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Abstract

In this paper, we introduce a self-assembling and self-organizing artifact,

called a swarm-bot, composed of a swarm of s-bots, mobile robots with the abil-

ity to connect to and to disconnect from each other. We discuss the challenges

involved in controlling a swarm-bot and address the problem of synthesizing

controllers for the swarm-bot using artificial evolution. Specifically, we study

aggregation and coordinated motion of the swarm-bot using a physics-based

simulation of the system. Experiments, using a simplified simulation model of

the s-bots, show that evolution can discover simple but effective controllers for

both the aggregation and the coordinated motion of the swarm-bot. Analysis

of the evolved controllers shows that they have properties of scalability, that

is, they continue to be effective for larger group sizes, and of generality, that

is, they produce similar behaviors for configurations different from those they

were originally evolved for. The portability of the evolved controllers to real

s-bots is tested using a detailed simulation model which has been validated

against the real s-bots in a companion paper in this same special issue.

Keywords: Swarm robotics, swarm intelligence, swarm-bot, evolutionary

robotics.

1 Introduction

Swarm robotics is an emergent field of collective robotics that studies robotic sys-
tems composed of swarms of robots tightly interacting and cooperating to reach
their goal. Based on the social insect metaphor [6], swarm robotics emphasizes as-
pects such as decentralization of the control, limited communication abilities among
robots, use of local information, emergence of global behavior and robustness. In
a swarm robotic system, although each single robot of the swarm is a fully au-
tonomous robot, the swarm as a whole can solve problems that the single robot
cannot cope with because of physical constraints or limited capabilities. This paper
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addresses the problem of synthesizing controllers for a robotic swarm. In particular,
we discuss the challenges faced, and report some of the results obtained up to now,
within the SWARM-BOTS project.1

The aim of the SWARM-BOTS project is the development of a new robotic
system, called a swarm-bot [24, 18]. A swarm-bot is defined as an artifact composed
of a swarm of s-bots, mobile robots with the ability to connect to and to discon-
nect from each other. A companion paper [17], accepted for publication in this
same special issue, discusses the hardware and simulation realization of our swarm
robotic system.2 S-bots have simple sensors and motors and limited computational
capabilities. Their physical links are used to assemble into a swarm-bot able to solve
problems that cannot be solved by a single s-bot. In the swarm-bot form, the s-bots
are attached to each other and, when needed, become a single robotic system that
can move and reconfigure. For example, the swarm-bot might have to take different
shapes in order to go through a narrow passage or overcome an obstacle. Physical
connections between s-bots are essential for solving many collective tasks. S-bots
can form pulling chains to retrieve a heavy object. Also, during navigation on rough
terrain, physical links can serve as support if the swarm-bot has to pass over a hole
larger than a single s-bot, or when it has to pass through a steep concave region.
However, for tasks such as searching for a goal location or tracing an optimal path
to a goal, a swarm of unconnected s-bots can be more efficient.

In this paper, we focus on providing the s-bots with two basic abilities that are
of fundamental importance in many cooperative tasks: aggregation and coordinated
motion. Aggregation is of particular interest since it stands as a prerequisite for
other forms of cooperation. For instance, in order to assemble into a swarm-bot,
s-bots should first be able to aggregate. Therefore, the aggregation ability can
be considered as the precondition for other tasks that the swarm-bot is expected
to be able to carry out. Coordinated motion represents another basic ability for a
swarm-bot formed by connected s-bots that, being independent in their control, must
coordinate their actions to choose a common direction of motion. This coordination
ability is essential for an efficient motion of the swarm-bot as a whole. Aggregation
and coordinated motion are the main focus of the experiments presented in this
paper,3 which is structured as follows.

We first address, in Section 2, the general problem of synthesizing the control
system of the s-bots using artificial evolution. Then, in Section 3 we describe our
experimental methodology. In Section 4 and 5, we present the results obtained
evolving simple neural networks for the aggregation task and for the coordinated
motion task. These evolved controllers are tested in a very detailed and realistic
simulation of the swarm-bot, and the results of these tests are presented in Section 6.
Finally, Section 7 describes some related works and Section 8 concludes the paper.

2 Challenges

In the previous section, we introduced the swarm-bot and some of the tasks that
it should be able to perform. Even though this was only a rough description, it
suggests that controlling such a system is a challenging problem. Distributedness,
robustness, embodiment, locality of sensing, dynamic interactions between s-bots
are aspects that have to be taken into account when developing a control system

1A project funded by the Future and Emerging Technologies Programme (IST-FET) of the
European Community, under grant IST-2000-31010.

2Details regarding the hardware and simulation of the swarm-bot can also be found in the
project web-site (http://www.swarm-bots.org).

3Note that all experiments described in this paper have been carried out in physics-based
simulations because the robots were under construction at the time of writing.
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for such an artifact. Is it possible to find some basic principles to be followed when
facing this challenge?

A possible answer is suggested by the notion of self-organization [7]. Self-
organization explains how a system can move from a disordered to an ordered
state exploiting only local interactions among its components, without any refer-
ence to the system as a whole. When in a disordered state, a system’s behavior is
deeply influenced by the result of random actions of its components. At the change
of the value of some parameters, a self-organizing process can be initiated, which
exploits two basic mechanisms: positive and negative feedback. Positive feedback
consists in the amplification of some properties of the system that emerge from the
random interactions between the individual components: it can be seen as a snow-
ball effect that strengthen exponentially in time these properties. On the contrary,
negative feedback serves as a regulatory mechanism, and it is often a result of the
amplification itself, that exhausts the resources of the system. Negative and posi-
tive feedback cooperate in maintaining a system in a stable state, making it robust
against external influences [7].

A form of self-organization of particular interest for our work is self-assembling,
the self-organized creation of structures. Self-assembling occurs in a wide range of
natural systems ranging from chemistry to biology, and it characterizes the behavior
of many social insects (for a review, see [1]). Self-organization and self-assembling
are fundamental to the SWARM-BOTS project. In fact, s-bots, exploiting only lo-
cal information, should be able to self-organize, self-assemble and coordinate their
activities. Thus, understanding the mechanisms that drive the emergence of self-
organization is of fundamental importance. If we are able to reproduce the mecha-
nisms observed in self-organizing systems, then we can use them to efficiently control
our artificial swarms.

However, designing a self-organizing control system for the swarm-bot is not
a trivial task. From an engineering perspective, the design problem is generally
decomposed into two different phases: (i) the behavior of the system should be
described as the result of interactions among individual behaviors, and (ii) the indi-
vidual behaviors must be encoded into controllers. Both phases are complex because
they attempt to decompose a process (the global behavior or the individual one)
that emerges from a dynamical interaction among its sub-components (interactions
among individuals or between individual actions and the environment).

