

AN ONTOLOGY FOR AGENT-BASED MODELING AND SIMULATION

Scott Christley, Xiaorong Xiang, Greg Madey
Computer Science and Engineering, University of Notre Dame

ABSTRACT

Ontologies are a formal methodology for establishing a common vocabulary, for
defining the concepts and relationships between those concepts of a particular
domain, and for reasoning about the objects, behaviors, and knowledge that comprises
the domain. In this paper, we present an ontology for agent-based modeling and
simulation. Agent-based modeling and simulation has become an important and
popular paradigm for the computational social and natural sciences; however, the
application of this paradigm tends to be performed in an ad-hoc fashion leading to
questions about underlying assumptions in an agent-based model, verification of the
software implementation as a representation of that model, and validation of
hypothesized conclusions inferred from data produced by computer simulation
experiments. An ontology provides a formal, logical knowledge representation that
supports automated reasoning. Such reasoning capability provides for consistency
checking of the concepts and relationships in an agent-based model, can infer the
assumptions inherent in a model, can infer the assumptions and the parameters
inherent in a simulation or software representation of a model, and can enforce
adherence to formal methods or best practices for verification and validation testing.
These reasoning tasks direct, or at least inform, the modeler about relevant techniques
and methods in the agent-based paradigm. The reasoning capability also provides a
framework for automated generation of software code, automated design and
execution of simulation experiments as well as automated generation and execution
of validation tests for those experiments. Using the standard Ontology Web
Language (OWL), we provide a complete, detailed ontology of agent-based modeling
and simulation, and we show how the ontology is used as part of the modeling and
simulation process.

Keywords: Agent-based Modeling, Agent-based Simulation, Automated Reasoning,
Ontology, Artificial Intelligence, Discrete-Event Simulation

This work is supported in part by the National Science Foundation, CISE/IIS-Digital
Society & Technology, under Grant No. 0222829.

INTRODUCTION

Agent-based modeling and simulation has become an important and popular paradigm for
the computational social and natural sciences; however, the application of this paradigm tends to be
performed in an ad-hoc fashion based upon a subjective understanding of the agent-based concept.
Different techniques for model construction and implementation of computer simulations are often
accompanied by underlying assumptions that are unknown to the researcher or cannot be explicitly
characterized for the particular model. In addition, artifacts in the computer simulation may
manifest themselves which lead to legitimate questions about the verification of the implementation

2

and validation of hypothesized conclusions. Model-to-model comparison, or docking, can expose
these issues because it forces the researcher to confront some of these underlying assumptions
while analyzing differences between the two models, yet this is no guarantee against situations
where the two models may inadvertantly hide possibly relevant assumptions.

Ontologies are a formal methodology for establishing a common vocabulary, for defining
the concepts and relationships between those concepts of a particular domain, and for reasoning
about the objects, behaviors, and knowledge that comprises the domain. In this paper, we present an
ontology for agent-based modeling and simulation. The ontology is general in that we define the
terms, concepts, and relationships for the process and objects of agent-based modeling and
simulation without reference to a specific application domain. Such an ontology provides a solution
to the issues of ad-hoc construction and subjective interpretation in three ways. The establishment
of a common vocabulary provides unambiquous interpretation of terms; while, the definition of
concepts and their relationships make explicit the assumptions that accompany those concepts.
Lastly, the reasoning capability of this ontology provides a framework for automatic generation of
software programs, automatic composition of agent-based models to form new simulations,
automatic design and execution of simulation experiments as well as the automatic generation of
validation tests for those experiments. Using the standard Ontology Web Language (OWL), we
provide a complete, detailed ontology of agent-based modeling and simulation. Our ontology is too
large to include within this article, but the files can be obtained from our website (Christley 2004).
However, to better associate the discussion with the ontology, we will use the convention of Italics
when referring to specific classes or properties in the ontology.

