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Preface

Preferences guide human decision making from early childhood (e.g. ”which ice cream
flavour do you prefer?”’) up to complex professional and organizational decisions (e.g.
”which investment funds to choose?”). Preferences have traditionally been studied in
economics and applied to decision making problems. Recent work in Al and related
fields has led to new types of preference models and new problems for applying pref-
erence structures (see, for example, the special issue on preferences of Computational
Intelligence published in May 2004).

Explicit preference modelling provides a declarative way to choose among alterna-
tives, whether these are solutions of problems to solve, answers of database queries,
decisions of a computational agent, plans of a robot, and so on. Preference-based sys-
tems allow finer-grained control over computation and new ways of interactivity, and
therefore provide more satisfactory results and outcomes. Preferences are a relatively
new topic to artificial intelligence and are becoming of greater interest in many ar-
eas: knowledge representation, multi-agent systems, constraint satisfaction, decision
making, decision-theoretic planning, and more. Preferences are inherently a multi-
disciplinary topic, of interest to economists, computer scientists, OR researchers, math-
ematicians and more.

This workshop is intended as a multidisciplinary event that brings together re-
searchers from these different fields and that allows them to exchange experiences and
to discuss advanced methods for preference handling. It thus continues the tradition
of the AAAI-02 workshop on preferences and of the Dagstuhl seminar on preferences
held in June, 2004.

We have received 46 submissions to this workshop which confirms a very high
interest in research on preference handling. The program committee has selected 34
papers for the two-day workshop, which do not only cover advances in preference
handling methods, but also interesting applications of those techniques.

We welcome all participants of the multidisciplinary IJCAI-05 workshop on ad-
vances in preference handling and hope that this event will stimulate new ideas and
insights in preference handling.

Ronen Brafman
Ulrich Junker
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Efficient Skyline Queries urder Weak Pareto Dominance

Wolf-Tilo Balke
L3S Research Center
University of Hannover
30539 Hannover, Germany
balke@]3s.de

Abstract

Skylines with partial order preference semantics
often result in huge answer sets and what is worse,
they cannot be computed efficiently. In this paper
we will explore the evaluation of so-called re-
stricted skyline queries with partial order prefer-
ences under the paradigm of weak Pareto domi-
nance. Weak Pareto dominance removes all objects
from skylines, which are dominated by other ob-
jects in some query predicates, but in turn do not
dominate these objects in any predicate. We will
argue that this paradigm yields intuitive results,
prove that it leads to lean sizes of the restricted
skyline and show how it opens up the use of effi-
cient algorithms for evaluation adopting the itera-
tion of ranked result lists for each query predicate.

1 Introduction

Human preferences play an essential role in information
systems, because exact match attribute-based querying with-
out knowledge of the underlying database instance only too
often produces empty or too big results. First approaches at
cooperative databases like [Lacroix and Lavency, 1987
Motro, 1988] defined queries as wishes that could not al-
ways be satisfied, but would be automatically relaxed, if no
perfect matches were found in the database instance.
Recently this paradigm has gained new attention: top-k
queries [Giintzer et al., 2000; Fagin et al., 2001] have
shifted retrieval models from simple exact matching of at-
tribute values to the notion of best mathing database ob-
jects. Top-k models rely on basic scorings of objects for
each query predicate and a utility function to aggregate the
objects’ total scores. The paradigm has subsequently been
extended under the name of skyline queries to cases where
still score-based preferences exist for each query predicate,
but no utility function exists to compromise between predi-
cates, e.g. [Borzsonyi et al., 2001]. To get result sets in these
cases skyline approaches adopted the principle of Pareto
optimality, i.e. all objects are returned that have better or
equal score values with respect to all query predicates and
are strictly better in at least one. [Balke and Giintzer, 2004]
then presented an algorithm that allowed evaluating inter-
leaved skyline and top-k queries with optimal complexity.

Ulrich Giintzer
Department of Computer Science
University of Tiibingen
72076 Tiibingen, Germany
guentzer@informatik.uni-tuebingen.de

While all these score-based approaches generally allowed
for efficient query evaluation, their expressiveness in terms
of user preferences remained rather limited, e.g. [Fishburn,
1999]. With the use of preferences in databases modeled as
strict partial orders with an intuitive “I like A better than B”
semantics [KieBling, 2002; Chomicki, 2002] this lack of
expressiveness was remedied, however without providing an
efficient evaluation of partial order preference queries. Also
here the Pareto principle was the prime paradigm for evalu-
ating queries involving several partial order preferences (if
no ordering for the preferences themselves is provided). In
[KieBling, 2002] a strong Pareto dominance principle called
‘Pareto accumulationwas presented, where an object had
to be better or equal in all predicates and strictly better in at
least one to dominate another object. In contrast [Chomicki,
2003] introduced a weak Pareto dominance principle called
‘Pareto compaition’, where an object had to be better,
equal or indifferent in all predicates and strictly better in at
least one to dominate another object.

But for database retrieval such answer sets in the form of
Pareto sets generally come at a price: Pareto sets grow ex-
ponentially in size with increasing numbers of preferences
to combine [Bentley et al., 1978]. Hence, a further selection
from Pareto sets is usually necessary to avoid the flooding
of users with only more or less relevant results, c.f. [Koltun
and Papadimitriou, 2005; Balke et al., 2005]. Due to the
indifference property in partial order preferences the flood-
ing effect for strong Pareto dominance even grows more
dramatic. This is because unlike in score-based preferences,
where all objects can be compared within each predicate, in
partial order preferences an object can be the worst object
with respect to almost all preferences, but will nevertheless
be Pareto-optimal, if it is indifferent with respect to a single
preference. Since users can not be expected to always com-
pletely model the preference relations of all possible attrib-
ute values within each query predicate carefully avoiding
indifference, preference queries will usually involve some
indifference and thus, inflate the size of result sets.

This behavior obviously is not sensible in practical appli-
cations and recent research in [KieBling, 2005] has started to
combat indifference in partial order preferences by means of
so called ‘substitute values’. The substitute values semantics
slightly changes the preference semantics such that some
indifferent values become comparable and are assigned



equal usefulness, if the indifferent values dominate and are
dominated by exactly the same predicate values. First ex-
periments in [Kieling, 2005] show that skyline sizes can
already be considerably reduced using this semantics. Still,
this semantics only remedies a small number of cases and
does not provide efficient evaluation schemes.

In this paper we argue that using the weak Pareto domi-
nance does not only allows the removal of less interesting
objects from Pareto result sets, but also an efficient query
evaluation. The usefulness of our approach is thus twofold:
first restricted skylines help to effectively combat the explo-
sion of result set sizes due to indifference for partial order
preferences. On the other hand our approach allows deriving
these restricted skylines without having to compute the en-
tire Pareto set first. In the following we introduce an evalua-
tion framework relying on ranked result lists for each query
predicate and give a pruning condition, which allows us to
derive an efficient algorithm to evaluate restricted skyline
queries with partial order preferences.

2 The Weak Pareto Dominance Paradigm

In the following we will discuss our basic approach and
present some motivating examples. Consider for instance
the following two user preferences on car types and colors:

Example 1:
roadster Consider the following
\ e database instance: a green
sports car l roadster, a red coupé, a
coupé yellow yellow SUV and a black
truck. Due to the indiffer-

Suv z
/ l ence between coupé and
SUV and between red and
green
truck

black, yellow and black, or
green and black, the skyline

reference P .
P 1 contains all four elements.

preference P,

Using the strong definition of Pareto sets, in example 1
the whole data set would have to be delivered. Since a user
usually is interested in only a few most interesting objects, a
sophisticated selection from the skyline supports users.

2.1 Weak Pareto Domnance

We will now define the weak Pareto dominance semantics
(which is identical to the concept of Pareto composition in
[Chomicki, 2003]) and show some first characteristics.

Definition 1. (weak Pareto dominance)
Let O be a set of database objects and X, y € O. An object X
is said to weakly domnate object y with respect to partial
order preferences Py, ..., Py, if and only if there is an index i
(1 <i < n) such that X dominates y with respect to P; and
there is no index j (1 <j < n) such that y dominates X with
respect to Pj, i.e.
xPy <=3Fi(1<i<n:x>pyAr—-3j(l<j<n)y>piX
where >p denotes the normal domination with respect to
partial order P.

We will call the set of all non-weakly-dominated objects
in the following the restricted skyline Let us now consider
some characteristics of weak Pareto dominance. First we
have to note that weak Pareto dominance is not an order
relation, because it is not necessarily transitive. Consider for
instance three (incomplete) preference graphs P;, P, and P;
for three objects a, b and c. If a >p; b and b >p, ¢ and ¢ >p3
a, then we can derive a » b B ¢ P aaccording to defini-
tion 1. Thus in some cases like in the (not very realistic)
example from above, the restricted skyline can get empty
due to intransitivity. But here also the normal skyline would
yield the unconvincing result of simply returning all data-
base objects and thus is not particularly helpful either.

Since we only use the weak Pareto dominance to limit
down a result set, transitivity is not really needed. If there is
only a cycle of weakly dominated objects on top level, there
simply are no ‘better’ objects and this is reflected in our
approach by the restricted skyline being empty. Because
cooperative systems usually want to avoid the ‘empty result
effect’, an adequate reaction of the system would consist in
either returning all these objects from the cycle (like in the
Pareto set) or even better in asking the user to reconsider
some of her/his preferences involved in the cycle.

Example 1 (cont.): Consider the objects from above
again under the notion of weak Pareto dominance. There is
still no weak dominance relation between the green roadster,
and the red coupé. But both of them weakly dominate the
black truck and it can be removed in the restricted skyline.
Removing the black truck
seems indeed a very intuitive
thing to do anyway, because P;
tells us that everything is better

green roadster red coupé

Sy
s yellow SUV

o
-
o+

B poger than a truck and the user, al-
black truck though giving explicit color
preferences, did not voice

his/her opinions on black cars.
Moreover, we have to take a
closer look at the relation between the red coupé and the
yellow SUV. Since the user is indifferent between both car
types, the red coupé fits his/her color wishes to a higher
degree, hence is probably more desirable. The weak domi-
nance relation reflects this semantics: the red coupé weakly
dominates the yellow SUV and the yellow SUV can be re-
moved in the restricted skyline. Thus, the result size in our
small example is already halved.

weak dominance graph

Moreover, we can also easily see that restricted skylines
really always are part of the normal skyline, i.e. Pareto set.

Lemma 1: (restricted skylines are part of Pareto skylines)
Let R be the restricted skyline set with respect to partial
order preferences Pi,..., P,. Then R will never contain
dominated objects under the notion of Pareto optimality
with respect to Py,..., P,.

Proof: Let 0 be any Pareto dominated object, but 0 € R.
Thus there must exist an object W in the Pareto skyline



which dominates 0, i.e. V j (1 <j < n) (W >p;j 0 vV W=pj 0) A
i (1 <i<n): w>p; 0. But the first part also implies —3 j (1
<j < n): 0>p; W, thus w must also weakly dominate o in
contradictionto 0 € R. [

If we focus on numerical preferences only, weak Pareto
dominance and strong Pareto dominance are actually exactly
the same. This is because numerical preferences impose a
total ordering with respect to all predicates. Thus every two
objects can be compared with respect to all predicates and if
object X weakly dominates object Y, then X dominates y also
in the usual Pareto sense.

Moreover, we can state that the substitute values seman-
tics in [KieBling, 2005] is a special case of the weak Pareto
dominance semantics. This is because if any object 0 can be
removed from the skyline under the substitute values se-
mantics, there has to be an object w that for at least one
preference P; dominates 0 and with respect to all other pref-
erences W either dominates 0, or has equal or substitutable
(i.e. indifferent values) values. Thus there cannot be any
preference, where 0 dominates W and also our weak Pareto
dominance semantics would remove 0 from the skyline set.

3 Evaluation of Restricted Skylines

In this section we focus on efficient evaluation schemes to
derive restricted skyline sets from a (possibly large) number
of database objects. Of course a naive way of computing the
set is to first derive the Pareto skyline, then test all pairs of
objects for weak Pareto dominance and subsequently re-
move all weakly dominated objects. However, this is very
inefficient way since for partial order preference skyline
computation usually all database objects have to be ac-
cessed. Adopting an approach where each preference is
processed by an (independent) subsystem, we will now fo-
cus on pruning large parts of the database, however, still
deriving the correct restricted skyline.