Nolfi and Floreano [19] claim that, since the individual behavior is the emergent
result of the interaction between agent and environment, it is difficult to predict
which behavior results from a given set of rules, and which are the rules behind
an observed behavior. Similar difficulties are present in the decomposition of the
organized behavior of the whole system into interactions among individual behaviors
of the system components. Here, the understanding of the mechanisms that lead to
the emergence of self-organization must take into account the dynamic interactions
among individual components of the system and between these components and
the environment. Thus, it is difficult to predict, given a set of individual behaviors,
which behavior at the system level will emerge, and it is also difficult to decompose
the emergence of a desired global behavior in simple interactions among individuals.
The decomposition from the global to the individual behaviors could be simplified
by taking inspiration from natural systems, such as insect societies [6]. However,
it is not always beneficial to take inspiration from natural processes, because they
may differ from the artificial systems in many important aspects (e.g., the physical
embodiment, the type of possible interactions between individuals, and so forth),
or because there are no natural systems that can be compared to the artificial one.

Our working hypothesis is that these problems can be efficiently solved using
artificial evolution [19]. Evolution bypasses the problem of decomposition at both
the level of finding the mechanisms that lead to the emergent global behavior and
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at the level of implementing those mechanisms in a controller for the s-bots. In fact,
it relies on the evaluation of the system as a whole, that is, on the emergence of
the desired global behavior starting from the definition of the individual ones. For
example, in Section 4 we show how the aggregation problem can be solved by very
simple evolved strategies, without the need of decomposition at any level. Moreover,
evolution can exploit the richness of possible solutions offered by the dynamic agent-
environment interactions [19]. In a multi-agent system such as the swarm-bot, these
dynamic aspects are enriched not only by the presence of multiple agents, but also by
the possible presence of physical links between the agents. Generally, these aspects
are difficult to be exploited by manual design. On the contrary, the evolutionary
process can take advantage of these dynamic properties of the system to synthesize
efficient controllers. Section 5 describes an experimental setup which exemplifies
this situation: in this case, physical connections between s-bots and their dynamic
interactions become the main elements responsible for the efficiency of the evolved
behaviors.

3 Experimental Methodology

In this section, we describe the methodology we follow for the design of the s-bot
controller. As mentioned before, our approach consists in using artificial evolution
for this task. However, the use of artificial evolution has some drawbacks. As
pointed out by Matarić and Cliff [16], many issues must be addressed when trying to
develop controllers for real robots using the evolutionary approach. In particular, a
key aspect is the often prohibitive time needed to evolve controllers on real hardware.
To overcome this problem, simulations are often used for the evolution of complex
behaviors, but rarely evolved controllers have been tested on real hardware. Also,
an accurate modeling is needed to deploy simulators that well represent the physical
system [13].

Taking into account these challenges, we follow a methodology that can be
described as a 5-step process: (i) The real robot is defined along with its hardware
details. (ii) A simulator is developed, which gives the possibility to model the real
s-bot at different levels of detail. (iii) A simple model is chosen, that provides the
required speed in order to run the evolutionary experiments in a reasonable amount
of time. (iv) The evolved controllers are validated (i.e., tested) using a detailed
simulation model, closely related to the hardware. (v) Successful controllers are
downloaded and tested on real hardware. In this paper, we stop at the validation of
the evolved controllers with the detailed simulations, since there were not enough
real s-bots available for experimentation. However, as discussed in detail in the
companion paper [17], the behaviors of the detailed simulation model and of the
real s-bot described in [17] were experimentally compared and the results show
that the detailed simulation model closely matches the reality, thus suggesting that
closing the gap to the real implementation of the evolved controllers should not be
too challenging.

The first step of the described methodology brings forward the description of
the hardware, along with its features and limits. This description is used to develop
the s-bot prototype and to design the simulation tool. As shown in Figure 1a, the
s-bot is provided with a traction system that couples both wheels and tracks (called
treels c©), useful for navigation in moderately rough terrain. Above the traction sys-
tem, a rotating turret holds many sensory systems and the two grippers for making
connections with other robots. One gripper is fixed to the turret and provides a
very strong connection mechanism, powerful enough to lift another s-bot. The sec-
ond gripper is mounted on an extensible arm and can provide flexible connections
among s-bots (more details can be found in [17]).
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(a)

(b) (c)

Figure 1: The s-bot. (a) The first prototype of the s-bot. (b) A graphical repre-
sentation of the detailed simulation model which closely reproduces the mechanical
structure of the s-bot. (c) A graphical representation of the simplified model, in
which the details of the s-bot unnecessary for our experiments are omitted. Both
the detailed and the simple models are implemented using physics-based software
libraries.

In parallel with the construction of the s-bot prototype, the simulation software
Swarmbot3D has been designed, based on the SDK VortexTM toolkit (Critical Mass
Labs, Canada), which provides realistic simulations of dynamics and collision of rigid
bodies in 3D. The mechanical drawings of the hardware were used for the design
of a detailed simulation model for the s-bot, shown in Figure 1b. It is possible to
notice how all the mechanical parts of the robot where carefully replicated, the only
difference being the caterpillar rubber band of the treels system.4 A number of
experiments were conducted to compare the behavior of the real and simulated s-
bots, leading to a fine tuning of the different parameters influencing both the sensory
system and the acting abilities. Noise is also modeled in the simulation to provide
realistic behaviors (see [17] for a detailed description)

However, the high degree of precision of the detailed simulation model requires
a large amount of computation making simulations too slow to be applicable in
evolutionary experiments. Therefore, the simulation models for the s-bot were cre-
ated at different levels of detail, ranging from a simplified model that leaves out
many features of the s-bot, to a full-fledged realistic model. In the experiments
presented in this paper, we used a simplified s-bot model5 which leaves out most of
the mechanical details, yet preserving features of the s-bot that are considered to
be important for the experiments (see Figure 1c).

4Experiments showed that in many situations this feature was of minor importance.
5This simplified s-bot model is called “fast model” in the companion paper [17].
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The traction system of the s-bot is modeled by four wheels: two lateral motorized
wheels which model the external wheels of the real s-bot, and two spherical, passive
wheels placed in the front and in the back and which serve as support. The four
wheels are connected to the chassis, which underpins the rotating turret, modeled
as a cylinder. The turret holds a virtual gripper, which is modeled by dynamically
creating a joint between two s-bots when needed, its position being represented by
an arrow painted on the turret. The flexible gripper is not used in the experiments
presented in this paper, so it is not included in the simple model. In order to speed
up the simulation, spherical collision models are used for all the wheels and for
the chassis, as they require less computations, even if they are graphically rendered
with different geometries. The sensory systems were simulated either by using a
sampling technique [19] or by set of equations. Details will be given in the following
sections.