AGENT-BASED MODELING AND SIMULATION

There are three basic reasons for using simulation; to design something that does not yet
exist, to train people when the real task is costly or dangerous, and to understand some real world
phenomena as part of scientific study. All three uses have different processes and techniques;
though, the design task and scientific inquiry can be considered similar to each other, but we are
going to concentrate exclusively on using simulation to understand real phenomena. Simulation is
used because it provides a finer control over the complete system that is usually not possible with
the real system, and it provides the ability for extensive "what-if" analysis through tweaking of
parameter and altering assumptions in the underlying theory. However, simulation injects a new
problem into the scientific method in that a model of the theory for the phenomena must be
implemented in a concrete representation so that it can be manipulated and simulated, so the
question becomes not just is the theory consistent with the real phenomena but is the concrete
model representation an accurate description of the theory and is the execution of that model an
accurate representation of the processes in the theory. It needs to be taken one step further and
asked are the implications of the simulation consistent with the implications of the theory; because
if not, the simulation does not provide the logical step required to say whether the theory correctly
captures the real phenomena. Most of the work with modeling and simulation involves doing the
proper checks to provide a high degree of confidence for taking that logical step.

Our focus is on agent-based simulation, yet much is shared with general discrete-event
simulation, so we will highlight the differences where appropriate while relying upon core
fundamentals that have made discrete-event simulation a successful field. Despite being called
agent-based simulation, the methodological differences lie more in the constructed models versus
the implementation of those models in a computer simulation. When viewing a phenomena through

3

the agent-based paradigm, one sees agents interacting with other agents within an environment and
within a spatial structure. An agent is the conceptual unit of interest; there may be multiple agents,
and the concept serves to define a boundary between what is internal to the agent versus what is
external. By agent, we are referring to a prototypical concept and not an individual. The
environment and space can also be considered agents as they may have interaction mechanisms, but
they are generally differentiated as their boundary is not well-defined. The environment, or
possibly multiple environments, represents state information that is external to the agents. The
environment could be global state for all agents, or it may be local state in conjunction with the
spatial structure with its defined notions of locality. Space can be two or three dimensional physical
space, or it may be a virtual construct like a network. Space is different from the environment in
that it provides measures, like distance or connectivity, and typically only holds state specific to
those measures. There can be multiple spaces each with its own set of measures. A cognitive
agents maintains, among other things, internal state about what it perceives about the environment
and space; so in a simulation, the environment and space represent actual truth versus what a
cognitive agent might perceive as truth.

By modeling, we refer to the process of representing something with something else; it can
be an abstract model whereby the representation simplifies or removes extraneous detail to capture
the conceptual properties, or it can be a concrete model which, oppositely, specifies a more detailed
representation. By simulation, we refer to the process of enacting the model to learn consequences
and to compare against the real phenomena of interest. There are four key modeling concepts that
represent different model types: ConceptualModel, CommunicativeModel, ProgrammedModel, and
ExperimentalModel. The ConceptualModel is a verbal, abstract model that states the theory or
hypotheses for the proposed agent-based representation and the goal and objectives of the
corresponding agent-based simulation. A ConceptualModel also provides descriptive specification
for the agent, the environment, the space, and the actions and properties for those constructs. A
ConceptualModel is made more concrete by constructing a CommunicativeModel. In our process,
the CommunicativeModel is a domain-specific ontology that fits within the general agent-based
ontology. Objects in the model like agents, environment, and space are represented through
subclasses of those concepts in the general ontology. Subclasses are also created for the properties
of those objects as well as their actions. Through SoftwareProgramming, a ProgrammedModel is
constructed from the CommunicativeModel by representing the ontological concepts with concrete
implementation in software code. A ProgrammedMode is one that can be executed as a
ComputerSimulation, and in a later section we will discuss how the ProgrammedModel can be
automatically generated from the CommunicativeModel using a reasoner. Lastly,
DesignExperiment involves taking a ProgrammedModel to produce an ExperimentalModel and
PerformExperiment will cause the ExperimentalModel to produce SimulationData; Validation can
use a StatisticalTest to compare the SimulationData against EmpiricalData. This is a simplified
example of the modeling and simulation process as there are many more actions and concepts
involved; Figure 1 shows a portion of the semantic network representing our formalized knowledge
about agent-based modeling and simulation.

