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Preface

Preferences guide human decision making from early childhood (e.g. ”which ice cream
flavour do you prefer?”) up to complex professional and organizational decisions (e.g.
”which investment funds to choose?”). Preferences have traditionally been studied in
economics and applied to decision making problems. Recent work in AI and related
fields has led to new types of preference models and new problems for applying pref-
erence structures (see, for example, the special issue on preferences of Computational
Intelligence published in May 2004).

Explicit preference modelling provides a declarative way to choose among alterna-
tives, whether these are solutions of problems to solve, answers of database queries,
decisions of a computational agent, plans of a robot, and so on. Preference-based sys-
tems allow finer-grained control over computation and new ways of interactivity, and
therefore provide more satisfactory results and outcomes. Preferences are a relatively
new topic to artificial intelligence and are becoming of greater interest in many ar-
eas: knowledge representation, multi-agent systems, constraint satisfaction, decision
making, decision-theoretic planning, and more. Preferences are inherently a multi-
disciplinary topic, of interest to economists, computer scientists, OR researchers, math-
ematicians and more.

This workshop is intended as a multidisciplinary event that brings together re-
searchers from these different fields and that allows them to exchange experiences and
to discuss advanced methods for preference handling. It thus continues the tradition
of the AAAI-02 workshop on preferences and of the Dagstuhl seminar on preferences
held in June, 2004.

We have received 46 submissions to this workshop which confirms a very high
interest in research on preference handling. The program committee has selected 34
papers for the two-day workshop, which do not only cover advances in preference
handling methods, but also interesting applications of those techniques.

We welcome all participants of the multidisciplinary IJCAI-05 workshop on ad-
vances in preference handling and hope that this event will stimulate new ideas and
insights in preference handling.

Ronen Brafman
Ulrich Junker
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Efficient Skyline Queries under Weak Pareto Dominance 

                     Wolf-Tilo Balke               Ulrich Gün tzer 
                            L3S Research Center           Department of Computer Science 

                University of Hannover            University of Tübingen 
            30539  Hannover,  Germany         72076  Tübingen,  Germany 

                                  balke@l3s.de            guentzer@informatik.uni-tuebingen.de 

Abstract 
Skylines with partial order preference semantics 
often result in huge answer sets and what is worse, 
they cannot be computed efficiently. In this paper 
we will explore the evaluation of so-called re-
stricted skyline queries with partial order prefer-
ences under the paradigm of weak Pareto domi-
nance. Weak Pareto dominance removes all objects 
from skylines, which are dominated by other ob-
jects in some query predicates, but in turn do not 
dominate these objects in any predicate. We will 
argue that this paradigm yields intuitive results, 
prove that it leads to lean sizes of the restricted 
skyline and show how it opens up the use of effi-
cient algorithms for evaluation adopting the itera-
tion of ranked result lists for each query predicate. 

1 Introduction 
Human preferences play an essential role in information 
systems, because exact match attribute-based querying with-
out knowledge of the underlying database instance only too 
often produces empty or too big results. First approaches at 
cooperative databases like [Lacroix and Lavency, 1987; 
Motro, 1988] defined queries as wishes that could not al-
ways be satisfied, but would be automatically relaxed, if no 
perfect matches were found in the database instance. 

Recently this paradigm has gained new attention: top-k 
queries [Güntzer et al., 2000; Fagin et al., 2001] have 
shifted retrieval models from simple exact matching of at-
tribute values to the notion of best matching database ob-
jects. Top-k models rely on basic scorings of objects for 
each query predicate and a utility function to aggregate the 
objects� total scores. The paradigm has subsequently been 
extended under the name of skyline queries to cases where 
still score-based preferences exist for each query predicate, 
but no utility function exists to compromise between predi-
cates, e.g. [Börzsönyi et al., 2001]. To get result sets in these 
cases skyline approaches adopted the principle of Pareto 
optimality, i.e. all objects are returned that have better or 
equal score values with respect to all query predicates and 
are strictly better in at least one. [Balke and Güntzer, 2004] 
then presented an algorithm that allowed evaluating inter-
leaved skyline and top-k queries with optimal complexity. 

While all these score-based approaches generally allowed 
for efficient query evaluation, their expressiveness in terms 
of user preferences remained rather limited, e.g. [Fishburn, 
1999]. With the use of preferences in databases modeled as 
strict partial orders with an intuitive �I like A better than B� 
semantics [Kießling, 2002; Chomicki, 2002] this lack of 
expressiveness was remedied, however without providing an 
efficient evaluation of partial order preference queries. Also 
here the Pareto principle was the prime paradigm for evalu-
ating queries involving several partial order preferences (if 
no ordering for the preferences themselves is provided). In 
[Kießling, 2002] a strong Pareto dominance principle called 
‘Pareto accumulation’ was presented, where an object had 
to be better or equal in all predicates and strictly better in at 
least one to dominate another object. In contrast [Chomicki, 
2003] introduced a weak Pareto dominance principle called 
‘Pareto composition’, where an object had to be better, 
equal or indifferent in all predicates and strictly better in at 
least one to dominate another object. 

But for database retrieval such answer sets in the form of 
Pareto sets generally come at a price: Pareto sets grow ex-
ponentially in size with increasing numbers of preferences 
to combine [Bentley et al., 1978]. Hence, a further selection 
from Pareto sets is usually necessary to avoid the flooding 
of users with only more or less relevant results, c.f. [Koltun 
and Papadimitriou, 2005; Balke et al., 2005]. Due to the 
indifference property in partial order preferences the flood-
ing effect for strong Pareto dominance even grows more 
dramatic. This is because unlike in score-based preferences, 
where all objects can be compared within each predicate, in 
partial order preferences an object can be the worst object 
with respect to almost all preferences, but will nevertheless 
be Pareto-optimal, if it is indifferent with respect to a single 
preference. Since users can not be expected to always com-
pletely model the preference relations of all possible attrib-
ute values within each query predicate carefully avoiding 
indifference, preference queries will usually involve some 
indifference and thus, inflate the size of result sets.  

This behavior obviously is not sensible in practical appli-
cations and recent research in [Kießling, 2005] has started to 
combat indifference in partial order preferences by means of 
so called �substitute values�. The substitute values semantics 
slightly changes the preference semantics such that some 
indifferent values become comparable and are assigned 



equal usefulness, if the indifferent values dominate and are 
dominated by exactly the same predicate values. First ex-
periments in [Kießling, 2005] show that skyline sizes can 
already be considerably reduced using this semantics. Still, 
this semantics only remedies a small number of cases and 
does not provide efficient evaluation schemes.  

In this paper we argue that using the weak Pareto domi-
nance does not only allows the removal of less interesting 
objects from Pareto result sets, but also an efficient query 
evaluation. The usefulness of our approach is thus twofold: 
first restricted skylines help to effectively combat the explo-
sion of result set sizes due to indifference for partial order 
preferences. On the other hand our approach allows deriving 
these restricted skylines without having to compute the en-
tire Pareto set first. In the following we introduce an evalua-
tion framework relying on ranked result lists for each query 
predicate and give a pruning condition, which allows us to 
derive an efficient algorithm to evaluate restricted skyline 
queries with partial order preferences.  

2 The Weak Pareto Dominance Paradigm 
In the following we will discuss our basic approach and 
present some motivating examples. Consider for instance 
the following two user preferences on car types and colors: 
 

Example 1: 
Consider the following 

database instance: a green 

roadster, a red coupé, a 

yellow SUV and a black 

truck. Due to the indiffer-

ence between coupé and 

SUV and between red and 

black, yellow and black, or 

green and black, the skyline 

contains all four elements.  

 
Using the strong definition of Pareto sets, in example 1 

the whole data set would have to be delivered. Since a user 
usually is interested in only a few most interesting objects, a 
sophisticated selection from the skyline supports users.  

2.1 Weak Pareto Dominance  
We will now define the weak Pareto dominance semantics 
(which is identical to the concept of Pareto composition in 
[Chomicki, 2003]) and show some first characteristics. 
 
 Definiti on 1: (weak Pareto dominance)  
Let O be a set of database objects and x, y � O. An object x 
is said to weakly dominate object y with respect to partial 
order preferences P1, �, Pn, if and only if there is an index i 
(1 � i � n) such that x dominates y with respect to Pi and 
there is no index j (1 � j � n) such that y dominates x with 
respect to Pj, i.e. 
x 

�
y  :<=> � i (1 � i � n): x >Pi y � �� j (1 � j � n): y >Pj x 

where >P denotes the normal domination with respect to 
partial order P. 

 

We will call the set of all non-weakly-dominated objects 
in the following the restricted skyline. Let us now consider 
some characteristics of weak Pareto dominance. First we 
have to note that weak Pareto dominance is not an order 
relation, because it is not necessarily transitive. Consider for 
instance three (incomplete) preference graphs P1, P2 and P3 
for three objects a, b and c. If a >P1 b and b >P2 c and c >P3 
a, then we can derive a 

�
 b 

�
 c 

�
 a according to defini-

tion 1. Thus in some cases like in the (not very realistic) 
example from above, the restricted skyline can get empty 
due to intransitivity. But here also the normal skyline would 
yield the unconvincing result of simply returning all data-
base objects and thus is not particularly helpful either. 

Since we only use the weak Pareto dominance to limit 
down a result set, transitivity is not really needed. If there is 
only a cycle of weakly dominated objects on top level, there 
simply are no �better� objects and this is reflected in our 
approach by the restricted skyline being empty. Because 
cooperative systems usually want to avoid the �empty result 
effect�, an adequate reaction of the system would consist in 
either returning all these objects from the cycle (like in the 
Pareto set) or even better in asking the user to reconsider 
some of her/his preferences involved in the cycle. 

 
Example 1 (cont.): Consider the objects from above 

again under the notion of weak Pareto dominance. There is 
still no weak dominance relation between the green roadster, 
and the red coupé. But both of them weakly dominate the 
black truck and it can be removed in the restricted skyline. 

Removing the black truck 
seems indeed a very intuitive 
thing to do anyway, because P1 
tells us that everything is better 
than a truck and the user, al-
though giving explicit color 
preferences, did not voice 
his/her opinions on black cars. 
Moreover, we have to take a 

closer look at the relation between the red coupé and the 
yellow SUV. Since the user is indifferent between both car 
types, the red coupé fits his/her color wishes to a higher 
degree, hence is probably more desirable. The weak domi-
nance relation reflects this semantics: the red coupé weakly 
dominates the yellow SUV and the yellow SUV can be re-
moved in the restricted skyline. Thus, the result size in our 
small example is already halved. 

 
Moreover, we can also easily see that restricted skylines 

really always are part of the normal skyline, i.e. Pareto set. 
 
Lemma 1: (restricted skylines are part of Pareto skylines)  

Let R be the restricted skyline set with respect to partial 
order preferences P1,�, Pn. Then R will never contain 
dominated objects under the notion of Pareto optimality 
with respect to P1,�, Pn.  

 
Proof: Let o be any Pareto dominated object, but o � R. 

Thus there must exist an object w in the Pareto skyline 



which dominates o, i.e. � j (1 � j � n) (w >Pj o � w =Pj o) � 
� i (1 � i � n): w >Pi o. But the first part also implies �� j (1 
� j � n): o >Pj w, thus w must also weakly dominate o in 
contradiction to o � R.                                                        �  

 
If we focus on numerical preferences only, weak Pareto 

dominance and strong Pareto dominance are actually exactly 
the same. This is because numerical preferences impose a 
total ordering with respect to all predicates. Thus every two 
objects can be compared with respect to all predicates and if 
object x weakly dominates object y, then x dominates y also 
in the usual Pareto sense. 

Moreover, we can state that the substitute values seman-
tics in [Kießling, 2005] is a special case of the weak Pareto 
dominance semantics. This is because if any object o can be 
removed from the skyline under the substitute values se-
mantics, there has to be an object w that for at least one 
preference Pi dominates o and with respect to all other pref-
erences w either dominates o, or has equal or substitutable 
(i.e. indifferent values) values. Thus there cannot be any 
preference, where o dominates w and also our weak Pareto 
dominance semantics would remove o from the skyline set. 

3 Evaluation of Restricted Skylines 
In this section we focus on efficient evaluation schemes to 
derive restricted skyline sets from a (possibly large) number 
of database objects. Of course a naïve way of computing the 
set is to first derive the Pareto skyline, then test all pairs of 
objects for weak Pareto dominance and subsequently re-
move all weakly dominated objects. However, this is very 
inefficient way since for partial order preference skyline 
computation usually all database objects have to be ac-
cessed. Adopting an approach where each preference is 
processed by an (independent) subsystem, we will now fo-
cus on pruning large parts of the database, however, still 
deriving the correct restricted skyline.  

3.1 Evaluation Scenario  
In both top k and skyline retrieval the most often used sce-
nario for evaluating complex queries was a middleware sce-
nario, e.g. [Güntzer et al., 2000; Fagin et al., 2001; Balke 
and Güntzer, 2004]. Here (possibly independent) subsys-
tems evaluated different query predicates by scoring a 
common set of database objects and delivering them in 
sorted order. Usually two kinds of accesses on subsystems 
are enabled:  

x A sorted access iterated over the subsystem�s ob-
jects rank by rank, retrieving (oid, score) pairs 

x A random access asked for the specific score value 
for a certain object 

 
To get the final top k or skyline result a central instance 

basically either iterates over the subsystems� sorted lists or 
requests scores for specific objects, until it can guarantee 
that all objects relevant to the result set have been accessed 
and hence all database objects still unseen can be ignored, 
i.e. pruned. Such retrieval schemes not only allow for a high 
degree of distribution, but also have been proven to perform 

very efficiently accessing only an instance-optimal number 
of database objects, cf. [Fagin et al., 2001; Balke and 
Güntzer, 2004]. However, all these schemes were exclu-
sively designed for score-based retrieval, i.e. only consider 
numerical preferences imposing total orders. We will build 
our evaluation scheme for the same practical scenario, but 
enable the use of arbitrary partial order preferences. 

3.2 Sorting under Partial Order Preferences 
Our evaluation approach aims at pruning large parts of ir-
relevant database objects. Thus each subsystem has to sort 
objects in a way that possibly relevant objects are returned 
on smaller ranks than definitely irrelevant objects. We will 
use a simple breadth first topological ordering based on the 
partial order preference given for each query predicate. 
 
 Definiti on 2: (level of database objects)  
Let O be a set of database objects and x � O. An object x is 
said to belong to level i or level(o) = i with respect to partial 
order preference P, if and only if the longest path from any 
maximum object in P to x consists of (i - 1) edges. 
 
Definition 2 implies that all objects not explicitly mentioned 
by P (this may be quite a large number), are considered to 
belong to level 1. This is necessary, if objects whose attrib-
ute values are all not explicitly mentioned in any preference 
(e.g. a white limousine in example 1) have to be in the re-
stricted skyline. If a user really wants to see these objects, 
e.g. to allow for serendipity, performing an evaluation with 
definition 1 and 2 will get the correct result. 

The intuitive notion of our levels is that of imposing a 
sensible order: all maximum (i.e. non-dominated) objects of 
P are on level 1, all objects that are only dominated in P by 
maximum objects are on level 2, and so on. In the special 
case of numerical or total order preferences the level corre-
sponds to each object�s rank, if objects with identical 
scores/attribute values are considered to have same rank. 
But this level order has another nice property: 

 
Lemma 2: (level order domination)  

Let O be a set of database objects and x, y � O. Then object 
x can only dominate object y with respect to partial order 
preference P, if level(x) < level(y) with respect to P.  

 
Proof: If x dominates y there is a path of length q >1 

from x to y in P. Thus it directly follows from the definition 
of levels by longest paths in definition 2, that level(x) < 
level(x) + q � level(y).                                                          �  

 
Please note, though objects can only be dominated by ob-

jects in higher levels, due to the partial order semantics they 
do not have to be dominated by all objects on higher levels. 
In the following we will assume all subsystems to return 
database objects for sorted access in level order. Consider 
for example preference P1 in Example 1. Assuming that 
there are roadsters, coupés, sports cars, SUVs and trucks in 
the database, the level of all database objects that are road-
sters is 1, the level of all coupés and sports cars is 2, the 



level of all SUVs is 3 and the level of trucks is 4. So our 
subsystem first has to return all roadsters, then coupés and 
sports cars can be returned in arbitrary order, followed by 
the SUVs and finally all trucks. In contrast, another possible 
topological ordering returning first roadsters, then sports 
cars, then SUVs and then coupés would violate the output in 
level order.  

3.3 Pruning Database Objects  
Given the basic scenario we will now introduce the con-

cept of l-cuts, whose consideration is necessary to check 
whether all relevant, i.e. possibly not weakly dominated, 
objects have been accessed already. 

 
 Definiti on 3: (l-cut of preference orders)  

Let O be a set of database objects and S be a sorting of O in 
level order with respect to partial order preference P. Then a 
subset C � O is called a l-cut with respect to P, if  
    (a)      � w � C : level(w) � l  

(b)      � (o� S � level(o) > l) � w � C : w >P o 
 
The intuitive meaning of l-cuts is to form sets of objects 

that dominate all objects below the l-th level. Every com-
plete level of objects forms a trivial l-cut. But generally l-
cuts will be much smaller and in the following we only need 
to consider minimum l-cuts. Consider for instance prefer-
ence P1 in example 1. Every single roadster forms a 1-cut 
with respect to P1 (trivially the set of all roadsters also forms 
a 1-cut, but is not minimal). A 2-cut is formed by any pair 
of a coupé and a sports car. If there are no coupés in the 
database every single sports car will form a 2-cut.  

In the special case of numerical or total order preferences 
every object forms a trivial cut: All objects on lower levels 
are automatically dominated by all objects belonging to 
higher levels. For instance in example 1 every red car will 
form a 1-cut with respect to P2, every yellow car will form a 
2-cut with respect to P2, and so on. 

Having defined the basic concept of l-cuts with respect to 
a single partial order preference, we will now present a way 
to guarantee during a preference query evaluation that all 
relevant objects for the restricted skyline computation have 
been accessed in at least some of the level sorted subsys-
tems. This is the major component needed to build an effi-
cient evaluation algorithm for partial order preference que-
ries under the weak Pareto dominance paradigm. The fol-
lowing theorem will show a sufficient condition. 

 
Theorem 1: (correctly pruning database objects)  

Let O be a set of database objects, S1,…, Sn be sortings of O 
in level order with respect to partial order preferences P1,�, 
Pn. Given o1,…, ok � O and let {o1,…, ok } form an l i-cut 
with respect to every sorting S1,…, Sn for some natural num-
bers l1,…, ln,, then no object that for all i occurs on a higher 
level than l i in Si can be part of the restricted skyline under 
the notion of weak Pareto dominance with respect to P1,�, 
Pn.  

 

Proof: Let {o1,…, ok } be as defined above and o � O be 
an object with level(o) > l i with respect to Pi (1 � i � n). For 
the sake of contradiction we will assume that object o be-
longs to the restricted skyline set thus it cannot be weakly 
dominated by any other object. Without loss of generality 
consider the first partial order preference P1. Since level(o) 
> l1 with respect to P1 and {o1,…, ok } form an l1-cut there 
has to be an object oj (1 � j � k) that dominates o with re-
spect to P1, i.e. oj >P1 o. For o not to be weakly dominated 
by object oj, there has to be a preference Pq (1 � q � n) in 
which o >Pq oj. But since oj is part of an lq-cut with respect 
to Pq we get level(oj) t lq > level(o) and thus an object with 
higher level would be dominated by an object with smaller 
level, which is impossible according to lemma 2. Hence, o is 
weakly dominated by oj, i.e. not part of the restricted skyline 
in contradiction to our assumption.                                     �  

 
Theorem 1 states a sufficient condition for the pruning of 

objects in partial order preference query evaluation and thus 
a basic evaluation algorithm can be derived. We will define 
a sorted access with respect to a query predicate by return-
ing a pair consisting of an object�s oid and score (if the 
predicate is given by a numerical preference) or an object�s 
oid and attribute value (if the predicate is given by an attrib-
ute-based preference). Accordingly random accesses either 
return a score or an attribute value. 

 
Basic Algorithm for Restricted Skyline Computation 

1. Perform sorted accesses on all subsystems (e.g. in 
round robin fashion) 

2. Consider all minimum l-cuts among the objects ac-
cessed (for all l smaller than the current levels) 

3. Once all objects of some cut have been accessed in 
all subsystems, prune all objects on lower levels in 
all subsystems 

4. For the remaining objects perform random accesses 
and check objects pairwise for weak Pareto domi-
nation  

5. Remove all weakly dominated objects and return 
the restricted skyline 

 
Again considering the special case of numerical prefer-

ences, we observed earlier that strong and weak Pareto 
dominance coincide. For skyline computation an instance-
optimal condition is given in [Balke et al., 2004], where 
basically some object had to be accessed in every single 
subsystem by sorted access, before the unnecessary objects 
for the skyline computation could be pruned. Since for nu-
merical preferences every single object forms a l-cut once it 
is accessed, both conditions are indeed equivalent and our 
algorithm for restricted skyline evaluation is also equivalent 
to the respective instance-optimal evaluation algorithm for 
numerical preferences given in [Balke et al., 2004]. 

4 Dealing with Implicit Isolated Maxima 
Let us now consider an efficiency improvement for the case 
that users do not require objects, whose attribute values are 
never mentioned in any preference, to be returned.  



We can easily see that these objects only can be returned, 
if we assign the level 1 to objects with values that do not 
explicitly occur in a preference, so-called implicit isolated 
maxima. This is because we might be able to prune all ob-
jects below level 1, which would then include all those ob-
jects not explicitly mentioned in any preference, i.e. global 
implicit isolated maxima. On the other hand our subsystems 
for the evaluation of single query predicates are independ-
ent. Thus, objects not mentioned in the respective prefer-
ence can be arbitrary many, because users tend to state only 
incomplete preferences with just a few preferred attribute 
values instead of exhaustively modelling a domain. But ac-
cessing all objects that are implicit isolated maxima with 
respect to only some predicates is an unnecessary overhead. 

 
Example 1 (cont.): Assume P1 and P2 are handled by two 

independent subsystems in ranked lists S1 and S2.  
Imagine an object like a black limousine. Since neither P1 

nor P2 mention its attribute values, it is a global implicit 
isolated maximum and not weakly Pareto dominated by any 
object, i.e. part of the restricted skyline. This is accommo-
dated by definition 2 by assigning level 1 with respect to all 
preferences; thus every l-cut respects this object. 

But let us now focus on the black truck, which according 
to definition 2 would occur on level 4 in S1 and on level 1 in 
S2. We have seen the black truck to be weakly dominated by 
any roadster, coupé, sports car or SUV. Nevertheless we 
would definitely access it in S2, because �black� is an im-
plicit isolated maximum with respect to S2. This is an unde-
sirable effect that can only be avoided if we also assign a 
high level to black cars (in fact cars of any color except for 
red, yellow or green). Now the black truck can be pruned.  

However, then also our black limousine would have to be 
assigned high levels in all preferences and would be pruned, 
though not being weakly dominated. Thus, this optimization 
only works, if a user is also willing to do without global 
implicit isolated maxima in the restricted skyline.  

 
For improved efficiency in the following we will use a 

slightly different semantics: 
x Definition of skylines: Amend the definition to be 

the set of all not weakly dominated objects without 
those objects from the skyline that only have at-
tribute values, which are not explicitly mentioned 
in any preference. 

x Definiti on 2’ : Alter definition 2 such that all ob-
jects not explicitly mentioned by P are considered 
to belong to the highest (i.e. worst) level, i.e. 
(maximum path-length in P) + 1.  

x Definiti on 3’ : Alter condition (b) in definition 3 
such that for all objects o in S belonging to levels 
higher than l either o is dominated by w or o is in-
different to all objects on level 1, i.e. incomparable 
to all maximum objects (and therefore also to all 
other objects). 

 
Given these changes we can show that the pruning condi-

tion still holds, and we will only lose those objects in the 

restricted skyline, whose attribute values are not explicitly 
mentioned in any partial order preference, i.e. all global 
implicit isolated maxima. 

 
Theorem 2: (pruning also implicit isolated maxima)  

Let O be a set of database objects, S1,…, Sn be sortings of O 
in level order with respect to partial order preferences P1,�, 
Pn. Given o1,…, ok � O and let {o1,…, ok } form an l i-cut 
according to definition 3� with respect to every sorting S1,…, 
Sn for some natural numbers l1,…, ln,, then no object that for 
all i occurs on a higher level than l i in Si can be part of the 
restricted skyline under the notion of weak Pareto domi-
nance according to definition 1� with respect to P1,�, Pn.  

 
Proof: Let us divide the objects not yet accessed into 

three possible classes: 
(a) objects with attribute values mentioned in all prefer-

ences. For these objects theorem 1 still holds, because they 
have not been shifted in level, are not indifferent to at least 
one object of the respective cut in each preference and have 
not been removed from the restricted skyline. 

