common layout style are grouped.
Second, during the index building process, similar contents
are detected in those blocks with common layout style and
removed from the index.

In the first stage, our approach of web segmentation is
similar to [2, 3]. However, [2, 3] omit the layout style in-
formation, e.g. position in the web page, background color,
size. Searching template candidates in the block corpus of a
web site is inefficient, because most templates only exist in
the blocks sharing the same layout style. In our approach,
blocks are clustered according to their layout style informa-
tion after the web segmentation. Searching templates is only
applied to those blocks with the common layout style.

In the second stage, we use word offset distribution in
the block to measure similarity between contents. Our ex-
periment result shows that word offset distribution provides
enough information, TF(Term Frequency) and positions of
each word, to represent the content and thus can be applied
to measure similarity between contents. In practical, word
offset distribution is denoted by offset sequence. In our work,
we explore Bloom Filter technique for finding similar offset
sequences. Bloom Filter costs low memory and computation
overhead, which improves the speed of our method.

3.1 Web Segmentation and Block Clustering
To segment a web page, HTML elements of the web page

are parsed. Only the elements which determine the layout
structure are used, e.g., <TABLE>, <TD>, <TR>, <P>,
. As mentioned in [2], <TR> and <TD> within
<TABLE> partition the table into smaller units. Most of
these smaller units only contain a single object, which can-
not separate template and non-template blocks. Hence, we
omit <TD> <TR> and use the rest as the boundary to

Figure 1: Block Tree

segment web pages.
When a web pages is segmented, layout style information

is extracted. A block’s layout style information includes its
position in the web page and HTML elements’ attributes,
e.g. background color, table size. An array of integers is
used to represent the HTML elements’ attributes. A number
sequence is used to represent the block’s position, whose the
ith number represents the block’s position in the ith layer.
Figure 1 gives an example. The dark block’s position is
sequence ”32”: it is under the 3rd block in the first layer
and is the 2nd block in the second layer.

According to layout style information, blocks are clustered
by Single-pass method. Each cluster is called block-style
cluster (BSC), which is defined as follows.

Definition 1. a block-style cluster (BSC) is a set of blocks
φ = {b1, b2, ..., bk}, which satisfies the following require-
ments:
(1) Ai = Aj , for all i 6= j;
(2) Di = Dj , for all i 6= j.
Where Ai denotes the HTML attributes of a block bi and
Di denotes the position of bi.

3.2 Template Detection during Index Build-
ing

Most modern search engines adopt inverted index. In our
approach, during the process of building index, a 256K hash
table is created to store words. Each word item points to a
linked list whose element stores the block ID and the offset
sequence in this block. When the size of the hash table
reaches 256M, it is written to disk. After all the web pages
are indexed, all the temporary hash tables are merged to
build a whole index for the search engine.

For each word in the hash table, all the offset sequences are
clustered by Single-pass method. Each cluster is called word-
feature cluster (WFC), which is defined as follows. Figure 2
demonstrates WFC ’s definition.

Definition 2. a word-feature cluster (WFC) of word Wn is
a set of blocks φ = {b1, b2, ..., bk} which satisfies the following
requirements:
(1) Blocks b1, b2, ..., bk belong to the same BSC ;
(2) Wn’s offset sequences in blocks b1, b2, ..., bk are ”similar”.
Bloom Filter is used to determine the similarity between
offset sequences, which will be described in Section 3.3.2.

Based on the definition of WFC, the problem of computing
similarity of content is decomposed into measuring similarity
of words (words’ offset sequences). Hence, we introduce a
notion template word.

Definition 3. word Wn in block bi is a template word, if
there is a set of blocks φ = {b1, b2, ..., bk}, bi ∈ φ which

Figure 2: BSC and WFC in Hash Table

follows the rules:
(1) b1, b2, ..., bk belong to the same WFC of Wn;
(2) |φ| ≥ 5

If the ratio of template words to the whole words in a
block reaches a threshold (twr-theshold), the block is identi-
fied as template and all the words in this block are removed
from hash table. tb-theshold is set to be 0.8 in our experi-
ment. Besides tb-theshold, we also define non-template word
ratio threshold (ntwr-theshold). According to tb-theshold,
ntwr-theshold is set to be 0.2. If the non-template word
ratio exceeds ntwr-theshold, this block is identified as a non-
template block. Thus there is no necessary to compare the
rest words, which reduces the time consumption.