4

FIGURE 1 Relationships between Models and Agent, Space, and Environment

ONTOLOGY FOR AGENT-BASED MODELING AND SIMULATION

When developing an ontology for agent-based modeling and simulation, we have to be
careful to clearly distinguish between the concepts and relationships that comprise the process of
modeling and simulation versus the agents and behaviors in the domain of interest; yet these two are
intimately related. The latter is called the domain-specific ontology, and the former is called the
general ontology. The relationship between the two is simply that the domain-specific ontology
provides more detail concepts and properties; for example, the general ontology has the concept of
an agent which has some undefined properties and behaviors, but the domain-specific ontology will
have the concept of a SoftwareProgrammingAgent which has defined properties like skill and
resources and defined behaviors like writing code and fixing bugs.

5

Our ontology is implemented in the Ontology Web Language (OWL 2004) using Protege
(Protege 2004). OWL represents knowledge as a semantic network with nodes as classes and
directed edges as properties. We have 100+ classes in our ontology with a similar number of
properties. The root classes include Agent, Environment, Space, Action, and Property for concepts
in the agent-based paradigm. Action and Property along with Model, Simulation, Representation,
DataSource, Test, and Assumption are root concepts for the process of modeling and simulation.
Lastly, Measure, Time, and Event are concepts that appear in any general ontology. Notice that
Action and Property are both concepts about the modeling process as well as in the model, so we
have AgentAction, EnvironmentAction, AgentProperty, and EnvironmentProperty subclasses for
those concepts in the agent-based model; while, ModelerAction and ModelProperty subclasses are
concepts about the modeling process. The classes that refer to concepts in the agent-based model
stop at a general description, so more specialized subclasses would be provided by the domain-
specific ontology. Our ontology is focused on the process of modeling and simulation, so
ModelerAction includes subclasses like InputModeling, ParameterEstimation, DesignExperiment,
Verification, Validation, ModelToModelComparison, and others. The Model class encapsulates all
types of models though we concentrate on ConceptualModel , CommunicativeModel,
ProgrammedModel, and ExperimentalModel as described in the previous section. Simulation can
be split between ComputerSimulation and PhysicalSimulation with AgentBasedSimulation as a
subclass of the former. Representation deals with representational forms like
OntologyRepresentation as given by a CommunicativeModel or SoftwareRepresentation as
embodied in a ProgrammedModel. The DataSource class conceptualizes all sources of data like
EmpiricalData, RandomNumberGenerator, and SimulationData. Test refers to all forms of testing
especially specialized classes of StatisticalTest used in InputModeling and Validation actions.
Lastly, we have the concept of Assumption which our reasoner will use to categorize the
assumptions within the agent-based model. All of the concepts in the general ontology establish a
common vocabulary that can be shared across domain-specific ontologies and provide
unambiguous interpretation of conceptual terms.

Besides classes, OWL has properties that define the relationship between concepts; the
properties themselves are concepts that can form an inheritance hierarchy. Many properties are
found in most ontologies that represent general relationships such as composition with isPartOf
and isBunchOf, dependencies like requires, ordering of events with isBefore, isAfter, overlapsWith
among others, or actions like has and produces. We specialize many of these relationships for
agent-based modeling so that we can perform more accurate reasoning tasks. For example, a
NormalDistribution hasParameter Mean and hasParameter Variance; thus, we will be able to
reason that a simulation using a NormalRNG to produce normally distributed random numbers will
require two parameters to define the distribution. Likewise, PerformExperiment requires an
ExperimentalModel that isProducedFromAction DesignExperiment and that ExperimentalModel
requires a ProgrammedModel that requiresSoftwareRepresentationOf Space, Environment, and
Action. As for classes, the properties establish a common vocabulary for relationships, and the
properties and classes together form our complete knowledge base for agent-based modeling and
simulation.