(b) objects with at least one attribute value mentioned in 
some preference and with at least one attribute value not 
mentioned in some other preference. These objects have 
been shifted into the highest level for all predicate where 
their attribute values are not mentioned in the respective 
preference and are incomparable to all the maximum objects 
in these predicates. Thus, if a l-cut according to definition 3� 
dominates all mentioned attribute values, the objects are still 
weakly dominated with respect to definition 1 and thus cor-
rectly not part of the restricted skyline. If at least with re-
spect to one preference they belong to a lower level than the 
l-cut they have been accessed by sorted access and will be 
correctly checked for weak domination. 

(c) objects with attribute values mentioned in no prefer-
ence. These objects reside due to definition 2� at the highest 
possible levels. Thus if a l-cut exists on a lower level in all 
preferences, they are pruned which is accommodated by 
definition 1�.                                                                        �  

 
Theorem 2 thus allows us to improve our evaluation pro-

cedure even in the presence of partially modelled domains. 
Now only objects that stand a chance of being not weakly 
dominated are accessed in step 1 of the evaluation algorithm 
(except for global implicit isolated maxima). Please note 
that explicit  isolated maxima, i.e. objects mentioned in some 
partial order preference, however having neither fathers nor 
descendants (e.g. given by a simple �I like object A� seman-
tics), are still considered for the restricted skyline, which is 
intuitive, since the user explicitly modelled them. 

5 Summary and Outlook  
Preference query evaluation plays an essential role in mod-
ern human-centered databases and information systems. In 
this paper we discussed the evaluation of database queries 
under the notion of weak Pareto dominance. We have 
shown this paradigm to decrease result set sizes, since it 
presents a stronger notion of optimality than given by strong 



Pareto optimality even together with the notion of substitute 
values. Our improvement was gained by addressing the 
problem of indifference in partial order preferences (which 
usually increases result sizes) and presenting an intuitive 
way to choose only �better matching� objects from the sky-
line. An object can be removed from our result set, if it is 
dominated by an object in some predicate, but it does not 
dominate this object with respect to other predicates. For 
total order preferences (that do not allow indifference) this 
notion coincides with usual Pareto optimality, but is a 
stronger paradigm for partial order preferences. 

The resulting restricted skyline even has a more important 
advantage, since we have also presented a way to efficiently 
evaluate such queries without having to compute the real 
skyline before selecting the more relevant objects. Our 
evaluation scheme is based on the evaluation scenarios in 
top k database retrieval, where each query predicate is 
evaluated by (possibly independent) subsystems that offer 
individual rankings for the evaluation process. Those ap-
proaches, however, were restricted to total order preferences 
(i.e. numerical preferences), whereas our approach caters for 
arbitrary partial order preferences, thus avoiding the limited 
expressiveness of numerical preferences. We showed the 
algorithm�s considerable optimization potential, which is 
gained by pruning definitely irrelevant database objects al-
ready at an early stage and then checking weak Pareto 
dominance relations only for a smaller subset of the data-
base instance. We have also shown the instance optimal 
algorithm for numerical preference skyline evaluation to be 
a special case of our evaluation algorithm.  

Our future work will focus on the implementation of our 
evaluation strategy in practical middleware scenarios and 
providing a detailed analysis and empirical quantification of 
the reduction in size of the restricted skyline set as opposed 
to normal skylines. Moreover, though we already know the 
number of object accesses (and thus execution times) to be 
instance-optimal for numerical preferences, we still need to 
investigate the speed-up of our evaluation scheme over sky-
line computations with partial order preferences. We will 
also focus on designing an efficient interleaved evaluation 
scheme for numerical and partial order preferences general-
izing our work on multi-objective optimization in [Balke 
and Güntzer, 2004]. Finally, we want to experiment with a 
related approach for restricting skylines that would replace 
all given partial orders by the corresponding total orders 
induced by our level order semantics. 
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Abstract

Representing (and reasoning about) preference re-
lations over combinatorial domains is computation-
ally expensive. We argue that for many problems
involving such preferences, it is relevant to simplify
them by projecting them on a subset of variables.
We investigate several possible definitions, focus-
ing without loss of generality on propositional (bi-
nary) variables. We then define the notion of in-
dependence of a preference relation from a set of
propositional variables.

1 Introduction
Decision-making problems are concerned with managing
agents’ preferences. Crucial tasks include modelling, elicita-
tion, aggregation (especially when a common decision has to
be made among several agents) and optimization. The com-
putational difficulty of these tasks depends on the size and the
structure of the space of alternatives. When the latter is small,
preferences can be represented explicitly, by simply ranking
alternatives, and the above tasks can be implemented in an
easy way. However, in many real-world applications, do-
mains have a combinatorial structure, i.e., an alternative con-
sists of a value of a given domain for each one of a given set
of variables. In that case, managing agents’ preferences can
be an enormous computational burden. This has led some re-
searchers to work on compact preference representation lan-
guages.

For some problems it might be relevant to process prefer-
ence relations (already elicited, and represented in some com-
pact form), so as to simplify it and make it more compact,
even if this results in a loss of information. Especially, it may
be helpful toprojecta preference relation on a subset of the
variables. This way of summarizing a preference relation is
relevant in particular when some variables are more impor-
tant than others, or when some variables should be assigned
prior to others. Consider for instance a group decision making
scenario. Rather than aggregating the whole preference rela-
tions before finding out an optimal assignment of variables,
which generally is computationally intractable, it may be a
good idea to focus on “primary” variables first, project the
preference relation on those variables, aggregate them, decide
on the values to be assigned to those variables, and only then

consider secondary variables. Such a decomposition of the
problem makes it much more tractable (furthermore, it can
be argued that human decision makers would probably de-
compose the problem as well in such a way, which suggests
it is cognitively relevant, even if it does not prove anything
regarding the best way to automatize it).

Projection operations have not been considered much as
far as preference relations are concerned, but there is a huge
amount of work about projecting probability distributions
represented in compact languages such as Bayesian networks
(projection being then referred to asmarginalization), and
more generally projecting valuation functions[Shenoy, 1989;
Kohlas & Shenoy, 2000], as well as projecting sets of con-
straints (as in Constraint Satisfaction Problems), and formu-
lae of propositional logic such as the forgetting operation
considered in[Lin & Reiter, 1994]. In this paper we aim
at defining similar projection operations for ordinal prefer-
ence relations, namely, preorders on a set of alternatives. For
the sake of simplicity, we focus on combinatorial domains
formed frombinaryvariables. Section 2 introduces some nat-
ural definitions and study their properties. Section 3 makes
precise a connection between some notions of projection and
the notion of forgetting from propositional logic. The starting
point of Section 4 is the study of conditions under which pro-
jecting a preference relation can be done without loss of infor-
mation, which will lead to several notions of independence of
a preference relation from a set of variables. Section 5 points
out related work and further issues. Due to space limitations,
most proofs are omitted.

2 Projection of a preference relation over a set
of variables

2.1 Preference relations
LetV be a finite set of propositional variables. For any (possi-
bly improper) subsetX of V , anX-alternativeis an element
of 2X , that is, an assignment of a binary truth value to each
one of the variables inX. X-alternatives are denoted by~x,
~x ′ etc. If X andY are disjoint subsets ofV then the con-
catenation of~x ∈ 2X and~y ∈ 2Y is theX ∪ Y -alternative,
denoted by~x~y, assigning values to variables ofX (resp.Y )
as~x (resp.~y) does.

A V -preference relationR, sometimes denoted as≥R, is
a preorder, that is, a reflexive and transitive relation, over2V .



Thestrict preference>R associated withR is the strict pre-
order defined by~v >R ~v ′ if and only if R(~v,~v ′) and not
R(~v ′, ~v). The indifference relation∼R associated withR is
the equivalence relation defined by~v ∼R ~v ′ if and only if
R(~v,~v ′) andR(~v ′, ~v). If neitherR(~v,~v ′) norR(~v ′, ~v) then
~v and~v ′ are incomparablew.r.t. R, denoted byQR(~v,~v ′).
If R is connected (that is,QR = ∅), then it is acomplete
preference relation.

As for notation,R∗ denotes the transitive closure of a rela-
tionR over2V .

For any V -preference relationR and any partition
{X,Y, Z} of V , X is preferentially independent fromY
givenZ w.r.t.R if and only if for all ~x, ~x ′ ∈ 2X , all ~y, ~y ′ ∈
2Y and all~z ∈ 2Z ,R(~x~y~z, ~x ′~y~z) impliesR(~x~y ′~z, ~x ′~y ′~z). If
Z = ∅ then we say thatX is preferentially independent from
V \X w.r.t.R.

2.2 Lower and upper projections
Informally, the projection of aV -preference relationR on
X ⊆ V is a preference relation over2X obtained fromR so
as to be as close as possible from the original relationR.

Definition 1 (lower and upper projections) LetR be aV -
preference relation andX ⊆ V . LetY = V \X;

• R↓X
L , called thelower projectionof R onX, is the bi-

nary relation overX defined as follows:R↓X
L (~x, ~x ′)

holds if and only ifR(~x~y, ~x ′~y) holds for all~y ∈ 2Y ;

• R↓X
U , called theupper projectionofR onX, is the tran-

sitive closure of the binary relationR′ overX such that
R′(~x, ~x ′) holds if and only ifR(~x~y, ~x ′~y) holds for some
~y ∈ 2Y .

Some first properties, whereR andR′ areV -preference
relations andX,Y ⊆ V , are the following ones:

Proposition 1

1. R↓X
L andR↓X

U areX-preference relations;

2. if R is complete thenR↓X
U is complete;

3. if R ⊆ R′ thenR↓X
L ⊆ (R′)↓X

L andR↓X
U ⊆ (R′)↓X

U ;

4. (R ∩R′)↓X
L = R↓X

L ∩ (R′)↓X
L and

(R ∩R′)↓X
U ⊆ R↓X

U ∩ (R′)↓X
U ;

5. ((R ∪R′)∗)↓X
U = (R↓X

U ∪ (R′)↓X
U )∗ and

(R ∪R′)↓X
L ⊇ (R↓X

L ∪ (R′)↓X
L )∗;

6. (R↓X
U )↓Y

U = (R↓Y
U )↓X

U and(R↓X
L )↓Y

L = (R↓Y
L )↓X

L .

Of course,R↓X
L ⊆ R↓X

U and a question that comes natu-
rally is whenR↓X

L andR↓X
U are the same.

Proposition 2 For any V -preference relationR and any
X ⊆ V , R↓X

L = R↓X
U if and only ifX is preferentially inde-

pendent fromV \X w.r.t.R.

Note that, whenR is complete,R↓X
U is obviously complete

as well butR↓X
L may fail to be complete.

2.3 Optimistic and pessimistic projections
The following definitions exhibit some extra specific notions
of a projection.

Definition 2 (optimistic/pessimistic projections) Let R be
a V -preference relation andX ⊆ V . LetY = V \X;

• R↓X
StrongOpt, thestrong optimistic projectionofR onX,

is defined by:R↓X
StrongOpt(~x, ~x

′) if and only if∃~y ∀~y ′,
R(~x~y, ~x ′~y ′);

• R↓X
WeakOpt, the weak optimistic projectionof R on X,

is defined by:R↓X
WeakOpt(~x, ~x

′) if and only if ∀~y ′ ∃~y
R(~x~y, ~x ′~y ′);

• R↓X
StrongPess, thestrong pessimistic projectionof R on

X, is defined by:R↓X
StrongPess(~x, ~x

′) if and only if∃~y ′

∀~y,R(~x~y, ~x ′~y ′);

• R↓X
WeakPess, theweak pessimistic projectionofR onX,

is defined by:R↓X
WeakPess(~x, ~x

′) if and only if∀~y ∃~y ′

R(~x~y, ~x ′~y ′).

It is easily checked that these four relations are transitive.
The optimistic projections focus on finding some possibility
to have~x dominating~x ′ whatever the context for~x ′. The
pessimistic projections focus on finding some possibility to
have~x ′ dominated by~x whatever the context for~x.

WhenR is complete,R↓X
StrongOpt andR↓X

WeakOpt coin-

cide, as well asR↓X
StrongPess andR↓X

WeakPess, and all four are

complete. In this case,R↓X
StrongOpt(~x, ~x

′) (and equivalently

R↓X
WeakOpt(~x, ~x

′)) iff the best alternatives extending~x are at
least as good as the best alternatives extending~x ′, whereas
R↓X

StrongPess(~x, ~x
′) (and equivalentlyR↓X

WeakPess(~x, ~x
′)) if

and only if the worst alternatives extending~x are at least
as good as the worst alternatives extending~x ′. These cri-
teria are reminiscent of those used in qualitative decision
theory (see e.g.[Brafman & Tennenholtz, 1997; Dubois &
Prade, 1995] – with the slightly different interpretation that
X-alternatives represent possible decisions and elements of
(V \X)-alternatives represent possible states of the world.

Proposition 3 We have the following inclusions.

• R↓X
L ⊆ R↓X

StrongOpt ⊆ R
↓X
WeakOpt ⊆ R

↓X
U ;

• R↓X
L ⊆ R↓X

StrongPess ⊆ R
↓X
WeakPess ⊆ R

↓X
U .

2.4 Examples
To begin with, here is an illustration involving the above
ideas. Consider a company which is about to move. Presum-
ably, there are a few options to choose from. The Head of the
Public Relation Department may prefer the Headquarters to
be a new building located downtown rather in some suburb,
which he still prefers to an old building downtown, and the
least he cares for is an old building in some suburb. The Head
of the Accounting Department may wish first a new building
downtown, second, an old building downtown, third, an old
building in a suburb, all that preferred to a new building in



a suburb. The Head of the Legal Department may prefer the
Headquarters to be located dowtown, whereas new or old are
incomparable in his view (whatever the location).

All this can be formalized using two variables, one for lo-
cation (x for downtown, so that̄x stands for suburb) and one
for generation (y for new, so that̄y stands for old). As re-
gards the Head of the Legal Department, his preferencesR
can be depicted by the following Hasse diagram ofR (ar-
rows point from a more preferred alternative towards a less
preferred one):1

xy xȳ
↓ ↘↙ ↓
x̄y x̄ȳ

We now give many more examples.

Example 1

R :
xy xȳ
↓ ↓
x̄y x̄ȳ

All projections onx coincide and are equal to the prefer-
ence relationx > x̄.

All projections ony coincide and are equal to the prefer-
ence relation in whichy and ȳ are incomparable.

Example 2

R :
xy → xȳ

x̄y ← x̄ȳ

All projections onx coincide and are equal to the prefer-
ence relation wherex andx̄ are incomparable.

R
↓{y}
L as well asR↓{y}

StrongOpt andR↓{y}
StrongPess are equal

to the preference relation in whichy andȳ are incomparable,
whileR↓{y}

U as well asR↓{y}
WeakOpt andR↓{y}

WeakPess are equal
to the preference relationy ∼ ȳ.

Example 3

R :

xy
↓
x̄ȳ
↙↘
x̄y xȳ

R
↓{x}
L is the preference relation in whichx and x̄ are

incomparable;R↓{x}
U is the preference relationx ∼ x̄;

R
↓{x}
StrongOpt andR↓{x}

WeakOpt are equal to the preference rela-

tionx > x̄; R↓{x}
StrongPess is the preference relation in whichx

and x̄ are incomparable, whileR↓{x}
WeakPess is the preference

relation in whichx ∼ x̄.
Things are symmetric for the projections ony.

1For the sake of notation, when we specify a preference relation
explicitly, we omit pairs coming from reflexivity and transitivity. For
instance, the relation denoted byx > x̄ is, more rigorously, the
relation{(x, x̄), (x, x), (x̄, x̄)}, while the relation denoted byx ∼ x̄
is, more rigorously, the relation{(x, x̄), (x̄, x), (x, x), (x̄, x̄)}.

Example 4

R :

xy
↙↘
x̄y xȳ
↘↙
x̄ȳ

All projections onx (resp. y) are equal to the preference
relationx > x̄ (resp.y > ȳ ).

Example 5

R :

xy
↓
xȳ
↓
x̄ȳ
↓
x̄y

All projections onx are equal to the preference relation
x > x̄.
R

↓{y}
L is the preference relation in whichy and ȳ are in-

comparable;R↓{y}
U is the preference relationy ∼ ȳ; the op-

timistic projections ony (which coincide becauseR is com-
plete) are equal to the preference relationy > ȳ; the pes-
simistic projections ony (which coincide, again becauseR is
complete) are equal to the preference relationȳ > y.

Observe thatR is a formal representation of the prefer-
ences expressed by the Head of the Accounting Department.
That all projections onx (the location variable) amount to
x > x̄ indeed illustrates that the Head of the Accounting De-
partment favors the Headquarters being located downtown:
His preference old vs. new is only next to location, and de-
pends on what the location is (see the fact that the various
projections ony do not coincide). The lower projection ony
shows that the Head of the Accounting Department does not
inconditionnally prefer old to new (or vice-versa). The up-
per projection ony shows that the preferences of the Head of
the Accounting Department include a situation such that he
prefers new to old (downtown) and a situation such that he
prefers old to new (suburb).

Example 6

R :
xy ∼ xȳ
↓

x̄y ∼ x̄ȳ

All projections onx are equal to the preference relation
x > x̄. All projections ony are equal to the preference rela-
tion y ∼ ȳ.

3 Connection to propositional logic
LV is the propositional language built up fromV , together
with the usual connectives and the Boolean constants> and
⊥. Formulas ofLV are denoted by Greek lettersϕ, ψ, θ, etc.
V ar(ϕ) denotes the set of propositional variables occurring
in ϕ.

We make use of the next two notions from[Lin, 2001]
whereϕ ∈ LV andX ⊆ V :
• the strongest necessary conditionof ϕ on X is the

strongest formulaψ of LV such thatV ar(ψ) ⊆ X and
ϕ |= ψ;



• theweakest sufficient conditionof ϕ onX is the weakest
formulaψ of LV such thatV ar(ψ) ⊆ X andψ |= ϕ.

The strongest necessary condition (resp., weakest suffi-
cient condition) ofϕ onX is denoted by∃(V \X).ϕ (resp.,
∀(V \X).ϕ). Actually,∃(V \X).ϕ is usually known as the
forgettingof V \X in ϕ.

A V -preference relation isbipartite if and only if there ex-
istsG ⊆ 2V such that for all~v, ~v ′ ∈ 2V , thenR(~v,~v ′) holds
if and only if ~v ∈ G or ~v ′ ∈ 2V \ G; thecharacteristic for-
mulaθR of a bipartiteV -preference relationR is the propo-
sitional formula – unique up to logical equivalence – whose
set of models is exactlyG (in symbols,Mod(θR) = G).

So, a bipartite preference relationR can be represented by
a propositional formula. Then, it is worthwhile investigating
how can some notions of a projection over bipartite prefer-
ence relations be similarly captured by propositional formu-
las. The connection is most significant when considering op-
timistic and pessimistic projections (note that ifR is bipartite,
it is complete and then strong and weak notions coincide.)

Proposition 4 LetR be a bipartite preference relation whose
characteristic formula isθR. LetX ⊆ V andY = V \ X.
Then

• R↓X
WeakOpt = R↓X

StrongOpt is the bipartite relation whose
characteristic formula is∃(V \X).θR.

• R↓X
WeakPess = R↓X

StrongPess is the bipartite relation
whose characteristic formula is∀(V \X).θR.

Moreover, ifθR is logically equivalent to a formula ofLX

then

• R↓X
U = R↓X

WeakOpt = R↓X
StrongOpt is the bipartite rela-

tion whose characteristic formula is∃(V \X).θR.

• R↓X
L = R↓X

WeakPess = R↓X
StrongPess is the bipartite re-

lation whose characteristic formula is∀(V \X).θR.

As already mentioned, the deepest result here is with op-
timistic and pessimistic projections. The basic reason is that
the way optimistic and pessimistic projections are defined re-
quiresall V \ X-alternatives extending the same context to
behave alike (w.r.t.R) henceR can be partitioned along the
language (actually, just the variables inV \X). Since lower
and upper projections have no such definition, the above con-
straint onθR as being logically independent ofV \X provides
the necessary link betweenR and its potential partitions along
the language.

4 Independence of a preference relation from
a set of variables

This section requires a couple of notions, as follows.
If X ⊆ V and~v ∈ 2V then theX-conjugate of~v, de-

noted byswitch(~v,X), is the alternative obtained from~v by
switching the truth value of eachx ∈ X (and leaving the
other variables unchanged). WhenX is a singleton consist-
ing of a single variablex, we drop the curly brackets, writing
switch(~v, x) as thex-conjugate of~v.

Let switch(R,X) be the relation obtained from
R by exchanging each alternative~v with its X-
conjugate, that is,switch(R,X)(~v,~v ′) if and only if
R(switch(~v,X), switch(~v ′, X)).

4.1 Definitions and properties
The introduction motivates the need to simplify preference re-
lations so that applying one is possible just by handling part
of it. Clearly, a projection provides such an abridged version
of a preference relation. The question is what conditions, if
any, allows us to substitute a projection for the original prefer-
ence without losing relevant information? A general answer
is that projection overV \X is presumably harmless whenX
can in some sense be dispensed with, i.e.R is independent of
X.

Definition 3 LetR be aV -preference relation and letX ⊆
V andY = V \X.

I-independenceR is I-independent ofX if and only if for
all ~x, ~x ′ ∈ 2X and all~y ∈ 2Y , ~x~y ∼R ~x ′~y.

Q-independenceR isQ-independent ofX if and only if for
all ~x, ~x ′ ∈ 2X and all ~y ∈ 2Y , ~x~y and~x ′~y are incom-
parable w.r.t.R.

G-independenceR is G-independent ofX if and only if
switch(R,X) = R.

We might think of a stronger definition ofG-independence,
where invariance ofR by any permutation on2X is required
instead of invariance ofR by permutations of single variables.
Let us first introduce the following definition:

• let σ be a permutation of2X ; then σ(R) is the
V -preference relation obtained fromR by letting
σ(R)(~v,~v ′) hold if and only ifR(σ(~v), σ(~v ′)) holds.

Fortunately, this notion, which may appear stronger at first
glance, is equivalent to the one we gave above:

Proposition 5 R is G-independent fromX if and only if
σ(R) = R holds for every permutationσ of 2X .

Interestingly, all three notions above satisfy the property of
decomposability.

Proposition 6 For any of the three notions of independence
(I, Q and G),R is independent from X if and only ifR is
independent for everyx in X.

There is at least one interesting notion of independence that
fails decomposability, though. It comes from preferential in-
dependence:

Definition 4 LetR be aV -preference relation and letX ⊆
V andY = V \X.

P-independenceR is P -independent ofX if and only ifY
is preferentially independent ofX w.r.t.R.

Intuitively, P -independence w.r.t.x means that if you
want to compare two alternatives then you do not have
to worry aboutx as long as both alternatives share the
same value forx: The outcome would be the same for
another value ofx. Back to the company illustration, if the
preference relation is independent from the variable “logo



of the company”, then you can compare “old&downtown”
against “new&suburban” just by fixing “logo of the
company” to whatever value and then directly compare
“old&downtown&logo” against “new&suburban&logo”
because the outcome would be exactly the same as
when comparing “old&downtown&otherlogo” against
“new&suburban&otherlogo”.

Two further definitions may be thought of, namely:
union independenceR isU -independent ofX if and only if

R is I-independent ofX orQ-independent ofX.

weak independenceR is W -independent ofX if and only
if for all ~x, ~x ′ ∈ 2X and all~y ∈ 2Y , ~x~y and~x ′~y are
either indifferent or incomparable w.r.t.R.

Proposition 7 LetR be aV -preference relation and letx ∈
V . We have the following implications:

• IndI(R, x)⇒ IndG(R, x)⇒ IndW (R, x);
• IndI(R, x)⇒ IndU (R, x)⇒ IndW (R, x);
• IndQ(R, x)⇒ IndU (R, x);
• IndG(R, x)⇒ IndP (R, {x}).
Note thatIndG andIndU (andIndQ) are incomparable,

which can be seen on the following two counterexamples:

• R = {(xȳ, xy), (x̄y, x̄ȳ)}. Then switch(R, x) =
{(xy, xȳ), (x̄ȳ, x̄y)}, therefore we do not have
IndG(R, x), whereas we haveIndQ(R, x) and a
fortiori IndU (R, x). ThereforeIndQ(R, x) does not
imply IndG(R, x) and likewise,IndU (R, x) does not
imply IndG(R, x).
• R = {(xy, xȳ), (xȳ, xy)}. Then switch(R, x) =
R, however neitherIndQ(R, x) nor IndI(R, x) holds,
therefore IndU (R, x) does not hold. Therefore
IndG(R, x) does not implyIndU (R, x).

Note also that:

• With R = {(xȳ̄,xy)}, we have switch(R, x) =
{(xȳ,x̄y)}. Hence, we do not haveIndG(R, x),
whereas we haveIndP (R, {x}). That is,IndP (R, {x})
does not implyIndG(R, x).
• IndG(R, x) does implyIndP (R, {x}) (but this is only

becausex is a single variable, otherwiseIndG(R,X)
may fail to implyIndP (R,X) whenX is not a singleton
set).

4.2 Examples
Example 1 (continued)

R :
xy xȳ
↓ ↓
x̄y x̄ȳ

R is Q-independent ofy and G-independent ofy but not
I-independent ofy (it is obviously not independent fromx for
any notion of independence considered).