3.3 Implementation
Besides the basic method, there are some implementation

issues.

3.3.1 Difference Offset
. In our approach, difference offset is applied instead of ab-

solute offset for offset sequence. The advantage of difference
offset is that when a small fragment in the context changes,
only offsets within the fragment change. A majority of the
offset sequence remains the former value.

3.3.2 Bloom Filter Like Similarity Computation
To evaluate similarity of offset sequences, we introduce

bit-wise AND, which originally comes from Bloom Filter [14,
15]. It is implemented as an array of n bits. We employ four
integer variables mi, i = 1, 2, 3, 4 (128 bits totally). An offset
sequence is partitioned into four equal-length segments, with
each corresponding to one integer variable. Each offset in
a segment maps to one bit in the corresponding variable:
suppose an offset value is i. Then the ith bit in the array is
set to 1. If the offset value exceeds 32 (an integer variable
has 32 bits), the offset is divided by 32 and the remainder
is mapped to one bit. If a bit is already set, it stays 1.
To evaluate similarity, we compare the array of bits of one
offset sequence with that of the other. In case the two arrays
share a large number of 1’s (bit-wise AND), they are marked
similar. This evaluation method is fast since matching is
only a bit-wise AND operation. Figure 3 gives an example
of similarity testing.

It must be explained that Bloom Filter is a fast approx-
imate comparison and some errors (collisions) may occur.
Nevertheless, our method to detect similar content is based
on most words in a block. Thus this disadvantage can be re-

Figure 3: 75% offset matches. In this paper, offset
sequence similarity threshold is set to be 80%

duced through average. Our experimental results, presented
in the Section 4, show that the error ratio is acceptable.

3.3.3 Skip low DF words
When the hash table is scanned to detect template word,

there is no necessary to scan all the words. Since templates
occur in many web pages, DF (Document Frequency) of a
template word must exceed a certain threshold, thus we can
skip the words with low DF. In fact, the words with low DF
contribute a big proportion to the whole index due to Zip′s
law. Our statistics on some sites (listed in Table 1 shows
that approximate 50% words’ DF is lower than 3.

4. EXPERIMENT

4.1 Datasets
Since our method aims at search engines, which deal with

various types of web sites, the sites we choose to exper-
iment should be representative. We choose several pop-
ular sites with different categories, including commercial
sites (e.g. www.pcmag.com), homepage of a company (e.g.
www.sun.com), news site (e.g. news.sohu.com), and edu-
cation sites (e.g. www.edu.cn). The last four sites have
Chinese web pages. The testing sites are listed in Table 1.

4.2 Query Accuracy
Query accuracy is the most important goal to solve the

template problem for search engines. Here we use the dataset
from www.tsinghua.edu.cn, for we have the query log from
the site search engine for two years. In the experiment, the
top 20 popular queries extracted from the log are used as our
experiment queries. We ask 20 people to label the relevant
web pages in top 10 results manually. There are two kinds
of ”relevant pages”: (1) the pages a user expects to retrieve;

Table 1: Web Sites for Experiment
Web Sites The Number of Web Pages
www.sun.com 4,546
www.pcmag.com 11,118
www.cnn.com 7,883
www.nba.com 10,886
news.sohu.com 5,027
www.edu.cn 23,738
www.tsinghua.edu.cn 14,393
www.bupt.edu.cn 27,876

Figure 4: Number of Relevant Results in Retrieved
Web Pages. Average number of relevant results are
6.5, 6.85 and 4.65, corresponding to ”Our Method”,
”shingle” and ”No Template Detection” respec-
tively.

(2) although some pages are not expected, they are infor-
mative and attract user’s attention. The evaluation results
are shown in Figure 4.