ONTOLOGICAL REASONING

An ontology formalizes our knowledge base, so it is possible to perform automated
reasoning on the process of modeling and simulation as well as on the models and simulations

6

themselves. Reasoning on a model and its corresponding simulations provide us with a set of
inferred assumptions for the model, a set of inferred assumptions for the representation of the
model as a simulation, and a set of inferred parameters for the simulation. Reasoning on the
process of modeling and simulation gives the potential of automating many of the primary tasks in
the process including software programming of the simulation, design and execution of computer
simulation experiments, and validation of experimental results. In the following sections, we will
describe each of these capabilities in more detail.

Inferred Assumptions

An A s s u m p t i o n can be further categorized into a DataAssumption or a
StructuralAssumption. A DataAssumption refers to questions about how data is collected and how
data is analyzed, so InputModeling of EmpiricalData to come up with an appropriate probability
distribution introduces a DataAssumption that the distribution is an appropriate representation of
the EmpiricalData. A GoodnessOfFitTest can be used to validate that assumption. A
StructuralAssumption refers to questions about the composition of the model and the conceptual
representations in the model; concepts in the model and the relationships between those concepts, as
abstract constructions of reality, imply assumptions about how those constructs are represented and
whether the relations are correct. Viewing a CommunicativeModel as a semantic network, a
StructuralAssumption asks whether the nodes are appropriate concepts, whether the edges are
appropriate properties, and whether concepts linked by an edge is an appropriate relationship.
Assumptions can either be falsified or failed to be falsified (validated) much like a null hypothesis if
an appropriate test can be performed. For the InputModeling example above, the
GoodnessOfFitTest performs this function; while, experiments and tests would need to be
performed to provide Validation of a CommunicativeModel. Not all assumptions can be tested like
whether a CommunicativeModel accurately represents the concepts in a ConceptualModel because
the ConceptualModel is a verbal model lacking a formal description; the best that can be performed
is a SubjectiveTest like FaceValidity. The reasoner is able to infer all of the assumptions in an
agent-based model from the CommunicativeModel through to the ExperimentalModel, and our goal
is for the reasoner to determine whether these assumptions can be validated and what appropriate
test should be used. The assumptions can be inferred by looking at the properties on the classes
and questioning whether the relationship between the classes implied by the property is correct.
With all of the assumptions clearly laid out, the modeler obtains a broader view of how the agent-
based model can be validated and may offer insights into model changes to strengthen the overall
theory.

Inferred Parameters

A Parameter is a ModelProperty which is considered as an input to the model. A
Parameter may be given a value through the ParameterEstimation action, or the modeler may
AssignParameterValue as part of DesignExperiment. The Parameter may have a constant value
throughout the simulation, or it may be attached to a DataSource like EmpiricalData or sampled
from a Distribution created by a RandomNumberGenerator. An InitialCondition is a
ModelProperty similar to a Parameter, but an InitialCondition assigns values to state variables for
just the start of the simulation; while, a Parameter is persistent through the whole simulation run.
Like a Parameter, an InitialCondition may be assigned a specific value or sample values from a
DataSource. The reasoner has the capability to determine all of the Parameters and

7

InitialConditions in an agent-based model. It can do this because the ontology encodes knowledge
of the properties of agents, environment, and space, so a logical query on the properties provides the
list. The results of such a logical query becomes part of the automatic design and execution of
experiments whereby the query results are presented to the modeler for specification of input
values.

Automated Software Programming

Complete automated software programming of the simulation requires more than a
CommunicativeModel embedded within the agent-based ontology because it does not provide
enough detail to generate source code for all agent and environment actions. Attempts to provide
high-level specification of software can fail because too many assumptions must be made about the
functionality and purpose of the software, or the specification process may be more cumbersome
than directly writing the code (Rich et al. 1988, Flener et al. 1994). However, we believe an
intermediate approach is both feasible and useful. The CommunicativeModel can be translated into
the high-level structure of the ProgrammedModel. This includes generation of the object-oriented
classes for the agent, environment, and spatial constructs in the model with instance variables for the
properties of those constructs and accessor, constructor, and stub methods for the constructs'
actions. Such an intermediate approach means the modeler can focus upon the software
implementation for the fundamental behaviors in the model while much of the "glue code" required
to make the simulation work is handled automatically.