This simplified s-bot model provides the required simulation speed in order to
run evolutionary experiments within a reasonable time. In the subsequent Sections 4
and 5 we describe the experimental setup and the results obtained for the evolution
of self-organizing behaviors for the swarm-bot.

4 Evolving Aggregation Behaviors

The evolution of scalable aggregation behaviors is the main focus of the experiments
presented in this section. In the following, we first describe the experimental setup,
then we analyze the obtained results and we discuss the scalability of the evolved
strategies.

4.1 Experimental Setup

The simplified simulation model of the s-bot described in Section 3 was used for
the evolutionary experiments presented here. In this case, the rotational degree of
freedom of the turret with respect to the chassis was not used. Also the gripper was
omitted, as the main focus of these experiments was on scalable aggregation, and
not on self-assembling. Each s-bot has control only on its two motorized wheels,
schematically shown in Figure 2a. Additionally, each s-bot is equipped with a simu-
lated speaker that can emit a tone for long range signaling. S-bots can perceive the
intensity of sound using three sound sensors that simulate three directional micro-
phones using a set of equations [3]. The tone emitted by an s-bot can be perceived
by another s-bot from a distance of up to 75 cm. Beyond this value, the tone is
covered by noise, simulated by adding a random component uniformly distributed
within ±5% of the sensor saturation value. Short range detection of obstacles or
of other s-bots is achieved using 8 proximity sensors, simulated using a sampling
technique [19]. Also in this case, noise is simulated by adding a random component
uniformly distributed within ±5% of the sensor saturation value. Figure 2b shows
the position of the sensors used for this experiment. The environment consists of a
square arena surrounded by walls. The size of the arena is chosen to be 3×3 meters
and it is bigger than the perceptual range of the s-bots, in order to emphasize the
locality of sensing.

The evolutionary algorithm used to evolve the controllers utilizes a population
of 100 randomly generated binary genotypes. At every generation, the best 20 geno-
types are selected for reproduction, and each generates 5 offspring. Each offspring
is mutated with a 3% probability of flipping each bit. Recombination is not used.
Parents are not copied in the population of the next generation. One evolutionary
run lasts 100 generations.
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Each genotype encodes the connections weights of a single layer perceptron,
a neural network that directly connects the input neurons to the outputs. The
perceptron has 12 sensory neurons, that encode the state of the 8 proximity sensors,
of the 3 sound sensors and of a bias unit (i.e., a unit whose activation state is always
1.0). Each sensory neuron is directly connected with 2 motor neurons, which control
the two wheels setting their speed within the range [−6.5, +6.5] rad/s. Thus, the
neural controller is made of 12 × 2 = 24 connections, each associated to a weight
ranging in the interval [−10, +10] and represented in the genotype with 8 bits.
Therefore, the genotype is composed of 24 × 8 = 192 bits.

The fitness evaluation of a genotype is repeated 8 times (epochs), in order to
better estimate the performance value. In each epoch the initial position and orien-
tation of the s-bots in the arena is randomly chosen. Each epoch lasts 900 simulation
cycles and each cycle simulates 100 ms of real time. In each epoch, the size of the
group of s-bots is randomly chosen between 4 and 8. Varying the number of s-bots
used during the evaluation of the genotypes is important to remove an invariant that
could be exploited to synthesize aggregation behaviors that are not scalable [31].
The genotype is mapped into a neural network that is cloned and assigned to each
s-bot that takes part in the experiment.

In order to evolve scalable aggregation behaviors, we devised a fitness function
that takes into account the number n of s-bots used in each evaluation. This is
justified by the need to have comparable performance measures, no matter the size
of the group that is evaluated. The fitness F of a genotype is the average of the
fitness evaluation Fe of each epoch e. In each epoch, the genotype is evaluated for its
ability to minimize the average distance of all s-bots from the center of mass of the
group. This is called aggregation quality D(t). Additionally, a second component
S(t), called motion quality, has been introduced. The motion quality accounts for
straight motion of s-bots and was introduced to avoid a turning-on-the-spot behavior
of the s-bots when aggregated, which was observed to be a local optimum in which
the evolved strategies often converged using the aggregation quality only.

The fitness Fe is measured averaging at the end of the epoch the product of the
D(t) and S(t) components:

Fe =
1

W

T
∑

t=tW

D(t) · S(t), (1)

where T = 900 is the total number of sensory-motor simulation cycles of one epoch,
tW = T−W is the starting point of the time window in which the fitness is computed
and W = 800/n is the length of the time window. The fitness is measured at the
end of the epoch, in order to leave to the s-bots enough time to search for each
other. The length of the time window W varies with the group size n, being shorter

(a) (b)

Figure 2: A schematic s-bot seen from the top. The arrows show the front direction.
(a) Actuators: the two gray rectangles indicate the motorized wheels. The black cir-
cle indicates the speaker, which continuously emits a tone. (b) Sensors: 8 proximity
sensors (black ellipses) and three directional microphones (gray triangles).
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for bigger group sizes. In this way, we do not penalize a slower aggregation process
of bigger groups. In the following, we detail the computation of the two components
D(t) and S(t).

• The aggregation quality D(t) is related to the average distance of the s-bots
from their center of mass. Thus, we first compute the distance di(t) of each
robot i from the center of mass of the group at simulation cycle t:

di(t) = ‖Xi(t) −
1

n

n
∑

j=1

Xj(t)‖, (2)

where Xi(t) is the position vector of the ith s-bot at time t. This value is used
to compute the aggregation quality Di(t) of the ith s-bot as follows:

Di(t) =







1 if di(t) < r(n)
R(n)−di(t)
R(n)−r(n) if r(n) ≤ di(t) < R(n)

0 if di(t) ≥ R(n)

, (3)

where r(n) is the radius (in centimeters) of the smallest circle that can contain
n s-bots,6 and R(n) = r(n) + k (k = 100 was experimentally found to be a
good value). This measure of the aggregation quality scales well with the
group size, as it ensures that, no matter the group size, the maximum quality
value is achievable. However, it is difficult to compute r(n) for every group
size (see also [35], this issue). Thus, we decided to approximate r(n) with
an upper bound r̃(n), defined as the radius of the smallest circle that has n
robots positioned on the perimeter:

r̃(n) =
rs

sin (π/n)
, (4)

where rs is the radius of an s-bot. This upper bound is exact for group sizes
from 2 to 6, but it diverges for bigger group sizes, for which it overestimates
the exact value. This is not a problem for the fitness evaluation in our case, as
it is computed using from 4 to 8 s-bots. Finally, the aggregation quality D(t)
of the group is computed averaging the aggregation quality of every robot.