Example 2 (continued)

R :
xy → xȳ

x̄y ← x̄ȳ

Table 1: Relationships between notions of independence.Ar-

rows point from the more demanding notion to the less demanding.

independence independence as

as indifference incomparability

↙ ↘ ↓
independence as independence as

invariance under indifference or

permutation incomparability

↙ ↘ ↙
preferential weak

independence independence

R is Q-independent ofy but neither G-independent nor
I-independent ofy.

Example 3 (continued)

R :

xy
↓
x̄ȳ
↙↘
x̄y xȳ

R is independent neither ofx nor ofy, whatever the notion of
independence under consideration. Idem for the preference
relations of Examples 4 and 5.

Example 6 (continued)

R :
xy ∼ xȳ
↓

x̄y ∼ x̄ȳ

R is I-independent and G-independent ofy, but not
Q-independent ofy. (It obviously fails to be independent of
x, whatever the notion of independence under consideration.)

4.3 Independence and projection
Proposition 8 LetX ⊆ V . For anyX-preference relation
RX there is a uniqueV -preference relationR such that (a)
IndI(R, V \X) and (b)R↓X

L coincides withRX .

However, there is no such result as regardsQ-
independence andG-independence. Here are two counterex-
amples.

• First, considerR1 to be the reflexive-transitive closure of
{(xy, x̄y)} andR2 to be the reflexive-transitive closure
of {(xȳ, x̄ȳ)}. BothR1 andR2 areQ-independent of
Y = V \ X whereX = {x}. Also, the empty set is
the lower projection ofR1 onX. Similarly, the empty
set is the lower projection ofR2 onX. Furthermore,R1

andR2 have the same upper projection onX, that is the
reflexive-transitive closure of{(x, x̄)}.
• Second, considerR1 to be the reflexive-transitive

closure of {(xy, x̄y), (xȳ, x̄ȳ), (x̄y, x̄ȳ), (x̄ȳ, x̄y)}
and R2 to be the reflexive-transitive closure of



{(xy, x̄y), (xȳ, x̄ȳ), (x̄y, x̄ȳ)}. Both R1 and R2 are
G-independent ofY . R1 andR2 have the same lower
projection onX, that is{(x, x̄)}∗, which is also their
upper projection onX.

Proposition 9 If R isPref -independent ofV \X then each
ofR↓X

U andR↓X
L coincides with the restriction ofR to 2X .

5 Conclusion and perspectives

This paper is meant to pave the way towards simplifying and
decomposing preference relations over combinatorial struc-
tures, by investigating and comparing various notions of pro-
jection and independence. It is still a preliminary work and
raises many questions.

One of the most salient issues that we did not investigate
is about computing the various notions of projection (as well
as checking the various notions of independence) when the
initial preference relation is represented in acompact repre-
sentation languagesuch as CP-nets[Boutilier et al., 2004]
or a language based on propositional logic (see e.g.[Lang,
2004] for a survey). The problem is then the following: given
a compact structure (e.g., a CP-net) representing a preference
relationR in a compact way, compute another input of the
same language (e.g. another CP-net) that represents the pro-
jection ofR on a given subset of variablesX w.r.t. one of
the various definitions given in this paper. Clearly, we are
looking for algorithms that would perform this computation
directly (without generatingR explicitly, nor even its projec-
tion onX). This looks harder than we initially thought and is
certainly a promising issue for further research. As to inde-
pendence, it would be worth investigating the computational
complexity of checking, for a given notion of independence
and a given representation language, whether a given com-
pactly represented preference relation is independent from a
given set of variables (in the same vein as the work in[Lang,
Liberatore, & Marquis, 2003] for independence and forget-
ting in propositional logic).
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Abstract

In this paper, we address the problem of specifying
and generating preferred plans using rich, qualita-
tive user preferences. We propose a logical lan-
guage for specifying non-Markovian preferences
over the evolution of states and actions associated
with a plan. We provide a semantics for our first-
order preference language in the situation calculus
and prove that progression of our preference for-
mulae preserves this semantics. This leads to the
development of PPLAN, a bounded best-first search
planner that computes preferred plans. Our prefer-
ence language and planning approach is amenable
to integration with several existing planners, and
beyond planning, can be used to support arbitrary
dynamical reasoning tasks.

1 Introduction
Research in automated planning has historically focused on
classical planning – generating a sequence of actions to
achieve a user-defined goal, given a specification of a domain
and an initial state. Nevertheless, one need look no further
than the pervasive problem of travel planning to observe that
generating a plan is not the only challenge. In many real-
world settings, plans are plentiful, and it is the generation of
high-quality plans meeting users’ preferences and constraints
that presents the biggest challenge.

In this paper we examine the problem of preference-based
planning – generating a plan that not only achieves a user-
defined goal, but that also conforms, where possible, to a
user’s preferences over properties of the plan. To that end, we
propose a first-order language for specifying domain-specific,
qualitative user preferences. Our language is rich, supporting
non-Markovian preferences over the evolution of actions and
states leading to goal achievement. Our language harnesses
much of the expressive power of first-order and linear tempo-
ral logic. We define the semantics of our preference language
in the situation calculus [8]. Nevertheless, nothing requires
that the planner be implemented using deductive plan synthe-
sis in the situation calculus. Indeed our planner PPLAN, a
bounded best-first search planner, is a forward-chaining plan-
ner, in the spirit of TLPlan [1] and TALPlan [6], that exploits
progression of preference formulae to more efficiently com-
pute preferred plans. Experimental results illustrate the effi-
cacy of our best-first heuristic.

Research on qualitative preferences has predominantly fo-
cused on less expressive, static preferences, yielding greater
incomparability between outcomes (e.g., [3]). In the area of
dynamical preferences, there are several recent and notable
pieces of work. Son and Pontelli [10] have developed a lan-
guage for planning with preferences together with an imple-
mentation using answer-set programming. Indeed we lever-
age their preference language PP in our work. Also no-
table is the work of Delgrande et al. [4], who have devel-
oped a framework for characterizing preferences and proper-
ties of preference-based planning. Rossi and colleagues (e.g.,
[9]) exploit their work on soft constraints to develop tempo-
ral constraints for reasoning in temporal domains, sometimes
with uncertainty. Their qualitative preferences are less ex-
pressive than ours, but their computational framework is more
general. Finally research on decision-theoretic planning and
MDPs also addresses the general problem of generating pre-
ferred plans [7]. Nevertheless, the elicitation of preferences in
terms of Markovian numeric utilities makes these approaches
less applicable to the types of preferences we examine.

2 Preliminaries
The situation calculus is a logical language for specifying and
reasoning about dynamical systems [8]. In the situation cal-
culus, the state of the world is expressed in terms of functions
and relations (fluents) relativized to a particular situation � ,
e.g., ������
	 ��� . In this paper, we distinguish between the set of
fluent predicates � and the set of non-fluent predicates 
 rep-
resenting properties that do not change over time. A situation� is a history of the primitive actions ����� performed from
an initial situation �
� . The function ������� 	 ��� maps a situation
and an action into a new situation. The theory induces a tree
of situations rooted at � � .

A basic action theory in the situation calculus � comprises
four domain-independent foundational axioms and a set of
domain-dependent axioms. The foundational axioms � de-
fine the situations, their branching structure, and the situation
predecessor relation � . �����! states that situation � precedes
situation �  in the situation tree. � includes a second-order
induction axiom. The domain-dependent axioms are strictly
first-order and are of the following form:" successor state axioms �$#%# , one for every fluent &(')� ,
which capture the effects of actions on the truth value of & ." action precondition axioms �$*,+ , one for every action - in
the domain. These define the fluent ./�0���0��� 	 ��� , the conditions
underwhich it’s possible to execute an action � in situation � ." axioms �1#�2 describing the initial situation.



" unique names axioms for actions ����� * .
Details of the form of these axioms can be found in [8].

Following convention and to enhance readability, we will
generally refer to fluents in situation-suppressed form, e.g.,� � ��� ���
	 � rather than � � ��������	 	 ��� .

A planning problem is a tuple 
 ������� where � is a basic
action theory and � is a goal formula, representing properties
that must hold in the final situation. In the situation calculus,
planning is characterized as deductive plan synthesis. Given
a planning problem 
 ������� , the task is to determine a situa-
tion ��� ��� ����� 	 ����� ��������� 	������ 	 ��������� 	 � � � � � � 1, i.e., a sequence
of actions from � � , such that:��� � �! �� � � 	 � 	#"%$ � �'&�()	�� ����*�+ � ���
where 	 � 	,"�$ � �'&%()	�� � ��-�.�/� �10%� 	 �  �� � ������� 	 �! �32 �54 ./�0���0��� 	 �  � .

We refer to situation �6� ����� �� 	 � � � as the plan trajectory
and the sequence of actions ��7� �8� �:9 �;�<� ��� as the associated
plan. The length of this plan is = . The set of all plans is
denoted by > , and >@? denotes the subset of plans of lengthACB

. A planning problem 
 ������� is solvable if it has at least
one plan. It is

B
-solvable if it has a plan of length

ADB
.

3 Preference Specification
In this section we describe the syntax and semantics of our
first-order preference language. We illustrate the concepts in
this paper in terms of the following motivating example.

The Dinner Example: It’s dinner time, and Claire
is tired and hungry. Her goal is to be at home with
her hunger sated. There are three possible ways for
Claire to get food: she can cook something at home,
order in take-out food, or go to a restaurant. To
cook a meal, Claire needs to know how to make the
meal, and she must have the necessary ingredients,
which might require a trip to the grocery store. She
also needs a clean kitchen in which to prepare her
meal. Ordering take-out is much simpler; she only
has to order and eat the meal. Going to a restaurant
requires getting to the restaurant, ordering, eating,
and then returning home.

This example is easily encoded in any number of planning
systems, and given a specification of Claire’s initial state, a
planner could generate numerous plans that achieve Claire’s
goal. Nevertheless, like many of us, Claire has certain pref-
erences concerning where and what she eats that make some
plans better than others. It is the definition of these prefer-
ences and the generation of these preferred plans that is the
focus of this paper.

3.1 A First-Order Preference Language
In this section we present the syntax of a first-order language
for expressing preferences about dynamical systems. Our
preference language modifies and extends the preference lan-
guage PP recently proposed by Son and Pontelli [10]. Fol-
lowing their work, we provide a hierarchy of preference for-
mulae. Basic desire formulae define properties of situations,
atomic preference formulae define preferences over proper-
ties, and general preference formulae define compositions of

1Which we abbreviate to ��� �FE ��� 	#����� 	 �G�IH 	 � � � , or ��� � �� 	 � � � .

preferred situation properties. The planner is ulitmately given
one general preference formula (subsequently referred to sim-
ply as a preference formula) relative to which a preferred plan
is generated.
Definition 1 (Basic Desire Formula (BDF)). A basic desire
formula is a sentence drawn from the smallest set J where:

1. KMLON
2. PQLON
3. If R ��K , then final �!R � ��N
4. If �1� � , then occ ��� � �SN
5. If T 	 TU� 	 TV9 are in N , then so are WVX , XY�Z*[X\9 , X]�Z^_X\9 ,�! � �FT , �10 � �FT , next( X ), always( X ), eventually( X ), and un-

til( XY� , X\9 ).
BDFs establish desirable properties of situations. By com-
bining BDFs using boolean and temporal connectives, we are
able to express a wide variety of properties. We illustrate their
use with BDFs from our motivating example.

� ����`Ia�b'c�a � ��� �ed%�Ib��G*�f�a ��g/�#h ��gji �lk ��f�	�� �Fd �'b�� (P1)

�! � � � � ���#`Ia�b'c�a � �0� � �m*�f�a ��g/�#h ��gji �lk ��f�	 � � � (P2)

final ��f'n � "��m	#apo5()	!�'a
� (P3)

�! � � � eventually � occ �q" � ��f � � � � � (P4)

�! � � � �! �r�� � eventually � occ ����c �'	,c,i ��fG	!��$ � � � 	 r�� � � (P5)

�! � � � �! �r�� � eventually � occ ����c �'	,c�s5	 � � �'$mc �'a � � � 	 r�� � � (P6)

always �!W � �! � � � occ ��	!� � � � � ��*�"%�:n�at	 �#	�� � � � � (P7)

P1 states that in the initial situation Claire has the ingredients
and the know-how to cook spaghetti. P2 is more general, ex-
pressing that in the initial situation Claire has the ingredients
to make something she knows how to make. Observe that
fluent formulae that are not inside temporal connectives refer
only to the initial situation. P3 states that in the final situation
the kitchen is clean. P4 - P6 tell us respectively that at some
point Claire cooked something, ordered something from take-
out, or ordered something at a restaurant. Finally P7 tells us
that Claire never eats any chinese food.

While BDFs enable description of desirable properties of
situations, they do not enable us to express preferences be-
tween alternative properties. For example, we cannot say that
Claire prefers cooking to ordering take-out. To do so, we de-
fine Atomic Preference Formulae, following the definition in
[10].

Definition 2 (Atomic Preference Formula). An atomic
preference formula is a formula u]vxw uzy{w |1|1|}w u � ,
where =�~�� and each uY� is a basic desire formula. When
=[�x� , atomic preference formulae correspond to BDFs.

An atomic preference formula expresses a preference over
alternative properties defined by BDFs. For example, Claire
can express her preference over what to eat (pizza, followed
by spaghetti, followed by crêpes) using P82.
occ  ��	!� � ��dmn!��� � � �l� occ ��	!� � � �ed%�Ib�� ��� occ ��	!� � �q"�c8�	�dm	 ��� � (P8)

If Claire is in a hurry, tired, or very hungry, she may be more
concerned about how long she will have to wait for her meal:

.���� .��Y*$.5��� .�����W .��z*$.5� (P9)
2For legibility, we abbreviate eventually � occ �!T � � by occ  �!T � ,

and we refer to the preference formulae by their labels.



This says that Claire’s first choice is take-out, followed by
cooking if she has the ingredients for something she knows
how to make, followed by going to a restaurant, and lastly
cooking when it requires a trip to the grocery store.

Again, an atomic preference represents a preference over
alternative u]� ’s. We wish to satisfy the BDF uY� with the low-
est index � . Consequently, if Claire eats pizza and crêpes, this
is no better nor worse with respect to P8 than situations in
which Claire eats only pizza, and it is strictly better than situ-
ations in which she just eats crêpes. Note that there is always
implicitly one last option, which is to satisfy none of the uz� ,
and this option is the least preferred.

Atomic preference formulae contribute significantly to the
expressivity of our preference language, but we still lack a
way to combine atomic preferences together. Our third and
final class of preference formulae will provide us with several
useful methods for combining preference formulae.

Definition 3 (General Preference Formula). A formula �
is a general preference formula if one of the following holds:
� � is an atomic preference formula
� � is ����� , where � is a basic desire formula and � is a

general preference formula [Conditional]
� �{�	�
� , for � a general preference formula [Negation]
� � is one of

– � v�� � y
� |1| | � �@� [General And]

– � v�� � y�� | |1| � �@� [General Or]

– � v����}y��{| |1|���� � [Lex Order]

where = ~�� and each � � is a general preference formula.

Here are some example general preference formulae:

.�����.5��� .����0� � .���� .������ .��! .�" � .��,� �
.�� � .�" � .���#0� .��%$ .�" � .����0�

P10 states that if Claire initially has the ingredients for some-
thing she can make, then she should cook. �
� does the op-
posite of � . E.g., P11 states that Claire’s most preferred op-
tion is eating something other than pizza, crêpes, or spaghetti,
and otherwise she prefers crêpes to spaghetti to pizza. The
remaining preferences show the various ways we can com-
bine Claire’s food and time preferences. P12 maximizes the
satisfaction of both Claire’s food and time preferences. P13
can be used if she would be content if either of the two were
satisfied. P14 tells us that while Claire cares about both her
preferences, her food preference takes priority.

This concludes our description of the syntax of our pref-
erence language. Our language extends and modifies the PP
language recently proposed by Son and Pontelli [10]. Quan-
tifiers, variables, non-fluent relations, and a conditional con-
struct have been added to language. In PP it is impossible to
talk about arbitrary action or fluent arguments or their prop-
erties, and difficult or even impossible to express the kinds
of preferences given above. We have also provided a more
intuitive semantics for General And and General Or prefer-
ences. Finally, we differ significantly in our semantics, which
follows.

3.2 The Semantics of our Language
We appeal to the situation calculus to define the semantics of
our preference language. Preference formulae are interpret-
ted as situation calculus formulae. We associate with each
situation term a weight between 0 and 1, depending upon
how greatly it deviates from satisfying a preference formula.
0 indicates complete satisfaction, whereas 1 represents com-
plete dissatisfaction. Weights were necessary to differentiate
situations that would be deemed “incomparable” in less ex-
pressive preference languages (e.g., [3]). Preference formu-
lae are evaluated relative to an action theory � . Since pref-
erence formulae may refer to properties that hold at various
situations in a situation history, we use the notation u%& 'G�
')(+*
proposed by Gabaldon [5] to explicitly denote that u holds
in the sequence of situations originating in � and terminat-
ing in �  Z� �����FE � � 	��%���!	 � � H 	 ��� . Recall that fluents are repre-
sented in situation-suppressed form and that &,& '-* denotes the
re-insertion of situation term � .

We interpret BDFs in the situation calculus as follows.

T ��K 	 T3E � 	 �  H�-�.�/� T3E �%H
T �
P 	 T3E � 	 �  H -%.!/� T
final �!T �%E � 	 �  H�-�.�/�QT3E �  H
occ ��� �%E � 	 �  H -%.!/� ������� 	 � �32 �  
eventually �!T �%E � 	 �  H�-�.�/� �! �� � � �52 � � 2 �  �FT3E � � 	 �  H 3
always �!T �%E � 	 �  H -�.�/� �10 �l�.���52��l�Y2 �  �FT3E �l� 	 �  H
next �!T �%E � 	 �  H�-�.�/� �! � � � ��� ��� 	 ���32 �  *ST3E ������� 	 ��� 	 �  H
until �!T 	 X �%E � 	 �  H -�.�/� �! ��,9/� �52 �,9Z2 �  �10#XZE �,9 	 �  H5*

�10 �l�2�0��2 �l� � ��9!�FT3E �l� 	 �  H43
Boolean connectives and quantifiers are already part of the

situation calculus and require no further explanation here.
Since each BDF is shorthand for a situation calculus expres-
sion, a simple model-theoretic semantics follows.

Definition 4 (Basic Desire Satisfaction). Let � be an action
theory. A situation '7�6587:9;& - y ��| |1|1� -m�8*��
< v>= satisfies a basic
desire formula u just in the case that

�M�� T3E � � 	 �%H . We define?A@ 9!u = to be the weight of situation ' wrt BDF u . ?B@ 9!u = �x�
if s satisfies u , otherwise ? @ 9 u = �C� .

We can generalize this definition as follows.

Definition 5. Let � be an action theory, and let ' and ')( be
situations such that 'EDF'G( . The situations beginning in ' and
terminating in 'G( satisfy u just in the case that

� � � T3E � 	 �  H .
We define ? @
H @JI 9 u = to be the weight of the situations origi-
nating in ' and ending in 'G( wrt BDF u . ? @KH @JI 9!u = ��� if u is
satisfied, otherwise ? @KH @1I 9 u = �L� .
Example 1: Consider the plan trajectory � ���� �FE "%()	!�'aNM n �#�m	 � 	 ",� �lf �q"%c8�	 dm	 ��� 	 	!� � �q"%c8�	�d�	 ��� 	 "%()	!�'aNM n �#�m	 �%H 	 � � �
and the initial database

��O 2 �0��:$ma�b'c�r � � �!� 	 � ���#`Ia�b'c�a � �0� �ed%�Ib 	 � �!� 	 � � ��� ����	 	 � ��� 	
3Temporal formulae follow [5], using the abbreviations:�! � � ����2 � � 2 �  �JP � �! �� � �10 �52 � � * � � 2 �  �*QP.3�10 �l�2����2 �l�z2 �  �JP � �10 ��� �10'E ��2 �l� * �l�z2 �  H�4RP.3



� ���#`Ia�b'c�a � �0�q"%c8�	�d�	 � 	 � ��� 	 f'a ��g �,h ��gzi �lk��Gf�	��q"%c8�	ed�	 ���13 .
Then we have the following:
g�� � .���� � � g�� � .�� � ��� g�� � .�# �\� � g�� � .5��� � �g � � .�� � � � g � � .�� � � � g � � . � �\� �

Definition 6 (Atomic Preference Satisfaction). Let ' be a
situation and � � u v w u y w |1|1| w u]� be an atomic
preference formula. Then ? @ 9 � = � min � ���� y � ? @ 9!u]� = �
��� , if such an � exists, and ?�@ 9 � = � � otherwise.

Evaluating weights with respect to Example 1, we get:

g�� � .��0� � �
# g�� � .�" �\� �

�
Definition 7 (General Preference Satisfaction I). Let ' be a
situation and � be a general preference formula. Then ?B@ 9 � =
is defined as follows:" g�� �!T �j��T � � �<�<� � T � � is defined above

" g � �	�,��
��\� � � if g � �	� �\� �g�� �

�� otherwise" g � � ��
�� � ����g � �

��" g � �

 �  �
 �8 �<�<�  �
5��� �������80,g � �

�� � � ��� n��Oa
3" g � �

 � � 
 � � �;�<� � 
5� � � min 0,g � �

�� � � ���On��Oa
3
The weight of Lex Order preferences makes use of the fol-

lowing two definitions.
Definition 8 (Set of Possible Weights). We use � 9 � = to de-
note the set of possible weights of � . This can be defined
inductively as follows:" If P is a BDF, then � � P � �	0-� 	 �-3" If PO��� �j� �;�<� � � � , then� � P � �	0 ��"! � ��nV� � 	 � 	#�<�<� 	 a$#��-3" If PO� T �"
 or PO� ��
 , then � � P � �%� �

��" If PO�%
/�N �;�<�  &
 � or PO�%
/� � �<�;� � 
 � , then� � P � �%' ��)( � ���

�� �" If PO�%
 � $�
 �!$ �<�<� $�
5� , then� � P � �	0 �*,+.-/)0 221 3 *,4 /
5 1 5 ��� ��n�� � 	 � 	%�;�<� 	76 ��8( � � � �

�� � � � � 3
where � � 9 � =-� denotes the cardinality of the set � 9 � = .

For example, we obtain the following sets of possible
weights:� � .�� �U�	0 � 	 �9 	 99 	 � 3� � .�" �U�	0 � 	 �: 	 �9 	 9: 	 � 3� � .��
#0�\�%� � .�� � .�"0�\�%� � .�� �<;=� � .�" �

� 0 � 	 �9 	 99 	 �-3>;,0-� 	 �: 	 �9 	 9: 	 � 35� 0 � 	 �: 	 �9 	 �9 	 99 	 9: 	 �-3
Definition 9 (Position of a Weight). Given a preference for-
mula � and some ? '@� 9 � = , we define the position of ?
with respect to � 9 � = , written A 7�'89
?\�B� 9 � = = , to be equal to� �DC 'E� 9 � = �FCHGI?�� � .

To illustrate this definition, we determine the positions of
weights with respect to the set ��� .��
#0�3� 0-� 	 �: 	 �9 	 �9 	 99 	 9: 	 �-3 :./� �0� � 	 ��� .���# � �U� � ./�0�0� �9 	 � � .���# � �U� �

./� �0� 9: 	 ��� .���#0� �\� � ./�0�0� �9 	 � � .���# � �U� �
Definition 10 (General Preference Satisfaction II). Let '
be a situation and let � � �@v�� �}y/�{|1| | � � � . We define

g � � P �\�KJ ��)( � E ./�0�0�qg�� �

 � � 	 � �

 � � �ML 6 �N (O�)! � � � �

 N � � HE 6 ��)( � � � �

�� � � HP���

Returning to Example 1,�Og�� � .����0.5��� � g�� � .5��� � ��Og�� � � .��0� � ��� g�� � .��0� � �>� 99 � �9�Og � � .��! �.�"0� �%���Q� 0 99 	 �: 3Z� 99�Og � � .�� � .�"0�\� min 0 99 	 �: 35� �:�Og�� � .���$ .�"0�
�KROS � *UT�VW* R<X 5
Y 3 * ROX 5	5[Z 1 3 * R<\ 5 1 ! R�S � *]T�VB* RO\ 5
Y 3 * R<\ 5	51 3 * ROX 5 1 Z 1 3 * RO\ 5 1� 9 Z_^ ! �: Z_^ �p� � �F�� \

Definition 11 (Preferred Situations). A situation ''y is pre-
ferred to a situation 'a` with respect to a preference formula� , written Pref 9 ' y �K' ` �
� = , if ? @�b 9 � = G ? @dc 9 � = . Situations' y and ' ` are indistinguishable with respect to a preference
formula � , written 'Iyfehg 'a` , if ?A@ b 9 � = � ?A@ c 9 � = .
4 Planning with Preferences
With a preference language in hand, we return to the problem
of planning with preferences.

Definition 12 (Preference-Based Planning Problem). A
preference-based planning problem is a tuple 
 �����
���5� ,
where � is an action theory, � is the goal, and � is a prefer-
ence formula.