Model Composition

Another fruitful area of automation is the composition of multiple, separate
CommunicativeModels into a single ProgrammedModel. These CommunicativeModels can be
created by the same modeling group or different groups. Composition of CommunicativeModels
requires semantics of the interactions between the models. We separate the composition process
into two situations according to whether these CommunicationModels consist of the same or
different collection of entities.

1) Two CommunicativeModels represent the same collection of entities that interact together
over time. We consider these two CommunicativeModels as representations of the same world
phenomena. One of the research groups in the University of Notre Dame models the evolution of
NOM (Natural Organic Matter, a complex mixture of molecules that is heterogeneous in structure
and composition) using the agent-based modeling approach (Xiang et al. 2005). As NOM passes
through an ecosystem, it is acted upon by variety of reactions. In order to satisfy different research
interests, two communicative models are developed. One models the physical reaction behaviors of
NOM, and the other models the chemical reaction between NOM and its environment. A new, third
model can be generated that includes both of these two behaviors by composing the two
CommunicativeModels.

2) Two CommunicativeModels represent a different collection of entities that interact
together over time. They are considered as representations of different world phenomena. In the
example we describe above, the microbes, fungi, and bacteria exist in the natural environment and
interact with NOM; in the current CommunicativeModels, they are represented as a set of
environment state variables. It is more realistic that these micro-organisms be represented as agents

8

in the NOM world and their interaction with molecules are explicitly modeled. When there is an
existing model that models the micro-organisms life cycle (micro-organisms can reproduce
themselves and die) with agent-based modeling approach, creation of the new model can be
benefited from the composition of these two existing models.

The composition of CommunicativeModels requires merging different domain-specific
CommunicativeModels together. This merging process can be automated with ontological
reasoning. Three possibilities for semantics arise for these two situations: the semantics may either
be already described in both CommunicativeModels, in only one model, or in neither of the models.
In the first situation, most likely, both CommunicativeModels have the same semantics. In the
second situation, the semantic are most likely existing in one CommunicativeModel but not in
another (partially overlapped).

One important task residing in the merging process is determining whether two domain
specific concepts are the same in two CommunicativeModels. Determining the "structural
equivalence" of two concepts by comparing the incoming edges and outgoing edges of these two
concepts is one way to complete the task. Much research has addressed on matching the concepts
using sophisticated algorithm and AI techniques, such as machine learning (Doan et al. 2003, Noy
et al. 2000). The merging process may involve integration of new knowledge, such as specifying the
new interaction among agents, which requires the input from model developers. With complete
knowledge representation, the composition process can be done automatically.

Automated Design and Execution of Experiments

Automated design of simulation experiments can be implemented through manipulations of
the ProgrammedModel. Such manipulations include basic assignments of values to Parameters
and InitialConditions, enabling or disabling of Actions for the Agents, Environment, and Space, or
even completely different implementations for those constructs. Here we take the viewpoint that an
experiment works within the framework of a CommunicativeModel and that manipulations to that
model fall outside the domain of the ExperimentalModel. However, most model manipulations can
be supported so long as the possible changes are encapsulated through ontological concepts in the
CommunicativeModel. An example can illustrate; suppose you have designed a model and
corresponding simulation whereby the agents interact in a two-dimensional continuous space using
a Euclidean distance neighborhood measure, and you decide you want to replace the space with a
random network structure connecting the agents. Changing the spatial structure will create a logical
inconsistency because a network does not have a Euclidean-distance neighborhood measure; the
inconsistency is resolved by manual alteration of the ProgrammedModel to utilize a different
neighborhood measure. In contrast, if the original CommunicativeModel had both spaces, then a
general concept would have been required to encapsulate the neighborhood measure; the result
being the ProgrammedModel allows for automatic manipulation, via a Parameter, of the spatial
structure through use of a generalized neighborhood measure. This is not to say that one is more
capable than the other, but because we have taken an intermediate approach to software code
generation, inconsistencies due to model changes outside of the ExperimentalModel may not be
automatically resolved within the ProgrammedModel.