• The motion quality S(t) accounts for straight motion of s-bots and it is com-
puted as the average motion quality Si(t) of each s-bot i:

S(t) =
1

n

n
∑

i=1

Si(t) =
1

n

n
∑

i=1

(

1.0 − |sli(t) − sri(t)|
2 · sm

)

, (5)

where sli(t) and sri(t) are respectively the speed of the left and right wheels of
the s-bot i at simulation cycle t, and sm is the maximum possible speed. The
measure Si(t) accounts for straight motion of the s-bot i, as it takes values
near 1 if the two wheels have similar speed, and it is near 0 if the wheels turn
in opposite directions.

4.2 Results

The evolutionary experiment was replicated 20 times, starting with different ran-
domly initialized populations. We observed that aggregation behaviors were suc-
cessfully generated in each replication. Figure 3 plots the average fitness of the

6Given that di(t) is computed starting from the center of an s-bot, r(n) is defined as the radius
of the smallest circle that encloses the centers of n s-bots.

8



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

fi
tn

es
s

generation number

best
average

Figure 3: Performance across 100 generations, averaged over 20 replications. The
fitness of the best genotype and the average fitness of the population are plotted
against the generation number.

20 replications of the experiment. The best genotype of the population reaches in
average 60% of the theoretical maximum value. It is important to bear in mind that
the fitness is the result of a product, whose factors are values in the range [0, 1]. In
our case, the value around 60% is the result of two components that have both high
performance values, around 80%.

In order to assess the performance achieved by the evolved strategies, for each
replication of the experiment, we selected the best 20 genotypes of the last gen-
eration, and we evaluated their fitness for 200 times (i.e., 200 epochs). Then, for
each replication, we selected the genotype with the highest average fitness. The
corresponding values are shown in Table 1, for all the 20 replications. It is possible
to notice that these performances are slightly lower than the average fitness values
of the best genotypes reached at the end of the evolutions, shown in Figure 3. This
is mainly due to an over-estimation of the performance of the best genotype during
the evolution. In fact, given a limited number of epochs, the fitness value F of a
genotype is just an estimate of its real performance. Since only the best cases are
retained by the selection operator, the performance measured during evolution is
likely to represent an over-estimate of the real performance that can be obtained
by those genotypes.

Table 1: Performance of the best genotype after the post-evaluation for each repli-
cation of the experiment. The values are the average fitnesses over 200 evaluations
of the best genotype.

Replication 1 2 3 4 5

Fitness 0.487 0.451 0.413 0.590 0.371

Replication 6 7 8 9 10

Fitness 0.460 0.566 0.582 0.604 0.616

Replication 11 12 13 14 15

Fitness 0.588 0.554 0.562 0.636 0.572

Replication 16 17 18 19 20

Fitness 0.574 0.484 0.494 0.655 0.561

A qualitative analysis of the evolved controllers reveals that different replications
result in slightly different behaviors. Some similarities can be observed among the
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evolved solutions. For example, solitary s-bots tend to explore the arena moving
in large circles and turning away from obstacles when they are too close to them.
The evolved solutions differ mainly in the behavior of s-bots when they are close
to each other. In general, all evolved strategies rely on a delicate balance between
attraction to sound sources and repulsion from obstacles, the former being perceived
by sound sensors, the latter by proximity sensors. For the sake of simplicity, we will
describe here the behavior of the controller produced by the tenth replication of the
experiment.7 This controller not only has a good performance, but it also presents
the best scalability properties, as discussed later, in Section 4.3. In this case, the
interaction between attraction and repulsion from other s-bots creates a “following
behavior” that can be observed with small groups of s-bots (see Figure 4a). When
the number of s-bots increases, this ordered “following behavior” is replaced by a
disordered motion of the s-bots, which continuously change their relative positions,
so that the aggregate continuously expands and shrinks, slightly moving across the
arena (see Figure 4b). This feature of the evolved strategy is strictly related to
scalability, as we discuss in the forthcoming section.

Figure 4: Aggregation behavior. (a) The aggregation of 4 s-bots usually produces
groups moving in circles. (b) When the group is bigger, the movement is more
disordered and the s-bots continuously change their relative positions.

4.3 Scalability

The scalability of the best controllers of each evolutionary run was evaluated for
s-bots groups ranging from 4 to 40. A measure was defined in order to test the
aggregation performance of different groups. For this purpose, the aggregation
quality introduced in Section 4.1 was redefined using a different approximation for
r(n) (see (3) and (4)). In fact, as already mentioned, the upper bound r̃(n) defined
in (4) diverges from the real value with increasing group sizes, which determines an
over-estimation of the performance of large groups. We defined a lower bound r̂(n),
which is related to the area occupied by the s-bots :

r̂(n) = rs ·
(√

n − 1
)

, (6)

where rs is the radius of an s-bot. As shown in Figure 5, the distance between
the upper and lower bound increases with the group size. Also this lower bound
diverges from the exact value for increasing group sizes, which determines an under-
estimation of the performance of large groups. We decided to approximate r(n) with
the average r(n) of the two defined bounds, shown in Figure 5.

7See www.swarm-bots.org/scaling aggregation.html for some movies of this behavior.
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Figure 5: Approximations for r(n). The continuous line plots the upper bound r̃(n),
the dashed line plots the lower bound r̂(n), and the dotted line plots the average
r(n).

Having chosen a suitable approximation for r(n), we defined the performance
measure Fs as follows:

Fs =
1

nW

T
∑

t=tW

n
∑

i=1

Di(t), (7)

where tW = T − W is the starting point of the evaluation time window. Here,
Di(t) is computed as in (3), but using r(n) as an approximation of r(n). In order
to give enough time to the aggregation process of large groups, all the evaluations
were performed over T = 2000 simulation cycles. The time window has W = 100
simulation cycles.

We performed 100 evaluations for different group sizes (n = 4, 8, 12, . . . , 40).
The results obtained showed that not all the evolved controllers have comparable
performance. However, half of the tested controllers present a very good scalability.
The best scalable strategy was the one produced by the tenth replication, already
analyzed in the previous section. We have mentioned that this controller creates an
aggregate that moves across the arena. This is a result of the complex motion of
s-bots within the aggregate, which in turn is the result of the interaction between
attraction to sound sources and repulsion from obstacles. The slow motion of the
aggregate across the arena leads to scalability, as an aggregate can continue to
move joining solitary s-bots or other already formed aggregates, eventually forming
a single cluster of s-bots.