3.1 Evaluation Scenario

In both top k and skyline retrieval the most often used sce-
nario for evaluating complex queries was a middleware sce-
nario, e.g. [Giintzer et al., 2000; Fagin et al., 2001; Balke
and Giintzer, 2004]. Here (possibly independent) subsys-
tems evaluated different query predicates by scoring a
common set of database objects and delivering them in
sorted order. Usually two kinds of accesses on subsystems
are enabled:
e A sorted accssiterated over the subsystem’s ob-
jects rank by rank, retrieving (oid, score) pairs
e A randomaccessasked for the specific score value
for a certain object

To get the final top k or skyline result a central instance
basically either iterates over the subsystems’ sorted lists or
requests scores for specific objects, until it can guarantee
that all objects relevant to the result set have been accessed
and hence all database objects still unseen can be ignored,
i.e. pruned. Such retrieval schemes not only allow for a high
degree of distribution, but also have been proven to perform

very efficiently accessing only an instance-optimal number
of database objects, cf. [Fagin et al., 2001; Balke and
Gintzer, 2004]. However, all these schemes were exclu-
sively designed for score-based retrieval, i.e. only consider
numerical preferences imposing total orders. We will build
our evaluation scheme for the same practical scenario, but
enable the use of arbitrary partial order preferences.

3.2 Sorting under Partial Order Preferences

Our evaluation approach aims at pruning large parts of ir-
relevant database objects. Thus each subsystem has to sort
objects in a way that possibly relevant objects are returned
on smaller ranks than definitely irrelevant objects. We will
use a simple breadth first topological ordering based on the
partial order preference given for each query predicate.

Definition 2 (level of database objects)
Let O be a set of database objects and X € O. An object X is
said to belong taeveli or level(g = i with respect to partial
order preference P, if and only if the longest path from any
maximum object in P to X consists of (i - 1) edges.

Definition 2 implies that all objects not explicitly mentioned
by P (this may be quite a large number), are considered to
belong to level 1. This is necessary, if objects whose attrib-
ute values are all not explicitly mentioned in any preference
(e.g. a white limousine in example 1) have to be in the re-
stricted skyline. If a user really wants to see these objects,
e.g. to allow for serendipity, performing an evaluation with
definition 1 and 2 will get the correct result.

The intuitive notion of our levels is that of imposing a
sensible order: all maximum (i.e. non-dominated) objects of
P are on level 1, all objects that are only dominated in P by
maximum objects are on level 2, and so on. In the special
case of numerical or total order preferences the level corre-
sponds to each object’s rank, if objects with identical
scores/attribute values are considered to have same rank.
But this level order has another nice property:

Lemma 2: (level order domination)
Let O be a set of database objects and X, y € O. Then object
X can only dominate object y with respect to partial order
preference P, if level() < level(y) with respect to P.

Proof: If x dominates y there is a path of length q >1
from X to y in P. Thus it directly follows from the definition
of levels by longest paths in definition 2, that level(® <
level(® + g <level(y. |

Please note, though objects can only be dominated by ob-
jects in higher levels, due to the partial order semantics they
do not have to be dominated by all objects on higher levels.
In the following we will assume all subsystems to return
database objects for sorted access in level order Consider
for example preference P; in Example 1. Assuming that
there are roadsters, coupés, sports cars, SUVs and trucks in
the database, the level of all database objects that are road-
sters is 1, the level of all coupés and sports cars is 2, the



level of all SUVs is 3 and the level of trucks is 4. So our
subsystem first has to return all roadsters, then coupés and
sports cars can be returned in arbitrary order, followed by
the SUVs and finally all trucks. In contrast, another possible
topological ordering returning first roadsters, then sports
cars, then SUVs and then coupés would violate the output in
level order.

3.3 Pruning Database Objects

Given the basic scenario we will now introduce the con-
cept of Il-cuts, whose consideration is necessary to check
whether all relevant, i.e. possibly not weakly dominated,
objects have been accessed already.

Definition 3 (I-cut of preference orders)
Let O be a set of database objects and Sbe a sorting of O in
level order with respect to partial order preference P. Then a
subset C c O is called a |-cut with respect to P, if
(a VweC:levelw)<lI
(b) V(oeSalevel(o)>l)IweC:w>o0

The intuitive meaning of I-cuts is to form sets of objects
that dominate all objects below the I-th level. Every com-
plete level of objects forms a trivial I-cut. But generally |-
cuts will be much smaller and in the following we only need
to consider minimum |-cuts. Consider for instance prefer-
ence P, in example 1. Every single roadster forms a 1-cut
with respect to P; (trivially the set of all roadsters also forms
a 1-cut, but is not minimal). A 2-cut is formed by any pair
of a coupé and a sports car. If there are no coupés in the
database every single sports car will form a 2-cut.

In the special case of numerical or total order preferences
every object forms a trivial cut: All objects on lower levels
are automatically dominated by all objects belonging to
higher levels. For instance in example 1 every red car will
form a 1-cut with respect to P,, every yellow car will form a
2-cut with respect to P,, and so on.

Having defined the basic concept of |-cuts with respect to
a single partial order preference, we will now present a way
to guarantee during a preference query evaluation that all
relevant objects for the restricted skyline computation have
been accessed in at least some of the level sorted subsys-
tems. This is the major component needed to build an effi-
cient evaluation algorithm for partial order preference que-
ries under the weak Pareto dominance paradigm. The fol-
lowing theorem will show a sufficient condition.

Theorem 1:(correctly pruning database objects)

Let O be a set of database objects, Sy,..., § be sortings of O
in level order with respect to partial order preferences Py,...,
P.. Given 0y,..., 0x € O and let {0y,..., G } form an l;-cut
with respect to every sorting Sj,..., § for some natural num-
bers |y, ..., L, then no object that for all i occurs on a higher
level than |; in § can be part of the restricted skyline under
the notion of weak Pareto dominance with respect to Py,...,
P..

Proof: Let {04,..., @ } be as defined above and 0 € O be
an object with level(d > I; with respect to P; (1 <i < n). For
the sake of contradiction we will assume that object o be-
longs to the restricted skyline set thus it cannot be weakly
dominated by any other object. Without loss of generality
consider the first partial order preference P;. Since level(9
> |, with respect to P; and {0y,..., @ } form an |;-cut there
has to be an object 0; (1 < j < K) that dominates 0 with re-
spect to Py, i.e. 0 >p; 0. For 0 not to be weakly dominated
by object 0;, there has to be a preference P, (1 < q < n) in
which 0 >pq 0. But since 0j is part of an |q-cut with respect
to Py we get level(q) > | > level(0 and thus an object with
higher level would be dominated by an object with smaller
level, which is impossible according to lemma 2. Hence, 0 is
weakly dominated by 0, i.e. not part of the restricted skyline
in contradiction to our assumption. |

Theorem 1 states a sufficient condition for the pruning of
objects in partial order preference query evaluation and thus
a basic evaluation algorithm can be derived. We will define
a sorted access with respect to a query predicate by return-
ing a pair consisting of an object’s oid and score (if the
predicate is given by a numerical preference) or an object’s
oid and attribute value (if the predicate is given by an attrib-
ute-based preference). Accordingly random accesses either
return a score or an attribute value.

Basic Algorithm for Restricted Skyline Computation

1. Perform sorted accesses on all subsystems (e.g. in
round robin fashion)

2. Consider all minimum |-cuts among the objects ac-
cessed (for all | smaller than the current levels)

3. Once all objects of some cut have been accessed in
all subsystems, prune all objects on lower levels in
all subsystems

4. For the remaining objects perform random accesses
and check objects pairwise for weak Pareto domi-
nation

5. Remove all weakly dominated objects and return
the restricted skyline

Again considering the special case of numerical prefer-
ences, we observed earlier that strong and weak Pareto
dominance coincide. For skyline computation an instance-
optimal condition is given in [Balke et al., 2004], where
basically some object had to be accessed in every single
subsystem by sorted access, before the unnecessary objects
for the skyline computation could be pruned. Since for nu-
merical preferences every single object forms a |-cut once it
is accessed, both conditions are indeed equivalent and our
algorithm for restricted skyline evaluation is also equivalent
to the respective instance-optimal evaluation algorithm for
numerical preferences given in [Balke et al., 2004].

4 Dealing with Implicit Isolated Maxima

Let us now consider an efficiency improvement for the case
that users do not require objects, whose attribute values are
never mentioned in any preference, to be returned.



We can easily see that these objects only can be returned,
if we assign the level 1 to objects with values that do not
explicitly occur in a preference, so-called implicit isolated
maxima. This is because we might be able to prune all ob-
jects below level 1, which would then include all those ob-
jects not explicitly mentioned in any preference, i.e. global
implicit isolated maxima. On the other hand our subsystems
for the evaluation of single query predicates are independ-
ent. Thus, objects not mentioned in the respective prefer-
ence can be arbitrary many, because users tend to state only
incomplete preferences with just a few preferred attribute
values instead of exhaustively modelling a domain. But ac-
cessing all objects that are implicit isolated maxima with
respect to only some predicates is an unnecessary overhead.

Example 1 (cont.): Assume P; and P, are handled by two
independent subsystems in ranked lists S and S,.

Imagine an object like a black limousine. Since neither P,
nor P, mention its attribute values, it is a global implicit
isolated maximum and not weakly Pareto dominated by any
object, i.e. part of the restricted skyline. This is accommo-
dated by definition 2 by assigning level 1 with respect to all
preferences; thus everyl-cut respects this object.

But let us now focus on the black truck, which according
to definition 2 would occur on level 4 in S; and on level 1 in
S. We have seen the black truck to be weakly dominated by
any roadster, coupé, sports car or SUV. Nevertheless we
would definitely access it in S, because ‘black’ is an im-
plicit isolated maximum with respect to S,. This is an unde-
sirable effect that can only be avoided if we also assign a
high level to black cars (in fact cars of any color except for
red, yellow or green). Now the black truck can be pruned.

However, then also our black limousine would have to be
assigned high levels in all preferences and would be pruned,
though not being weakly dominated. Thus, this optimization
only works, if a user is also willing to do without global
implicit isolated maxima in the restricted skyline.

For improved efficiency in the following we will use a
slightly different semantics:

o Definition of skylines: Amend the definition to be
the set of all not weakly dominated objects without
those objects from the skyline that only have at-
tribute values, which are not explicitly mentioned
in any preference.

o Definition 2: Alter definition 2 such that all ob-
jects not explicitly mentioned by P are considered
to belong to the highest (i.e. worst) level, i.e.
(maximum path-length in P) + 1.

e Definition 3: Alter condition (b) in definition 3
such that for all objects 0 in Sbelonging to levels
higher than | either 0 is dominated by w or 0 is in-
different to all objects on level 1, i.e. incomparable
to all maximum objects (and therefore also to all
other objects).

Given these changes we can show that the pruning condi-
tion still holds, and we will only lose those objects in the

restricted skyline, whose attribute values are not explicitly
mentioned in any partial order preference, i.e. all global
implicit isolated maxima.

Theorem 2: (pruning also implicit isolated maxima)

Let O be a set of database objects, Sj,..., § be sortings of O
in level order with respect to partial order preferences Ps,...,
P,. Given 0y,..., 0c € O and let {0y,..., @ } form an l;-cut
according to definition 3’ with respect to every sorting S, ...,
S, for some natural numbers |y, ..., |,, then no object that for
all i occurs on a higher level than |; in § can be part of the
restricted skyline under the notion of weak Pareto domi-
nance according to definition 1’ with respect to Px,..., Py.

Proof: Let us divide the objects not yet accessed into
three possible classes:

(a) objects with attribute values mentioned in all prefer-
ences. For these objects theorem 1 still holds, because they
have not been shifted in level, are not indifferent to at least
one object of the respective cut in each preference and have
not been removed from the restricted skyline.

(b) objects with at least one attribute value mentioned in
some preference and with at least one attribute value not
mentioned in some other preference. These objects have
been shifted into the highest level for all predicate where
their attribute values are not mentioned in the respective
preference and are incomparable to all the maximum objects
in these predicates. Thus, if a |-cut according to definition 3’
dominates all mentioned attribute values, the objects are still
weakly dominated with respect to definition 1 and thus cor-
rectly not part of the restricted skyline. If at least with re-
spect to one preference they belong to a lower level than the
I-cut they have been accessed by sorted access and will be
correctly checked for weak domination.