Definition 13 (Preferred Plan). Consider a preference-
based planning problem 
����%�
�
�5� and plans i- y andi- ` . We say that plan i- y is preferred to plan i- ` iff
Pref 9 587:9.i-8y'�K< v = � 5 7:9.i-j`��
< v = �2� = .
Definition 14 (Optimal Plan, Ideal Plan). An optimal plan
with respect to 
 �����
���5� is any plan i- '_> s.t.?lkWmWn[o* H # 2�p 9 � = � min � ? kWmWn oq H #�2 p 9 � = � ir '7>$�:|
A plan i- is an ideal plan iff ?skWmQnto* H # 27p 9 � = �x� .
Definition 15 (

B
-Optimal Plan). Given 
�� ���
�
�5� and a

length bound
B

, a
B

-optimal plan is any plan i-�'7> ? s.t.?lkWmQnto* H #�2 p 9 � = � min � ? kWmWn oq H #�2 p 9 � = � ir '_> ? � .
Definition 16 ( u -Satisfactory Plan). Given a preference-
based planning problem and a quality bound � A u A � , au -satisfactory plan is any i- '7> such that ?skWmQnto* H # 27p 9 � = A u .
4.1 Progression
In Section 5 we will present an algorithm for planning with
preferences, based on forward-chaining planning. As has
been done with control knowledge containing linear temporal
logic formulae [1; 6], we evaluate our preference formulae by
progressing them as we construct our plan. Progression takes
a situation and a temporal logic formula (TLF), evaluates the
TLF with respect to the state of the situation, and generates
a new formula representing those aspects of the TLF that re-
main to be satisfied in subsequent situations. In this section,
we define the notion of progression with respect to our pref-
erence formulae and prove that progression preserves the se-
mantics of preference formulae.

In order to define the progression operator, we add the
propositional constants TRUE and FALSE to both the situa-
tion calculus and to our set of BDFs, where � � � TRUE and�wv FALSE for every action theory � . We further add the
BDF occNext ����� 	 � �$� , to capture the progression of occ ����� .



Definition 17 (Progression of a Basic Desire Formula). Let' be a situation, and let u be a basic desire formula. The
progression of u through ' , written � @ 9 u = , is given by:

" If T ��K , then � � �!T �\� � TRUE if
�M�� T3E �%H

FALSE otherwise

" If T �SP , then �P� �!T �U� � TRUE if
��� � T

FALSE otherwise" If T�� occ ����� , then ��� �!T � � occNext ��� �" If T�� occNext ����� , then

��� �!T � � � TRUE if
�M��  ��  � � � ��� ��� 	 �  �

FALSE otherwise" If T�� final �qX � , then ��� �!T � � T" If T�� W X , then ��� �!T � � W���� �qX �" If T�� X]�V*�X\9 , then � � �!T � ��� � �qX]� �t*�� � �qX\9!�" If T�� X]�V^�X\9 , then � � �!T � ��� � �qX]� �t^�� � �qX\9!�" If T�� �! � ��X , then � � �!T � �����
	��
� � �qX ����� � 4
" If T�� �10 � ��X , then � � �!T � �����
	��
� � �qX ����� �" If T�� next �qX � , then ��� �!T � � X" If T�� always �qX � , then ��� �!T � ����� �qX �p*ST" If T�� eventually �qX � , then � � �!T � ��� � �qX �p^ST" If T�� until �qX]� 	 X\9!� , then��� �!T � � ����� �qX � �t*
T �t^���� �qX 9 �" If T�� TRUE or T�� FALSE, then � � �!T �\� T

Returning to Example 1,

����� � always ��f�n � "%�m	#apo5()	!��a
� �
��� � ��f'n � "��:	,apo5()	!�'a
�p* always ��f�n � "%�m	#apo5()	!��a
�
� FALSE * always ��f'n � "%�m	#a�o5(1	��'a
�
����� � �! � � � � ����`Ia�b'c�a � �0� � � �p����
	�� ��� ����� ��`Ia�b'c�a � �0�q"!� �

Progression of atomic and general preference formulae is
defined in a straightforward fashion by progressing the indi-
vidual BDFs that comprise these more expressive formulae.
The full definition can be found in [2]. Note that progression
can lead to a potentially exponential increase in the size of
a BDF. In practice, we can (and do) greatly reduce the size
of progressed formulas by the use of Boolean simplification
and bounded quantification [1]. Definition 17 show us how to
progress a preference formula one step, through one situation.
We extend this to the notion of iterated progression.
Definition 18 (Iterated Progression). The iterated pro-
gression of a preference formula � through situation 'C�587:9Bi- �K< v>= , written ���@ 9 � = , is defined by:

���O 2 � P � ��� O 2 � P �
���� S * � Y � 5 � P �\��� � S *�� Y � 5 ������ � P � �

Finally we prove that the progression of our preference for-
mulae preserves their semantics, i.e., that our action theory
entails a preference formula over the situation history of ' iff
it entails the progressed formula up to (but not including) ' .
We will exploit this in proving the correctness of our algo-
rithm in the section to follow.

4We assume a finite domain.
� �����

denotes the result of substitut-
ing the constant " for all instances of the variable  in

�
.

Theorem 1 (Correctness of Progression). Let ' �587:9;& - y ��|�|�|�� -m�8*��
< v>= be a situation and let u be a BDF. Then

� � � u%& <Vv��K'-* iff � � �!� �@ I 9 u = & '��
'-*
where '@�F587:9 -m� �K'>( = .

Proof Sketch: The proof proceeds by induction on the
structure of T .

From Theorem 1, we can prove that the weight of a sit-
uation with respect to a preference formula is equal to the
weight of the final situation, disregarding its history, with re-
spect to the progressed preference formula.

Corollary. Let '[� 587:9;& -8y'��|�|�|��,- � *��
< v = be a situation and
let � be a preference formula. Then ? @ 9 � = � ? @
H @ 9"� �@JI 9 � =;= ,
where '@�F587:9 -m� �K' ( = .
5 Computing Preferred Plans
In this section, we describe PPLAN a bounded best-first
search planner for computing preference-based plans. The
PPLAN algorithm is outlined in Figure 1 5.

PPLAN(init, goal, pref, maxLength, desiredWt)
frontier # INITFRONTIER(init, pref )
bestPlanSoFar # [ ]
bestWtSoFar # MAXWT(pref ) #B�
while frontier $�&% and bestWtSoFar ' desiredWt

current # REMOVEFIRST(frontier)
if goal L state and weight ( bestWtSoFar

bestPlanSoFar # partialPlan
bestWtSoFar # weight

end if
neighbours # EXPAND(partialPlan, state, progPref )
frontier # SORTNMERGEBYVAL(neighbours, frontier)

end while
return bestPlanSoFar, bestWtSoFar

EXPAND(partialPlan, state, progPref ) returns a list of new
nodes to add to the frontier. If partialPlan has length equal to
maxLength, EXPAND returns [ ]. Otherwise, EXPAND determines
all the executable actions in state and returns a list which con-
tains, for each of these executable actions � ,

(weight, newPartialPlan, newState, newProgPref ).

Figure 1: The PPLAN algorithm.

PPLAN takes as input an initial state init, a goal state goal,
a preference formula pref, a length bound maxLength, and
a quality bound desiredWt, designating the maximum accept-
able plan weight. The algorithm returns a plan bestPlanSoFar
and its weight bestWtSoFar.

A naive implementation would require computing alter-
native plan trajectories and then evaluating their relative
weights. This is grossly inefficient, requiring computation
of numerous plan trajectories, caching of relevant trajec-
tory state, and redundant evaluation of preference formula
weights. Instead, we make use of Theorem 1 to compute
weights as we construct plans, progressing the preference for-
mula as we go. Exploiting progressions enables the devel-
opment of a best-first search strategy that orders search by

5Refer to [2] for a more detailed description of the algorithm.



weight and evaluates preference formulae across shared par-
tial plans. Progression is commonly used to evaluate domain
control knowledge in forward chaining planners (e.g. [1],
[6]) where progression of hard constraints prunes the search
space. In contrast, we are unable to prune less preferred par-
tial plans because they may yield the final solution, hence the
need for a best-first strategy.

Returning to our algorithm in Figure 1, our plan frontier is
a list of nodes of the form [weight, partialPlan, state, pref ],
sorted by weight, and then by length. The frontier is initial-
ized to the empty partial plan, its weight and pref correspond-
ing to the progression and evaluation of the preference for-
mula in the initial state. On each iteration of the while loop,
PPLAN removes the first node from the frontier and places
it in current. If the partial plan of current satisfies the goal
and has lower weight than bestWtSoFar, then bestPlanSoFar
and bestWtSoFar are replaced by current’s partialPlan and
weight respectively. Next we call the function EXPAND with
current’s node arguments as input. If partialPlan has length
equal to maxLength, then the frontier is updated to the empty
list. Otherwise, EXPAND generates a new set of nodes, one
for each action executable in state. These new nodes are
sorted by weight then length and merged with the remain-
der of the frontier. We exit the while loop when we have
either reached an empty frontier or we have found a plan
with weight less than or equal desiredWt. The correctness
of PPLAN is given in the following theorem.

Theorem 2 (Correctness of PPLAN Algorithm). Given
as input a preference-based planning problem 
 �����
���5� , a
length bound

B
, and a quality bound u , PPLAN outputs

a plan that is either
B

-optimal or u -satisfactory, provided

�� ���
�
�5� is

B
-solvable, and the empty plan otherwise.

Proof Sketch: The proof proceeds by proving termination
and then proving the correct output properties by cases [2].

5.1 Experimental Results

We tested PPLAN on 24 instances of the dinner example and
31 instances of the simpler school travel example used in
[10]6. We compared the number of nodes expanded using
PPLAN’s heuristic best-first search with a breadth-first search
(BFS) algorithm. Results for the dinner example are given
in Figure 2. Our results illustrate the effectiveness of our
preference-weight heuristic in guiding search. As plans grow
in length, the efficacy of this heuristic is magnified. It’s in-
teresting to note test cases 17 and 18, where PPLAN demon-
strates poorer performance than BFS. Recall that PPLAN’s
best-first search explores plans based on weight then length.
As a consequence, PPLAN can be led astray, investigating a
long plan with low weight, whereas the best plan can end up
being a shorter plan with higher weight. In our experience,
this behavior occurs infrequently, and the heuristic generally
leads to significantly improved performance.

6See http://www.cs.toronto.edu/ � sheila/pplan for code, domains
and test cases. Unfortunately, there was no way to get comparative
statistics with [10]. Figure 2 presents experimental results from an
early implementation. Updated results are available on our website.

TEST # PPLAN BFS TEST # PPLAN BFS

1 6 9 13 54 87
2 13 19 14 57 90
3 6 10 15 39 102
4 6 9 16 57 90
5 34 34 17 60 42
6 48 50 18 60 42
7 8 12 19 70 87
8 57 90 20 316 FAILS
9 38 113 21 70 4806

10 47 113 22 117 FAILS
11 47 124 23 31 1698
12 55 135 24 274 FAILS

Figure 2: Nodes expanded by PPLAN & breadth-first search.

6 Summary
In this paper we addressed the problem of preference-based
planning. We presented the syntax and semantics of an ex-
pressive first-order language for specifying non-Markovian,
qualitative user preferences. We proved that our semantics
is preserved under progression. This led to the develop-
ment of PPLAN, a best-first search, forward-chaining plan-
ner that computes optimal preferred plans relative to quality
and length bounds. We further proved the correctness of the
PPLAN algorithm. Our planner can be modified to compute
the optimal plan without a quality bound and is trivially ex-
tended to include hard user constraints. More generally, our
preference language is amenable to integration with a vari-
ety of existing planners, and beyond planning, can be used to
support arbitrary dynamical reasoning tasks.
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Abstract

Personalization and adaptation of multi-media
messages are well known and well studied prob-
lems. Ideally, each message should reflect its re-
cipient’s interests, device capabilities, and net-
work conditions. Such personalization is more
difficult to carry out given a compound multi-
media presentation containing multiple spatially
and temporally related elements. This paper de-
scribes a novel formal, yet practical approach,
and an implemented system prototype for author-
ing and adapting compound multi-media presen-
tations. Our approach builds on recent advances
in preference specification and preferences-based
constrained optimization techniques.

1 Introduction
Multi-media presentations are messages containing multiple
audio/visual elements that must be presented in some partic-
ular temporal and spatial relation. Such messages can now be
sent to users over both the Internet and mobile networks. As
an example, consider an ESPN promo containing two video
segments of upcoming sports events, image and video adver-
tisements, as well as sports results in the form of plain text.
The author of this message would like the two video segments
to be broadcasted one after the other, followed by a short
commercial. Image-based ads will be displayed along side
the video segments, and the scores will be displayed below.

Such presentations can be described using the standard
SMIL format (for Synchronized Multimedia Integration Lan-
guage www.w3c.org/AudioVideo), supported by pop-
ular browsers and media players. And they can be either
streamed to the target device or downloaded. Our problem
begins when we want to customize and personalize a presen-
tation. Message recipients for the ESPN promo have diverse
interests and may be using diverse devices that differ in their
image quality, screen size, memory, processing power, media
playback support, and more. We need to adapt each presenta-
tion to a format supported by each particular user’s capabili-

∗This work was sponsored by the Israel Ministry of Industry
and Trade. Doron Friedman is partially supported by the European
Union FET project PRESENCIA, IST-2001-37927.

†Permanent Address: Dept. of Computer Science, Ben-Gurion
University

ties and to personalize it to suit her taste. Obviously, prepar-
ing a special presentation for each potential combination of
user profile, target device, and network conditions is infeasi-
ble. This paper describes the principles behind a working sys-
tem prototype implemented for a consortium of companies
in the area of streaming multi-media. This system employs
a novel customization and adaptation approach that is both
flexible and extensible. Moreover, it provides an interesting
application of the ideas of preference-based constrained opti-
mization discussed in [Boutilier et al., 2004].

In our approach the author need not consider explicit re-
cipient scenarios. Rather she describes in a natural manner
preferences and constraints on the content and form of the
message. At presentation time, the author’s specification is
combined with user device and network properties, and a user
profile. These define a preference-based constrained opti-
mization problem whose outcome is a description of the opti-
mal presentation for this particular user and user device. This
presentation is generated in SMIL format on-the-fly by the
system following the user’s request, and can be downloaded
or streamed immediately. The method has two parts: an au-
thoring part that enables the presentation author to describe
the basic elements of the presentation, as well as her require-
ments and preferences; and a presentation part that combines
this information with information about the user and his de-
vice and executes an appropriate optimization algorithm that
selects a concrete presentation for this particular case.

Our work contributes both novel ideas to the area of
adaptive presentations as well as an interesting example of
the use of qualitative preference-based reasoning techniques
which have been gaining popularity recently. In this short
paper, we concentrate on the general ideas and algorithms
behind our system, and in particular, its approach to con-
tent personalization. For lack of space, we defer discus-
sion of the spatial and temporal aspects to the full pa-
per. We note that these aspects are mostly dealt with us-
ing existing techniques, although their combination with
adaptive content selection does raise some interesting is-
sues. Technical details of the implemented system as well
as a working prototype are available online. Please check
www.cs.bgu.ac.il/catalina/moshemos/htmls/mainFrame.html for a
demo of the presentation adaptation engine.



2 Background and Overview
Content adaptation is a well known problem for multime-
dia presentations. Even for single-media messages, more ad-
vanced architectures take into account the need to adapt the
particular video/audio/image format to one supported by the
end-user’s device and may utilize transcoders that can take
into account the bandwidth of the user’s connection (e.g., see
www.strimm.org). But ideally, not only the message for-
mat should be adapted, but the actual content, too. This is
often referred to as content personalization, a specific form
of adaptation that has received wide attention in the literature
(e.g., see [Riecken, 2000]). Personalization and adaptation of
compound rich-media is more problematic. The choice of one
element may affect that of other elements – e.g., if we have
a large video file, then we may have a problem delivering it
simultaneously with another media file, such as an audio file.
Similarly, if we choose to display one image, then we have
less screen space to display another image simultaneously.
And if we select particular content for one media component,
it may affect the desirable content of other components. Thus,
the nature of the end-user’s device and his network connec-
tion constrain the type of presentations that we can display.
Moreover, these properties are known only at message pre-
sentation time, not at authoring time. If we combine these
constraints with the desire to personalize the message based
on a user profile, we are faced with a non-trivial problem.

SMIL [SMIL, 2001] is the most popular format for syn-
chronized presentations.1 SMIL 1.0 specifies a set of content
modules that let the author control the content of the presen-
tation based on parameters such as bit-rate, CPU, and lan-
guage. Control is achieved by allowing the presentation of
an element to be conditional on the value of these parame-
ters. SMIL 2.0 has added to these capabilities the ability of
the author to specify additional customized attributes beyond
the standard attributes. SMIL’s conditional primitives provide
important flexibility to authors, but they are still limited: the
choice of whether to display one element is individual and
independent of other choices. This is the core of the prob-
lem we try to address. For instance, a device’s buffer size or
screen size imposes a global constraint on the whole presen-
tation, not on a single element of it.

A number of multimedia authoring systems attempt to ad-
dress this problem (see [Brusilovsky, 1996] for a survey of
adaptive hyper-media). [Boll et al., 1999] describe a system
supporting cross-media adaptation, i.e., media elements, or
entire multimedia presentation fragments, can be replaced by
other fragments of a different type. A rich semantic model
is used to identify adequate substitutions, and a strong un-
derlying multimedia database that can address these semantic
issues is required. Adaptation consists of filtering semanti-
cally inadequate options. Madeus [Jourdan et al., 1998] uses
a temporal constraint-based approach to specify allowable
media element combinations. The Cuypers system [van Os-
senbruggen et al., 2001] uses more sophisticated constraint-
programming techniques, as well as higher level semantic
specifications. All these systems require a rich semantic
model and do not differentiate explicitly between different
presentations that satisfy their constraints.

1See [van Ossenbruggen et al., 2003] for a comprehensive anal-
ysis of formats for time-based, media-centric presentations.

In this paper, we propose a flexible approach that views
presentation adaptation as a preference-based constrained op-
timization problem. Our approach is modular, flexible, and
pragmatic, and can be used as a basis for supporting even
more complex settings, such as live feeds. It is much more
akin to the process of specifying a SMIL presentation than
the above systems – in fact, it can be viewed as specifying
a flexible SMIL template. The basic idea is for the author
to specify a set of possible media elements and a number of
possible instantiations for each such element. This defines the
space of potential presentations. Now, the author specifies a
preference model over this space of possible presentations us-
ing a simple language, and can state some hard constraints as
well. At presentation time, the author’s preference model and
constraints are combined with constraints on which the au-
thor has no control: the basic capabilities of the device, the
network conditions at the time of delivery, and the user’s pro-
file (e.g., age, gender, income, past choices). Together, the
preferences and the constraints pose a preference-based con-
strained optimization problem. Its solution is the best feasible
presentation (from the author’s point of view) for this particu-
lar user. Thus, our approach lets the author bias the adaptation
process. Moreover, the authoring process is relatively simple,
requires no special semantic data,2 and is easy to master.

Our work presents a sophisticated extension of the work
on static adaptive documents in [Brafman et al., 2004;
Gudes et al., 2002] that addresses three new issues: (1) The
need to handle complex constraints, requiring the introduc-
tion of constrained optimization techniques, as opposed to the
simple unconstrained optimization used there; (2) A richer
specification language; and (3) The ability to handle media el-
ements with diverse durations and temporal constraints which
do not arise in the case of static web-pages and documents
discussed in the above applications.

Viewing content adaptation as constrained optimization is
useful only if we can provide: a simple way for the author
to specify her presentation, and an algorithm for perform-
ing constrained optimization given such a representation. To
specify preferences, we the language of TCP-nets [Brafman
and Domshlak, 2002]. This language supports an efficient
constrained optimization algorithm.

Two other other related systems use preferential reason-
ing. SUPPLE [Gajos and Weld, 2004] is a system for auto-
matically generating user interfaces. This problem is cast as
a constrained optimization problem aimed at reducing user
effort. P-news [Wang et al., 2004] uses rich qualitative in-
formation to make choices regarding news dissemination of
MPEG-7 content, taking into account end-user device in se-
lecting content form.

3 Specifying Presentations
To prepare a presentation, an author first selects the basic pre-
sentation elements and their possible respective content op-
tions. This defines a set of possible presentations. Next, she
defines a preference-order over this space of possible presen-
tations using an appropriate set of preference statements – the
preference language. Constraints can be introduced as well
(e.g., ”no two ads for the same company”), indicating which

2A semantic model specified using constraints can be integrated
into our approach naturally.



of the possible presentations are unacceptable. We explain
this process in Section 3.1. In section 3.2, we examine more
closely our preference language and the graphical structure it
induces – called called a TCP-net. We illustrate these ideas
with the ESPN promo example in Section 3.3.

3.1 Possible Presentations and Preferences
Consider the ESPN promo. It consists of three consecutive
parts. Each part consists of a main video segment, two im-
ages, and running text. The running text element is constant
in all stages. Thus, altogether, we have 10 different media
elements. For each element, there are multiple choices. For
instance, the first video segment could describe an upcom-
ing broadcast of a football, baseball, or basketball game, and
each such content choice may come in different quality lev-
els (e.g., frame-per-second rate) and format. For each ad, we
have multiple options too. Thus, the potential set of concrete
presentations is large.

To model this, we associate a variable with each content
element – let V denote the set of these variables. The set
of different options for the content of element v constitutes
the variable’s domain, denoted D(v). These options can dif-
fer both in their content and their quality. A distinguished
null value can denote the choice of not presenting the ele-
ment at all. The Cartesian product of the variables’ domains
corresponds to the set of all possible presentation content
choices. We use O to denote the set of all these options, i.e.,
O = ×v∈V D(v). Each element of O provides a concrete
choice of components, but can give rise to multiple presenta-
tions that differ in the timing and layout of these components.

In addition to the presentation variables, it is desirable to
include in V additional variables that denote properties such
as: user profile aspects, network parameters, and user device
parameters. While we cannot influence their value, they do
affect our preference over presentation element choices and
participate in related constraints. For instance, personaliza-
tion can be achieved by conditioning the values of content
variables on user properties.

Having specified the set of possible presentation content,
the author’s next step is to provide information that will bias
the choice of which particular presentation the user is actu-
ally provided with. Formally, our goal is to specify a pref-
erence order over O, the set of possible presentations, based
on which we will select the best feasible presentation given
each user request. This specification should be based on sim-
ple and intuitive statements, so that novice users could de-
sign presentations easily and quickly. There are two types
of preference information people find natural to express: (1)
statements of relative importance of different variables, e.g.,
“The sports video is more important than the commercial.”
We take such statements to mean that if we must compromise
on the choice of the sports video or the commercial (e.g.,
because of bandwidth limitations) we prefer to compromise
on the choice of commercial; (2) statements of (conditional)
preference over values of a variable. For instance, a state-
ment like “For young male users, we prefer the football video
over the bowling video,” can be used for personalization. The
statement “If the video segment is a football game, I prefer
the Budweiser ad, and if it is ice-skating, I prefer the Pepsi
ad” expresses the fact that the author’s preferred ad depends
on the choice of video. Thus, when comparing between two

similar presentations featuring a football game in their main
video segment the author prefers the one with the Budweiser
ad. Our system takes as input both relative-importance state-
ments and conditional preferences statements.3

Finally, the presentation author also specifies a set of con-
straints. These could be content constraints, such as: “Ads for
alcoholic beverages cannot be shown to users under 18.” But
they can also be temporal and spatial constraints. For exam-
ple: ”The commercial starts immediately following the end
of the video”; ”The two ads are displayed at the same time”;
”Ad1 and Ad2 should have the same size”; ”The width of Ad1
should be twice its height”; ”Ad1 should be centered above
Ad2”, etc. Note that preference information is allowed only
with respect to content choices, and not with respect to tem-
poral and spatial properties. On the latter we allow only con-
straints. These constraints indirectly limit the set of content
options because, e.g., we may not be able to find appropriate
layouts for certain content combinations. As noted earlier, we
mostly ignore layout and timing issues in this short version.
They are reasoned about using standard techniques such as
linear programming.

In general, constraints are specified separately from the
preferences, using a standard syntax. To specify temporal and
spatial constraints, the author refers to distinguished variables
denoting the start and end time of each element, as well as
bottom-left and top-right positions. This decoupled approach
is convenient because we can add additional device and net-
work constraints later on, at presentation time, without affect-
ing the preference information.

3.2 TCP-Nets
The preference specification language we use consists of
(conditional) relative importance statements and (condi-
tional) value preferences. Such statements can be depicted in
a graphical manner using a formalism called TCP-nets [Braf-
man and Domshlak, 2002]. TCP-nets can be used both as
an input tool or simply as an internal representation of pref-
erence statements provided by the user directly or by means
of an appropriate interface. Their graphical structure plays
an important role in analyzing the information in such state-
ments and its consistency, and in the constrained optimization
process. We use the semantics of TCP-nets, explained below,
to interpret the meaning of the author’s preference statements.

TCP-nets are an annotated directed graph. The nodes of
the graph correspond to the variables of interest (i.e., the ele-
ments of V ). Each node is annotated with a table describing
the author’s preference over the different values of the vari-
able associated with this node. Edges describe preferential
dependencies and the relative importance of variables.