Figure 6 plots the performance of this controller as a function of the group size.
We can see that the performance gracefully degrades when the group size increases
over the limit used during evolution. It indicates that the aggregation behavior
scales well and is not dependent on some particular settings. The best performance
is obtained with 4 s-bots, and corresponds to the situation in which all the s-bots
have an ordered circular motion, that allows them to stay very close to each other.
The outliers correspond to situations in which the 4 s-bots never met each other
in the limited time used for evaluation. When increasing the group size to 8 and
12 s-bots, we observe a drop in performance that is mainly due to the transition
from the ordered to the disordered motion of the s-bots within the aggregate. In
this case, the aggregate is more dynamic, continuously changing shape, size and
position driven by the complex interactions among the s-bots. We observe also
a higher variance in the data or more outliers, corresponding to the formation of
two or more small aggregates that did not have enough time to join in a single
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Figure 6: Scalability of the aggregation behavior. The performance for some group
sizes (4, 8, 12, . . ., 40 s-bots) is shown. The box-plot shows 100 evaluations per
box. The average values are indicated by the thick black line. Boxes represent the
inter-quartile range of the data, while the horizontal bars inside the boxes mark the
median values. The whiskers extends to the most extreme data points within 1.5
of the inter-quartile range from the box. The empty circles mark the outliers.

one. Further increasing the group size, we observe that the performance reaches a
stable level. Less outliers are observed and also the variance is reduced, because
the increasing density of s-bots in the arena makes it easier for smaller groups to
aggregate into a single one.

5 Evolving Coordinated Movement

In this section, we consider a swarm-bot, made up of a collection of assembled s-bots,
whose task is to display coordinated movement. In the experiments presented here,
we study a swarm-bot composed of s-bots that are already connected through the
grippers. The problem that the s-bots have to solve is that their wheels might have
different initial directions or might mismatch while moving. In order to coordinate,
s-bots should be able to collectively choose a common direction of movement having
access only to local information.

We will show that evolution can find simple and effective solutions that allow the
s-bots to move in a coordinate way independently of the topology of the swarm-bot
and of the type of link with which the s-bots are connected (flexible or rigid, see
below). Moreover, it will be shown that the evolved s-bots also exhibit obstacle
avoidance behavior (when placed in an environment with obstacles) and object
pulling/pushing behavior (when assembled to or around an object), and scale well
to swarm-bots of a larger size.

5.1 Experimental Setup

The swarm-bot consists of four s-bots assembled in a linear structure, as shown in
Figure 7. In these experiments, we used the simplified simulation model described
in Section 3.

Differently from the previous experiments, s-bots have the possibility to rotate
their turret with respect to their chassis (this can be done by means of a motorized
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“hinge joint” that can rotate around the vertical axis). Each s-bot is connected to
another s-bot by means of a physical link between the turrets. The link consists of
another “hinge joint” that has a rotation axis parallel to the horizontal plane and
is perpendicular to the line formed by the four s-bots.

Each s-bot is provided with a traction sensor, placed in correspondence of the
turret-chassis hinge joint, that returns the direction (i.e., the angle with respect to
the chassis’ orientation) and the intensity of the force of traction (henceforth called
“traction”) that the turret exerts on the chassis (see Figure 8). The traction inten-
sity is scaled in [0, 1]. Traction is caused by the movements of both the connected
s-bots and the s-bot ’s chassis. Note that the turret of each s-bot physically integrates
the forces that are applied to the s-bot by the other s-bots. As a consequence, the
traction sensor provides the s-bot with an indication of the average direction toward
which the group is trying to move as a whole. More precisely, it measures the mis-
match between the directions toward which the entire group and the s-bot ’s chassis
are trying to move. The intensity of traction measures the size of this mismatch.
Noise is simulated adding a random component uniformly distributed within the
±5% of the maximum traction intensity value.

Each s-bot ’s controller is a neural network with 4 sensory neurons that encode
the traction plus one bias unit. These 5 neurons are directly connected with 2
motor neurons that control the two motorized wheels and the turret-chassis motor-
ized joint. The 4 sensory neurons encode the intensity of the traction from four

Figure 7: Four physically linked s-bots forming a linear structure. The line between
two s-bots represents the physical link between them. The white line above each
s-bot indicates the direction and intensity of the traction.

 

Figure 8: Traction force detected by the s-bots ’ traction sensor. The large and
small circles respectively represent the right active wheel and front passive wheel.
The dashed line and the full arrow respectively indicate the chassis’ orientation and
the direction and intensity of the traction. The dashed arrow indicates the angle
between the chassis’ orientation and the traction.
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different preferential orientations with respect to the chassis (front, right, back and
left). Each sensory neuron has an activation proportional to the cosine of the angle
between the sensor’s preferential orientation and the traction’s direction when this
angle is in [−90, +90] degrees, and is 0 otherwise. This activation is then scaled by
the traction intensity. The activation state of the motor units is normalized between
[−5, +5] rad/s and is used to set the desired speed of the two corresponding wheels
and the turret-chassis motor.

The connection weights of the neural controller of the s-bots have been evolved.
The initial population consists of 100 randomly generated genotypes that encode the
connection weights of 100 corresponding neural controllers, that are used to control
the s-bots involved in the experiment. Each connection weight is represented in the
genotype by 8 bits that are transformed in a number in the interval [−10, +10].
Therefore, the total length of the genotype is 10 × 8 = 80 bits. The swarm-bot
is allowed to “live” for 5 epochs, each lasting T = 150 simulation cycles. At the
beginning of each epoch the chassis of the 4 s-bots are assigned random orientations.
The 20 best genotypes of each generation are allowed to reproduce by generating 5
copies of their genotype with 3% of their bits replaced by a new randomly selected
value. The evolutionary process lasts 100 generations. The experiment is replicated
20 times by starting with different randomly generated initial populations.

To favor the evolution of behaviors that let the swarm-bot move as fast and as
straight as possible, we evaluate the fitness Fe in each epoch e as the Euclidean
distance between the center of mass of the group at the beginning and at the end
of the epoch:

Fe =
‖X(0) −X(T )‖

L(T )
, (8)

X(t) =
1

n

n
∑

j=1

Xj(t), (9)

where n is the number of s-bots involved in the experiment, Xj(t) are the coordinates
of the jth s-bot at simulation cycle t, X(t) are the coordinates of the center of mass
of the group at simulation cycle t, and L(T ) is the maximum distance that a single
s-bot can cover in T simulation cycles by moving straight at maximum speed (see [2]
for more details).