(c) objects with attribute values mentioned in no prefer-
ence. These objects reside due to definition 2’ at the highest
possible levels. Thus if a I-cut exists on a lower level in all
preferences, they are pruned which is accommodated by
definition 1°. ]

Theorem 2 thus allows us to improve our evaluation pro-
cedure even in the presence of partially modelled domains.
Now only objects that stand a chance of being not weakly
dominated are accessed in step 1 of the evaluation algorithm
(except for global implicit isolated maxima). Please note
that exgicit isolated maxima, i.e. objects mentioned in some
partial order preference, however having neither fathers nor
descendants (e.g. given by a simple ‘I like object A’ seman-
tics), are still considered for the restricted skyline, which is
intuitive, since the user explicitly modelled them.

5 Summary and Outlook

Preference query evaluation plays an essential role in mod-
ern human-centered databases and information systems. In
this paper we discussed the evaluation of database queries
under the notion of weak Pareb dominance We have
shown this paradigm to decrease result set sizes, since it
presents a stronger notion of optimality than given by strong



Pareto optimality even together with the notion of substitute
values. Our improvement was gained by addressing the
problem of indifference in partial order preferences (which
usually increases result sizes) and presenting an intuitive
way to choose only ‘better matching’ objects from the sky-
line. An object can be removed from our result set, if it is
dominated by an object in some predicate, but it does not
dominate this object with respect to other predicates. For
total order preferences (that do not allow indifference) this
notion coincides with usual Pareto optimality, but is a
stronger paradigm for partial order preferences.

The resulting restricted skylineven has a more important
advantage, since we have also presented a way to efficiently
evaluate such queries without having to compute the real
skyline before selecting the more relevant objects. Our
evaluation scheme is based on the evaluation scenarios in
top k database retrieval, where each query predicate is
evaluated by (possibly independent) subsystems that offer
individual rankings for the evaluation process. Those ap-
proaches, however, were restricted to total order preferences
(i.e. numerical preferences), whereas our approach caters for
arbitrary partial order preferences, thus avoiding the limited
expressiveness of numerical preferences. We showed the
algorithm’s considerable optimization potential, which is
gained by pruning definitely irrelevant database objects al-
ready at an early stage and then checking weak Pareto
dominance relations only for a smaller subset of the data-
base instance. We have also shown the instance optimal
algorithm for numerical preference skyline evaluation to be
a special case of our evaluation algorithm.

Our future work will focus on the implementation of our
evaluation strategy in practical middleware scenarios and
providing a detailed analysis and empirical quantification of
the reduction in size of the restricted skyline set as opposed
to normal skylines. Moreover, though we already know the
number of object accesses (and thus execution times) to be
instance-optimal for numerical preferences, we still need to
investigate the speed-up of our evaluation scheme over sky-
line computations with partial order preferences. We will
also focus on designing an efficient interleaved evaluation
scheme for numerical and partial order preferences general-
izing our work on multi-objective optimization in [Balke
and Giintzer, 2004]. Finally, we want to experiment with a
related approach for restricting skylines that would replace
all given partial orders by the corresponding total orders
induced by our level order semantics.
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Abstract consider secondary variables. Such a decomposition of the

problem makes it much more tractable (furthermore, it can
be argued that human decision makers would probably de-
compose the problem as well in such a way, which suggests
it is cognitively relevant, even if it does not prove anything
regarding the best way to automatize it).

Projection operations have not been considered much as
far as preference relations are concerned, but there is a huge
amount of work about projecting probability distributions
represented in compact languages such as Bayesian networks
(projection being then referred to asarginalizatior), and
more generally projecting valuation functioi®henoy, 1989;
Kohlas & Shenoy, 2040 as well as projecting sets of con-

1 Introduction straints (as in Constraint Satisfaction Problems), and formu-

i . . : f propositional logic such as the forgetting operation
Decision-making problems are concerned with managmdéae 0 e A . |
agents’ preferences. Crucial tasks include modelling, elicita- onsidered irlLin & Reiter, 1994. In this paper we aim

tion, aggregation (especially when a common decision has it defmmg similar projection operations for ordinal prefer-
nce relations, namely, preorders on a set of alternatives. For

be made among several agents) and optimization. The conj- ke of simplicit f binatorial d :
putational difficulty of these tasks depends on the size and th € Sake of simplicity, we Tocus on combinatorial domains
ormed frombinaryvariables. Section 2 introduces some nat-

tructure of th f alternatives. When the latter is smal X . ;
structure of INe space of aternatves enhe aleris s a%;al definitions and study their properties. Section 3 makes

Representing (and reasoning about) preference re-
lations over combinatorial domains is computation-
ally expensive. We argue that for many problems
involving such preferences, it is relevant to simplify
them by projecting them on a subset of variables.
We investigate several possible definitions, focus-
ing without loss of generality on propositional (bi-
nary) variables. We then define the notion of in-
dependence of a preference relation from a set of
propositional variables.

preferences can be represented explicitly, by simply rankin . . X C
alternatives, and the above tasks can be implemented in ecise a connection between som.e'notlons'of projection and
easy way. However, in many real-world applications, do- e notion of forgetting from propositional logic. The starting

mains have a combinatorial structure, i.e., an alternative cor20/Nt Of Section 4 is the study of conditions under which pro-
sists of a value of a given domain for each one of a given sdfctinga prgference relation can be d'one W|t.hout loss of infor-
of variables. In that case, managing agents’ preferences c ation, which will lead to several notions of independence of
be an enormous computational burden. This has led some r-Preference relation from a set of variables. Section 5 points
searchers to work on compact preference representation laft rélated work and further issues. Due to space limitations,
guages. most proofs are omitted.

For some problems it might be relevant to process prefer- . .
ence relations (already elicited, and represented in some comd- Projection of a preference relation over a set
pact form), so as to simplify it and make it more compact, of variables
even if this results in a loss of information. Especially, it may .
be helpful toprojecta preference relation on a subset of the2-1 Preference relations
variables. This way of summarizing a preference relation idetV be a finite set of propositional variables. For any (possi-
relevant in particular when some variables are more imporbly improper) subseX of V', an X -alternativeis an element
tant than others, or when some variables should be assignefl 2%, that is, an assignment of a binary truth value to each
prior to others. Consider for instance a group decision makingne of the variables itk. X-alternatives are denoted by
scenario. Rather than aggregating the whole preference rel&” etc. If X andY are disjoint subsets df’ then the con-
tions before finding out an optimal assignment of variablescatenation off € 2% andy € 2V is the X U Y-alternative,
which generally is computationally intractable, it may be adenoted byry, assigning values to variables &f (resp.Y)
good idea to focus on “primary” variables first, project the asz (resp.y) does.
preference relation on those variables, aggregate them, decideA V-preference relationR, sometimes denoted asg, is
on the values to be assigned to those variables, and only thenpreorder, that is, a reflexive and transitive relation, @VYer



The strict preference> associated witlR is the strict pre-
order defined by > ¢’ if and only if R(¢,7’) and not
R(v',¥). Theindifference relation~ associated wittR is
the equivalence relation defined by~x ¢’ if and only if
R(7,v") andR(¢’, ¥). If neither R(¥,v") nor R(¢’, ¥) then

v and ¢’ areincomparablew.r.t. R, denoted byQ (v, 7").

If R is connected (that isQr = 0), then it is acomplete
preference relation

As for notation,R* denotes the transitive closure of a rela-
tion R over2V.

For any V-preference relationR and any partition
{X,Y,Z} of V, X is preferentially independent frori
given Z w.r.t. R if and only if for all 7, #’ € 2%, all 7,4’ €
2Y and all? € 27, R(xy7, 2'y7) impliesR(zy'Z, 2y Z). If
Z = () then we say thak is preferentially independent from
V\XwrtR.

2.2 Lower and upper projections

Informally, the projection of &/ -preference relatior on
X C Vis a preference relation overX obtained fromR so
as to be as close as possible from the original relalion

Definition 1 (lower and upper projections) Let R be aV-
preference relation an& C V. LetY =V \ X;
e R}, called thelower projectionof R on X, is the bi-

nary relation overX defined as follows:R} ™ (z, #")
holds if and only ifR(

Z, T’
#ij, 2'%) holds for allij € 2Y;

R}, called theupper projectiorf R on X, is the tran-
sitive closure of the binary relatioR’ over X such that
R'(Z,Z") holds if and only ifR(Z¥, Z'y) holds for some
7€ 2y,

Some first properties, wher® and R’ are V-preference
relations andX, Y C V, are the following ones:

Proposition 1
1. Ry* andRj;* are X -preference relations;

2. if Ris complete thelR;;" is complete;

3.if R C R'thenR;~ C (R):* andRj* C (R))";

4. (RN R = R n(R)YY and

(RNR)E* C R (R

5. (RUR)")" = (Ry" U(R)")" and
(RUR)F 2 (RN U (RS

6. (R = (Ry)F and (R = (R,

Of course,R}* C Ry" and a question that comes natu-
rally is whenR:™ andR}* are the same.

Proposition 2 For any V-preference relationk and any
X CV, RS = R ifand only if X is preferentially inde-
pendent fronV \ X w.r.t. R.

Note that, wherR is complete R/;* is obviously complete
as well butRiX may fail to be complete.

2.3 Optimistic and pessimistic projections

The following definitions exhibit some extra specific notions
of a projection.

Definition 2 (optimistic/pessimistic projections) Let R be
aV-preference relation an& C V. LetY =V \ X;
1X
® RStrongOpt'
is defined by:R
R(ZY,Z'y");
o Rll/li(eakOpt’ the weak optimistic projectiorof R on X,

is defined by: R, .0, (. 2") if and only if vy’ 3y

R(Zy, £'y");

° RlX

StrongPess?
X, is defined by:R
vy, R(Zy,2'y");

R .. theweak pessimistic projectionf R on X,
is defined by:RyX _, p...(Z, &) if and only if Vg 35"

R(z¥,2'§").

It is easily checked that these four relations are transitive.
The optimistic projections focus on finding some possibility
to haveZ dominatingz’ whatever the context far’. The
pessimistic projections focus on finding some possibility to
haver’ dominated byt whatever the context fa¥.

When R is complete, R . o, and Ry .0, COIN-

StrongOp
i 1X 1X
cide, aswell astg;,. ., pess ANARyy. 1 p.ss» @nd all four are

complete. In this caseligﬁmgopt(f, Z') (and equivalently

Rifwkom( )) iff the best alternatives extendingare at
least as good as the best alternatives extendingvhereas

R}y ongpess (@ 2') (and equivalentlyRiy, ., p.., (&, 2")) if

and only if the worst alternatives extendingare at least

as good as the worst alternatives extendiiig These cri-
teria are reminiscent of those used in qualitative decision
theory (see e.g[Brafman & Tennenholtz, 1997; Dubois &
Prade, 199b— with the slightly different interpretation that
X-alternatives represent possible decisions and elements of
(V'\ X)-alternatives represent possible states of the world.

thestrong optimistic projectioof R on X,

L omgopt (. 2) if and only if 37 V57,

= =/

Z,T

— =

T, T

the strong pessimistic projectioof R on

X mgpess (T @) if and only if 37"

= =

Z, T

= =/

T, T

Proposition 3 We have the following inclusions.

o RY* C RS < RS

X
StrongOpt < RWeak'Opt

o Ry CRY C Ry

X
StrongPess = “*WeakPess - RU .

2.4 Examples

To begin with, here is an illustration involving the above
ideas. Consider a company which is about to move. Presum-
ably, there are a few options to choose from. The Head of the
Public Relation Department may prefer the Headquarters to
be a new building located downtown rather in some suburb,
which he still prefers to an old building downtown, and the
least he cares for is an old building in some suburb. The Head
of the Accounting Department may wish first a new building
downtown, second, an old building downtown, third, an old
building in a suburb, all that preferred to a new building in



a suburb. The Head of the Legal Department may prefer th&xample 4

Headquarters to be located dowtown, whereas new or old are

incomparable in his view (whatever the location).

All this can be formalized using two variables, one for lo-
cation ¢ for downtown, so that stands for suburb) and one
for generation 4 for new, so thatj stands for old). As re-
gards the Head of the Legal Department, his prefereiites
can be depicted by the following Hasse diagramfofar-
rows point from a more preferred alternative towards a les
preferred one}:

Ty Y

X

Ty Ty
We now give many more examples.

Example 1
zy Y
R: | 1
Ty Yy

All projections onz coincide and are equal to the prefer-
ence relationz > z.

All projections ony coincide and are equal to the prefer-
ence relation in whichy andy are incomparable.

Example 2

Ty

ry —
R:
Ty «— Iy
All projections onz coincide and are equal to the prefer-
ence relation where andz are incomparable.