TCP-nets have three edge types. The first type of (di-
rected) edge captures preferential dependence, i.e., an edge
from X to Y implies that the user has different preferences
over values of X given different values of Y . The second
(directed) edge type captures relative importance relations.
Existence of such an edge from X to Y implies that X is
more important than Y . The third (undirected) edge type cap-
tures conditional importance relations, i.e., importance rela-
tions that hold only when certain other variables have partic-
ular values. For example, a good choice of ad in the ESPN

3We allow conditional relative importance statements, too.
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Figure 1: Illustrations for Example 1.

promo is more important than a good choice of video segment
only when the user is an affluent male in his 40’s.

Each node X in a TCP-net is annotated with a conditional
preference table. This table contains the author’s preference
order over D(X) for every possible value assignment to the
parents of X (denoted Pa(X)). In addition, each undirected
edge is annotated with a conditional importance table (CIT).
The CIT associated with the edge (X, Y ) describes the rel-
ative importance of X and Y given the values of the condi-
tioning variables.

Example 1 In Figure 1 we see a TCP-net over five binary
variables A, B, C, D, and E. Standard directed edges in
this graph capture preferential dependence; double directed
edges capture relative importance relations; undirected edges
capture conditional relative importance; � denotes prefer-
ence over variable values; and � denotes variable impor-
tance. The graph shows that the preferences over the values
of B depend on A’s value, and those of C and D depend on
B’s value. These dependencies follow from the presence of
conditional-preference edges from A to B and from B to C
and to D. The actual preferences are provided in the associ-
ated table. For example, when B is true, we also prefer that
D will be true. Additionally, there is an importance edge con-
necting B and E. This indicates that the value of B is more
important to us than that of E. Finally, there is an undirected
edge between C and D. This indicates a conditional impor-
tance relation between these variables. Thus, sometimes C is
more important than D, and sometimes D is more important
than C. The relative importance of C and D is conditioned
on the assignment to B and E, and this information is an-
notated on the edge from C to D. The precise dependence
is shown in the associated conditional-importance table. For
instance, we see that when B and E are assigned bē or b̄e,
then D is more important than C. When B and E are as-
signed b̄ē, C is more important than D. Note that although
we used binary variables for simplicity, there is no such re-
striction in the theory.

A TCP-net specifies a partial order over the set of pos-
sible variable assignments. This means that not all pairs of
assignments are comparable. The statements embodied in a
TCP-net are intuitive, but subtle issues in their interpretation
require that we clearly define the preference relation induced
by the conditional preference tables, the importance relations,
and the conditional importance relations. The transitive clo-
sure of the union of these preference relations yields the par-
tial order induced by the whole TCP-net.

Conditional preference tables tell us which values of a
variable are preferred and under what conditions. This infor-
mation is interpreted under the ceteris paribus semantics as
follows: the conditional preference table of variable X spec-
ifies the relation between any two complete assignments, o
and o′, that differ only in the value of X . To compare o and
o′ we examine X’s table and check which one of them as-
signs X a more preferred value. This depends on the value of
Pa(X), which must be identical in both o and o′.

For example, according to Figure 1, āb̄c̄de is preferred to
āb̄cde because c̄ is preferred to c given b̄, and the other at-
tributes have identical values in both outcomes.

Importance relations provide similar information. When
X is more important than Y , we can compare any two out-
comes o and o′ that differ in the value of X and Y only. o is
better than o′ if o assigns X , the more important variable, a
better value than o′ assigns to Y .

Conditional importance provides similar information but
in a more restricted context, i.e., when the selected set has
the appropriate value. For example, according to Figure 1,
abcdē is better than ab̄cde because B is more important than
E. Thus, it is better to get a less preferred value of E, as in
abcdē than a less preferred value of B, as in ab̄cde, all else
being equal. Similarly, abcd̄ē is better than abc̄dē because C
is more important than D given bē. Thus, it is more important
to get the preferred value for C than for D, all else being
equal. On the other hand, we cannot compare ab̄cd̄ē with
ab̄c̄dē directly, since we don’t have an explicit importance
relation between C and D when B and E are assigned b̄ē.

A formal definition of TCP-nets appears in [Brafman and
Domshlak, 2002]. Here we note that not all sets of preference
statements are representable as TCP-nets, nor are all TCP-
nets consistent. We restrict ourselves to the class of condi-
tionally acyclic TCP-nets, which are always consistent. This
property, which can be verified by the authoring tool.

3.3 Defining an ESPN Promo
We now look at how we could model the ESPN promo using
a TCP-net. We simplify it by assuming 4 basic elements only:
video, scores, ad1, ad2. One variable will correspond to each
element. In addition to the presentation elements, we have
variables denoting: user’s gender and nationality. The vari-
able domains are as follows: Video has two possible values
football and soccer, and each can be displayed at two qual-
ity levels: high and low. The high level requires bandwidth
of 56Kbs, and the low level requires 30Kbs. Ad1 and ad2
both have the same domain, containing ads for Nike, Adidas,
Pepsi, Tuborg, and Budweiser. Each image has two possible
formats: JPEG and GIF. GIF files are 4KB each, JPEG files
are 40KB. Finally, the scores are 20KB each and in SMIL
format. Content options include: sports news, general news,
basketball scores, baseball scores, and none.

Next, we need to specify preferences over the choice of
content. We start with preferences over the values of vari-
ables. For the video, if the user is an American male, football
is preferred, otherwise, soccer. For ad1, the preference is for
Nike and Adidas over the drinks, and for ad2 the other way
around. The actual ranking depends on whether the user is
European or American and on the user’s gender (e.g., Tuborg
for Europeans, Pepsi for females, etc.). In addition, there
is a constraint that states that the two images should not be
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Scores (S)
am baseball � basketball � sports � news � none
af news � sports � basketball � baseball � none
em basketball � sports � news � none � baseball
ef news � sports � basketball � none � baseball

Ad1 (A1)
am Adidas � Nike � Bud � Tuborg � Pepsi
af Adidas � Nike � Pepsi � Tuborg � Bud
em Nike � Adidas � Tuborg � Bud � Pepsi
ef Nike � Adidas � Pepsi � Tuborg � Bud

Scores vs. Ad2
ef Scores � Ad2

otherwise Ad2 � Scores

Ad2 (A2)
am Bud � Tuborg � Pepsi � Adidas � Nike
af Pepsi � Tuborg � Bud � Adidas � Nike
em Tuborg � Bud � Pepsi � Nike � Adidas
ef Pepsi � Tuborg � Bud � Nike � Adidas

Figure 2: A TCP-Net for ESPN promo. a, e, m, f stand for American European, male, and female, respectively.

the same. Regarding the scores, for European males we pre-
fer basketball scores, sports news, general news, no scores,
and baseball scores. The preferences are shown in Figure 2.
Throughout, we prefer higher quality options to lower qual-
ity options and JPEG to GIF, but content is more important
than quality. Thus, for American males, a low quality foot-
ball segment is preferred to a high quality soccer segment.
Finally, importance relations must be specified. The video is
most important, next is ad1, then ad2, and finally the scores.
However, for European females, the scores are more impor-
tant than ad2. This information is expressed in Figure 2 (with
the quality alternatives omitted).

Let’s consider a few simple illustrative scenarios demon-
strating how these preferences affect the chosen presentation.
Consider a European female viewing the presentation on her
PC with an ADSL connection. Her PC supports both image
formats. This viewer is practically unconstrained, and thus
we can supply her with the optimal presentation for a Euro-
pean female: a soccer video together with Nike and Pepsi
ads, and news. Suppose that our user now works with a mo-
bile phone. Her bandwidth and buffer size limit the amount
of information that can be stored on and transmitted to her
device. Suppose that we cannot display high-quality video
together with scores. Since the video is more important, the
scores will be dropped (i.e., assigned a “don’t present” value).
Next, suppose that the user is working in off-line mode, and
the whole presentation must be downloaded into her buffer.
Thus, the sum of the sizes of the components must not ex-
ceed the size of the buffer. For instance, if there is no room
for two JPEG images, ad2 will be a GIF image. We explain
how these solutions are actually computed in the next section.

As you can see, it is easy to add more complex depen-
dencies. Constraints can be added as well, e.g., disallow ads
for competing companies. Moreover, although the preference
and importance tables in our example are completely speci-
fied, partially specified tables are acceptable, and the author
may choose to ignore certain contexts. Our optimization al-
gorithm works with such partially specified tables, although,
naturally, with less preference information, fewer pairs of pre-
sentations are comparable.

4 Adapting Presentations
Having described the author’s presentation preferences, we
move to the actual generation of the presentation. This pro-
cess is initiated by the presentation service provider following
a viewing request from a customer. We assume this request
contains information about the user and/or the user’s device.
Such capability-exchange protocols are standard now. At this

point, we need to quickly compute an optimal presentation for
this user, i.e., the best presentation (according to the author’s
preference order) among those that meet the constraints im-
posed by the user’s device, network conditions, etc. Because
we have a partial order over presentations, we may have a
number of such (Pareto) optimal presentations, and any one
of them will do. The rest of this section explains how we
compute a Pareto optimal presentation.

A naive approach for solving various problems, including
constraint satisfaction problems, is Generate & Test. We gen-
erate solutions in some systematic manner, and test each so-
lution to see whether it satisfies the constraints. If it does,
we can return it as a solution. Generate & Test is inadequate
for optimization problems such as ours because we have no
reason to believe that the first solution generated is optimal.
A conceptually simple, but computationally taxing extension
would be to generate all possible solutions to the constraint
satisfaction problem, and then compare them. A much better
approach, though one that is not always feasible, would be
Ordered Generate & Test (OG&T). Here, solutions are gen-
erated in a non-increasing manner, i.e., no solution can be
better than a solution generated earlier. (Solutions could be
incomparable, though). Given such an ordering, the first so-
lution obtained is, indeed, an optimal one; that is, no solution
generated in the future will be better.

Fortunately, it is relatively easy to generate a non-
increasing sequence of solutions (i.e., elements o ∈ O) for
conditionally acyclic TCP-nets. To generate such a sequence
of presentations, we must build a tree whose nodes corre-
spond to partial assignments. In particular, the root node cor-
responds to an empty assignment, and each leaf node corre-
sponds to a complete assignment (i.e., a complete specifica-
tion of presentation content, in our case). This is the standard
search tree one constructs when solving constraint satisfac-
tion problems (CSPs) in a systematic fashion: all children
of a node extend its assignment by assigning one additional,
identical variable. Each child corresponds to a distinct value
for this additional variable.

Our construction must adhere to the following guidelines:
a variable v can be assigned only after the following nodes
have been assigned (1) all of v’s parents in the TCP-net; (2)
Any node that conditions a relative importance relation in
which v is involved; (3) any variable that is more important
than v given the current assignment. The fact that we are deal-
ing with conditionally acyclic TCP-nets ensures that we can
satisfy these conditions. In addition, the children of each node
must be ordered from left to right according to the preference
ordering over the values of the newly assigned variable, as
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Figure 4: Search Tree for TCP-Net in Figure 3

specified by its preference table. Because all the variables
conditioning the preference for the newly assigned variable
have been assigned earlier, this is well defined. The resulting
tree has the property that the leaf nodes, ordered from left to
right, constitute a non-increasing sequence of assignments. It
is important to note that variable ordering can differ from one
branch to another, as long as the above constraints are obeyed.

As an example, consider the TCP-net in Figure 3. Its corre-
sponding search tree is shown in Figure 4. Because B is more
important than C when A is true, we see that B is ordered be-
fore C. When A is false, C is ordered before B because now
C is more important. We can also see that variable values are
ordered based on the preference tables.

To use outcome ordering to implement OG&T, we per-
form depth-first search in order to incrementally generate the
tree above. We test each leaf node to see whether it satisfies
the presentation constraints. The first presentation generated
that satisfies these constraints is optimal, because none of the
following presentations is better.

OG&T is satisfactory for handling modest problems with
a few thousand possible presentations. Our current system,
uses a more advanced method that is semantically equivalent
to OG&T but uses more clever pruning techniques that are
described in the full paper.

5 Summary
We presented an approach for specifying adaptive synchro-
nized rich-media documents and an algorithm for adapting
and personalizing these presentations given each concrete
user download request. Our algorithm combines the initial
flexible presentation specified off-line with the information
available online about the user and her device, and handles
this as a preference-based constrained optimization problem.
This problem is solved by utilizing the special properties of
TCP-nets and their relation to CSP algorithms.

Our work provides a novel method for adapting the con-
tent and (some aspects of) the form of multimedia pre-
sentation, as well as a novel way of utilizing recent ad-
vances in preference specification and handling in AI. A
system based on these techniques was implemented for
the STRIMM consortium (www.strimm.org) – a consortium
of companies in the area of streaming rich-media – and
users can interact with our presentation engine online, at
www.cs.bgu.ac.il/catalina/moshemos/htmls/mainFrame.html.
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Abstract

Typically, work on preference elicitation and rea-
soning about preferences has focused on the prob-
lem of specifying, modeling, and optimizing with
preference over outcomes corresponding to single
objects of interest. In a number of applications,
however, the “outcomes” of interest are really sets
of such atomic outcomes. For instance, when trying
to form coalitions or committees, we need to select
an optimal combination of individuals. In this paper
we describe some initial work on specifying prefer-
ences over sets of objects, and selecting an optimal
subset from a given set of objects. In particular, we
show how TCP-nets can be used to handle this prob-
lem, and how an existing algorithm for preference-
based constrained optimization can be adapted to
the problem of optimal subset selection.

1 Introduction
The area of eliciting, modeling, and reasoning with prefer-
ences has been experiencing much interest in recent years.
Most work in this area concentrates on specifying preferences
over some universe of objectsO, and using this information
for various preferential reasoning tasks. The most important
preferential reasoning tasks include convenient methods of
obtaining preference information over a set, techniques for
ordering a set, and algorithms for identifying the optimal ob-
jects within a set or some feasible subset of it. Thus, our set
of objects,O, could be a set of possible flights, various docu-
ments, alternative PC configurations, etc. And we may be in-
terested in obtaining information about the user’s preferences
over these objects so that we may e.g., present documents in
their perceived importance order, or identify the most suitable
flight costing less than $350.

Typically, the user does not provide us with an explicit or-
dering overO, but rather exploits some attribution of the ob-
jects, providing generic information that implicitly ordersO
by means of preferences over attribute values. There are good
reasons for this, as the universe of objects in question is of-
ten large. Moreover, even when its size is manageable, direct
comparisons between arbitrary objects can be difficult cogni-
tively, while comparisons of items that differ only in a limited
number of attributes is much easier. Much of the work in this

area has to do with processing a concrete class of statements
that users find convenient to specify, adopting and justifying
a certain semantics for these statements, and developing algo-
rithms that use these statements to compare objects or select
the best ones.

This papers deals with similar issues, too. But unlike past
work which attempts to reason with preferences overobjects,
we are interested in similar forms of reasoning oversets of ob-
jects. More specifically, the setting of our problem is: Given
a set of objectsO, elicit a (possibly partial) ordering over2O,
and find at least one optimal subset ofO with respect to this
ordering.

In the remainder of this section we explain why we think
this is an interesting and useful capability, and why some sim-
ple solutions are inadequate. In the following sections we
consider a certain language for such set-preference specifica-
tion, and suggest a particular approach for eliciting prefer-
ences over subsets of objects that builds heavily on past work
on CP-nets[2], and their extension with relative importance
relations in the TCP-nets model[4]. We continue with sug-
gesting two different computational schemes for computing
an optimal subset of a given set of objects. Experimental eval-
uation of these algorithms is left for future work.

Our interest in specifying preferences over sets arose natu-
rally in the context of our work on using TCP-nets as a tool
for “newsletter” personalization[8] and adaptive multi-media
messages[5]. Viewed abstractly, a newsletter is a collection
of articles, and a personalized newsletter should provide the
reader with a preferred set of articles. Thus, subject to various
size and layout constraints, we want to find the most preferred
set of articles for a user. A naive solution would be to order
all the articles and choose the top-most articles that satisfy the
constraints. However, this solution is quite likely to be inap-
propriate, since the overall attractiveness of a set of objects is
rarely just a flat “accumulation” of attractiveness of these ob-
jects. For instance, given some articles we are less interested
in some other articles (e.g., due to overlap in their content),
while other groups of articles may complement each other.

In our past work we handled these conditional preferences
for the appearance of an article by considering a model in
which, for each article, the outcome attribution explicitly
specifies whether this article is included in the newsletter or
not. Using a CP-net, we were able to model the conditional
preferences one might have for seeing one article given that
some other articles are present or absent. In such a CP-net



we had one node for each article, and it is clear that, in most
application domains, this solution cannot scale up, nor does it
addresses real needs. First, the pool of possible articles is of-
ten huge, and we cannot expect an editor to actually specify a
CP-net that contains all of them. Moreover, new articles con-
stantly appear, and we cannot expect an editor to constantly
update and modify the CP-net to make it up to date. In short,
what we really want is astatic preference specification ap-
proach that can be used fordynamicallyselecting a subset of
objects, where these objects are typicallyunknownat prefer-
ence elicitation time.

This problem of optimal subset selection appears in many
other contexts as well. For instance, consider selecting a com-
mittee for reviewing or addressing problems, or a group of
agents that should be assigned some task. We would like
to be able to specify the desired properties of such teams.
Naturally, some members complement each other’s proper-
ties, while others can be detrimental to each other. Thus, we
would like to be able to characterize thepreferred properties
of a team, and then be able to select from a set of individu-
als the best subset for our task. Viewed differently, we are
looking at a non-traditional open-ended configuration prob-
lem, i.e., whereas in typical configuration problem we have a
set of roles and a set of components that can satisfy each role,
here we have no concrete roles, and the number of compo-
nents is not fixed.

2 Background on TCP-nets
Since in this work we build upon the TCP-nets model and the
corresponding preference language, in this section we review
their essentials. For a more in-depth description of TCP-nets
we refer the reader to[4].
Language: Each TCP-net captures a collection of statements
of conditional value preference and conditional relative im-
portance preference. Such a collection of statements speci-
fies a preference ordering over a universe of objectsO, where
objects are described in terms of some set of attributesX =
{X1, . . . , Xn}, i.e., we haveO = ×Dom(Xi). The TCP-nets
model supports two types of statements overX , namely (con-
ditional) preference for values of a variable, e.g., ”if the car is
a sports car, I prefer black to red as its color,” and (conditional)
relative importance of different variables, e.g., ”for a sports
car, performance is more important to me than reliability.”
The intuitive meaning of value preferences is straightforward.
Importance statements are used to inform us about tradeoffs,
i.e., “preference over compromises”. For instance, if reliabil-
ity is more important to me than performance, it means that
if I have to compromise on either reliability or performance, I
would rather compromise on performance.
Semantics: Reasoning about the ordering induced by such
statements onO requires a commitment to a concrete logi-
cal interpretation of these natural language statements. The
TCP-nets model adopts theceteris paribus(all else equal) se-
mantics for statement interpretation[9]. In this conservative
semantics, a statement “I preferX = x1 to X = x2” means
that given any two objects that are identical except for the
value ofX, the user prefer the one assigningx1 to X to the
one assigningx2. If these two objects differ on some other
attribute as well, then they cannot be compared based on this

preference statement alone. Similarly, a statement “X is more
important thanY ” means that given two objects that are iden-
tical except for their values onX andY , the user prefers the
one assigning a better value toX than the one assigning a
better value toY . Again, if these two objects differ on some
other variable, too, they can no longer be compared based on
this statement alone. Conditional statements have the same se-
mantics, but they are only restricted to comparisons between
elements that satisfy this condition. Thus, “I preferX = x1

to X = x2 given thatY = y1” is interpreted exactly as above,
but only with respect to objects that satisfyY = y1.

We see that each preference statement induces a preference
relation overO. The “global” binary relation specified by a
collection of such statements (and thus, by the TCP-net) cor-
responds to the transitive closure of the union of these “local”
preference relations. If the user provides us with consistent
information about her preferences, then the binary relation in-
duced by the TCP-net onO is a strict partial order (i.e., tran-
sitive, irreflexive, and antisymmetric). Note that this order is
rarely complete, and thus typically not all pairs of objects (i.e.,
complete assignments toX ) are comparable with respect to a
TCP-net.
Representation: TCP-nets represent such a collection of
preference statements using an annotated graph. The nodes
of the graph correspond to the variables of interest (i.e., the
attributes inX ), and the edges of the graph provide informa-
tion about preferential and relative importance dependencies
between the variables. The structure of the graph plays an
important role in determining the consistency of preference
specification and in reasoning about preference, although the
user need not be aware of this structure.

TCP-nets have three edge types. The first type of (directed)
edge captures preferential dependence, i.e., an edge fromX to
Y implies that the user has different preferences over values
of Y given different values ofX. The second (directed) edge
type captures relative importance relations. Existence of such
an edge fromX toY implies thatX is more important thanY .
The third (undirected) edge type captures conditional impor-
tance relations, i.e., importance relations that hold only when
certain other variables have particular values. Each nodeX
in a TCP-net is annotated with a conditional preference table
(CPT, for short) describing the user’s preference order over
Dom(X) for every possible value assignment to the parents
of X (denotedPa(X)). In addition, each undirected edge
(X, Y ) is annotated with a conditional importance table (CIT,
for short) describing the relative importance ofX andY given
the values of certain conditioning variables.
Schematic Example: Figure 1 depicts a TCP-net over five
binary variablesA, B, C, D, andE. Standard directed edges
in this graph capture preferential dependencies, double di-
rected edges capture relative importance relations, and undi-
rected edges capture conditional relative importance;� de-
notes preference over variable values; and→ denotes variable
importance. The graph shows that the preference over the val-
ues ofB depends onA’s value, while the preference over the
values ofD andE depends onB’s value. These dependen-
cies are encoded by conditional-preference edges fromA to
B and fromB to C and toD. The actual preferences are
provided in the associated CPTs (on the left). For example,
whenB is true, we also prefer thatD will be true. Addition-
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Figure 1: A schematic example of a TCP-net.

ally, there is an importance edge connectingB andE. This
indicates that the value ofB is more important to us than that
of E. Finally, there is an undirected edge betweenC andD.
This indicates a conditional importance relation between these
variables: SometimesC is more important thanD, and some-
timesD is more important thanC. The relative importance
of C andD is conditioned on the assignment toB andE,
and this information is captured by the CIT of(C,D). For in-
stance, we see that whenB andE are assignedbē or b̄e, then
D is more important thanC, yet whenB andE are assigned
be, C is more important thanD. Note that in this example
we used binary variables for simplicity only, and the TCP-net
model is defined for arbitrary variables with finite domains.

The CPTs tell us which values of a variable are preferred
and under what conditions. This information is interpreted un-
der theceteris paribussemantics as follows: The conditional
preference table of variableX specifies the relation between
any two complete assignments,o ando′, that differonly in the
value ofX. To compare between sucho ando′ we simply
look at the CPT ofX and check which one of them assignsX
a more preferred value. This depends on the value ofPa(X),
and this is identical in botho ando′. For example, according
to the TCP-net in Figure 1,̄ab̄c̄de is preferred tōab̄cde be-
causēc is preferred toc given b̄, and all other attributes have
identical values in both outcomes.

Importance relations provide similar information. WhenX
is more important thanY , we can compare any two outcomes
o ando′ that differ in the value ofX andY only, ando is pre-
ferred too′ if o assignsX, the more important variable, a bet-
ter value than this assigned byo′. Conditional importance pro-
vides similar information but in a more restricted context, i.e.,
when the conditioning variables have the appropriate value.
For example, according to the TCP-net in Figure 1,abcdē is
preferred toab̄cde becauseB is more important thanE. Thus,
it is better to get a less preferred value ofE, as inabcdē, than
a less preferred value ofB, as inab̄cde, all else being equal.
Similarly, abcd̄ē is preferred toabc̄dē becauseC is more im-
portant thanD given bē. Thus, it is more important to get a
preferred value forC than forD, all else being equal. On
the other hand, we cannot compare betweenab̄cd̄ē andab̄c̄dē
directly, since we do not have an explicit importance relation
betweenC andD whenB andE are assigned̄bē.

Here we note that not all sets of preference statements rep-
resentable as TCP-nets are consistent. That is, some TCP-nets
may correspond to a binary relation onO that is not antisym-
metric, i.e., a relation� in which botho � o′ ando′ � o
hold for someo, o′ ∈ O. However, in[4] we had specified a

wide class ofconditionally acyclicTCP-nets for which con-
sistency is guaranteed. In what follows, we restrict ourselves
to networks of this class, noticing that this membership can be
verified by the user interface.

3 Expressing Preferences over Subsets
Our goal is to provide a convenient tool for specifying a pref-
erence ordering over subsets of a setO that has the same
attribution structure as before, i.e.,O = ×Xi∈XDom(Xi).
In general, our elicitation procedure consists of the following
steps:

1. Obtain from the user properties of sets of objects that
affect her preference over these sets.

2. Allow the user to express preference statements in terms
of these properties.

3. Construct a preference representation model over these
properties (a TCP-net in our case) that captures the in-
formation provided by these statements.