5.2 Results

Figure 9 shows how the fitness of the population, averaged over the 20 replications
of the experiment, changes across 100 generations. At the end of the evolution, the
best controller of each replication was tested for 100 epochs, and the corresponding
average performance is reported in Table 2. It can be noted that most replications
of the experiment succeeded in finding a very good solution.8

Direct observation of the behavior shows that s-bots start pulling in different
directions, orient their chassis in the direction where the majority of the other s-bots
are pulling, move straight along the direction that emerges from this negotiation,
and compensate successive mismatches in orientation that arise while moving. As
shown in Figure 10, the direction that emerges from the negotiation between s-bots
changes in different tests.

The analysis of how evolved controllers react to different direction and intensity
of the traction indicates that they developed a simple strategy that can be described
as follows: (i) When the chassis of the s-bots are oriented in the same direction, the
intensity of the traction is null and the s-bots move straight at maximum speed.

8See www.swarm-bots.org/coordinated motion.html for some movies of these behaviors.
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Figure 9: Performance across 100 generations. The continuous and dotted lines
respectively plot the performance of the best genotype of each generation and the
average performance of the population, averaged over the 20 replications.

Table 2: Average performances resulting from the post-evaluation analysis. For each
of the 20 replications of the experiment, the best genotype of the last generation
was selected for post-evaluation. Values in the table are the average over 100 (post-
)evaluations.

Replication 1 2 3 4 5

Fitness 0.711 0.804 0.595 0.716 0.710

Replication 6 7 8 9 10

Fitness 0.765 0.734 0.563 0.793 0.577

Replication 11 12 13 14 15

Fitness 0.606 0.768 0.751 0.751 0.763

Replication 16 17 18 19 20

Fitness 0.749 0.742 0.813 0.737 0.754
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Figure 10: The graph shows the direction of the chassis of the four s-bots during 150
simulation cycles, starting with two different initial random orientations (continuous
and dotted lines, respectively).

(ii) When the chassis of the s-bots are oriented in a similar, although non-identical,
direction, the intensity of the traction is low. In this case, s-bots tend to turn
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Figure 11: Eight s-bots connected by rigid links into a star formation.

toward the average direction in which the whole group is moving, that is, they
tend to turn left when the traction comes from the left side and right when the
traction comes from the right side. (iii) When the chassis of the s-bots are oriented
in rather different directions, traction has a high intensity and its direction is highly
misaligned with respect to the chassis. In this case, the s-bots rapidly change their
direction of motion. The s-bots that have a larger mismatch with respect to the
rest of the group perceive a stronger traction than the others, and this assures
that a unique direction finally emerges for the whole group. For instance, three
s-bots might be oriented North and one s-bot might be oriented South. In this case,
the South-bound s-bot will change its direction more quickly than the other three
North-bound s-bots.

5.3 Generalization and Scalability

As we claimed above, evolved controllers are capable of producing coordinated move-
ments independently of the number of s-bots, of the topology with which they are
connected, and of the type of links. For instance, by testing a group of eight s-bots
connected to form the star formation shown in Figure 11, we observed that also in
this case they can negotiate a unique direction of movement (see Figure 12).

The s-bots are capable of producing coordinated movement also when assembled
by means of flexible, rather than rigid, links. Flexible links consist of two segments
connected by a hinge joint that allows the connected s-bots to rotate on the ground
plane around the middle point of the link. By testing eight s-bots connected by
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Figure 12: The direction of the chassis of the 8 s-bots of a star formation (continuous
line) and snake formation (dotted line) during 150 simulation cycles.
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(a) (b)

Figure 13: Eight s-bots assembled into a snake formation displaying collective ob-
stacle avoidance. (a) The parallelepipeds and the large cylinders represent walls
and obstacles, respectively. (b) The small gray circles represent the initial position
and shape of the swarm-bot. The square and the large full circles represent the walls
and the obstacles. The lines show the trajectory of the s-bots during 600 simulation
cycles.

flexible links so as to create a snake formation, we observed that they are still able
to negotiate a unique direction and produce coordinated movement along such a
direction. At the beginning of each trial, the formation changes shape as a conse-
quence of the different orientation of the chassis of the s-bots, but after some time it
settles to a stable configuration. Given that in structures assembled through flexi-
ble links the motors’ actions performed by the s-bots might affect the shape of the
swarm-bot rather than the traction perceived by other s-bots, these results seem to
indicate that the evolved strategy is very robust and allows the s-bots to coordinate
even when traction sensors provide incomplete information about the movements
of the group.

Furthermore, by placing the s-bots in an environment with obstacles, we ob-
served that they display individual and collective obstacle avoidance behaviors. In
fact, when an s-bot hits an obstacle, the collision generates a force on the chassis
in the direction opposite to the obstacle. This force is interpreted by the s-bot as a
traction force. As a consequence, the s-bot tends to turn so as to cancel this “trac-
tion” force, thus avoiding remaining blocked by the obstacle. When the s-bots form
a swarm-bot, the traction resulting from the collision is transmitted to the other
s-bots through the physical links, forcing the whole group to reorganize and change
direction, eventually avoiding the obstacle. Experiments show that a swarm-bot is
able to avoid obstacles independently of the number of assembled s-bots, the way
in which they are connected, and the type of links. Figure 13 shows the behavior
of a snake formation connected with flexible links in an arena surrounded by walls
and including four cylindrical obstacles. As shown in the figure, the swarm-bot is
capable of coordinating and collectively avoiding walls. Since the s-bots are con-
nected through flexible links, the swarm-bot tends to change its shape during the
coordination phases and when colliding with obstacles. However, since the s-bots
also tend to maintain their direction of movement, the swarm-bot is also capable of
passing through narrow passages, if necessary deforming its shape according to the
configuration of the obstacles. This collective obstacle avoidance behavior is very
robust. Many of the evolved controllers tested in a snake formation never got stuck
during long observation periods.

Finally, we observed that s-bots connected to an object, or connected so as to
form a closed structure around an object, tend to pull or push the object in a
coordinated fashion. Figure 14a shows an example of eight s-bots assembled to a
cylindrical object through rigid links. If the object is not too heavy, the s-bots
can coordinate and drag the object toward the direction that emerges from the
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Figure 14: (a) Eight s-bots connected to an object through rigid links. (b) Traces
left by the s-bots (thin lines) and the object (thick line) during 150 simulation cycles.
The gray and black circles represent the initial positions of the s-bots and of the
object.

negotiation between their perceived traction forces (Figure 14b). This behavior can
be explained by considering that evolved s-bots tend to follow the average direction
of the group but also have a tendency to maintain their own direction of movement
if the intensity of the perceived traction is not too high and the angle of the traction
differs of about 180 degrees from the direction of movement.