Hu} 1{y} H{y}
R as well asRygy,.,,0p0 @Nd Rgyy,0pess @re equal

to the preference relation in whighandy are incomparable,
while R as well athéi{(}Lkopt andRY . are equal
to the preference relatiop ~ g.

Example 3
Ty
l
zy
7\
Ty xy

R:

Ri{”} is the preference relation in whick and = are
incomparable; R%,{”’} is the preference relatiomr ~ Zz;

Rggfingopt and R%iikopt are equal to the preference rela-
H{=}
R

tionz > Z; Ry, pess 1S the preference relation in which

i} is the preference

andz are incomparable, whilé;;;. ), o ..

relation in whichz ~ z.
Things are symmetric for the projections gn

!For the sake of notation, when we specify a preference relatio
explicitly, we omit pairs coming from reflexivity and transitivity. For
instance, the relation denoted by > z is, more rigorously, the
relation{(z, z), (z, z), (z, )}, while the relation denoted by ~ z
is, more rigorously, the relatiof(z, z), (z, z), (z, ), (T, %) }.

Ty
7N\
Ty oy
NS
zy
All projections onz (resp. y) are equal to the preference
relationz > z (resp.y > 7).

R:

%xample 5

Ty
All projections onz are equal to the preference relation
Tr > x.
Ri{y} is the preference relation in whickh and i are in-

comparable;R[l]{y} is the preference relatiop ~ ¢; the op-
timistic projections ory (which coincide becaus® is com-
plete) are equal to the preference relatign> ¢; the pes-
simistic projections oy (which coincide, again becaugeis
complete) are equal to the preference relatipr y.

Observe thatR is a formal representation of the prefer-
ences expressed by the Head of the Accounting Department.
That all projections one (the location variable) amount to
x > T indeed illustrates that the Head of the Accounting De-
partment favors the Headquarters being located downtown:
His preference old vs. new is only next to location, and de-
pends on what the location is (see the fact that the various
projections ony do not coincide). The lower projection gn
shows that the Head of the Accounting Department does not
inconditionnally prefer old to new (or vice-versa). The up-
per projection ony shows that the preferences of the Head of
the Accounting Department include a situation such that he
prefers new to old (downtown) and a situation such that he
prefers old to new (suburb).

Example 6

Ty ~ TY
!

Ty ~ Y

All projections onz are equal to the preference relation
x > Z. All projections ony are equal to the preference rela-
tiony ~ 4.

R:

3 Connection to propositional logic

Ly is the propositional language built up frobn, together
with the usual connectives and the Boolean constanasd
L. Formulas ofLy, are denoted by Greek lettegs ), 9, etc.
Var(p) denotes the set of propositional variables occurring
in .

We make use of the next two notions frdiiin, 2001]

Wherep € Ly andX C V:

o the strongest necessary conditiasf ¢ on X is the
strongest formula) of Ly such thatVar(y)) C X and

¢ P,



o theweakest sufficient conditiaf v on X is the weakest Let switch(R,X) be the relation obtained from
formulay of Ly such thatVar () C X andy = . R by exchanging each alternative/ with its X-
; . " SN |
The strongest necessary condition (resp., weakest suff%o(r;g ?ti;?(’ﬁ g??tsszfgf(tg?()%))( )(@,7") if and only if
cient condition) ofp on X is denoted byd(V \ X).¢ (resp., D ’ '

V(V\ X).0). Actually, 3(V' \ X).p is usually known asthe 4 1 Definitions and properties

forgettingof V' \ X in ¢.

A V-preference relation igipartite if and only if there ex-
istsG C 2V such that for allf, 7/ € 2V, thenR(#,7') holds
if and only if ¥ € G or 7’ € 2V \ G, the characteristic for-
mulafp of a bipartiteV -preference relatioi® is the propo-

sitional formula — unique up to logical equivalence — whos

set of models is exactlg (in symbols,Mod(0r) = G).

e

The introduction motivates the need to simplify preference re-
lations so that applying one is possible just by handling part
of it. Clearly, a projection provides such an abridged version
of a preference relation. The question is what conditions, if
any, allows us to substitute a projection for the original prefer-
ence without losing relevant information? A general answer

is that projection ovel’ \ X is presumably harmless whén

So, a bipartite preference relatidhcan be represented by can in some sense be dispensed with . independent of

a propositional formula. Then, it is worthwhile investigating
how can some notions of a projection over bipartite prefer-

ence relations be similarly captured by propositional formu-Definition 3 Let R be aV -preference relation and leX C
las. The connection is most significant when considering opV andY = V' \ X.

timistic and pessimistic projections (note thakgifs bipartite,
it is complete and then strong and weak notions coincide.)

I-independence R is I-independent o if and only if for
all 7,z € 2%X and allyj € 2Y, #ij ~r 7.

Proposition 4 Let R be a bipartite preference relation whose Q-independenceR is Q-independent oX if and only if for

characteristic formula i9z. LetX C V andY =V \ X.
Then

. R‘i,é(wkopt = Rg)frongopt is the bipartite relation whose
characteristic formula isi(V \ X).0g.

1 X _ plx ; : . .
® Riyiakpess = Bsirongpess 1S the bipartite relation

whose characteristic formula (V' \ X).0z.

Moreover, if0y is logically equivalent to a formula of x
then
o RS = Rﬁ‘flakom = R,Jé'i(rongOpt is the bipartite rela-
tion whose characteristic formula &V \ X).0g.

X _ plX _ plX ; i ;
¢ RL - RWeak:Pess - RStrongPess is the blpartlte re-

lation whose characteristic formula gV \ X).0g.

— = —

all z,#' € 2% and all 7 € 2Y, 2 and Z'/ are incom-
parable w.r.t.R.

G-independence R is G-independent ofX if and only if
switch(R, X) = R.

We might think of a stronger definition 6f-independence,
where invariance of? by any permutation o8¥ is required
instead of invariance aR by permutations of single variables.
Let us first introduce the following definition:

e let o be a permutation oR¥; then o(R) is the
V-preference relation obtained fronk by letting
o(R)(v,¢") hold if and only if R(o(7), o(¢')) holds.

Fortunately, this notion, which may appear stronger at first
glance, is equivalent to the one we gave above:

Proposition 5 R is G-independent fromX if and only if

As already mentioned, the deepest result here is with opZ(12) = R holds for every permutation of 2*.
timistic and pessimistic projections. The basic reason is that Interestingly, all three notions above satisfy the property of
the way optimistic and pessimistic projections are defined redecomposability
quiresall V' \ X-alternatives extending the same context to . . .
behave alike (w.r.tR) henceR can be partitioned along the Proposition 6 For any of the three notions of independence
language (actually, just the variableslin\ X). Since lower (I, Q and G), R is independent from X if and only R is
and upper projections have no such definition, the above cofffdependent for every in X.
straint ord as being logically independent B\ X provides There is at least one interesting notion of independence that
the necessary link betwedtand its potential partitions along  fails decomposability, though. It comes from preferential in-
the language. dependence:

Definition 4 Let R be aV-preference relation and leX' C
VandY =V \ X.

P-independenceR is P-independent o if and only ifY’
is preferentially independent &f w.r.t. R.

4 Independence of a preference relation from
a set of variables
This section requires a couple of notions, as follows.

If X C Vandv € 2V then theX-conjugate of7, de-
noted byswitch(v, X), is the alternative obtained fromby

Intuitively, P-independence w.r.tz means that if you
want to compare two alternatives then you do not have

switching the truth value of each € X (and leaving the

other variables unchanged). Whahis a singleton consist-
ing of a single variable;, we drop the curly brackets, writing
switch(v, x) as thex-conjugate ofv.

to worry aboutz as long as both alternatives share the
same value forr: The outcome would be the same for
another value of. Back to the company illustration, if the
preference relation is independent from the variable “logo



of the company”, then you can compare “old&downtown”

against “newé&suburban” just by fixing “logo of the

Table 1: Relationships between notions of independence.

company” to whatever value and then directly Comparé'ows point from the more demanding notion to the less demanding.

“old&downtown&logo” against “newé&suburban&logo”

because the outcome would be exactly the same as
against

when comparing “old&downtowné&otherlogo”
“new&suburban&otherlogo”.
Two further definitions may be thought of, namely:

union independence R is U-independent oX if and only if
Ris I-independent o or Q-independent oX .

weak independenceR is W-independent ofX if and only
if for all Z,z’ € 2¥ and ally € 2Y, Zy andZ 'y are
either indifferent or incomparable w.rR.

Proposition 7 Let R be aV -preference relation and let €

V. We have the following implications:

e Ind;(R,z) = Indg(R,z) = Indw (R, x);

e Ind;(R,z) = Indy(R,x) = Indw (R, x);

o Indg(R,z) = Indy(R,x);

o Indg(R,z) = Indp(R,{z}).

Note that/nde andIndy (andIndg) are incomparable,

which can be seen on the following two counterexamples:

o R = {(zy,2y),(Zy,zy)}. Then switch(R,z) =
{(zy,zy), (Ty,Zy)}, therefore we do not have
Indg(R,z), whereas we havendg(R,z) and a
fortiori Indy(R,x). ThereforeIndg(R,z) does not
imply Indg(R,x) and likewise,Indy (R, z) does not
imply Indg(R, ).

e R = {(zy,zy),(xy,zy)}. Then switch(R,z) =
R, however neithefndg (R, x) nor Ind; (R, x) holds,
therefore Indy(R,xz) does not hold.  Therefore
Indg (R, x) does notimplylndy (R, ).

Note also that:

o With R = {(a7,zy)}, we have switch(R, z)
{(zy;zy)}. Hence, we do not havdndg(R,z),
whereas we havEndp(R, {z}). Thatis,Indp(R, {x})
does not implyindg (R, ).

e Indg(R,z) does implyIndp (R, {z}) (but this is only
becauser is a single variable, otherwisbndg (R, X
may fail to implyIndp (R, X ) whenX is not a singleton
set).

4.2 Examples
Example 1 (continued)

vy o xy
R: | !
Ty Ty

R is Q-independent of and G-independent af but not
I-independent af (it is obviously not independent fromfor
any notion of independence considered).

Example 2 (continued)

independence independence as

incomparability

N

independence as

as indifference

/

independence as
invariance under indifference or

permutation

/ N\

incomparability

7

preferential weak

independence independence

R is Q-independent ofy but neither G-independent nor
I-independent ofj.

Example 3 (continued)

ry
!
zy
7N\
Ty Y
Ris independent neither afnor ofy, whatever the notion of

independence under consideration. Idem for the preference
relations of Examples 4 and 5.

R:

Example 6 (continued)

Ty ~ TY
R: l
Ty ~ TY

R is l-independent and G-independent gf but not
Q-independent of. (It obviously fails to be independent of
x, whatever the notion of independence under consideration.)

4.3 Independence and projection

Proposition 8 Let X C V. For any X -preference relation
Rx there is a uniqué/-preference relationR such that (a)

Ind;(R,V \ X)and (b)R:" coincides withRy .

However, there is no such result as regards
independence an@-independence. Here are two counterex-
amples.

e First, consider?; to be the reflexive-transitive closure of
{(zy,Zy)} and Ry to be the reflexive-transitive closure
of {(zy,zy)}. Both R; and R, are Q-independent of
Y =V \ X whereX = {z}. Also, the empty set is
the lower projection of?; on X. Similarly, the empty
set is the lower projection a®; on X. FurthermoreR;
and R, have the same upper projection &n that is the
reflexive-transitive closure df(z, z)}.

e Second, considerR; to be the reflexive-transitive

closure  of {(xy.7y), (zy,79). (Ty,77), (7Y, Ty)}
and R, to be the reflexive-transitive closure of



{(zy, zy), (xy,7Y), (Ty,zy)}. Both R; and R, are  [Kohlas & Shenoy, 20d0Kohlas, J., and Shenoy, P. 2000.
G-independent ol". R; and R, have the same lower Handbook of Defeasible Reasoning and Uncertainty Man-
projection onX, that is{(x,z)}*, which is also their agement System®lume 5. Kluwer Academic Publishers.
upper projection orX.. chapter Computation in valuation algebras, 5-39.

[Lang, Liberatore, & Marquis, 20Q3Lang, J.; Liberatore,
P.; and Marquis, P. 2003. Formula-variable independence
and forgetting in propositional logiclournal of Artificial
Intelligence Research8:391-443.