Once an ExperimentalModel has been designed, it can be executed and SimulationData is
produced which can then be validated. One execution of a simulation is not sufficient; numerous
executions, or replications, of the ExperimentalModel must be performed with different seed values

9

for any RandomNumberGenerator in the simulation, and the reasoner can automate these
replications because knowledge of the seed values is part of the ontology. Likewise, a modeler does
not generally design a single experiment; experimentation is often an iterative process whereby
experimental results are analyzed, changes are made to the CommunicativeModel, those changes
flow through to the ProgrammedModel, and a new ExperimentalModel is designed. This iterative
process continues until the modeler feels the CommunicativeModel has been sufficiently validated.
At this point, the next step depends upon the purpose of the simulation. Presuming the simulation
is for scientific discovery, SensitivityAnalysis is an example action that can be performed to better
understand the role of the model parameters, or experiments with different model parameters or
design may be performed to generate hypotheses that can be tested against the real world
phenomena.

Validation of Simulation Experimental Results

Validation is the process of comparing a model against the real world phenoma it
represents. All Validation is based upon a Test that decides whether two things are same or not.
There are weak tests and strong tests; a weak test is a SubjectiveTest that does not have a well-
defined decision procedure. A SubjectiveTest includes things like a VisualTest where you make a
visual comparison of two graphs or FaceValidity where a knowledgeable user makes a
determination if the model appears reasonable. A strong test is generally associated with a
StatisticalTest where a formal mathematical decision procedure exists to objectively make a
determination. Computers have difficulty performing SubjectiveTests bu they excel at
StatisticalTests, so the reasoner can perform automatic validation provided it has sufficient
knowledge about what type of StatisticalTest is appropriate for the SimulationData provided by an
experiment. Many statistical tests exists and formalizing all of them in our ontology is a large task;
however, we incorporated many of the standard techniques like GoodnessOfFitTest,
ConfidenceInterval, AnalysisOfVariance, TestOfMeans, and TimeSeriesAnalysis.

One particular form of Validation introduced by Axtell et al. (1996) is
ModelToModelComparison where two simulations are compared. The original definition has the
same CommunicativeModel but different ProgrammedModel, possibly written in different
programming languages or using different simulation toolkits, and correlated ExperimentalModels
are designed and their SimulationData is compared. ModelToModelComparison provides a good
test to validate that the P r o g r a m m e d M o d e l is an accurate representation of the
CommunicativeModel, so differences indicate that artifacts exist in the ProgrammedModel.
Takadama et al. (2004) proposes the notion of cross-element validation that makes small changes,
one element at a time, in the CommunicativeModel and compare the experimental results. For such
an experiment, the Bonferroni approach can be used, if the SimulationData is a fixed sample size, to
produce a confidence level of whether the two models are statistically similar or different. We
consider both the original definition and cross-element validation to be forms of
ModelToModelComparison; likewise, our iterative description of the experimental process allows
for the possibility of ModelToModelComparison between CommunicativeModels as they evolve
from one iteration to the next. With knowledge of multiple programming languages and multiple
simulations toolkits, the reasoner can automatically generate multiple ProgrammedModels from a
single CommunicativeModel allowing for greater experimentation.

FUTURE WORK

10

Our coverage of simulation in general has been brief for this short article; we have described
key areas that we consider relevant to agent-based modeling and simulation while leaving out some
areas completely, and in the areas we do cover, our discussion is not as encompassing as we would
like. However, we have presented a high standard for automation of many simulation tasks. Going
forward we intend to implement tools specific to agent-based modeling that can perform these tasks
and put them in practice on a couple of actual agent-based simulations; this should help elicit more
issues that are not apparent just from the theory. One of our key assumptions is the completeness
of our ontology which makes many of the automated tasks possible. A more realistic scenario is to
assume incomplete knowledge as well as uncertainty, then we use a probabilistic reasoner for
making decisions and a learning algorithm to accumulate additional knowledge. This is very much
what a modeler does as part of the scientific inquiry into a phenomenon; a useful tool will work
alongside the modeler helping to increase the knowledge base while automating many of the
mundane tasks.