A last set of tests was run to assess the scalability of the evolved strategies
for coordinated motion. We measured the performance of swarm-bots made of an
increasing number of s-bots (4, 8, 12, ..., 40) assembled in a grid-like formation.
The performance of each group was measured 100 times with the same modalities
used during evolution. The results of these tests are summarized in Figure 15.
The graph shows that the average performance, indicated by the black line, is quite
stable with respect to the group size. The maximum distance covered by the swarm-
bot, indicated by the upper whiskers, tends to decrease slightly when increasing the
number of s-bots. This suggests that bigger groups need a longer coordination
phase for the negotiation of the common direction of motion. The outliers of the
graph, represented by the small circles, indicate either the situations in which the
group takes a long time to negotiate a common direction, or situations in which the
group revolves around its center. The latter situation is a stable state for the group
similarly to coordinated motion in a straight line, since it minimizes the intensity
of traction perceived by the single s-bots. Small groups get into this situation more
often than large groups, which have less chances to initiate such behavior, although
they tend to negotiate for a longer time. A possible explanation of this is that in
large groups it is less likely that the s-bots get into situations in which their wheels
are aligned along concentric circles with respect to the group’s center.

6 Path to Implementation

Following the methodology described in Section 3, the evolved controllers should
be validated first using a detailed simulation model and then tested on the real
s-bots. This last step is not described in this paper because the number of real
s-bots available for experimentation was not sufficient for the replication of the
performed experiments (although, as already mentioned, it was possible to test the
quality of the detailed simulation models by running comparisons with the real s-
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Figure 15: Scalability of the coordinated motion behavior. See text for details. For
an explanation of the box-plot, see Figure 6.

bots, as illustrated in the companion paper [17]). Thus, in this section we present
the validation on the detailed simulation model described in Section 3.

The validation of the aggregation behaviors with the detailed simulation model
was performed using identical settings as in the scalability test presented in Sec-
tion 4.3. Thus, 100 evaluations of the performance measure defined in (7) were
performed for varying group sizes (n = 4, 8, 12, . . . , 40). Figure 16 shows the results
obtained. These data and the observation of the system reveal that the aggregation
process is slower than with the simplified model. In fact, we observed that the
presence of the tracks in the detailed model makes the rotation of the s-bot slower
and less precise. This makes the “following behavior” described previously less ef-
ficient. This problem explains the results obtained for group size 4: the inefficiency
of the “following behavior” has a greater impact for this group size, its role being
more important when the density of s-bots in the arena is low. The aggregation
performance increases for group size 8 and is comparable to the one of the simplified
model (see Figure 6). For bigger group sizes, we observe a decrease in performance
which rapidly stabilizes at a fairly good value.

Satisfactory results have been obtained for the coordinated motion task. Also
in this case, the tests on scalability presented in Section 5.3 were replicated using
the detailed simulation model. The results obtained are shown in Figure 17. In
this case, the validation was clearly successful. For every group size we have a
performance that is comparable to the one obtained with the simplified simulation
model, shown in Figure 15. The reason why the variance is slightly higher in this
case can be found again in the different dynamics in the turning of the s-bot, due
to the presence of the tracks. The turning of the chassis, being less efficient, makes
the coordination phase longer, which in turn corresponds to a lower performance.
This is also the reason why more outliers are found for big group sizes, confirming
that reaching a coordinate status was slower with the detailed model.

The experiments presented in this section confirm that the evolved strategies
are robust enough to be ported on a different model with a tolerable decrease of
performance. This result is very promising, in the perspective of a transfer to the
physical robots.

Additionally, it is interesting to note that, as the different simulation models
have comparable characteristics, an incremental evolution paradigm is applicable.
Following this paradigm, evolution can be initially performed using a very simple
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and fast simulation model, in order to find a suitable solution for the given prob-
lem. Once such a solution has been found, evolution continues using the detailed
simulation model or the real s-bots. In this way, it is possible to adapt the solutions
obtained with the simple simulation model to the new situation more easily and in
less time than starting from scratch with complex settings.9

However, in order to incrementally evolve controllers on real hardware, it is
necessary to bear in mind that what was done in simulation should be feasible also
in reality. In particular, we should be able to compute the fitness in the real world.
This is not a particular problem as long as we use variables directly accessible to the
robots, such as sensor readings. On the contrary, evolution may not be feasible if
the fitness variables cannot be obtained in the real world. In this paper, the fitness
computation was based on some global variables, that is, the absolute positions of
all the robots. This information is not directly accessible to the s-bots, but can
be easily obtained from an overhead camera. With such a setup, the incremental
evolution of aggregation and coordinated motion strategies is possible also in the
real world.

7 Related Work

Recently, there has been a growing interest in the research community for the study
of complex robotic systems that could present features like versatility, robustness
or capacity to perform complex tasks in unknown environments [8, 14, 25, 26].
In this section, we overview some of the recent studies belonging to the areas of
swarm robotics and collective robotics, which are closely related to the experiments
presented in this paper.

7.1 Swarm Intelligence and Swarm Robotics

The term swarm intelligence was coined by Beni and Wang [5] to describe a new
approach to the control of distributed cellular robotic systems. Later, Bonabeau et

9A similar incremental evolution paradigm has already been successfully applied for the transfer
of evolved controllers between different robotic platforms [10].
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Figure 16: Aggregation behaviors tested with the detailed simulation model of the
s-bot. For an explanation of the box-plot, see Figure 6.
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Figure 17: Coordinated motion behaviors tested with the detailed simulation model
of the s-bot. For an explanation of the box-plot, see Figure 6.

al. [6] extended this definition to include “any attempt to design algorithms or dis-
tributed problem-solving devices inspired by the collective behavior of social insect
colonies and other animal societies” ([6], page 7). This new definition promoted
swarm intelligence as a new computational paradigm for solving a large variety of
problems. Swarm robotics consists in the application of swarm intelligence to the
control of robotic swarms, emphasizing decentralization of the control, limited com-
munication abilities among robots, use of local information, emergence of global
behavior and robustness.10

Within swarm robotics research, to the best of our knowledge, there is very little
work on self-organized aggregation. Most of the research about aggregation refers
to tasks like foraging or object clustering, in which robots have to form clusters of
some objects initially scattered in the arena. In foraging, objects must be collected
and retrieved in a particular area (the home or the nest). In clustering, the focus
is put on the dynamics of the process, no matter the place in which the cluster is
formed.