5 Conclusion and perspectives [Lang, 2004 Lang, J. 2004. Logical preference representa-

This paper is meant to pave the way towards simplifying and tion and combinatorial voteAnnals of Mathematics and
decomposing preference relations over combinatorial struc- Artificial Intelligence42(1):37-71.

tures, by investigating and comparing various notions of pro{Lin & Reiter, 1994 Lin, F., and Reiter, R. 1994. Forget it!
jection and independence. It is still a preliminary work and  In Proceedings of the AAAI Fall Symposium on Relevance
raises many questions. 154-159.

One of the most salient issues that we did not investigatfl_in 2001 Lin, F. 2001. On the strongest necessary
is about computing the various notions of projection (as well” 54 \yeakest sufficient conditionsrtificial Intelligence
as checking the various notions of independence) when the 128:143-150.

initial preference relation is represented ie@mpact repre- )

sentation languagsuch as CP-netBoutilier et al, 2004  [Shenoy, 198D Shenoy, P. 1989. A valuation-based lan-
or a language based on propositional logic (see H.gng, guage for expert systems, international journal of approx-
2004 for a survey). The problem is then the following: given ~ imate reasoning. International Journal of Approximate
a compact structure (e.g., a CP-net) representing a preference Réasoning(2):383-411.

relation R in a compact way, compute another input of the

same language (e.g. another CP-net) that represents the pro-

jection of R on a given subset of variables w.r.t. one of

the various definitions given in this paper. Clearly, we are

looking for algorithms that would perform this computation

directly (without generating? explicitly, nor even its projec-

tion on X). This looks harder than we initially thought and is

certainly a promising issue for further research. As to inde-

pendence, it would be worth investigating the computational

complexity of checking, for a given notion of independence

and a given representation language, whether a given com-

pactly represented preference relation is independent from a

given set of variables (in the same vein as the worli_ang,

Liberatore, & Marquis, 2003for independence and forget-

ting in propositional logic).

Proposition 9 If Ris Pref-independent oF \ X then each
of R5X and R}~ coincides with the restriction ak to 2.

Acknowledgements

The third author has been partly supported by the Région
Nord/Pas-de-Calais, the IRCICA Consortium, the European
Community FEDER Program and the IUT de Lens.

References

[Boutilier et al,, 2004 Boutilier, C.; Brafman, R.; Domsh-
lak, C.; Hoos, H.; and Poole, D. 2004. CP-nets: a
tool for representing and reasoning with conditional ce-
teris paribus statementgournal of Artificial Intelligence
Researct?1:135-191.

[Brafman & Tennenholtz, 1997Brafman, R., and Tennen-
holtz, M. 1997. Modeling agents as qualitative decision
makers.Artificial Intelligence94:217-268.

[Dubois & Prade, 1995Dubois, D., and Prade, H. 1995.
Possibility theory as a framework for qualitative decision
theory. InProceedings of IJCAI-951924-1930.



Qualitative Dynamical Preferencesin the Situation Calculus

Meghyn Bienvenu and Sheila Mcllraith
Department of Computer Science
University of Toronto
Toronto, Ontario. Canada.
{meghyn,sheila} @cs.toronto.edu

Abstract

In this paper, we address the problem of specifying
and generating preferred plans using rich, qualita-
tive user preferences. We propose a logical lan-
guage for specifying non-Markovian preferences
over the evolution of states and actions associated
with a plan. We provide a semantics for our first-
order preference language in the situation calculus
and prove that progression of our preference for-
mulae preserves this semantics. This leads to the
development of PPL AN, a bounded best-first search
planner that computes preferred plans. Our prefer-
ence language and planning approach is amenable
to integration with several existing planners, and
beyond planning, can be used to support arbitrary
dynamical reasoning tasks.

1 Introduction

Research in automated planning has historically focused on
classical planning — generating a sequence of actions to
achieve a user-defined goal, given a specification of a domain
and an initial state. Nevertheless, one need look no further
than the pervasive problem of travel planning to observe that
generating a plan is not the only challenge. In many real-
world settings, plans are plentiful, and it is the generation of
high-quality plans meeting users’ preferences and constraints
that presents the biggest challenge.

In this paper we examine the problem of preference-based
planning — generating a plan that not only achieves a user-
defined goal, but that also conforms, where possible, to a
user’s preferences over properties of the plan. To that end, we
propose a first-order language for specifying domain-specific,
qualitative user preferences. Our language is rich, supporting
non-Markovian preferences over the evolution of actions and
states leading to goal achievement. Our language harnesses
much of the expressive power of first-order and linear tempo-
ral logic. We define the semantics of our preference language
in the situation calculus [8]. Nevertheless, nothing requires
that the planner be implemented using deductive plan synthe-
sis in the situation calculus. Indeed our planner PPLAN, a
bounded best-first search planner, is a forward-chaining plan-
ner, in the spirit of TLPIlan [1] and TALPIan [6], that exploits
progression of preference formulae to more efficiently com-
pute preferred plans. Experimental results illustrate the effi-
cacy of our best-first heuristic.

Research on qualitative preferences has predominantly fo-
cused on less expressive, static preferences, yielding greater
incomparability between outcomes (e.g., [3]). In the area of
dynamical preferences, there are several recent and notable
pieces of work. Son and Pontelli [10] have developed a lan-
guage for planning with preferences together with an imple-
mentation using answer-set programming. Indeed we lever-
age their preference language PP in our work. Also no-
table is the work of Delgrande et al. [4], who have devel-
oped a framework for characterizing preferences and proper-
ties of preference-based planning. Rossi and colleagues (e.g.,
[9]) exploit their work on soft constraints to develop tempo-
ral constraints for reasoning in temporal domains, sometimes
with uncertainty. Their qualitative preferences are less ex-
pressive than ours, but their computational framework is more
general. Finally research on decision-theoretic planning and
MDPs also addresses the general problem of generating pre-
ferred plans [7]. Nevertheless, the elicitation of preferencesin
terms of Markovian numeric utilities makes these approaches
less applicable to the types of preferences we examine.

2 Preliminaries

The situation calculus is a logical language for specifying and
reasoning about dynamical systems [8]. In the situation cal-
culus, the state of the world is expressed in terms of functions
and relations (fluents) relativized to a particular situation s,
e.g., F(z, s). In this paper, we distinguish between the set of
fluent predicates F and the set of non-fluent predicates R rep-
resenting properties that do not change over time. A situation
s is a history of the primitive actions a € A performed from
an initial situation So. The function do(a, s) maps a situation
and an action into a new situation. The theory induces a tree
of situations rooted at So.

A basic action theory in the situation calculus D comprises
four domain-independent foundational axioms and a set of
domain-dependent axioms. The foundational axioms % de-
fine the situations, their branching structure, and the situation
predecessor relation . s C s’ states that situation s precedes
situation s’ in the situation tree. % includes a second-order
induction axiom. The domain-dependent axioms are strictly
first-order and are of the following form:

e successor state axioms Dgg, one for every fluent F € F,
which capture the effects of actions on the truth value of F.
e action precondition axioms D,,,, one for every action a in
the domain. These define the fluent Poss(a, s), the conditions
underwhich it’s possible to execute an action a in situation s.
e axioms Dg, describing the initial situation.



e unigue names axioms for actions D,q.

Details of the form of these axioms can be found in [8].
Following convention and to enhance readability, we will
generally refer to fluents in situation-suppressed form, e.g.,
at(home) rather than at(home, s).

A planning problem is a tuple (D, G) where D is a basic
action theory and G is a goal formula, representing properties
that must hold in the final situation. In the situation calculus,
planning is characterized as deductive plan synthesis. Given
a planning problem (D, G), the task is to determine a situa-
tion s = do(an, (do(an—1,...,do(a1, So))))!, i.e., a sequence
of actions from S,, such that:

D = (3s).executable(s) A G(s)
where ezecutable(s) % (Va,s').do(a,s') C s D Poss(a, s).

We refer to situation s = do(a, So) as the plan trajectory
and the sequence of actions @ = ajas...a, as the associated
plan. The length of this plan is n. The set of all plans is
denoted by II, and IT* denotes the subset of plans of length
< k. A planning problem (D, G) is solvableiif it has at least
one plan. It is k-solvableif it has a plan of length < k.

3 Preference Specification

In this section we describe the syntax and semantics of our
first-order preference language. We illustrate the concepts in
this paper in terms of the following motivating example.

The Dinner Example: It’s dinner time, and Claire
is tired and hungry. Her goal is to be at home with
her hunger sated. There are three possible ways for
Claire to get food: she can cook something at home,
order in take-out food, or go to a restaurant. To
cook a meal, Claire needs to know how to make the
meal, and she must have the necessary ingredients,
which might require a trip to the grocery store. She
also needs a clean kitchen in which to prepare her
meal. Ordering take-out is much simpler; she only
has to order and eat the meal. Going to a restaurant
requires getting to the restaurant, ordering, eating,
and then returning home.

This example is easily encoded in any number of planning
systems, and given a specification of Claire’s initial state, a
planner could generate numerous plans that achieve Claire’s
goal. Nevertheless, like many of us, Claire has certain pref-
erences concerning where and what she eats that make some
plans better than others. It is the definition of these prefer-
ences and the generation of these preferred plans that is the
focus of this paper.

3.1 A First-Order Preference Language

In this section we present the syntax of a first-order language
for expressing preferences about dynamical systems. Our
preference language modifies and extends the preference lan-
guage PP recently proposed by Son and Pontelli [10]. Fol-
lowing their work, we provide a hierarchy of preference for-
mulae. Basic desire formulae define properties of situations,
atomic preference formulae define preferences over proper-
ties, and general preference formulae define compositions of

"Which we abbreviate to do([a1, - - - , @], So), or do(&, So).

preferred situation properties. The planner is ulitmately given
onegeneral preference formula (subsequently referred to sim-
ply as a preference formula) relative to which a preferred plan
is generated.

Definition 1 (Basic Desire Formula (BDF)). A basic desire
formula is a sentence drawn from the smallest set B where:

1. FCB

RCB

If f € F, thenfinal(f) € B
Ifa € A, thenocc(a) € B

If v, p1,p2 are in B, then so are —1), Y1 A 92, 11 V 92,
(Fz)p, (Vz)ep, next(y), always(y), eventually(y)), and un-

til(y1, 2).
BDFs establish desirable properties of situations. By com-
bining BDFs using boolean and temporal connectives, we are
able to express a wide variety of properties. We illustrate their
use with BDFs from our motivating example.

o~ wn

hasIngrnts(spag) A knowsHowToMake(spag)  (P1)
(3z).hasIngrnts(z) A knowsHowT oM ake(x) (P2)
final(kitchenClean) (P3)
(3z).eventually(occ(cook(z))) (P4)
(3z).(Fy)-eventually(occ(orderTakeout(x,y))) (P5)
(3z).(Jy)-eventually(occ(order Restaurant(z,y))) (P6)
always(—((3z).occ(eat(z)) A chinese(z))) (P7)

P1 states that in the initial situation Claire has the ingredients
and the know-how to cook spaghetti. P2 is more general, ex-
pressing that in the initial situation Claire has the ingredients
to make something she knows how to make. Observe that
fluent formulae that are not inside temporal connectives refer
only to the initial situation. P3 states that in the final situation
the kitchen is clean. P4 - P6 tell us respectively that at some
point Claire cooked something, ordered something from take-
out, or ordered something at a restaurant. Finally P7 tells us
that Claire never eats any chinese food.

While BDFs enable description of desirable properties of

situations, they do not enable us to express preferences be-
tween alternative properties. For example, we cannot say that
Claire prefers cooking to ordering take-out. To do so, we de-
fine Atomic Preference Formulae, following the definition in
[10].
Definition 2 (Atomic Preference Formula). An atomic
preference formula is a formula g > @1 > ... > ¢,
where n > 0 and each ; is a basic desire formula. When
n = 0, atomic preference formulae correspond to BDFs.

An atomic preference formula expresses a preference over
alternative properties defined by BDFs. For example, Claire
can express her preference over what to eat (pizza, followed
by spaghetti, followed by crépes) using P82.
occ’ (eat(pizza)) > occ’ (eat(spag)) > occ (eat(crépes)) (P8)

If Claire is in a hurry, tired, or very hungry, she may be more
concerned about how long she will have to wait for her meal:

P5> P2AP4> P6> ~P2A\ P4 (P9)

2For legibility, we abbreviate eventually(occ(y)) by occ’(¢),

and we refer to the preference formulae by their labels.



This says that Claire’s first choice is take-out, followed by
cooking if she has the ingredients for something she knows
how to make, followed by going to a restaurant, and lastly
cooking when it requires a trip to the grocery store.