Below we describe a preference specification language that,
in our opinion, efficiently addresses the major needs of quali-
tative preference specification over sets, and discuss some se-
mantic issues involved in such preference specification. Sub-
sequently, we discuss two alternative computational schemes
for selecting an optimal subset ofO, given a collection of such
“set-preference” statements represented by a TCP-net.

3.1 Set-Preference Specification Language
We believe that most properties of sets of attributed objects
that affect user preferences over such sets (informally) take
the following form: “at least one object withC = c, and
D = d1 or D = d2,” or “the number of items withC = c”.
Formally, define the setX of primitive propositions as

X = {X = x | X ∈ X , x ∈ Dom(X)}

LetLX be the propositional language defined overX with the
usual logical operators. Note that we can consider objects of
O as models of this language, and thus it makes sense to write
o |= ϕ whereo ∈ O andϕ ∈ LX .

While various basic properties of object sets can be con-
sidered, in our work we found that two classes of properties
seem to cover most natural needs. The first class has the form
〈|ϕ|〉, whereϕ ∈ LX andDom(〈|ϕ|〉) = Z∗. Given a subset
O ⊆ O, 〈|ϕ|〉 (O) denotes the number of objects inO that
satisfyϕ, i.e.,

〈|ϕ|〉 (O) = |{o ∈ O|o |= ϕ}|.
Using the property, the user is able to express her preference
on the number of objects in the selected subset that satisfy
ϕ. The second class of properties has the form〈|ϕ| REL k〉,
whereϕ ∈ LX , REL is a relational operator over integers, and
k ∈ Z∗ is a non-negative integer. While properties in the first
class can take any non-negative integer value, the properties in
this class are naturally Boolean;〈|ϕ| REL k〉(O) is assigned
the truth value of|{o ∈ O|o |= ϕ}| REL k.

Example 1 Consider the following example of newsletter
editing. Let the various articlesO be schematically described
in terms of four attributes:



• Format: news, interview, opinion, etc.

• Country: Iraq, U.S.A, Italy, etc.

• Topic: politics, weather, economy, culture, etc.

• Emotion: positive, negative, neutral, etc.

The editor in charge of selecting the content for the newsletter
specifies four properties that affect her content preference:

P1 = 〈|(format = news)|〉
P2 = 〈|(emotion = neutral) ∨ (emotion = negative)| ≤ 2〉
P3 = 〈|(country = Iraq) ∧ (topic = politics)| ≥ 2〉
P4 = 〈|(topic = culture ∨ (emotion = positive)| ≥ 1〉

Notice that the propertyP1 is of the first, multi-valued class
〈|ϕ|〉, while P2, P3, andP4 are of the second, Boolean class
〈|ϕ| REL k〉. Now, consider the following subset of articles:

o1

o2

o3

o4

format country topic emotion

news Iraq politics neutral
news U.S.A. weather negative

interview Iraq economy positive
opinion France culture positive

For this subsetO ∈ O we haveP1(O) = 2 (due too1 ando2),
P2(O) = true (since onlyo1 ando2 satisfyϕ2), P3(O) =
false (since onlyo1 satisfiesϕ3), andP4(O) = true (due to
o4). �

Now, consider a set of propertiesP = {P1, . . . , Pm} spec-
ified as above over some (not necessarily pairwise distinct)
formulasϕ1, . . . , ϕm ∈ LX , respectively. Observe that we
can treat eachPi as a variable (Boolean or multi-valued, de-
pending on its specification,) and each subsetO ⊆ O pro-
vides a complete assignment toP. That is, abstractly, we
can view each subsetO of O as a vector of values,pO, for
P1, . . . , Pm, and abusing notations, we have a correspondence
between the power set2O and the abstract set of outcomes
OP = ×PD(Pi). Moreover, any preference order overOP
implicitly induces a preference order over2O. What is nice
about a preference order overOP is its abstractness — the
user specifying it does not need to know the actual content of
O. She needs only know what properties of object sets she
cares about, and express these properties in terms of the at-
tributesX . This means that a single static preference order
overOP can be used in reasoning over different, dynamically
changing sets of actual objectsO. In fact, by usingOP instead
of 2O we have reduced our problem of specifying preferences
over subsets to that of specifying preferences over attributed
objects. Having this reduction, we can use our favorite speci-
fication language and representation model from this point on.
Note that our choice here is TCP-nets, but other choices are
possible as well.

Example 2 Continuing Example 1, suppose that the editor
states that

1. Her preference on the amount of non-positive articles
(P2) should be considered as less important than her
preference on the amount of news in the article collec-
tion (P1),

2. Her preference on the amount of culture related arti-
cles (P4) should be considered as less important than her

preference on the amount of articles on the political situ-
ation in Iraq (P3),

3. Her preference on having at least two articles on the po-
litical situation in Iraq (P3) depends on the amount of all
news articles going into the newsletter (P1), and

4. Her preference on having some culture related articles
(P4) depends on the amount of all news articles (P1) and
on whether there are more than two non-positive articles
in the issue or not (P2).

Modeling these statements as a TCP-net results in the follow-
ing graphical structure:

GFED@ABCP1

��

� //

!!D
DD

DD
DD

DD
D

GFED@ABCP2

��GFED@ABCP3 � // GFED@ABCP4

We do not provide here an exact specification of editor’s pref-
erences over the values ofP1, . . . , P4, but we hope that the
spirit of such a specification is intuitive from the definition
and schematic example of TCP-nets we provided in Section 2.
�

Proceeding with obtaining and modeling preference state-
ments overP, we use the semantics of TCP-nets to order
the elements ofOP , and this induces an ordering over2O:
O ⊂ O is preferred toO′ ⊂ O iff the (unique) property vec-
tor pO ∈ OP associated withO is preferred to the (unique)
property vectorpO′ ∈ OP associated withO′.

There is a caveat, however, as it is possible to specify prop-
erties that are logically dependent. For example, suppose that
P1 = 〈|ϕ1| ≥ 2〉, P2 = 〈|ϕ2| ≥ 2〉, P3 = 〈|true| ≤ 3〉,
and the user states that she prefers the valuetrue for all these
three properties. Thus, the user prefers that there are at least
2 elements satisfyingϕ1, at least two elements satisfyingϕ2,
and no more than 3 elements altogether. Ifϕ1 and ϕ2 are
logically independent, then these preferences can be satisfied
completely at least for some object setsO. However, if we
have(ϕ1 → ¬ϕ2) ∧ (ϕ2 → ¬ϕ1), then no set of objects can
make all these three propertiestrue. Thus, certain pairwise
preference relations between the property vectors inOP will
vanish in the projecting to the set of subsets2O. On the posi-
tive side, this issue has no logical implications on the seman-
tics of our preferential reasoning. On the negative side, ignor-
ing such logical dependencies may apparently lead to certain
computational inefficiencies in the actual reasoning process.
Tackling this issue, one can imagine stricter notions of con-
sistency for preferences defined this way. We leave this inter-
esting issue to future work.

4 Optimal Subset Selection
One of the most important tasks of preferential reasoning is
that of preference-based constrained optimization, that is find-
ing a preferentially optimal object that satisfies a given set of
hard constraints. Our task here is very similar, but rather than
selecting a feasible object we have to select a (preferentially
optimal) feasible set of objects. Moreover, instead of explicit



constraints, we have implicit constraints in the form of the cur-
rently available setO of objects, and this setO at hand deter-
mines what the actual potential subsets can be.1 As described
above, the preferences of the user are represented by a TCP-
net N over some subset propertiesP, and thus the TCP-net
specifies a somewhat abstract partial order over the complete
assignmentsOP onP. GivenN , our task is to select a subset
O ∈ O for which there is no other subsetO′ ∈ O such that
N |= pO′ � pO.

One of the attractive properties of TCP-nets is that it comes
with an algorithm for constrained optimization that is guar-
anteed toexamine solutions to hard constraints in an order
consistent with the preference relation induced by the net-
work. This algorithm is described in details in[4], and ex-
tends an algorithm for constrained optimization with CP-nets
proposed in[3]. While the technical details of this algorithm
are quite involved, its basic principle is quite simple: solve
the constraint satisfaction problem that underlies the given
constrained optimization problem using standard depth-first
search over the tree of partial assignments, while obeying cer-
tain meta-level constraints on the order in which variables are
instantiated and the order in which values are assigned to to
the variables.

4.1 Subset Selection by Hypothesis Refinement

The basic idea of our first approach to set-preference opti-
mization is very similar to the aforementioned algorithm for
constrained optimization with TCP-nets, except that the de-
tails here are somewhat different. Similarly to the original al-
gorithm, we traverse a tree of partial assignments in a depth-
first manner. Each such partial assignment in our case pro-
vides a value to some of the propertiesP that constitute the
variables of our TCP-net. What we compute, however, for
each internal node in this search tree is the set of all subsets
of O that satisfy the corresponding partial specification of the
propertiesP. This way, while searching in the abstract space
OP , we effectively search in the dual space2O of interest.

The search scheme is as follows. The CP net induces a par-
tial ordering overP. In addition, the conditionally directed
edges in the TCP netN , given a partial assignmentp, induce
additional constraints on the partial ordering of the the unas-
signed nodes inN . (This system of partial orderings induced
by a TCP-net is calledconditional partial ordering[4].) Our
algorithm uses a recursive enumeration over propositional val-
ues, using the function FindBest(S, V,p), whereS is the set
of candidate subsets ofO (initialy all of O), V is a set of
TCP-net nodes to be assigned (initially all the nodes in the net-
work), andp is a partial assignment to the variables (nodes)
in P (initially empty). FindBest is defined as follows:

1. If S is empty, returnS (i.e. fail ).

2. If V is empty (all nodes assigned) returnS.

3. Select a nodevi ∈ V consistently with the conditional
topological ordering induced byN and the partial assign-
mentp.

1An interesting extension, which the methods described below
can support, is to handle hard set-valued constraints, such as dis-
cussed in[1].

4. For eachα in Dom(Pi) in decreasing order of preference
givenp, do:

• Let S′ = {O ⊆ O|Pi(O) = α}.
• Let S′′ = FindBest(S′ ∩ S, V \ vi,p ∪ {Pi = α})
• If S′′ is not empty, returnS′′.

5. Return∅. (If all possible assignments failed, then fail.)

In FindBest, if we reach a leaf node (i.e. no nodes left to
assign)all subsets inS are optimal and thus we are done. IfS
ever becomes empty we need to backtrack. Observe that there
may be several nodes consistent with the conditional topolog-
ical ordering at step 3, and a variable ordering heuristic of
some form, such as “most constrained first” could be used to
improve performance.

Although hypothesis refinement appears simple, it still
needs to handle a set of subsets of objects at each node. A
number of data-structures are available for working with such
data, with BDDs being probably the best known[6], but some
of its numerous variations[7] might be more suitable for our
purposes. In many situations, these data structures can repre-
sent sets of multi-attributed objects in space logarithmic in the
size of these sets. Moreover, performing standard set opera-
tions (and, in particular, intersection) on these data structures
can be done in time linear in the size of the data structures.
Nevertheless, it is possible that the size of even the compact
description be exponential inn, especially at lower levels of
the search tree, after several intersect operations are carried
out. This entails exponential space in the worst case, in addi-
tion to the potential exponential time.

4.2 Preference-based CSP Generation
In order to avoid the combinatorial explosion of space re-
quirements, one could perform the constrained optimization
by searching in the dual space of the actual subsets2O. We
have previously observed that every (possibly parital) instanti-
ation of valuesp toP induces a set{O}p of subsets ofO that
satisfyp. Now, rather than explicitly represent{O}p by enu-
meration, we can represent{O}p implicitly. The idea in this
scheme is to exploit in a different manner the aforementioned
property of TCP-nets that one can examine the assignments
p to the TCP-net variables in a non-increasing order of pref-
erence induced by the network. Specifically, for each such
examinedp, we attempt to find at least one subsetO which
satisfiesp. Clearly, the first subsetO ⊆ O found in this man-
ner is preferentially optimal, as desired.

We represent{O}p by the set of solutions to a certain con-
straint satisfaction problem (CSP)Cp. This CSP has one bi-
nary variableVo for each objecto ∈ O, that is,Dom(Vo) =
{0, 1}. Each complete instantiationv to the CSP variables
naturally induces a subsetO ⊆ O, namely the set of itemso
for whichv(Vo) = 1. Observe that this part of theCp specifi-
cation is independent ofp.

The constraints ofCp are the ones naturally induced by
p, as follows. For each propertyPi ∈ P, we add one con-
straint that enforcesPi = p(i). The propertyPi involves
the cardinality of the number of objectsm that satisfyφi,
and requires that the relationm REL k hold for some given
valuek. Let Oφi be the set of all objects inO that satisfy
φi, and let |Oφi | = M . The required constraint that en-
forcesPi = p(i) is anM -ary constraint over the variables



Vφi = {Vo|o ∈ Oφi}. An assignmentv obeys the con-
straint just whenm REL k, wherem is the number of vari-
ablesVo ∈ Vφi

which are assigned 1 inv.
The algorithm to find an optimal subset ofO with respect

to a TCP-netN is thus defined as follows. If any additional
hard constraints are imposed by the user in addition to the
preference structure, these prior constraints can (optionally)
be naturally intergrated into the algorithm.

1. Set up the binary-valued CSP variables{Vo|o ∈ O}.
(Optionally) add all prior hard constraints.

2. For each complete outcomep ∈ 2P , in a non-increasing
order of desirability according toN , do:

(a) Set up the CSP constraints induced byp.
(b) Letv be a solution to the CSP, if one exists.
(c) If a solution was found, return the set of itemso for

whichv(Vo) = 1.
(d) Otherwise, retract the induced constraints.

3. Return ’fail’ (this meansP or N are inconsistent).
There are several additional optimizations that can be added

to the above basic scheme, as follows. Since the enumeration
of assignmentsp generates complete assignments in a depth-
first search over partial assignments, one could try to solve the
CSP induced by a partial outcomep′. A failure to find a solu-
tion to Cp′ means that all assignments extendingp′ are unre-
alizable inO, and this can be used to prune the search tree by
backtracking earlier. Additionally, it is not necessary to rede-
fine the CSP constraints from scratch for each CSP instance.
In a backtracking search overp the induced constraints can be
kept for eachPi for whichp(i) has not changed from the last
CSP instance.

Indubitably, the optimization scheme discussed in this sec-
tion requires solving a large number of constraint satisfac-
tion problems, which does not seem very efficient, given
that finding a solution to even a single CSP is an NP-hard
problem. To make matters worse, the CSP involves multi-
variable constraints, rather than just the standard binary con-
straints, which is a significant complication (even representing
a multi-variable constraint could require exponential space in
the worst case). However, we believe that in practice some
of these problems can be avoided to a large degree. First, the
multi-variable constraints in our CSP problems are all of a
well-known and widely studied type calledcardinality con-
straints[10], and this special case of constraints is known to
be representable compactly (linear space). Thus, the space
complexity issue is completely avoided, and the overall space
requirements of this scheme are negligible. (Moreover, han-
dling such constraints are a standard feature in many off-the-
shelf CSP solvers.) The search time requirement is still an
important issue, especially given that standard CSP heuris-
tics do not do well in the presence of cardinality constraints.
Prior work, such as[11] and others, developed specific search
heuristics that effectively focus the search in CSPs with such
cardinality constraints, greatly alleviating the problem.

5 Summary and Future Work
We described and motivated the problem of specifying and
reasoning with preferences over sets of objects. We formal-
ized a certain language for such preference specification that

we found useful in our work, and discussed several related is-
sues of preference representation and reasoning. In particular,
we showed how preferences specified in such language can be
encoded using TCP-nets, and presented two different compu-
tational schemes for selecting an optimal subset from a given
set of objects given such representation of preferences.

In our future work we plan to develop as efficient as possi-
ble realizations of the two computational schemes, exploiting
most suitable tools developed in the areas of model check-
ing and constraint satisfaction (for the first and the second
schemes, respectively.) Having such optimized implementa-
tions of both schemes, we plan to empirically evaluate their at-
tractiveness for different settings of the preference-based sub-
set selection problem.
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Abstract

Structured utility models are essential for the effective
representation and elicitation of complex multiattribute
utility functions. Generalized additive independence
(GAI) models provide an attractive structural model of
user preferences, offering a balanced tradeoff between
simplicity and applicability. While representation and in-
ference with such models is reasonably well understood,
elicitation of the parameters of such models has been
studied less from a practical perspective. We propose
a procedure to elicit GAI model parameters using only
“local” utility queries rather than “global” queries over
full outcomes. Our local queries take full advantage of
GAI structure and provide a sound framework for extend-
ing the elicitation procedure to settings where the uncer-
tainty over utility parameters is represented probabilisti-
cally. We describe experiments using a myopic value-of-
information approach to elicitation in a large GAI model.

1 Introduction
The increased interest in automated decision support tools in
recent years has brought the problem ofautomated preference
elicitation to the forefront of research in decision analysis[6;
13] and AI [5; 2]. Generally speaking, the goal of automated
preference elicitation is to devise algorithmic approaches that
will guide a user through an appropriate sequence of queries
or interactions and determine enough about her preferences
to make a good or optimal decision. Many models have been
proposed, including those that treat responses to queries as
constraints on utilities (including methods in conjoint analy-
sis[11]) and those that use priors over utility parameters.

Crucial to preference elicitation in complex domains is the
existence of utility functionstructure[10; 7]. Structure in the
form of additive, multilinear, generalized additive or other
models[10; 7; 1; 3] can be used to represent utility mod-
els very concisely. While additive models are by far the
most commonly used in practice,generalized additive inde-
pendence (GAI) models[7; 1; 9] have drawn more attention
recently because of their additional flexibility. Unfortunately,
effective elicitation procedures for GAI models have attracted
far less attention than additive models. Thus, for example, re-
cent procedures for eliciting parameters of GAI models often
ignore the semantic foundations of direct queries[4]. Gonza-
les and Perny[9] recently addressed this problem. Using the

semantic foundations of Fishburn[7] they discuss a graphical
model which can be used to guide elicitation in GAI models.

In this paper, we continue the exploration of elicitation of
GAI utility model parameters. One difficulty with the pro-
cedure of Gonzales and Perny[9] is its reliance on standard
gamble queries involving full outcomes. In large, multiat-
tribute domains, it can be cognitively unmanageable for a
user to compare full outcomes involving more than a handful
of attributes; furthermore, this fails to take advantage of the
independence structure in the queries themselves. We pro-
pose a new elicitation technique that allows the parameters
of a GAI model to be determined using (almost exclusively)
“local” queries over a small number of attributes, while re-
specting the Fishburn semantics.

Our second contribution is a procedure forpartial elicita-
tion of utility parameters. Generally speaking, good (or even
optimal) decisions can be realized without complete utility
information. Rather than asking for the direct assessment of
utility parameters using standard gambles as in[9], we con-
sider simpler binarycomparison queriesover gambles. Fol-
lowing [5; 2], we suppose some prior over the parameters of
a GAI model, and use myopic expected value of information
(EVOI) to determine appropriate queries. The advantages of
GAI models become very clear in such a setting, since the im-
plied decomposition allows us to effectively compute EVOI
in very large models. We demonstrate our procedure on a
large (26 variable) constraint-based configuration problem,
showing that it is fast enough to support interactive elicita-
tion.

2 GAI Models
We begin with some standard concepts from multiat-
tribute utility theory [10; 7]. Assume a set of attributes
X1, X2, . . . , Xn, each with finite domains. These define
a set ofoutcomes(or alternatives or consequences)X =
X1×· · ·×Xn over which a decision maker (DM) has prefer-
ences. Preference relation� is a total preorder over the set of
outcomes, withx � x′ meaning thatx is at least as preferred
asx′. Strict preference� and indifference∼ are defined in
the usual way. Given an index setI ⊆ {1, . . . , n}, we define
XI = ×i∈IXi to be the set ofpartial outcomesrestricted to
attributes inI. IC denotesI ’s complement. User preferences
over outcomes are expressed by a bounded, real-valuedutility
functionu(·), satisfying the usual axioms of[12].



2.1 Additive Independence
Since the number of outcomes is exponential in the number
of attributes, specifying the utility value for each outcome is
infeasible in many practical applications. However,u can be
expressed concisely if it exhibits sufficient structure.Additive
independence[10] is one structural assumption commonly
used in practice. Under a strong independence assumption—
specifically, that the DM is indifferent among lotteries that
have same marginals on each attribute—u can be written as a
sum of single-attributesubutility functions:

u(x) =
n∑

i=1

ui(xi) =
n∑

i=1

λivi(xi). (1)

This simple factorization exploits subutility functions
ui(xi) = λivi(xi), which themselves depend onlocal value
functionsvi and scaling constantsλi. The assumed utility
independence among attributes allows elicitation to proceed
locally: specifically, thevi can be elicited independently of
other attribute values. Since each attribute is utility indepen-
dent, each attribute’s best and worst levels can be determined
separately. Formally,x>

i ∈ Xi is Xi’s best attribute levelif
and only if

(x>
i ,y) � (xk

i ,y) ∀xk
i ∈ Xi,y ∈ XiC . (2)

The worst levelx⊥
i is defined similarly. Alocal preference

betweenxk
i and alocal gamble〈p, x>

i ; 1 − p, x⊥
i 〉 is well-

defined since utility independence implies that(xk
i ,y) �

〈p, (x>
i ,y); 1 − p, (x⊥

i ,y)〉 for somey ∈ XiC iff this holds
for all suchy. Indifference for a specificp implies that

u(xk
i ,y) = p u(x>

i ,y) + (1 − p)u(x⊥
i ,y), (3)

and therefore, because of the additive form of the utility func-
tion,

vi(xk
i ) = p vi(x>

i ) + (1 − p) vi(x⊥
i ). (4)

If we setvi(x>
i ) = 1, vi(x⊥

i ) = 0, thenvi(xk
i ) = p. Local

value functionsvi(·) can be therefore elicited using onlylo-
cal standard gamble queries that involve two local “anchor”
outcomesx>

i andx⊥
i .

After performing local elicitation, we know each attribute’s
local value relative to the utilities of the respective anchor out-
comes. What remains is to bring all the local value scales to
the common global utility scale. To achieve global consis-
tency, queries involving full outcomes are unavoidable. Es-
sentially, we need to find the true utility of all “anchor” out-
comesx>

i and x⊥
i , with respect to some default outcome

x0. It is customary to choose the worst outcome as default
outcome, and set its utility to 0. Then, elicitingui(x>) =
u(x>

i ,x0
iC ) andui(x⊥) = u(x⊥

i ,x0
iC ) = 0 for all attributes

would ensure consistent scaling of subutility functions. Scal-
ing factorsλi, which reflect attribute contributions to the
overall utility function, are simplyui(x>).

2.2 Generalized Additive Independence
GAI models[7; 1] provide an additive decomposition of util-
ity function in situations where single attributes are not ad-
ditively independent, but (possibly nondisjoint) subsets of at-
tributes are. The form of a GAI model is as follows. Assume

a collection{I1, . . . , Im} of (possibly intersecting) index sets
such that∪iIi = {1, . . . , n} andlocal subutility functionsui

overXIi . Then

u(x) = u1(xI1 ) + . . . + um(xIm ).

If, say,I1 = {1, 2}, andI2 = {2, 3} in a three-attribute do-
main, thenu(x1, x2, x3) = u1(x1, x2) + u2(x2, x3).

We discuss the foundations of GAI models below, but first
illustrate difficulties with generalizing local elicitation of the
type suitable for additive models to GAI models[9]. In
the additive case,ui(x1

i ) > ui(x2
i ) implies that outcomes

with ith attribute level set tox1
i are preferred to outcomes

with x2
i , as long as the rest of attributes are kept constant.

However, in GAI models we cannot draw such straightfor-
ward conclusions. Let’s take our exampleu(x1, x2, x3) =
u1(x1, x2) + u2(x2, x3). If we know thatu1(x1

1, x
1
2) = 10

andu1(x1
1, x

2
2) = 5, does it imply(x1

1, x
1
2) � (x1

1, x
2
2), ce-

teris paribus? It turns out that because of interdependence of
subutility factors, we can rewrite the utility function as fol-
lows (f(x2) is an arbitrary real-valued function):

u(x1, x2, x3) = [u1(x1, x2) + f(x2)] + [u2(x2, x3) − f(x2)]

= u′
1(x1, x2) + u′

2(x2, x3).

If f(x1
2) = −5, andf(x2

2) = 5, thenu′
1(x

1
1, x

1
2) = 5 and

u′
1(x1

1, x
2
2) = 10, the exact opposite ofu1(·). Since the util-

ity can “flow” from one subutility factor to the next through
the shared attributes, the subutility values do not have an in-
dependent semantic meaning. This example illustrates that
the same utility function can be decomposed in an infinite
number of non-trivial ways.

The conditions under which a GAI model provides an ac-
curate representation of a utility function were defined by
Fishburn[7; 8], who introduced the model.1 Let P be the
set of all gambles (probability distributions) onX, andPI be
the set of all gambles onXI . ForP ∈ P , PI is the marginal
gamble ofP overXI . Let {I1, . . . , Im} be a collection of
nonempty subsets of{1, . . . , n}.