REFERENCES

Axtell, R., R. Axelrod, J. Epstein, and M. Cohen, 1996, “Aligning Simulation Models: A Case
Study and Results,” Computational and Mathematical Organization Theory, 1:123-141.

Balci, O., 1998, “Verification, Validation, and Accreditation”, in Proceedings of the 1998 Winter
Simulation Conference, pp. 41-48.

Banks, J., 1998, Handbook of Simulation: Principles, Methodology, Advances, Applications, and
Practice, Wiley co-published by Engineering & Management Press, New York, NY.

Banks, J., J.S. Carson II, B.L. Nelson, and D.M. Nicol, 2001, Discrete-Event System Simulation,
Prentice Hall, New Jersey.

Christley, S., 2004, OWL for Agent-based Modeling and Simulation, available at
http://www.nd.edu/ ~schristl/research/ontology.

Doan, A., J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy, 2003, “Learning to Match
Ontologies on the Semantic Web,” in The International Journal on Very Large Databases, 12.

Flener, P., and L. Popelmnsky, 1994, “On the Use of Inductive Reasoning in Program Synthesis:
Prejudice and Prospects,” in Logic Programming Synthesis and Transformation, Meta-
Programming in Logic: Fourth International Workshops, LOBSTR'94 and META'94, Pisa, Italy,
pp. 69-87, Springer-Verlag, Berlin.

Grimm, V., 1999, “Ten Years of Individual-based Modeling in Ecology: What have we learned and
what could we learn in the future?”, Ecological Modeling, 115:129-148.

Miller, J.A., G.T. Baramidze, A.P. Sheth, and P.A. Fishwick, 2004, “Investigating Ontologies for
Simulation Modeling,” in Proceedings of the 37th Annual Simulation Symposium, pp. 54-63,
Arlington, Virgina.

11

Noy, N.F., and M.A. Musen, 2000, “Prompt: Algorithm and Tool for Automated Ontology
Merging and Alignment,” in The Proceedings of the National Conference on Artificial Intelligence
(AAAI).

O'Sullivan, D. and M. Haklay, 2000, “Agent-based models and individualism: is the world agent-
based?”, Environment and Planning A 32(8):1409-1425.

OWL, 2004, Web Ontology Language, available at http://www.w3.org/tr/owl-features.

Protege, 2004, Protege Ontology Editor, available at http://protege.stanford.edu.

Rich, C., and R.C. Waters, 1988, “Automatic Programming: Myths and Prospects,” IEEE
Computer 21(8):40-51.

Ropella, G.E., S.F. Railsback, and S.K. Jackson, 2002, “Software Engineering Considerations for
Individual-based Models”, Natural Resource Modeling 15(1):5-22.

Russell, S., and P. Norvig, 1995, Artificial Intelligence: A Modern Approach, Prentice Hall, New
Jersey.

Sarjoughian, H.S. And F.E. Cellier (editors), 2001, Discrete Event Modeling and Simulation
Technologies: A Tapestry of Systems and AI-Based Theories and Methodologies: A Tribute to the
60th Birthday of Bernard P. Zeigler, Springer-Verlag, New York, NY.

Takadama, K., and H. Fujita, 2004, “Lessons Learned from Comparison between Q-Learning and
Sarsa Agents in Bargaining Game,” in North American Association for Computational Social and
Organizational Science (NAACSOS 2004), Pittsburgh, PA.

Xiang, X., Y. Huang, G. Madey, and S. Cabaniss, 2005, "Modeling the Evolution of Natural
Organic Matter in the Environment with an Agent-based Stochastic Approach", Journal of Natural
Resource Modeling (to appear).