From the Figure 4, we can see that template detection and
removal has a notable effect on improving retrieved results’
relevancy. Templates’ influence on query accuracy can be
divided into two categories: query appears in the template
block or not. In the first category, a lot of web pages with
irrelevant main contents will be retrieved. In the second cat-
egory, although main contents of retrieved pages contain the
query, relevancy of web pages will be decreased by templates.
Two typical ranking function is listed below to demonstrate
it.

Okapi BM25

X
T∈Q

3× tf

0.5 + 1.5× length
lengthavg

+ tf
× log

N − df + 0.5

df + 0.5
× tf

Pivoted TFIDF

X
T∈Q

1 + log (tf)

1 + log(tfavg)
× log

N + 1

df
× 1

0.8 + 0.2× length
lengthavg

× tf

In these two functions, there is a common term length
lengthavg

.

Templates increase length of a web page and thus the de-
nominators of ranking functions, which finally decreases the
web page’s relevancy.

4.3 Template Detection Accuracy
In this section, we compare the accuracy of our method

Table 2: Template Detection Accuracy

Web Sites Our Method shingle SST
www.sun.com 93 96 89
www.pcmag.com 94 92 99
www.cnn.com 92 94 98
www.nba.com 89 90 92
news.sohu.com 95 97 100
www.edu.cn 94 95 99
www.tsinghua.edu.cn 91 92 79
www.bupt.edu.cn 93 92 80

Figure 5: Different Templates in Tsinghua

with shingle [2] and SST [4]. As mentioned in section 2,
SST can only deal with a small number of web pages, for
it stores all the DOM Trees in memory. For large sites, e.g.
the sites listed in Table 1, we can not apply SST directly.
In [4] , this problem is avoided by sampling only about 500
web pages in a site. In our experiment, we apply SST to
large sites by multiple samples.

We randomly sample 100 web pages from each site. People
are asked to identify if the templates in a web page are
recognized correctly. A score is assigned to each page. The
score is computed as follows:

score =
number of right-detect template blocks

number of total actual template blocks
.

We summarize the result with Table 2.
From Table 2, we could see that SST ’s accuracy is poor in

www.tsinghua.edu.cn and www.bupt.edu.cn, which is caused
by sampling. In SST, only 500 pages are sampled for tem-
plate detection. This works in many commercial sites, for
these sites have only a few templates and these templates
are similar. Sampling a small amount of web pages does
not hurt the accuracy, as the results in www.pcmag.com
and news.sohu.com. However, when dealing with a web site
having multiple templates, its accuracy relies on sampling
and is unstable.

Table 3: Time Consumption

Web Sites Our Method shingle SST
www.sun.com 10.70 16.52 18.38
www.pcmag.com 16.75 19.92 23.09
www.cnn.com 14.43 18.74 20.54
www.nba.com 14.10 17.40 19.55
news.sohu.com 17.32 21.32 24.06
www.edu.cn 16.68 19.90 22.89
www.tsinghua.edu.cn 16.50 20.76 22.13
www.bupt.edu.cn 17.13 20.13 24.13
Average time 15.45 19.34 21.85
Saving Time 20.09% 41.39%

Figure 5 shows different templates in www.tsinghua.edu.cn.
In this case, especially when the web site has many pages,
random sampling cannot guarantee the accuracy based on a
small sampled set.

4.4 Time Consumption
Time consumption is an important concern in this paper

for we target on deployment in large scale search engines.
In order to compare with SST, we sample 500 web pages
from each site as [4]. Our method involves both parsing and
indexing, while others only involve in parsing. In order to
be fair, when we run the other methods, we also build index
hash table. The result is shown in Table 4. As shown in
Table 3, our method saves 20.09% compared with shingle,
and 41.39% compared with SST. The main reason is that
the word offset sequence which we use to compute similarity
is available during index building process. It costs much less
computation than the other two methods.