Defn. 1 The sets of attributes indexed byI1, . . . , Im are
(generalized) additively independentif and only if

[(PI1 , . . . , PIm) = (QI1 , . . . , QIm)] =⇒ P ∼ Q,

i.e., if and only if the decision maker is indifferent be-
tween two lotteries whenever their marginal distributions on
XI1 , . . . ,XIm are the same.

Theorem 1 [7] The GAI condition holds iff there are real-
valued subutility functionsu1, . . . , um on XI1 , . . . ,XIm

such that

u(x) = u1(xI1 ) + . . . + um(xIm). (5)

The following important result relies on the notion of ade-
fault outcome, denoted byx0 = (x0

1, x
0
2, . . . , x

0
n) (where each

xi is set to an arbitrary value). For anyx, let x[I] be the out-
come where attributes not inI are set to the default value,

1Fishburn used the terminterdependent value additivity; Bac-
chus and Grove[1] dubbed the same concept GAI, which seems to
be more commonly used in the AI literature currently.



but other attributes remain as inx (i.e., Xi = xi if i ∈ I,
andXi = x0

i if i /∈ I). For example, ifx = (x1, x2), then
x[{1}] = (x1, x

0
2).

Theorem 2 [7] If GAI holds, then for allx ∈ X:

u(x) =

mX
j=1

(−1)j+1
X

1≤i1<i2<···<ij≤m

u

 
x

"
j\

s=1

Iis

#!
. (6)

This theorem captures all dependencies intrinsic in GAI util-
ity functions. In our running example,

u(x1, x2, x3) = u(x1, x2, x
0
3) + u(x0

1, x2, x3) − u(x0
1, x2, x

0
3).

Given three arbitrary attribute setsI1, I2, I3, we have:

u(x) = u(x[I1]) + u(x[I2]) + u(x[I3])

− u(x[I1 ∩ I2]) − u(x[I1 ∩ I3]) − u(x[I2 ∩ I3])

+ u(x([I1 ∩ I2 ∩ I3]).

As we can see, under GAI conditions, Theorem 2 provides a
way to write the utility of any outcomex as a sum of utilities
of certain otherkeyoutcomes. These outcomes are related to
x in a specific way: in each of them, some attributes are set to
the same levels as in outcomex, while remaining attributes
are at their default values.

Theorem 2 allows one to construct the subutility functions
required in Eq. 5. If we group the addends on the right side
of Eq. 6 appropriately, we can defineu1, . . . , um such that
u(x) =

∑m
j=1 uj(xIj ). There is, however, more than one

way to define these subutility functions. Letxj denotexIj

(the restriction ofx to attributes inIj ). Fishburn[7] proposed
the following construction for subutility functions:

u1(x1) = u(x[I1]), (7)

uj(xj) = u(x[Ij ]) +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

u(x[
k\

s=1

Iis ∩ Ij ]).

We call this thecanonicalsubutility decomposition. In our
trivial example, the canonical decomposition would be:

u1(x1, x2) = u(x1, x2, x
0
3) ≡ u(x[I1]);

u2(x2, x3) = u(x0
1, x2, x3) − u(x0

1, x2, x
0
3)

= u(x[I2]) − u(x[I1 ∩ I2]).

Recall thatu(·) denotes utility of full outcomes, whereas
ui(·) is defined over attributes indexed byIi.

3 GAI Elicitation with Local Queries
If we could easily elicit utilities of key outcomes, the elicita-
tion task would be straightforward: the utility of anyx can
be calculated using the utilities of related key outcomes via
Eq. 6. This simplifies elicitation because the decision maker
only has to specify utilities of key outcomes (see[9] for a
relevant elicitation algorithm). Unfortunately, even key out-
comes are “full” outcomes over all attributes; it is unrealistic
to expect a user to assess tradeoffs involving full outcomes in
domains with more than a few attributes. Therefore, just as
in the elicitation of additive utility functions, we would like
to separate the elicitation process into local elicitation and
global scaling.

3.1 Local Elicitation
Assume that for each subsetIi we have chosen two different
“top” and “bottom” anchor outcomesx[Ii]> = (x>

Ii
,x0

IC
i

)

andx[Ii]⊥ = (x⊥
Ii

,x0
IC

i
).2 In these outcomes, the attributes

indexed by the setIi are set to their “top” and “bottom” levels,
respectively, while the other attributes are set to the default
level. We will assume thatx[Ii]> is the best possible outcome
andx[Ii]⊥ is the worst possible outcome given that attributes
not in Ii are set to the default level; however, in general, this
does not have to be the case as long as top and bottom anchor
outcomes are different.

We can now express the utility of certain other outcomes
in terms of anchor outcome utilitiesin a local way. First, we
defineMj to be the union of all the subsets that have variable
j: Mj =

⋃
i:j∈Ii

Ii. We can think ofMj as theneighbor
setof the attributej; it includes all the attributes that share
subsets with the attributej. Then, theconditioning setCi of
the setIi is just a union of the neighbor sets of the attributes
in Ii minus the attributes inIi: Ci =

⋃
j∈Ii

Mj − Ii. For
example, the neighbor set ofx4 in Fig. 1 isM4 = {2, 5} and
the conditioning set forI4 is C4 = {2, 6}.

After appropriate rearrangement of indices, an outcomex
can be written as(xi,xCi ,y), wherey are the attributes that
are neither inIi nor Ci. If the attributes in the conditioning
set are at default level, then we have the following:

Theorem 3 Under GAI conditions, if

(xi,x
0
Ci

, y) ∼ 〈p, (x>
i ,x0

Ci
,y); 1 − p, (x⊥

i ,x0
Ci

,y)〉, then

(xi,x
0
Ci

, y′) ∼ 〈p, (x>
i ,x0

Ci
,y′); 1 − p, (x⊥

i ,x0
Ci

,y′)〉,
for anyy′. Therefore,

(xi,x
0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.
That is, as long as attributes in the conditioning set ofIi are
fixed, the remaining attributes do not influence the strength of
preference of local outcomesxi. Thus, we can performlocal
elicitation with respect to local anchorsx>

i andx⊥
i , without

specifying the levels of they attributes.
Any suboutcomexi in a subutility factori can be expressed

locally in terms of the two anchor levels, given that attributes
in the conditioning set ofi are set to default values. We can
now define alocal value functionvi(·) such thatvi(x>

i ) = 1,
vi(x⊥

i ) = 0, andvi(xi) = p iff

(xi,x0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.
We can calibrate the relative values ofvi(xi) within any subu-
tility factor (conditional onCi at default levels) using only
queries over attributes inIi andCi.3 This stands in contrast
to the elicitation procedure of[9] which uses full outcomes.
After local elicitation, we know the conditional local values
vi(·) for all settings of variables inIi.

2It is important to keep in mind that anchor levels are defined for
each subutility factor, not individual attributes.

3Local value functions (which are only locally calibrated) are
distinct from the subutility functionsui in the GAI decomposition,
even though both are defined over the same set of factors.



3.2 Global scaling
Suppose we have elicited the local value functionsvi and the
utilities of anchor outcomesx[Ii]> andx[Ii]⊥ (recall that an-
chor outcomes are full outcomes). Letu>

i = u(x[Ii]>) and
u⊥

i = u(x[Ii]⊥). The utility of an arbitrary outcomex can
now be calculated from the utilities of anchor outcomes and
local value functions. From definition of local value functions
(assumingvi(xi) = p),

(xi,x0
Ci

,y0) ∼ 〈p, (x>
i ,x0

Ci
,y0); 1 − p, (x⊥

i ,x0
Ci

,y0)〉,
(xi,x0

Ci
,y0) ∼ 〈vi(xi), x[Ii]>; 1 − vi(xi), x[Ii]⊥〉.

Therefore, for anyJi ⊆ Ii,

u(x[Ji]) = vi(xi[Ji]) u>
i + (1 − vi(xi[Ji])) u⊥

i

= (u>
i − u⊥

i ) vi(xi[Ji]) + u⊥
i .

Finally, we define the subutility functionsu1, . . . , um in
terms of anchor outcome utilities and local value functions.
Using the canonical definition (Eq. 7), we get

u1(x1) = (u>
1 − u⊥

1 ) v1(x1) + u⊥
1 , (8)

uj(xj) = (u>
j − u⊥

j ) ·2
4vj(xj) +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

vj(xj [

k\
s=1

Iis ∩ Ij ])

3
5

+

2
4u⊥

j +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

u⊥
j

3
5 .

In our small example, this gives:

u1(x1, x2) = (u>
1 − u⊥

1 ) v1(x1, x2) + u⊥
1 ,

u2(x2, x3) = (u>
2 − u⊥

2 ) [v2(x2, x3) − v2(x2, x
0
3)].

3.3 Graphical Elicitation Procedure
In practice, we expect GAI models to exhibit considerable
structure, and intersections between subutility factors to in-
volve only a few variables. We propose a complete utility
elicitation procedure that takes advantage of such structure.
For now, we assume that a decision maker is capable of an-
sweringdirect local standard gamble utility queries, such as
“for what probabilityp would you be indifferent between sub-
outcomexi and a (local) standard lottery〈p,x>

i ; 1 − p,x⊥
i 〉,

assuming that attributes in the conditioning setCi are at de-
fault levels?”. Later, we will consider more realistic local
comparison queries.

Assume a decomposition of attributes into GAI subsets
I1, . . . , Im, and fix an order over these subsets (the order does
not affect efficiency of our algorithm). We construct a di-
rected graph whose nodes correspond to the setsIi and di-
rected edges(Ii, Ij) wheneverIi ∩ Ij 6= ∅ andi > j.4 Edge
(Ii, Ij) is labeled byIi∩Ij . Fig. 1 shows an example of a GAI
graph. After local elicitation, we have local value functions
vi(·). Utilities of anchor levelsu>

1 , u⊥
1 , . . . , u>

m, u⊥
m have to

be obtained by using global queries. However, we only need
to ask2m such queries involving full outcomes:interestingly,

4An undirected version of this graph is aGAI network[9].
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Figure 1: GAI graph. The utility function can be decomposed
as u(x1, . . . , x7) = u1(x1, x2, x3, x6) + u2(x1, x2, x7) +
u3(x2, x4) + u4(x4, x5) + u5(x5, x6).

this is thesame number of global queriesrequired for global
scaling in the linearly additive case (considering each at-
tribute as a factor in the additive case). In addition, the gen-
eral formula for defining canonical subutility functions (pro-
vided by Eq. 8) can be simplified as follows:

u′(x) =

mX
j=1

u′
j(xj) =

mX
j=1

v̄j(xj)(u
>
j − u⊥

j ), (9)

where

v̄j(xj) = vj(xj) +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

vj(xj [
k\

s=1

Iis ∩ Ij ]),

andvj(xj [
⋂k

s=1 Iis ∩ Ij ])) = 0, if
⋂k

s=1 Iis ∩ Ij = ∅; u′(·)
is a utility function that is strategically equivalent to the orig-
inal functionu(·). To compute a (unnormalized) subutility
function v̄j(xj), we have to know which local suboutcomes
x′

j are involved (in the formxj [
⋂k

s=1 Iis ∩ Ij ]) on the right
side of the equation; this amounts to finding all nonempty
sets

⋂k
s=1 Iis ∩ Ij and recording the corresponding sign of

the local value functions in Eq. 9. The structure of subutil-
ity functions depends only on the GAI subset decomposition.
Therefore, given a GAI graph, we can use a search procedure
to compute the relevant subsets needed to solve Eq. 9. We
only need to do this once for each subutility factor.

Input: GAI attribute setsI1, . . . , Im.
Output: For each subutility factorj, a collection of setsLj ,
and a sign functionzj : Lj 7→ {+1,−1}.

• For each subutility factorj:
• Start at nodej and perform a graph search along the

directed arcs. The search depth is finite, so any search
algorithm (e.g., breadth-first or depth-first) could be
used. SetLj = ∅.

• While Ii ∩ Ij 6= ∅ (we’re at nodei)

– let K = {nodes on path fromj to i};
– add∩k∈KIk to Lj ;
– setzj(∩k∈KIk) = 1, if depth even,

zj(∩k∈KIk) = -1, if depth odd.

Because of the graphical structure of GAI models, Eq. 9 now
reduces to

v̄j(xj) =
∑

J∈Lj

zj(J) vj(xj [J ]).



Fig. 1 provides an example of a GAI graph. To com-
pute L5, we search for all non-empty intersections of
the set I5 with other sets. The only such sets are
I5 itself (at depth 0),I4 (depth 1), andI1 (depth 1).
Therefore, L5 = {{5, 6}, {5}, {6}}, and v̄5(x5, x6) =
v5(x5, x6) − v5(x5, x

0
6) − v5(x0

5, x6). Finally,u5(x5, x6) =
v̄5(x5, x6)(u>

5 − u⊥
5 ).

4 Elicitation under Uncertainty
We now considerpartial elicitation of utility parameters.
Generally speaking, good (or even optimal) decisions can
be realized without complete utility information. Rather
than asking for the direct assessment of utility parameters
using standard gambles as in[9], we consider simpler bi-
nary comparison queriesover local gambles. Following[5;
2], we suppose some prior over the parameters of a GAI
model, and use myopic expected value of information (EVOI)
to determine appropriate queries.

If a utility function u is completely unstructured, and a
prior densityπ over the utility function parameters is avail-
able, the best outcome with respect to the prior is simply
x∗ = arg maxx Eπ[u(x)]. However, we can query a user
about her utility function, update the prior based on the re-
sponse, and compute a new expected best outcome. If a se-
quence of queries can be asked, finding the best elicitation
policy is a sequential decision process, providing an optimal
tradeoff between query costs (the burden of elicitation) and
potentially better decisions due to additional information[2].
However, such a policy is very difficult to compute, so here
we use a myopic approach to choosing the next query[5].

4.1 GAI Structure and Local Queries
GAI models allow us take advantage of the additive utility
decomposition to compute EVOI. We assume that anchor
utilities u>

1 , u⊥
1 , . . . , u>

m, u⊥
m are known, but the local value

functionsv1, . . . , vm are specified imprecisely via indepen-
dent priors over local value function parameters. Thus, for
each suboutcomexi (apart from three special configurations
x>

i ,x⊥
i ,x0

i whose local values are fixed)5 we have an inde-
pendent prior density over possible values ofvi(xi). The ex-
pected value of outcomex is then

E[u(x)] =
mX

j=1

E[uj(xj)] =
mX

j=1

(u>
j − u⊥

j )E[v̄j(xj)],

whereE[v̄j(xj)] =

E[vj(xj)] +
j−1∑
k=1

(−1)k
∑

1≤i1<···<ik<j

E[vj(xj [
k⋂

s=1

Iis ∩ Ij ])].

With priors over local utility functions, an appropriate form
of query is “Is local utility of suboutcomexi greater thanl?”,
denoted as〈xq

i , l〉. Such a query is alocal query, because
it asks a user to focus on preferences over a (usually small)
subset of attributes; the values of remaining attributes do not
have to be considered. Indeed, this corresponds to a binary
comparison query over local outcomes and gambles, which a

5vi(x
>
i ) = 1, vi(x

⊥
i ) = 0, vi(x

0
i ) =

u(x0)−u⊥
i

u>
i
−u⊥

i

.

user can more easily assess: “do you preferxi or 〈p,x>
i ; 1 −

p,x⊥
i 〉, assuming that attributes in the conditioning setCi are

at default levels?” The best local myopic query is the one that
maximizes theexpected posterior utility(EPU):

EPU(xq
i , l) = Pr(yes|xq

i , l)max
x

Eyes|xq
i ,l [u(x)]

+ Pr(no|xq
i , l)max

x
Eno|xq

i ,l [u(x)].

Due to the local nature of our queries, we can simplify part of
the equation as follows:maxx E{yes/no}|xq

i ,l [u(x)] =

max
xi


E{yes/no}|xq

i ,l [ui(xi)] + max
x restr. toxi

∑
j 6=i

E[uj(xj)]


 ,

wheremaxx restr. toxi

∑
j 6=i E[uj(xj)] could be computed by,

e.g., variable elimination. Further computational savings are
possible since only some of the expected (posterior) subutility
values will change given a specific query; these values can be
expressed as a linear function of the local value of the query
suboutcome.

4.2 Mixture of uniforms priors
Specifying prior information over local utility parameters as
a mixture of uniform distributions confers several advantages
for utility elicitation. With enough components, a mixture
of uniforms is flexible enough to approximate many stan-
dard distributions; furthermore, it fits nicely with the type of
queries we consider here. Because the posterior distribution
after a response to a query remains a mixture of uniforms (we
only need to update the weights), it is possible to maintain an
exact density over utility parameters throughout the elicita-
tion process[2]. Most importantly, we can calculate the opti-
mal query pointl analytically, asEPU(xq

i , l) is a piecewise-
quadratic function ofl.

5 Empirical Results
We implemented the myopic elicitation strategy with prior
density specified as a mixture of uniform distributions, and
tested it on a realistic car-rental problem. The graphical struc-
ture of this problem is sufficient to admit fast (around 1 sec-
ond) EVOI computations; therefore, our approach could sup-
port interactive real-time preference elicitation.

The car-rental problem is modeled with 26 variables that
specify various attributes of a car relevant to typical rental
decisions. Variable domains range from 2 to 9 values, re-
sulting in 61,917,364,224 possible configurations. The GAI
model consists of 13 local factors, each defined on at most
five variables; the model has 378 utility parameters (see[4]
for further problem details). We use variable elimination to
determine best “expected” outcomes.

We experiment with three different types of priors on local
utility functions: a (random) mixture of five uniforms, a non-
informative uniform density, and a mixture of 10 uniforms
which is fitted to approximate a truncated Gaussian distribu-
tion with the variance of 0.3 and the mean chosen at random
from the interval[0; 1]. For each of the three types of priors,
we sample 30 different utility functions that are used for re-
sponses to queries. We then run our elicitation algorithm for
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Figure 2: (a) Utility error as a percentage of the initial error; (b) Utility error as a percentage of the true maximum utility. The
random strategy curves are marked with ’x’.

100 queries; for an EVOI query strategy, if the EVOI becomes
0 (which happens after 20-30 queries on average), we choose
the next query at random. We compare our myopic EVOI
strategy with a “random” query strategy, where a subutility
factor and a local query configuration is chosen at random,
whereas the query pointl is set to the expected local utility of
the query suboutcome (sol is chosen “intelligently” to give
equal odds to either response).

Figure 2 summarizes our experimental results for the three
different types of priors. All results are averaged over 30 tri-
als with underlying utility functions sampled from the corre-
sponding priors. In addition, random strategy curves, which
are marked by ’x’ in both plots, are averaged over 100 runs.
Figure 2 (b) supports an intuitive prediction that Gaussian pri-
ors are quite informative – on average, the initial error (be-
fore elicitation) is only slightly larger than 2%; on the other
hand, a uniform prior places same density everywhere, and
therefore average initial error is around 13%. The impact of
prior distributions is normalized in Figure 2 (a), which shows
how the error decreases as a fraction of the initial error. In
all cases, the EVOI strategy is clearly superior to a random
query strategy, which at best reduces the error by only 20%
after 100 queries. The EVOI strategy cuts the error by at least
a half after 50 queries. Though this might seem like a large
number of queries, recall that the problem is large (378 pa-
rameters), and our queries are localcomparisonqueries.

6 Concluding Remarks
We described a new approach to elicitation in GAI models.
Unlike previous approaches, we have shown how the graph-
ical structure can be exploited to restrict attention almost ex-
clusively to local queries over outcomes and gambles, thus
extending a key advantage of additive models to the gener-
alized case. We have also shown how one can exploit GAI
structure to optimize query choice when using myopic EVOI
to guide preference elicitation.

A number of directions remain to be explored, including:
incorporating noise models into user responses[2]; develop-
ing computationally tractable approximations for computing

nonmyopic EVOI in this setting; methods for eliciting GAI
model structure; user case studies and methods for dealing
with inconsistency in user responses ; and investigating other
decision criteria such as minimax regret[4].
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Dept. of Comp. Sci. and Eng.

Helsinki University of Technology
Helsinki, Finland

Ilkka.Niemela@tkk.fi

Mirosław Truszczyński
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Abstract

We introduce a flexible framework to specify problem so-
lutions (outcomes) and preferences among them. The pro-
posal combines ideas from answer-set programming (ASP),
answer-set optimization (ASO) and CP-nets. The problem
domain is structured into components. ASP techniques are
used to specify values of components, as well as global (inter-
component) constraints among these values. ASO methods
are used to describe preferences among the values of a com-
ponent and CP-net techniques to represent inter-component
dependencies and corresponding preferences.

Introduction
Qualitative preferences have received considerable attention
in AI lately (cf. the special issue Computational Intelli-
gence, 20(2), 2004). A popular representation of qualita-
tive preferences are CP-nets (Boutilieret al. 1999; 2004a;
2004b). They are directed acyclic graphs of variables an-
notated with conditional preference tables. The table asso-
ciated with a variableexplicitly describes conditional pref-
erences among the values of that variable as a function of
value assignments to the parent variables. The problem is to
specify a preference ordering onoutcomes, that is, assign-
ments of a value to each variable. Preferences are given a
ceteris paribus(other things being equal) interpretation. For
example, the statementred cars are preferred over blue cars
is taken to mean: if two cars differ only in colour, and one is
red while the other blue, then the red one is preferred (not:
each red car is better than any blue car). Preference rules
express strict constraints on the preference ordering on out-
comes, but are weak in the sense that they applyonly under
theceteris paribusrestriction.

Another approach, calledanswer-set optimization(ASO),
has been developed in the context of answer-set program-
ming (Brewka, Niemelä, & Truszczyński 2003). Although
preference rules are used there as well, their meaning is quite
different. Each rule expresses a ranking on answer sets.
However, the rankings provided by different rules may dif-
fer, and a combination method is used (Pareto in (Brewka,
Niemelä, & Truszczyński 2003)) to generate a global prefer-
ence order. Hence, a rule can be viewed as a single criterion
in multi-criteria decision making. ASO preference rules thus
are strong but defeasible constraints on the global preference

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ordering on answer sets. They are strong because they apply
without theceteris paribusrestriction. They are defeasible
since they may be overridden by other rules.

CP-nets allow the user to fully exploit dependency struc-
ture, both for preference representation and elicitation.
However, they are restrictive in the way preferences on the
values of a single variable can be specified. They basically
assume that variables have a small number of known val-
ues and that a total order of these values can be explicitly
given. The ASO approach uses an answer-set program to
represent a single variable with complex outcomes, where
outcomes are modeled by answer sets of the program. It also
provides flexible means for expressing possibly conflicting
and/or incomplete preferences on outcomes, as well as indif-
ference. However, dependencies among parts of outcomes
remain implicit and are not fully exploited.

Prioritized component systems, our main contribution,
combine key aspects of both approaches. The setup is ba-
sically that of CP-nets. We have variables, each with its do-
main, and each possibly depending on its parent variables.
Given a variable, for every set of values of parent variables
we also have an ordering of elements of the domain of that
variable. However, unlike in CP-nets, variables may have
large domains, with elements known only implicitly. We re-
fer to these “complex” variables ascomponentsand, follow-
ing the ASO approach, represent them by answer-set pro-
grams. Preference orderings on the values for the compo-
nent also are specified following the ASO approach. Each
componentC comes with a set of preference rules, whose
bodies (and only the bodies!) may contain literals frompar-
ent components. Each assignment of values (answer sets)
to the parent components selects a set of relevant preference
rules for C. These rules express defeasible multi-criteria
preference information that determines the preference order-
ing on the answer sets ofC, given the answer sets (values)
for the parent components.

The choice of answer-set programs to represent compo-
nents (or outcomes, in the case of ASO programs) is not es-
sential for our discussion. Any constraint formalism (e.g.,
propositional logic) could be used instead. In selecting
answer-set programs we were motivated by the minimal-
ity and groundedness of their answer-set semantics, which
make them useful for knowledge representation.

Our approach generalizes both CP-nets and ASO pro-



grams. CP-nets are component systems with dependency
structure, but with the simplest possible components that just
pick a single value for a variable. ASO programs are com-
ponent systems with a single, possibly complex component
but, clearly, no component dependencies. The framework
we develop here allows us to model systems anywhere in
between these two extremes.

Background
In most abstract terms, we are concerned with comparing the
quality of elements in a set. Thus, we need (i) a formalism to
specify a set of elements or, aspace of outcomeswe wish to
compare, and (ii) a way to represent and reason about prefer-
ences on outcomes. The two aspects are typically separated
for greater modularity, flexibility and generality.

We will now describe two formalisms for specifying and
reasoning about preferences that are of primary interest later
in the paper. They are:answer-set optimization programs
(ASO-programs, for short) (Brewka, Niemelä, & Truszczyń-
ski 2003) andCP-nets(Boutilier et al. 1999; 2004a; 2004b).

ASO programs
In ASO programs, individual outcomes are sets of literals
over a fixed setAt of propositional atoms. To represent a set
of outcomes, we use a logic program over the set of atoms
At and assume that feasible outcomes are precisely the an-
swer sets ofP (we assume some familiarity with the logic
programming terminology; we refer the reader to (Gelfond
& Lifschitz 1991; Simons, Niemelä, & Soininen 2002) for
relevant details). As we noted, our choice of programs to
model outcomes is motivated by knowledge-representation
concerns but other constraint-based formalisms could also
be used.