Again, an atomic preference represents a preference over
alternative ;’s. We wish to satisfy the BDF ; with the low-
est index . Consequently, if Claire eats pizza and crépes, this
is no better nor worse with respect to P8 than situations in
which Claire eats only pizza, and it is strictly better than situ-
ations in which she just eats crépes. Note that there is always
implicitly one last option, which is to satisfy none of the ¢;,
and this option is the least preferred.

Atomic preference formulae contribute significantly to the
expressivity of our preference language, but we still lack a
way to combine atomic preferences together. Our third and
final class of preference formulae will provide us with several
useful methods for combining preference formulae.

Definition 3 (General Preference Formula). A formula ®
is a general preference formula if one of the following holds:

& is an atomic preference formula

® is v : ¥, where « is a basic desire formulaand ¥ is a
general preference formula [Conditional]

e & =!U, for ¥ a general preference formula [Negation]

e ® isone of
- P&V, &...& U, [General And]
- Uy | ¥1 | ... | ¥, [General Or]

- ¥y Uy > ...> T, [Lex Order]
where n > 1 and each ¥; is a general preference formula.

Here are some example general preference formulae:
P2 : P4(P10) 'P8(P11)  P8& P9(P12)
P8 | P9(P13) P81> P9(P14)

P10 states that if Claire initially has the ingredients for some-
thing she can make, then she should cook. !® does the op-
posite of ®. E.g., P11 states that Claire’s most preferred op-
tion is eating something other than pizza, crépes, or spaghetti,
and otherwise she prefers crépes to spaghetti to pizza. The
remaining preferences show the various ways we can com-
bine Claire’s food and time preferences. P12 maximizes the
satisfaction of both Claire’s food and time preferences. P13
can be used if she would be content if either of the two were
satisfied. P14 tells us that while Claire cares about both her
preferences, her food preference takes priority.

This concludes our description of the syntax of our pref-
erence language. Our language extends and modifies the PP
language recently proposed by Son and Pontelli [10]. Quan-
tifiers, variables, non-fluent relations, and a conditional con-
struct have been added to language. In PP it is impossible to
talk about arbitrary action or fluent arguments or their prop-
erties, and difficult or even impossible to express the kinds
of preferences given above. We have also provided a more
intuitive semantics for General And and General Or prefer-
ences. Finally, we differ significantly in our semantics, which
follows.

3.2 The Semanticsof our Language

We appeal to the situation calculus to define the semantics of
our preference language. Preference formulae are interpret-
ted as situation calculus formulae. We associate with each
situation term a weight between 0 and 1, depending upon
how greatly it deviates from satisfying a preference formula.
0 indicates complete satisfaction, whereas 1 represents com-
plete dissatisfaction. Weights were necessary to differentiate
situations that would be deemed “incomparable” in less ex-
pressive preference languages (e.g., [3]). Preference formu-
lae are evaluated relative to an action theory D. Since pref-
erence formulae may refer to properties that hold at various
situations in a situation history, we use the notation ¢[s, s']
proposed by Gabaldon [5] to explicitly denote that ¢ holds
in the sequence of situations originating in s and terminat-
ing in s = do([ay, ..., ax],s). Recall that fluents are repre-
sented in situation-suppressed form and that F'[s] denotes the
re-insertion of situation term s.
We interpret BDFs in the situation calculus as follows.

¢ € F,ols, 1< gls]

peR,pls, 81 ¢

final(p)[s, '] = p[s']

occ(a)[s, s'] def do(a,s) C s’

eventually(y)[s, s] ef (Fs1: sC 51 C s )g[s1, s
always(p)[s, s'] ef (Vs1:8C s1Cs)pls1, 5]
next(¢)[s, s'] < (3a).do(a, s) C s' A p[do(a, ), s']

until(y, ¥)[s, s'] def (3s2: s C 52 C 8" ) {ah[s2, 8] A
(Vs1:s C 51 C s2)¢[s1,5]}

Boolean connectives and quantifiers are already part of the
situation calculus and require no further explanation here.
Since each BDF is shorthand for a situation calculus expres-
sion, a simple model-theoretic semantics follows.

Definition 4 (Basic Desire Satisfaction). Let D be an action
theory. A situation s = do([aq, ..., an], So) satisfies a basic
desire formula ¢ just in the case that D = [So, s]. We define
ws(¢p) to be the weight of situation s wrt BDF ¢. w,(p) =0
if s satisfies ¢, otherwise w,(p) = 1.

We can generalize this definition as follows.

Definition 5. Let D be an action theory, and let s and s’ be
situations such that s C s’. The situations beginning in s and
terminating in s’ satisfy ¢ just in the case that D | ¢ls, s].
We define w; ¢ () to be the weight of the situations origi-
nating in s and ending in s’ wrt BDF ¢. w, o (@) = 0if @is
satisfied, otherwise w; o () = 1.
Example 1: Consider the plan trajectory s =
do([cleanDishes,cook(crépes),eat(crépes), cleanDishes], So)
and the initial database Dg, =

{hungry(So), hasIngrnts(spag, So), at(home, So),

3Temporal formulae follow [5], using the abbreviations:
(3s1:sEs51 Cs)®=(3s1){sEs1As1 CEs AD}
(Vs1:8E 81 C8)® = (Vs1){[sCs1Asi Cs]D®}



hasIngrnts(crépes, So), knowsHowToMake(crépes)}.
Then we have the following:

ws(Pl) =1 ws(P2)=0 ws(P3)=0

ws(P5) =1 ws(P6)=1 ws(P7)=0
Definition 6 (Atomic Preference Satisfaction). Let s be a
situation and @ = ¢ > @1 > ... > ¢, be an atomic
preference formula. Then ws(®) = min {47 : ws(pi) =
0}, if such an i exists, and ws(®) = 1 otherwise.

Evaluating weights with respect to Example 1, we get:
w,(P8) = - we(P9) = —

w,(P4) =0

Definition 7 (General Preference Satisfaction ). Letsbea
situation and @ be a general preference formula. Then w(®)
is defined as follows:

o ws(po > 1> ... > y) is defined above

0 ifws(y) =1
° wy(y:7¥) ={ ws (¥) it

otherwise
o w,(1¥)=1—w,(T)
o w (V& V1 &...&¥,) = max{w,(¥;):1<i<n}
o w(Wo | Uy | ... | ¥p)=min{ws(¥;):1<¢<n}
The weight of Lex Order preferences makes use of the fol-
lowing two definitions.

Definition 8 (Set of Possible Weights). We use V(®) to de-
note the set of possible weights of ®. This can be defined
inductively as follows:

e If @ isa BDF, then V(®) = {0, 1}

o If® =¢o> ...> ¢n, then
V(<I>):{n+1 i=0,1,..,n+1}
e Ifd=¢p:Tord®=!"¥, then V(®) =V (¥)
e If®=Vo&..&T, or @ =T | ... | ¥y, then
V(@) = Ui, V(¥:)
o If® =TT >...> ¥y, then
where |V (¥)| denotes the cardinality of the set V (¥).

For example, we obtain the following sets of possible

weights:
V(P8) = {0, 3,31}
V(P9) = {055, .1}
V(P13) = V(P8 | P9) =V (P8)UV(P9)
={0,5,5130{0,,5313={07.5335 51}

Definition 9 (Position of a Weight). Given a preference for-
mula ® and some z € V(®), we define the position of =
with respect to V(®), written Pos(z, V(®)), to be equal to
{y e V(®):y <a}|.
To illustrate this definition, we determine the positions of
weights with respect to the set V/(P13) = {0, 1,3, 1, 2, 2,1}:
Pos(0,V(P13)) =0 Pos(%,V(P13)) =2
Pos(3,V(P13)) =5 Pos(%,V(P13)) =6

Definition 10 (General Preference Satisfaction I1). Let s
be a situationand let ® = ¥y > ¥; > ... > ¥,,. We define
DiolPos(ws(¥4), V (¥, )) X H] —ia [V(¥5)l]

ws(®) = T, V@]

Returning to Example 1,
—ws(P2: P4) =ws(P4) =0
—ws(!P8) =1—w,(P8)=1—-2=1
— ws(P8& P9) = max{%, 1}
— ws(P8 | P9) =min{3, 3}
— w, (P8 > PY)

Pos(ws (P8),V(P8))X|V (P9)|+Pos(ws(P9),V(P9I))
[V (P8)[ X[V (P9)]

Il
Bl ol

_ 2x541 _ 11
= ax5-1 — 19

Definition 11 (Preferred Situations). A situation sy is pre-
ferred to a situation s, with respect to a preference formula
®, written Pref(sy, s, ®), if ws, (P) < ws, (P). Situations
s1 and s, are indistinguishable with respect to a preference
formula @ , written s; ~g s, if ws, (®) = w,, (P).

4 Planning with Preferences

With a preference language in hand, we return to the problem
of planning with preferences.

Definition 12 (Preference-Based Planning Problem). A
preference-based planning problem is a tuple (D,G, ®),
where D is an action theory, G is the goal, and & is a prefer-
ence formula.

Definition 13 (Preferred Plan). Consider a preference-
based planning problem (D,G,®) and plans a1 and
a>. We say that plan di is preferred to plan a3 iff
Pref(do(dai, So), do(ds,So), ®).

Definition 14 (Optimal Plan, Ideal Plan). An optimal plan
with respect to (D, G, ®) isany pland € II s.t.

wdo(a‘,so)(q)) = min {wdo(i;,SO) (@) : I;E IT}.
Aplan d is an ideal plan iff wg,(z,5,)(®) = 0.

Definition 15 (k-Optimal Plan). Given (D,G,®) and a
length bound &, a k-optimal plan is any plan @ € II* s.t.

Wao(7,50)(B) = Min {wy, 5,(®) : b € TMH}.

Definition 16 (g-Satisfactory Plan). Given a preference-
based planning problem and a quality bound 0 < ¢ < 1, a
g-satisfactory plan is any @ € II such that w4,(z,5,)(®) < ¢.

4.1 Progression

In Section 5 we will present an algorithm for planning with
preferences, based on forward-chaining planning. As has
been done with control knowledge containing linear temporal
logic formulae [1; 6], we evaluate our preference formulae by
progressing them as we construct our plan. Progression takes
a situation and a temporal logic formula (TLF), evaluates the
TLF with respect to the state of the situation, and generates
a new formula representing those aspects of the TLF that re-
main to be satisfied in subsequent situations. In this section,
we define the notion of progression with respect to our pref-
erence formulae and prove that progression preserves the se-
mantics of preference formulae.

In order to define the progression operator, we add the
propositional constants TRUE and FALSE to both the situa-
tion calculus and to our set of BDFs, where D = TRUE and
D K FALSE for every action theory D. We further add the
BDF occNext(a), a € A, to capture the progression of occ(a).



Definition 17 (Progression of a Basic Desire Formula). Let
s be a situation, and let ¢ be a basic desire formula. The
progression of ¢ through s, written ps(y), is given by:

TRUE  ifD = s
* ITp € F then ps(y) = { FALSE  otmerics
TRUE  ifD
o Ifp € R, then pa(p) = { FALSE  othernic

e If o = occ(a), then ps () = occNext(a)

e If ¢ = occNext(a), then
() = TRUE
Ps\) =1 FALSE

o If o = final(z), then p,(¢) = ¢

o If o =, then ps(p) = —ps(¢)

o If o =11 A, then ps(p) = ps(¥1) A ps (92

o If o =11 Vb, then ps(p) = ps(¥1) V ps (92

o If o = (32)¢h, then ps () = Ve ps(¥7/7)*

o If o = (Va)y, then ps () = A.cc ps (%)

o If o = next(s)), then ps(¢) = ¢

o If o = always(y)), then ps(p) = ps(¥) A ¢

o If o = eventually(y), then ps(p) = ps(¥) V o

e If ¢ = until(¢1,2), then

ps(p) = (ps(P1) A @) V ps(¢h2)

e If o = TRUE or ¢ = FALSE, then ps(p) = ¢

Returning to Example 1,

— ps(always(kitchenClean))
= ps(kitchenClean) A always(kitchenClean)
= FALSE A always(kitchenClean)

— ps((3zx).hasIngrnts(x)) = V ps(hasIngrnts(c))
ceC
Progression of atomic and general preference formulae is
defined in a straightforward fashion by progressing the indi-
vidual BDFs that comprise these more expressive formulae.
The full definition can be found in [2]. Note that progression
can lead to a potentially exponential increase in the size of
a BDF. In practice, we can (and do) greatly reduce the size
of progressed formulas by the use of Boolean simplification
and bounded quantification [1]. Definition 17 show us how to
progress a preference formula one step, through one situation.
We extend this to the notion of iterated progression.
Definition 18 (Iterated Progression). The iterated pro-
gression of a preference formula @ through situation s =
do(d, So), written p*(®), is defined by:

P50 (®) = ps,o(P)
p;o(a,s)((b) = pdo(a,s)(p: ((I)))

Finally we prove that the progression of our preference for-
mulae preserves their semantics, i.e., that our action theory
entails a preference formula over the situation history of s iff
it entails the progressed formula up to (but not including) s.
We will exploit this in proving the correctness of our algo-
rithm in the section to follow.

if D = 3s’.s = do(a, )
otherwise

)
)

*We assume a finite domain. ¢¢/* denotes the result of substitut-
ing the constant ¢ for all instances of the variable v in ¢.