4.5 Discussion
Results in Table 2 and Table 3 show several limitations of

existed methods (shingle and SST) when they are applied in
large scale search engines. For shingle, because it omits the
layout style information, time for searching similar content
in all shingle values increases greatly with the increase of
web pages. Time for computing shingle values is another
overhead. For SST, it is ineffective for large scale sites for its
unstable accuracy after sampling and low speed. Compared
with these two methods, our approach achieves a stable high
accuracy and fast speed.

Furthermore, combination with index building makes it
easy to keep up with the increase of index volume. And since
there is no extra I/O operation in our method, we can add
a pipeline stage to the index building process for template
detection, which increases indexing computation overhead
but does not compete with indexer with disk I/O operation.
Disk I/O is the most time consuming stage in index building,
thus we can reduce the overall execution time by applying
template detection when the indexer writes data to disk.

5. CONCLUSION
In this paper, we propose to combine template detection

and removal with the index building process in large scale

search engines. To capture common layout style, we em-
ploy web segmentation and block style cluster. To capture
similar content, we use word offset sequences, which is avail-

able without extra computation effort during index building
process. Through these two steps, template are detected
and deleted from index. Our experiment on eight popular
large web sites indicates that our method is promising for
large scale search engines by high accuracy and fast speed.

6. REFERENCES
[1] Ziv Bar-Yossef, Sridhar Rajagopalan. Template

Detection via Data Mining and its Applications. In
Proc. of the WWW’02 Conf., pages 580–591, 2002

[2] Ling Ma, Nali Goharian, Abdur Chowdhury.
Extracting unstructured Data from Template
Generated Web Document. In Proc. of the CIKM’03
Conf., pages 516–519, 2003

[3] Shian-Hua Lin, Jan-Ming Ho. Discovering Informative
Content Blocks from Web Documents. In Proc. of the
SIGKDD’02 Conf., pages 588–593, 2002

[4] Lan Yi, Bing Liu, Xiaoli Li. Eliminating Noisy
Information in Web Pages for Data Mining. In Proc.
of the SIGKDD’03 Conf., pages 296–305, 2003

[5] Deng Cai, Shipeng Yu, Ji-rong Wen and Wei-Ying Ma.
Extracting Content Structure for Web Pages based on
Visual Representation. In Proc. of the APWeb’03
Conf., number 2642 in LNCS, pages 406–417, 2003

[6] Lakshmish Ramaswamy, Arun Lyengar, Ling Liu, Fre
Douglis. Automatic Detection of Fragments in
Dynamically Generated Web Pages. In Proc. of the
WWW’04 Conf., pages 443–454, 2004

[7] Xiaoli Li, Tong-Heng Phang, Mingqing Hu, Bing Liu.
Using micro information units for internet search. In
Proc. of the CIKM’02 Conf., pages 566-573, 2002

[8] Deng Cai, Shipeng Yu, Ji-Rong Wen, Wei-Ying Ma.
Block-based Web Search. In Proc. of the SIGIR’04
Conf., pages 456-463, 2004

[9] Deng Cai, Xiaofei he, Ji-Rong Wen, Wei-Ying Ma.
Block-level Link Analysis. In Proc. of the SIGIR’04
Conf., pages 440-447, 2004

[10] Davi de Castro Reis, Paulo B. Golgher, Altigran S. da
Silva, Alberto H.F.Laender. Automatic Web News
Extraction Using Tree Edit Distance. In Proc. of the
WWW’04 Conf., pages 502-511, 2004

[11] Arvind Arasu, Hector Garcia-Molina. Extracting
structured data from Web pages. In Proc. of the
SIGMOD’03 Conf., pages 337-348, 2003

[12] Davision, B.D. Recognizing Nepotistic links on the
Web. In Proc. of the AAAI Conf., pages 23-28, 2000

[13] Nicholas Kushmerick. Learning to remove Internet
advertisements. In Proc. of the third annual
conference on Autonomous, Agents, 1999

[14] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. In Commun. ACM,
13(7):422-426, 1970

[15] Navendu jain, Mike Dahlin, Renu Tewari. Using
Bloom Filters to Refine Web Search Results. In the
Eighth Workshop on Web and Database (WebDB’05),
2005