To represent preferences in ASO programs, we usepref-
erence rules(or simply,preferences) of the form

γ1 > . . . > γk ← α (1)

where theγis areboolean combinationsof atoms inAt , i.e.,
formulas built of atoms inAt using disjunction (∨), con-
junction (∧), strong (¬) and default (not ) negation, with
the restriction that¬ can appear only in front of atoms, and
not only in front of literals and whereα is a conjunction of
literals and expressions of the formnot l wherel is a literal.

Definition 1 Ananswer-set optimization(or ASO) program
over the set of atomsAt is a pair (C, Φ), whereC is a logic
program (overAt ), called agenerator program, andΦ is a
collection of preference rules (overAt), called apreference
program. Answer sets ofC are outcomesof (C, Φ).

To specify how to use preferences to compare sets of lit-
erals and, in particular, outcomes of ASO programs, we in-
troduce asatisfactionrelation between sets of literals and
boolean combinations.

Definition 2 Satisfaction of a boolean combinationγ in a
set of literalsS, denotedS |= γ, is defined as:

S |= l (l literal) iff l ∈ S
S |= not l (l literal) iff l 6∈ S
S |= γ1 ∨ γ2 iff S |= γ1 or S |= γ2

S |= γ1 ∧ γ2 iff S |= γ1 andS |= γ2.

We now have the following key definition.

Definition 3 Let S be a set of literals andr a preference
rule of the form (1). Thesatisfaction degreeof r in S (de-
noted bysr(S)) is given as follows. IfS |= α and, for some
i, 1 ≤ i ≤ n, S |= γi, thensr(S) is the smallest index
of a satisfied boolean combination in the head ofr. Other-
wise the rule is irrelevant andsr(S) is denoted by a special
symbolI.

We assume that the smaller the index of a satisfied goal
the better. For trivial reasons, irrelevant rules are not sub-
optimally satisfied as they either do not apply or have no
goals satisfied at all (cf. (Brewka, Niemelä, & Truszczyński
2003) for a more extensive discussion of that issue). Thus,
we considerI to be as good a satisfaction degree as1. These
intuitions are made formal by a preorder1� on the set of sat-
isfaction degrees: forα, β ∈ {I, 1, 2, . . .}, α � β if β = 1
or β = I, orα andβ are integers andβ ≤ α. The relation�
is in fact atotal preorder. We write≺ for thestrict counter-
part to the relation� (α ≺ β if α � β and it is not the case
thatβ � α). The relation≺ is antisymmetric and transitive
and so, its closure under reflexivity, is apartial order.

Let (C, Φ) be an ASO program andS a set of literals.
The satisfaction degrees of rules fromΦ in S form the ba-
sis for defining a global preference ordering on outcomes of
(C, Φ). Several methods can be used for this purpose. We
will restrict our discussion here to the Pareto method.

Definition 4 Let (C, Φ) be an ASO program and letS and
S′ be its outcomes (answer sets). An outcomeS is Pareto-
preferredto an outcomeS′ of C (S′ �Φ S) if for every
rule r ∈ Φ, sr(S

′) � sr(S). If S′ �Φ S and it is not the
case thatS �Φ S′ (that is, for at least one ruler ∈ Φ,
sr(S

′) ≺ sr(S)), thenS is strictly Pareto-preferred toS′

(S′ ≺Φ S).
An outcomeS is optimal for (C, Φ) if there is no outcome
S′ such thatS ≺Φ S′.

The relation�Φ is a preorder relation for the set of out-
comes of(C, Φ). The relation≺Φ, when closed under re-
flexivity, is a partial order on the set of outcomes.

For simplicity, we restrict the class of generator programs
to normal programs (default negation in the bodies only, no
classical negation symbols) with cardinality constraints(Si-
mons, Niemelä, & Soininen 2002). Cardinality constraints
allow us to specify lower and upper bounds on the number
of certain atoms in an answer set. For this paper we will only
need rules of the form1{a1, . . . , an}1← α expressing that
exactly oneai must be contained in answer sets satisfying
α. Answer sets of such programs are sets of atoms.

CP-nets
CP-nets were introduced in (Boutilieret al. 1999; 2004a).
Let A = {A1, . . . , An} be a finite set of variables (at-
tributes). For each variableA ∈ A, let DA be thedo-
main of A, that is, a finite and non-empty set ofvalues
for A. Without loss of generality, we assume that variable
domains are pairwise disjoint. Anoutcomeis an n-tuple
U = (u1, . . . , un) such thatui ∈ DAi

, 1 ≤ i ≤ n.

1A binary relation is apreorderif it is reflexive and transitive.



A conditionis a conjunction of atomic expressions of the
form (A = a) and their negations, whereA ∈ A and
a ∈ DA. A conditional preference rule(or,conditional pref-
erence) is an expression of the formα : π such thatα is a
condition and, for some variableA, π is a total preorder on
the domainDA. We writea ≤π b if (a, b) ∈ π, i.e., if b is at
least as good asa in π anda <π b to denote thestrict pref-
erenceof b overa, i.e., if a ≤π b holds butb ≤π a does not.
We note that unlike≤π, <π (when closed under reflexivity)
is a partial order.

We use total preorders rather than total orders (even
though the latter is a more common choice in the literature)
to provide means to modelindifference. It is important as in
practice the users may be unwilling or just unable to specify
a total order on the set of values of a variable in a situation
when they consider different values as equally good.

A CP-netover a set of variablesA is a pair(P, Φ), where
P is a parent function, andΦ is a collection of conditional
preferences such that for every conditional preferenceα : π
in Φ, which orders values of a variableA, α involves only
variables that belong toP (A)2.

In a standard approach to CP-nets, preference statements
are represented by conditional-preference tables — one ta-
ble for each variable. Rows in the table for a variableA
correspond to tuples of values from the domainsDB, where
B ∈ P (A) (exactly one row for each tuple), and each row
contains a relevant ordering of values in the domainDA.
The approach we adopt here is more general.

The main contribution of CP-nets is in how they use con-
ditional preferences to order outcomes. In what follows,
given a variableA and an outcomeU , by U(A) we denote
the value from the domain ofA that appears inU .

Definition 5 An outcomeV is one-step preferredto an out-
comeW if for some variableA:

1. V (B) = W (B) for every variableB ∈ A\{A} (that is,
for every variable other thanA), and

2. Φ contains a conditional preferenceα : π for A such that
W (and hence alsoV ) satisfiesα andW (A) ≤π V (A).

If V is one-step preferred toW with respect to a variable
A, then we say that there is animprovingA-flip from W to
V and that there is aworseningA-flip from V to W .

Definition 6 The outcomeV isCP-preferredtoW , W �CP

V , if V can be obtained fromW by a (possibly empty) se-
quence of improving flips. The outcomeV is strictly CP-
preferredto W , W ≺CP V , if W �CP V and it is not the
case thatV �CP W . An outcomeV is optimalif there is no
outcomeU such thatV ≺CP U .

For every CP-net, the relation≺CP , when closed under
reflexivity, is a partial ordering. The relation�CP in general
is not; it is a preorder only. However, foracyclic CP-nets
(CP-nets whose parent function induces a directed acyclic
graph on the set of variables) and with all preferences spec-
ifying total orders, �CP is a partial order and it coincides

2Including a parent function in the description of a CP-net is
redundant as the dependency information is contained in conditions
of conditional preference rules. However, it makes the preference
elicitation process more systematic.

with ≺CP (closed under reflexivity). The relation≺CP and
the notion of optimality we consider in the paper were intro-
duced and studied in (Brafman & Dimopoulos 2004).

Component systems
In an ASO program(C, Φ), the role ofC is to describe the
space of available outcomes and the role ofΦ is to capture
preferences of a user regarding these solutions. In this gen-
eral form, ASO programs do not provide explicit means to
handle complexity and structure present in large-scale ap-
plications, where domains and problems decompose into
subdomains and subproblems with well-defined dependen-
cies. Adding structure based on dependencies, and so im-
plicitly expressing independence, has proven successful in
knowledge representation formalisms such as Bayes nets
and CP-nets. These formalisms exploit structure to ensure
concise,factoredproblem representations. Our main objec-
tive is to bring structure to answer-set optimization to make
the process of modeling spaces of solutions and relevant
preference information more transparent and systematic. In
the process, we obtain a formalism for qualitative reasoning
about preferences that generalizes both ASO-programs and
CP-nets.

Let At(P ) be the set of atoms appearing in a programP .

Definition 7 A component systemis a pair (Π, G), where

1. Π = {C1, ..., Cn} is a collection of logic programs with
pairwise disjoint sets of atoms, calledcomponentsof the
component system, and

2. G is a set ofconstraints, that is, logic program clauses of
the form ← body

such thatAt(G) ⊆
⋃

C∈Π At(C).

An outcomeof (Π, G) is a tuple 〈M(C1), . . . , M(Cn)〉,
where for everyCi ∈ Π, M(Ci) ⊆ At(Ci) and

⋃
M(Ci) is

an answer set of the programG ∪
⋃

Π.

Directly from the definition and from the properties of
logic programsΠ andG it follows that if M is an outcome
of a component system(Π, G) then, for every componentC,
the setM(C) is an answer sets ofC.

Logic programs represent sets of literals (sets of atoms, if
we restrict, as we do in this paper, to normal programs with
cardinality constraints). The answer sets have no explicit
structure or, are “flat”. Component systems replace this flat
representation with a two-level one. Elements of outcomes
are no longer atomic but have structure of their own. They
are collections of atoms — answer sets of system compo-
nents. In other words, each componentC can be thought of
as a variable, its domains representedimplicitly by a logic
program (C itself) and consisting of the answer sets ofC.

Every tuple of answer sets of programs forming compo-
nents of a component system(Π, G) is an outcome of the
component system(Π, ∅). The role ofG is to exclude some
combinations. Adding a constraint← body to a logic pro-
gram eliminates all answer sets of the program that satisfy
body . Since there are no restrictions on atoms appearing in
the clauses inG, the programG representsglobal (or inter-
component) restrictions on ways, in which component val-
ues can be combined into outcomes of(Π, G).



The structure of a component system(Π, G) is implicitly
present in the program

⋃
Π ∪ G. Namely, there is a 1-to-1

correspondence between outcomes of the component system
(Π, G) and answer sets of the program

⋃
Π∪G: for an out-

comeM of (Π, G), M∪ =
⋃

C∈Π M(C) is an answer set
of

⋃
Π ∪G and, for an answer setN of

⋃
Π ∪G, the tuple

~N = 〈N ∩ At(C): C ∈ Π〉 is an outcome of(Π, G). The
ability to make the structure explicit is, however, important.
It allows us to model directly the structure present in appli-
cations, an issue we discuss in the last section.

We will illustrate the idea of a component system with a
simple example of configuring a daily menu (more formally,
describing the space of daily menus). We first establish that
a daily menu consists of three components: breakfast, lunch
and dinner. We then describe each of them separately, for
instance, by programs listed below.

breakfast: 1{continental, american}1
lightb ← continental

lunch: 1{soupl, saladl}1
1{meatl, f ishl, lasagnel}1
1{friesl, noodlesl}1← not lasagnel

lightl ← lasagnel, saladl

dinner: 1{soupd, saladd}1
1{meatd, f ishd, lasagned}1
1{friesd, noodlesd}1← not lasagned

lightd ← lasagned, saladd

The components specify the possible choices for each case.
So far there are2×10×10 = 200 possible outcomes. Global
constraintsG exclude certain combinations (for lack of va-
riety or for health reasons), for instance

← meatl, meatd
← lasagnel, lasagned

← not lightb,not lightl,not lightd

While the same set of menus can be represented by a sin-
gle program consisting of all these rules, component systems
structure the rules in a way conceptually linked to the struc-
ture inherent in the application domain. However, a fun-
damental advantage of component systems is that they lend
themselves well to a variety of methods to specify prefer-
ences among outcomes. We discuss that issue next.

Prioritized component systems
The main focus of this paper is on representing and reason-
ing about preferences pertaining to a collection of outcomes
represented by a component system. To represent prefer-
ences we use preference rules as defined for ASO programs.

Definition 8 A prioritized component system(PCS, for
short) is a quadrupleC = (Π, G, P, Φ), where

1. (Π, G) is a component system;
2. P is a parent functiondescribing dependencies between

components: for every componentC ∈ Π, P (C) consists
of all components inΠ thatC depends on; and

3. Φ is a set ofpreference rulesof the form (1) that are sub-
ject to the following restrictions: for each preference rule
γ1 > . . . > γk ← α in Φ there is a componentC such
that formulasγi, 1 ≤ i ≤ k, are built of atoms inAt(C)

andα is built of atoms inAt(C) ∪
⋃

D∈P (C) At(D). We
call such preference rulesC-preferencesand denote the
set of allC-preferences byΦC .

Outcomesfor a prioritized component system(Π, G, P, Φ)
are the outcomes for its component system(Π, G).

We now define the preference relation on outcomes of a
PCS(Π, G, P, Φ). To this end, we first focus on the PCS
(Π, ∅, P, Φ). Every outcome of(Π, G, P, Φ) is an outcome
of (Π, ∅, P, Φ). Moreover, outcomes of(Π, ∅, P, Φ) are pre-
cisely those tuplesM such that for everyC ∈ Π, M(C) is
an answer set ofC. The first step is to introduce the notion of
aflip between outcomes of a prioritized system(Π, ∅, P, Φ).

Definition 9 Let M and M ′ be outcomes for(Π, ∅, P, Φ)
andC ∈ Π a component. There is aC-flip fromM to M ′ if
M 6= M ′ and for everyD ∈ Π, D 6= C impliesM ′(D) =
M(D).

A flip fromM to M ′ is improvingif M �ΦC
M ′ (that is,

with respect to the Pareto-preference relation determinedby
preference rules inΦC ).

The choice of the Pareto-preference relation with respect
to preferences inΦC is a consequence of the fact that we
defined the preference relation between outcomes of ASO
programs by means of that relation. If a different combina-
tion method for ASO programs is chosen, that relation has
to be used here.

Definition 10 Let(Π, G, P, Φ) be a PCS and letM andM ′

be outcomes for(Π, G, P, Φ). The outcomeM ′ is PCS-
preferredto M , M �PCS M ′, if there is a sequence of im-
proving flips fromM to M ′ (possibly involving outcomes for
(Π, ∅, P, Φ) not satisfying the constraintsG as intermediate
steps). It isstrictly preferred,M ≺PCS M ′, if M �PCS M ′

and it is not the case thatM ′ �PCS M .

Definition 11 Let M be an answer set of a PCSC. We say
that M is an optimal outcome forC if there is no outcome
M ′ for C such thatM ≺PCS M ′.

Let us consider again the daily menu example. To specify
her preferences the user first decides the dependency struc-
ture she wants to base her preferences on. Let us assume
that dinner and breakfast preferences do not depend on other
components, and that lunch depends on the other two. The
user first specifies her dinner and breakfast preferences, for
instance, using the following preference rules:

(d1) meatd ∧ friesd > fishd > meatd ∧ noodlesd

(d2) soupd > saladd ← meatd
(d3) saladd > soupd ← not meatd
(b1) lightb > not lightb

She now describes conditional lunch preferences dependent
on the attributes of the other meals:

(l1) meatl > not meatl ← lasagned, continental
(l2) saladl > soupl ← soupd

(l3) fishl > lasagnel ← saladl

(l4) soupl > saladl ← american

Now one of the optimal outcomes is:

〈{continental, lightb}, {saladl, f ishl, friesl},
{meatd, friesd, soupd}〉



Another optimal solution is obtained by exchangingfriesl

with noodlesl. There are also optimal solutions containing
lasagned andsaladd. We are aware that the full power of
our approach becomes more evident in larger scale examples
for which we have no space here. Nevertheless, the exam-
ple illustrates the basic notions and some of the advantages
of PCSs: dependencies are between components, not sim-
ple variables with unstructured values; preferences can be
incomplete and conflicting (e.g. conflict betweenl2 andl4
in case of american breakfast and dinner soup), and it is pos-
sible to remain indifferent (no preference between fish/fries
and fish/noodles for dinner).

The way we use improving flips to order outcomes fol-
lows (Boutilieret al. 2004b), and disagrees with (Prestwich
et al. 2004). The two approaches differ in their interpreta-
tion of constraints. In (Prestwichet al. 2004) the constraints
are viewed as specifications offorbiddenconfigurations that
are completely unacceptable to the user. Hence, in that ap-
proach, outcomey is preferred to an outcomex if there is a
sequence of improving flips fromx to y not passing through
a forbidden outcome. That amounts to letting constraints
override CP-preferences (as forbidden outcomes are forced
to be least preferred) and appears to be a drastic change of
the CP-net semantics. The alternative approach of (Boutilier
et al. 2004b) treats constraints as simply making some out-
comes unavailable. The fact that an outcome is unavailable
has nothing to do with the user’s preferences — should the
outcome become available its quality would be measured ac-
cording to user preferences specified in the CP-net. Conse-
quently, (Boutilieret al. 2004b) (and we here) allow the use
of unavailable outcomes to define the global preference re-
lation by means of improving flips.

We now show that CP-nets and ASO-programs are special
cases of our formalism. A CP-net(P, Φ) can be represented
as a PCS in the following way. LetZ be a variable of(P, Φ)
and letz1, . . . , zn be its values. We define a component pro-
gramCZ to consist of a single logic program rule (a choice
rule in the syntax of (Simons, Niemelä, & Soininen 2002))

1{Z = z1, . . . , Z = zn}1.

Let α : π be a conditional preference rule for a variableZ.
We denote byα′ the formula where every occurrence of¬ is
replaced withnot . Next, letL1, . . . , Lk be all maximal sets
of atoms of the formZ = zi such that allzis are equivalent
with respect to the total preorderπ and such that atoms in
Li are strictly preferred inπ to atoms inLj if and only if
i < j. We setdi, 1 ≤ i ≤ k, to be the disjunction of atoms
in Li. A rule d1 > . . . > dk ← α′ is a preference in the
sense of ASO programs and PCSs. We denote the set of all
preferences obtained by transforming the preferences inΦ
by Φ′. We have the following theorem.

Theorem 1 Let(P, Φ) be a CP-net with the set of variables
V and letU andU ′ be two of its outcomes. ThenU andU ′

are outcomes of the PCS({CZ : Z ∈ V}, ∅, P, Φ′) and

1. U �CP U ′ if and only ifU �PCS U ′

2. U ≺CP U ′ if and only ifU ≺PCS U ′

This theorem can be generalized to the case of “con-
strained optimization with CP-nets” approach (Boutilieret

al. 2004a). Whenever a certain combination of variable val-
ues, sayX1 = x1, . . . , Xn = xn, is excluded by the global
constraints in a constrained net, we include a corresponding
constraint of the form← X1 = x1, . . . , Xn = xn in G.

The PCS framework also generalizes answer-set opti-
mization as described in (Brewka, Niemelä, & Truszczyński
2003). Indeed, we have the following simple result.

Theorem 2 Let C = (C, Φ) be an ASO program. Then
C′ = ({C}, ∅, ∅, Φ) (in other words, both the set of global
constraints and the parent function are empty) is a PCS, its
outcomes are precisely the 1-tuples〈M〉, whereM is an an-
swer set forC, and for every two outcomesM andM ′ of C
(answer sets ofC),

1. M �Φ M (in C) if and only if〈M〉 �PCS 〈M ′〉 (in C′)
2. M ≺Φ M (in C) if and only if〈M〉 ≺PCS 〈M ′〉 (in C′).

The correspondences between CP-nets and PCSs can be
summarized by the following table:

CP-net PCS
variablevi programCi

value ofvi answer set ofCi

value assignment configuration
CP-table forvi preference programΦCi

vi-flip new answer set forCi

Pareto and PCS ordering
Let C = (Π, G, P, Φ) be a PCS. By disregarding the struc-
ture inC, we obtain an ASO programCASO = (

⋃
Π∪G, Φ).

We noted earlier that there is a 1-to-1 correspondence be-
tween outcomes ofC (which are outcomes of(Π, G)) and
outcomes ofCASO (answer sets of

⋃
Π ∪ G), given by a

function that assigns to each outcomeM of C, the setM∪,
an answer set of

⋃
Π∪G (an outcome ofCASO ). That corre-

spondence suggests that a natural criterion for any ordering
of the outcomes ofC is that it extends the Pareto ordering�Φ

of the outcomes ofCASO . We will now show that our PCS-
preference ordering has indeed that property for the class of
acyclicPCSs. It is not an overly restrictive assumption since
typical PCSs arising in applications are acyclic.

Theorem 3 Let C = (Π, G, P, Φ) be an acyclic PCS and
let M andM ′ be two of its outcomes. If

⋃
C∈Π M(C) �Φ⋃

C∈Π M ′(C) thenM �CP M ′.

Proof (sketch): LetC1, . . . Cn be an enumeration of the
components ofC consistent with the parent functionP , that
is, for every componentCi, P (Ci) ⊆ {C1, . . . , Ci−1}. For
every i, 1 ≤ i ≤ n, let Mi = M(Ci) and, similarly,
M ′

i = M ′(Ci) (that is,Mi andM ′

i are answer sets of (val-
ues for) the componentCi appearing in outcomesM and
M ′, respectively). For everyi, 1 ≤ i ≤ n + 1, we define

Ni = 〈M ′

1, . . . , M
′

i−1, Mi, . . . , Mn〉.

It is clear thatM = N1 andM ′ = Nn+1. Moreover, for
everyi, 1 ≤ i ≤ n, Ni+1 is a result of aCi-flip applied to
Ni. We can show that for eachi, 1 ≤ i ≤ n, theCi-flip
from Ni to Ni+1 is an improving one. 2

Our proof also works for a slightly broader class of PCSs
that contain preference rules whose bodies are conjunctions
of formulas (not literals), each formula built of atoms of a
single component.



Complexity
The computational complexity of problems related to PCSs
depends on the class of programs used as components. To
make the discussion concrete, we consider PCSs whose
components are logic programs with cardinality and weight
constraints (Simons, Niemelä, & Soininen 2002). However,
all results in this section hold for PCSs whose components
belong to any class of programs, for which one can check in
polynomial time whether a set of literals is an answer set.

Theorem 4 The following problem isPSPACE-complete:
Given a PCSC and two of its outcomesM andM ′, decide
whetherM �PCS M ′.

Proof (sketch): LetC = (Π, G, P, Φ). The problem can be
decided using anondeterministicTuring machine that starts
with M1 = M and correctly guesses a sequence of improv-
ing flips from M to M ′. That is, in each iteration with
M1 as the current outcome the machine correctly guesses
a componentC and an answer setS of C so that (1) the re-
sult M2 of replacingM1(C) with S in M1 is an outcome
of C, and (2)M1 �ΦC

M2. Then, the machine setsM1

to beM2 until M ′ is met. It is clear that the sequence of
outcomes produced by this Turing machine is an improv-
ing sequence and that the machine works in polynomial
space. It follows that our problem is in the classNPSPACE.
SincePSPACE = NPSPACE (cf. (Papadimitriou 1994)),
the membership part of the assertion follows.

The hardness part follows from the fact that the class of
PCSs contains the class of CP-nets. In the domain of the
CP-nets, the problem we are considering here is known as
thedominanceproblem. It has been shown to bePSPACE-
complete in (Langet al. 2005). 2

Next, we study problems related to optimal outcomes.

Theorem 5 The problem to decide whether a PCSC has an
optimal outcome isNP-complete.

The problems concerning the existence of an outcome sat-
isfying some property given as a boolean combination, and
concerning deciding the optimality of an outcome are again
much harder.

Theorem 6 The next two problems arePSPACE-complete:

1. Given a PCSC and a boolean combinationγ, decide
whetherC has an optimal outcome satisfyingγ;

2. Given a PCSC and its outcomeM , decide whetherM is
optimal.

While PSPACE-completeness results indicate that rea-
soning with PCSs is inherently hard, we note that analo-
gous problems for much simpler formalisms such as (gen-
eral) CP-nets are equally complex. One way then to inter-
pret the results in this section is that PCSs offer enhanced
representational flexibility over the formalism of CP-netsat
no extra cost in the computational complexity.

Discussion
Prioritized component systems support a decoupled method-
ology for applications combining ASP with preference elic-
itation (an example is product configuration: a product data

model describes valid product instances and customer pref-
erences need to be elicited for choosing a preferred in-
stance). Todescribe the space of choices, a domain is struc-
tured into components. Each component has a generator
program whose answer sets represent the valid choices for
that component. Forpreference elicitationthe user is guided
through the components. In each step, she picks a compo-
nent for which her preferences only depend on components
she has already ranked. In each case she gives preference
rules defining a preference order on answer sets of the cur-
rent component.

A major advantage of our framework is its flexibility. The
user is free to structure the domain into components in the
most adequate way for a particular application. Moreover,
the preference order on values of a component can be ex-
pressed conveniently using flexible rules, each one provid-
ing a criterion for assessing a value’s quality. Our results
show that making dependency structure explicit will, at least
in the acyclic case, increase comparability and thus lead to
more fine grained distinctions.
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