Theorem 1 (Correctness of Progression). Let s =
do([a1, - - ., an],So) be asituation and let ¢ be a BDF. Then

D k= ¢[So,s] iff D= p(p)ls, 5]
where s = do(ap, s').

Proof Sketch: The proof proceeds by induction on the
structure of (.

From Theorem 1, we can prove that the weight of a sit-
uation with respect to a preference formula is equal to the
weight of the final situation, disregarding its history, with re-
spect to the progressed preference formula.

Corollary. Let s = do([a1,--.,an],So) be a situation and
let @ be a preference formula. Then w,(®) = ws ,(p% (2)),
where s = do(ay, s').

5 Computing Preferred Plans

In this section, we describe PPLAN a bounded best-first
search planner for computing preference-based plans. The
PPLAN algorithm is outlined in Figure 1 5.

PPLAN(init, goal, pref, maxLength, desiredWt)
frontier +— INITFRONTIER(init, pref)
bestPlanSoFar « [ ]
bestWtSoFar < MAXWT (pref)+1
while frontier # @ and bestWtSoFar > desiredWt
current < REMOVEFIRST(frontier)
if goal C state and weight < bestWtSoFar
bestPlanSoFar < partialPlan
bestWtSoFar < weight
end if
neighbours <— ExXPAND(partialPlan, state, progPref)
frontier + SORTNMERGEBY VAL (neighbours, frontier)
end while
return bestPlanSoFar, bestWtSoFar

EXPAND(partialPlan, state, progPref) returns a list of new
nodes to add to the frontier. If partialPlan has length equal to
maxLength, EXPAND returns [ ]. Otherwise, EXPAND determines
all the executable actions in state and returns a list which con-
tains, for each of these executable actions a,

(weight, newPartialPlan, newState, newProgPref).

Figure 1: The PPLAN algorithm.

PPLAN takes as input an initial state init, a goal state goal,
a preference formula pref, a length bound maxLength, and
a quality bound desiredWt, designating the maximum accept-
able plan weight. The algorithm returns a plan bestPlanSoFar
and its weight bestWtSoFar.

A naive implementation would require computing alter-
native plan trajectories and then evaluating their relative
weights. This is grossly inefficient, requiring computation
of numerous plan trajectories, caching of relevant trajec-
tory state, and redundant evaluation of preference formula
weights. Instead, we make use of Theorem 1 to compute
weights as we construct plans, progressing the preference for-
mula as we go. Exploiting progressions enables the devel-
opment of a best-first search strategy that orders search by

SRefer to [2] for a more detailed description of the algorithm.



weight and evaluates preference formulae across shared par-
tial plans. Progression is commonly used to evaluate domain
control knowledge in forward chaining planners (e.g. [1],
[6]) where progression of hard constraints prunes the search
space. In contrast, we are unable to prune less preferred par-
tial plans because they may yield the final solution, hence the
need for a best-first strategy.

Returning to our algorithm in Figure 1, our plan frontier is
a list of nodes of the form [weight, partialPlan, state, pref],
sorted by weight, and then by length. The frontier is initial-
ized to the empty partial plan, its weight and pref correspond-
ing to the progression and evaluation of the preference for-
mula in the initial state. On each iteration of the while loop,
PPLAN removes the first node from the frontier and places
it in current. If the partial plan of current satisfies the goal
and has lower weight than bestWtSoFar, then bestPlanSoFar
and bestWtSoFar are replaced by current’s partialPlan and
weight respectively. Next we call the function EXPAND with
current’s node arguments as input. If partialPlan has length
equal to maxLength, then the frontier is updated to the empty
list. Otherwise, EXPAND generates a new set of nodes, one
for each action executable in state. These new nodes are
sorted by weight then length and merged with the remain-
der of the frontier. We exit the while loop when we have
either reached an empty frontier or we have found a plan
with weight less than or equal desiredWt. The correctness
of PPLAN is given in the following theorem.

Theorem 2 (Correctness of PPLAN Algorithm). Given
as input a preference-based planning problem (D, G, ®), a
length bound %, and a quality bound ¢, PPLAN outputs
a plan that is either k-optimal or g-satisfactory, provided
(D, G, ®) is k-solvable, and the empty plan otherwise.

Proof Sketch: The proof proceeds by proving termination
and then proving the correct output properties by cases [2].

5.1 Experimental Results

We tested PPLAN on 24 instances of the dinner example and
31 instances of the simpler school travel example used in
[10]6. We compared the number of nodes expanded using
PPLAN'S heuristic best-first search with a breadth-first search
(BFS) algorithm. Results for the dinner example are given
in Figure 2. Our results illustrate the effectiveness of our
preference-weight heuristic in guiding search. As plans grow
in length, the efficacy of this heuristic is magnified. It’s in-
teresting to note test cases 17 and 18, where PPLAN demon-
strates poorer performance than BFS. Recall that PPLAN’S
best-first search explores plans based on weight then length.
As a consequence, PPLAN can be led astray, investigating a
long plan with low weight, whereas the best plan can end up
being a shorter plan with higher weight. In our experience,
this behavior occurs infrequently, and the heuristic generally
leads to significantly improved performance.

6See http://www.cs.toronto.edu/~sheila/pplan for code, domains
and test cases. Unfortunately, there was no way to get comparative
statistics with [10]. Figure 2 presents experimental results from an
early implementation. Updated results are available on our website.

TEST# | PPLAN | BFS TEST # | PPLAN BFS
1 6 9 13 54 87
2 13 19 14 57 90
3 6 10 15 39 102
4 6 9 16 57 90
5 34 34 17 60 42
6 48 50 18 60 42
7 8 12 19 70 87
8 57 90 20 316 FAILS
9 38 113 21 70 4806
10 47 113 22 117 FAILS
11 47 124 23 31 1698
12 55 135 24 274 FAILS

Figure 2: Nodes expanded by PPLAN & breadth-first search.

6 Summary

In this paper we addressed the problem of preference-based
planning. We presented the syntax and semantics of an ex-
pressive first-order language for specifying non-Markovian,
qualitative user preferences. We proved that our semantics
is preserved under progression. This led to the develop-
ment of PPLAN, a best-first search, forward-chaining plan-
ner that computes optimal preferred plans relative to quality
and length bounds. We further proved the correctness of the
PPLAN algorithm. Our planner can be modified to compute
the optimal plan without a quality bound and is trivially ex-
tended to include hard user constraints. More generally, our
preference language is amenable to integration with a vari-
ety of existing planners, and beyond planning, can be used to
support arbitrary dynamical reasoning tasks.
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Adaptive Rich M edia Presentations
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Abstract

Personalization and adaptation of multi-media
messages are well known and well studied prob-
lems. ldeally, each message should reflect its re-
cipient’s interests, device capabilities, and net-
work conditions. Such personalization is more
difficult to carry out given a compound multi-
media presentation containing multiple spatially
and temporally related elements. This paper de-
scribes a novel formal, yet practical approach,
and an implemented system prototype for author-
ing and adapting compound multi-media presen-
tations. Our approach builds on recent advances
in preference specification and preferences-based
constrained optimization techniques.

1 Introduction

Multi-media presentations are messages containing multiple
audio/visual elements that must be presented in some partic-
ular temporal and spatial relation. Such messages can now be
sent to users over both the Internet and mobile networks. As
an example, consider an ESPN promo containing two video
segments of upcoming sports events, image and video adver-
tisements, as well as sports results in the form of plain text.
The author of this message would like the two video segments
to be broadcasted one after the other, followed by a short
commercial. Image-based ads will be displayed along side
the video segments, and the scores will be displayed below.
Such presentations can be described using the standard
SMIL format (for Synchronized Multimedia Integration Lan-
guage www. W3c. or g/ Audi oVi deo), supported by pop-
ular browsers and media players. And they can be either
streamed to the target device or downloaded. Our problem
begins when we want to customize and personalize a presen-
tation. Message recipients for the ESPN promo have diverse
interests and may be using diverse devices that differ in their
image quality, screen size, memory, processing power, media
playback support, and more. We need to adapt each presenta-
tion to a format supported by each particular user’s capabili-

*This work was sponsored by the Isradl Ministry of Industry
and Trade. Doron Friedman is partially supported by the European
Union FET project PRESENCIA, | ST-2001-37927.

fPermanent Address: Dept. of Computer Science, Ben-Gurion
University

Doron Friedman
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ties and to personalize it to suit her taste. Obviously, prepar-
ing a special presentation for each potential combination of
user profile, target device, and network conditions is infeasi-
ble. This paper describes the principles behind a working sys-
tem prototype implemented for a consortium of companies
in the area of streaming multi-media. This system employs
a novel customization and adaptation approach that is both
flexible and extensible. Moreover, it provides an interesting
application of the ideas of preference-based constrained opti-
mization discussed in [Boutilier et al., 2004].

In our approach the author need not consider explicit re-
cipient scenarios. Rather she describes in a natural manner
preferences and constraints on the content and form of the
message. At presentation time, the author’s specification is
combined with user device and network properties, and a user
profile. These define a preference-based constrained opti-
mization problem whose outcome is a description of the opti-
mal presentation for this particular user and user device. This
presentation is generated in SMIL format on-the-fly by the
system following the user’s request, and can be downloaded
or streamed immediately. The method has two parts: an au-
thoring part that enables the presentation author to describe
the basic elements of the presentation, as well as her require-
ments and preferences; and a presentation part that combines
this information with information about the user and his de-
vice and executes an appropriate optimization algorithm that
selects a concrete presentation for this particular case.

Our work contributes both novel ideas to the area of
adaptive presentations as well as an interesting example of
the use of qualitative preference-based reasoning techniques
which have been gaining popularity recently. In this short
paper, we concentrate on the general ideas and algorithms
behind our system, and in particular, its approach to con-
tent personalization. For lack of space, we defer discus-
sion of the spatial and temporal aspects to the full pa-
per. We note that these aspects are mostly dealt with us-
ing existing techniques, although their combination with
adaptive content selection does raise some interesting is-
sues. Technical details of the implemented system as well
as a working prototype are available online. Please check
www.cs.bgu.ac.il/catalina’/moshemos/htmls/mainFrame.html for a
demo of the presentation adaptation engine.



2 Background and Overview

Content adaptation is a well known problem for multime-
dia presentations. Even for single-media messages, more ad-
vanced architectures take into account the need to adapt the
particular video/audio/image format to one supported by the
end-user’s device and may utilize transcoders that can take
into account the bandwidth of the user’s connection (e.g., see
www. st ri nm or g). But ideally, not only the message for-
mat should be adapted, but the actual content, too. This is
often referred to as content personalization, a specific form
of adaptation that has received wide attention in the literature
(e.g., see [Riecken, 2000]). Personalization and adaptation of
compound rich-media is more problematic. The choice of one
element may affect that of other elements — e.g., if we have
a large video file, then we may have a problem delivering it
simultaneously with another media file, such as an audio file.
Similarly, if we choose to display one image, then we have
less screen space to display another image simultaneously.
And if we select particular content for one media component,
it may affect the desirable content of other components. Thus,
the nature of the end-user’s device and his network connec-
tion constrain the type of presentations that we can display.
Moreover, these properties are known only at message pre-
sentation time, not at authoring time. If we combine these
constraints with the desire to personalize the message based
on a user profile, we are faced with a non-trivial problem.