A number of papers study the self-organized clustering and sorting of objects in
a closed arena, taking inspiration from the cemetery organization and brood sorting
behaviors of ants [9]. Gaussier and Zrehen [11] manually designed reactive behaviors
for controlling a group of Khepera robots, in order to cluster objects in an arena.
Beckers et al. [4] and Holland et al. [12] studied the clustering and sorting of colored
frisbees by a group of real robots. Frisbees were initially scattered on the ground,
and the robots had to sort them in clusters of different colors. They designed
a simple behavioral rule set for this purpose and concluded that the real-world
physics was an essential component of the self-organization observed. Martinoli [15]
studied the clustering of small cylinders by a group of real robots. In particular, he
analyzed the interactions between the robots and the effect of the group size on the
performance.

Efficiency in the foraging task is the main focus of the study of Sugawara et
al. [29]. They showed that the use of a simple form of communication among robots
could increase the efficiency of the swarm, if the distribution of pucks to be re-
trieved is not uniform in the environment. In a more recent work [30], Sugawara et
al. studied puck clustering. Also in this case, a set of simple behavioral rules was

10For a definition of swarm robotics, see also the editorial of this special issue.
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developed and a simple form of broadcast communication was used. Simulations
showed that increasing the “interaction duration”, that is, the duration of the com-
munication signal, led first to an increase and then to a decrease of the performance
of the system. This indicates that there is an optimum interaction duration for the
clustering process.

Concerning the coordinated motion task, it is worth mentioning the work of
Sugawara et al. [28]. They proposed a simple behavioral model that, by varying
some parameters of the system, could let a swarm of robots generate four different
types of collective motion. The robots could either (i) form a fixed lattice and
move in a straight line; or (ii) remain in an almost fixed lattice and present a
wavy movement; or (iii) constantly change their relative positions, with a resulting
irregular movement; or (iv) not maintain any particular structure without moving
much.

7.2 Collective Evolutionary Robotics

Although artificial evolution has been often used for synthesizing behaviors for
autonomous robots [19], its use as a methodology to evolve behaviors for groups
of robots has been limited. Collective evolutionary robotics has often focused on
coordinated motion in a group of robots, but physical connections among robots
were never considered.

Reynolds [23] evolved the control system of a group of creatures, called boids,
which were placed in an environment with static obstacles and a manually pro-
grammed predator. The control system was evolved to avoid collisions and to escape
from predators. Although the results described in the paper are rather preliminary,
some evidence indicates that coordinated motion strategies emerged. In a follow-
up of this work, Ward et al. [33] evolved e-boids, groups of artificial fish capable
of displaying schooling behavior. Two populations of predator and prey creatures
were evolved and placed in a 2D environment containing randomly distributed food
elements. The analysis of the distance between prey, prey and food, and predator
and prey suggests that the emergence of the schooling behavior is correlated with:
(i) an advantage in the ability to find food clumps, and (ii) a better protection from
predation. Spector et al. [27] used genetic programming to evolve group behaviors
for flying agents in a simulated environment.

Overall, the above mentioned works suggest that artificial evolution can be suc-
cessfully applied to synthesize effective collective behaviors. Whether these results
could be generalized to the synthesis of controllers for physical systems (robots),
however, remains to be ascertained given that in those experiments creatures rely
on sensory systems that provide information that is “perfect” (i.e., free from noise)
and often “unrealistic” (i.e., hardly achievable on real hardware).

Recently, Quinn [21, 20] explored two ways of evolving controllers for a group
of robots while studying a coordinated motion task using two simulated Khepera
robots. In the first approach, called clonal, all members of the group share a same
genome. This is the same approach we used in the experiments presented in this pa-
per. The second approach, called aclonal, provides each member of the group with
a different genome. In the aclonal evolution, the fitness of each robot is computed
separately, whereas in the clonal evolution the fitness of a robot is calculated as the
average fitness of the group. Results indicated that aclonal evolution produces bet-
ter performing behaviors for this rather simple task. In fact, with aclonal evolution
it was possible to obtain different controllers for different roles in the performance of
the task. In a very recent work, Quinn et al. [22] evolved neural network controllers
for small groups of homogeneous real robots, which have to perform a coordinated
movement task. Analyzing the evolved behaviors, they were able to observe that
robots adopt distinct roles in the group.
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There are a few other works that are loosely related to the evolution of aggre-
gation behaviors. For example, in an attempt to study the evolutionary origin of
herding, Werner and Dyer [34] co-evolved two populations of predators and prey
creatures that were selected for the ability to catch prey and find food, and to es-
cape predators, respectively. By analyzing the result of a single evolutionary run,
the author observed that after some generations, during which predators evolved an
ability to catch the prey, creatures converged into small herds which were constantly
splitting up and reforming.

Zaera et al. [36] carried out a series of experiments to study the use of evolu-
tion as a methodology to develop collective behaviors for “virtual fish” groups that
swim in a rather realistic 3-D simulated environment. They were able to evolve
aggregation and dispersal behaviors fairly easily, but they observed that these col-
lective behaviors were not a result of interactions among the members of the group,
but rather between the individual fish and the environment (the boundaries of the
arena). Additionally, their attempts to evolve schooling behavior were not very
successful.

8 Conclusions

This paper introduced a new robotic concept, called a swarm-bot, defined as an
artifact composed of simpler autonomous robots, called s-bots. An s-bot is an au-
tonomous robot with limited sensing, computational, and acting capabilities, ca-
pable of creating physical connections with other s-bots, thus forming a swarm-bot
that is able to solve problems the single individual cannot cope with. We presented
in this paper some of the results obtained in the attempt to control a swarm-bot.
In particular, we chose to exploit artificial evolution for synthesizing the controllers
for the s-bots, and for obtaining self-organization in the robotic system. The solu-
tions found by evolution are simple and in many cases they generalize to different
environmental situation. This demonstrates that evolution is able to produce a
self-organized system that relies on simple and general rules, a system that is con-
sequently robust to environmental changes and that scales well with the number of
s-bots involved in the experiment.

Ongoing work is investigating the emergence of functional self-assembly, that is,
the self-organized formation of structures that are functional to the accomplishment
of a given task. For example, we are studying the use of artificial evolution for gen-
erating controllers that let a swarm-bot move toward a given target and assemble
and disassemble on the basis of their current goal and of the environmental condi-
tions [32]. From this point of view, the results reported in this paper on individual
and collective obstacle avoidance behavior suggest that the problem of controlling
single s-bots and teams of assembled s-bots might be solved with uniform and sim-
ple control solutions. Moreover, the results reported on the generalization ability of
the evolved controllers suggest that the obtained behaviors might scale up to more
complex situations.
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