SMIL [SMIL, 2001] is the most popular format for syn-
chronized presentations.! SMIL 1.0 specifies a set of content
modules that let the author control the content of the presen-
tation based on parameters such as bit-rate, CPU, and lan-
guage. Control is achieved by allowing the presentation of
an element to be conditional on the value of these parame-
ters. SMIL 2.0 has added to these capabilities the ability of
the author to specify additional customized attributes beyond
the standard attributes. SMIL’s conditional primitives provide
important flexibility to authors, but they are still limited: the
choice of whether to display one element is individual and
independent of other choices. This is the core of the prob-
lem we try to address. For instance, a device’s buffer size or
screen size imposes a global constraint on the whole presen-
tation, not on a single element of it.

A number of multimedia authoring systems attempt to ad-
dress this problem (see [Brusilovsky, 1996] for a survey of
adaptive hyper-media). [Boll et al., 1999] describe a system
supporting cross-media adaptation, i.e., media elements, or
entire multimedia presentation fragments, can be replaced by
other fragments of a different type. A rich semantic model
is used to identify adequate substitutions, and a strong un-
derlying multimedia database that can address these semantic
issues is required. Adaptation consists of filtering semanti-
cally inadequate options. Madeus [Jourdan et al., 1998] uses
a temporal constraint-based approach to specify allowable
media element combinations. The Cuypers system [van Os-
senbruggen et al., 2001] uses more sophisticated constraint-
programming techniques, as well as higher level semantic
specifications. All these systems require a rich semantic
model and do not differentiate explicitly between different
presentations that satisfy their constraints.

! See [van Ossenbruggen et al., 2003] for a comprehensive anal-
ysis of formats for time-based, media-centric presentations.

In this paper, we propose a flexible approach that views
presentation adaptation as a preference-based constrained op-
timization problem. Our approach is modular, flexible, and
pragmatic, and can be used as a basis for supporting even
more complex settings, such as live feeds. It is much more
akin to the process of specifying a SMIL presentation than
the above systems — in fact, it can be viewed as specifying
a flexible SMIL template. The basic idea is for the author
to specify a set of possible media elements and a number of
possible instantiations for each such element. This defines the
space of potential presentations. Now, the author specifies a
preference model over this space of possible presentations us-
ing a simple language, and can state some hard constraints as
well. At presentation time, the author’s preference model and
constraints are combined with constraints on which the au-
thor has no control: the basic capabilities of the device, the
network conditions at the time of delivery, and the user’s pro-
file (e.g., age, gender, income, past choices). Together, the
preferences and the constraints pose a preference-based con-
strained optimization problem. Its solution is the best feasible
presentation (from the author’s point of view) for this particu-
lar user. Thus, our approach lets the author bias the adaptation
process. Moreover, the authoring process is relatively simple,
requires no special semantic data,? and is easy to master.

Our work presents a sophisticated extension of the work
on static adaptive documents in [Brafman et al., 2004;
Gudes et al., 2002] that addresses three new issues: (1) The
need to handle complex constraints, requiring the introduc-
tion of constrained optimization techniques, as opposed to the
simple unconstrained optimization used there; (2) A richer
specification language; and (3) The ability to handle mediael-
ements with diverse durations and temporal constraints which
do not arise in the case of static web-pages and documents
discussed in the above applications.

Viewing content adaptation as constrained optimization is
useful only if we can provide: a simple way for the author
to specify her presentation, and an algorithm for perform-
ing constrained optimization given such a representation. To
specify preferences, we the language of TCP-nets [Brafman
and Domshlak, 2002]. This language supports an efficient
constrained optimization algorithm.

Two other other related systems use preferential reason-
ing. SUPPLE [Gajos and Weld, 2004] is a system for auto-
matically generating user interfaces. This problem is cast as
a constrained optimization problem aimed at reducing user
effort. P-news [Wang et al., 2004] uses rich qualitative in-
formation to make choices regarding news dissemination of
MPEG-7 content, taking into account end-user device in se-
lecting content form.

3 Specifying Presentations

To prepare a presentation, an author first selects the basic pre-
sentation elements and their possible respective content op-
tions. This defines a set of possible presentations. Next, she
defines a preference-order over this space of possible presen-
tations using an appropriate set of preference statements — the
preference language. Constraints can be introduced as well
(e.g., "no two ads for the same company”), indicating which

2A semantic model specifi ed using constraints can be integrated
into our approach naturaly.



of the possible presentations are unacceptable. We explain
this process in Section 3.1. In section 3.2, we examine more
closely our preference language and the graphical structure it
induces — called called a TCP-net. We illustrate these ideas
with the ESPN promo example in Section 3.3.

3.1 Possible Presentations and Preferences

Consider the ESPN promo. It consists of three consecutive
parts. Each part consists of a main video segment, two im-
ages, and running text. The running text element is constant
in all stages. Thus, altogether, we have 10 different media
elements. For each element, there are multiple choices. For
instance, the first video segment could describe an upcom-
ing broadcast of a football, baseball, or basketball game, and
each such content choice may come in different quality lev-
els (e.g., frame-per-second rate) and format. For each ad, we
have multiple options too. Thus, the potential set of concrete
presentations is large.

To model this, we associate a variable with each content
element — let V' denote the set of these variables. The set
of different options for the content of element v constitutes
the variable’s domain, denoted D(v). These options can dif-
fer both in their content and their quality. A distinguished
null value can denote the choice of not presenting the ele-
ment at all. The Cartesian product of the variables’ domains
corresponds to the set of all possible presentation content
choices. We use O to denote the set of all these options, i.e.,
O = Xx4evD(v). Each element of O provides a concrete
choice of components, but can give rise to multiple presenta-
tions that differ in the timing and layout of these components.

In addition to the presentation variables, it is desirable to
include in V additional variables that denote properties such
as: user profile aspects, network parameters, and user device
parameters. While we cannot influence their value, they do
affect our preference over presentation element choices and
participate in related constraints. For instance, personaliza-
tion can be achieved by conditioning the values of content
variables on user properties.

Having specified the set of possible presentation content,
the author’s next step is to provide information that will bias
the choice of which particular presentation the user is actu-
ally provided with. Formally, our goal is to specify a pref-
erence order over O, the set of possible presentations, based
on which we will select the best feasible presentation given
each user request. This specification should be based on sim-
ple and intuitive statements, so that novice users could de-
sign presentations easily and quickly. There are two types
of preference information people find natural to express: (1)
statements of relative importance of different variables, e.g.,
“The sports video is more important than the commercial.”
We take such statements to mean that if we must compromise
on the choice of the sports video or the commercial (e.g.,
because of bandwidth limitations) we prefer to compromise
on the choice of commercial; (2) statements of (conditional)
preference over values of a variable. For instance, a state-
ment like “For young male users, we prefer the football video
over the bowling video,” can be used for personalization. The
statement “If the video segment is a football game, | prefer
the Budweiser ad, and if it is ice-skating, | prefer the Pepsi
ad” expresses the fact that the author’s preferred ad depends
on the choice of video. Thus, when comparing between two

similar presentations featuring a football game in their main
video segment the author prefers the one with the Budweiser
ad. Our system takes as input both relative-importance state-
ments and conditional preferences statements.*

Finally, the presentation author also specifies a set of con-
straints. These could be content constraints, such as: “Ads for
alcoholic beverages cannot be shown to users under 18.” But
they can also be temporal and spatial constraints. For exam-
ple: ”The commercial starts immediately following the end
of the video”; ”The two ads are displayed at the same time”;
”Ad1 and Ad2 should have the same size”; "The width of Ad1
should be twice its height”; ”Ad1 should be centered above
Ad2”, etc. Note that preference information is allowed only
with respect to content choices, and not with respect to tem-
poral and spatial properties. On the latter we allow only con-
straints. These constraints indirectly limit the set of content
options because, e.g., we may not be able to find appropriate
layouts for certain content combinations. As noted earlier, we
mostly ignore layout and timing issues in this short version.
They are reasoned about using standard techniques such as
linear programming.

In general, constraints are specified separately from the
preferences, using a standard syntax. To specify temporal and
spatial constraints, the author refers to distinguished variables
denoting the start and end time of each element, as well as
bottom-left and top-right positions. This decoupled approach
is convenient because we can add additional device and net-
work constraints later on, at presentation time, without affect-
ing the preference information.

3.2 TCP-Nets

The preference specification language we use consists of
(conditional) relative importance statements and (condi-
tional) value preferences. Such statements can be depicted in
a graphical manner using a formalism called TCP-nets [Braf-
man and Domshlak, 2002]. TCP-nets can be used both as
an input tool or simply as an internal representation of pref-
erence statements provided by the user directly or by means
of an appropriate interface. Their graphical structure plays
an important role in analyzing the information in such state-
ments and its consistency, and in the constrained optimization
process. We use the semantics of TCP-nets, explained below,
to interpret the meaning of the author’s preference statements.
TCP-nets are an annotated directed graph. The nodes of
the graph correspond to the variables of interest (i.e., the ele-
ments of 7). Each node is annotated with a table describing
the author’s preference over the different values of the vari-
able associated with this node. Edges describe preferential
dependencies and the relative importance of variables.
TCP-nets have three edge types. The first type of (di-
rected) edge captures preferential dependence, i.e., an edge
from X to Y implies that the user has different preferences
over values of X given different values of Y. The second
(directed) edge type captures relative importance relations.
Existence of such an edge from X to Y implies that X is
more important than Y. The third (undirected) edge type cap-
tures conditional importance relations, i.e., importance rela-
tions that hold only when certain other variables have partic-
ular values. For example, a good choice of ad in the ESPN

3\We allow conditional relative importance statements, too.
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Figure 1: llustrations for Example 1.

promo is more important than a good choice of video segment
only when the user is an affluent male in his 40’s.

Each node X in a TCP-net is annotated with a conditional
preference table. This table contains the author’s preference
order over D(X) for every possible value assignment to the
parents of X (denoted Pa(X)). In addition, each undirected
edge is annotated with a conditional importance table (CIT).
The CIT associated with the edge (X,Y") describes the rel-
ative importance of X and Y given the values of the condi-
tioning variables.

Examplel In Figure 1 we see a TCP-net over five binary
variables A, B, C, D, and E. Standard directed edges in
this graph capture preferential dependence; double directed
edges capture relative importance relations; undirected edges
capture conditional relative importance; >~ denotes prefer-
ence over variable values; and t> denotes variable impor-
tance. The graph shows that the preferences over the values
of B depend on A’s value, and those of C' and D depend on
B’s value. These dependencies follow from the presence of
conditional-preference edges from A to B and from B to C'
and to D. The actual preferences are provided in the associ-
ated table. For example, when B is true, we also prefer that
D will be true. Additionally, there is an importance edge con-
necting B and E. This indicates that the value of B is more
important to us than that of . Finally, there is an undirected
edge between C' and D. This indicates a conditional impor-
tance relation between these variables. Thus, sometimes C'is
more important than D, and sometimes D is more important
than C. The relative importance of C and D is conditioned
on the assignment to B and E, and this information is an-
notated on the edge from C' to D. The precise dependence
is shown in the associated conditional-importance table. For
instance, we see that when B and F are assigned be or be,
then D is more important than C. When B and E are as-
signed be, C' is more important than D. Note that although
we used binary variables for simplicity, there is no such re-
striction in the theory.

A TCP-net specifies a partial order over the set of pos-
sible variable assignments. This means that not all pairs of
assignments are comparable. The statements embodied in a
TCP-net are intuitive, but subtle issues in their interpretation
require that we clearly define the preference relation induced
by the conditional preference tables, the importance relations,
and the conditional importance relations. The transitive clo-
sure of the union of these preference relations yields the par-
tial order induced by the whole TCP-net.

Conditional preference tables tell us which values of a
variable are preferred and under what conditions. This infor-
mation is interpreted under the ceteris paribus semantics as
follows: the conditional preference table of variable X spec-
ifies the relation between any two complete assignments, o
and o/, that differ only in the value of X. To compare o and
o' we examine X'’s table and check which one of them as-
signs X a more preferred value. This depends on the value of
Pa(X), which must be identical in both o and o’.

_ For example, according to Figure 1, abéde is preferred to
abcde because ¢ is preferred to ¢ given b, and the other at-
tributes have identical values in both outcomes.

Importance relations provide similar information. When
X is more important than Y, we can compare any two out-
comes o and o’ that differ in the value of X and Y only. o is
better than o’ if o assigns X, the more important variable, a
better value than o’ assigns to Y.

Conditional importance provides similar information but
in a more restricted context, i.e., when the selected set has
the appropriate value. For example, according to Figure 1,
abcde is better than abede because B is more important than
E. Thus, it is better to get a less preferred value of E, as in
abcde than a less preferred value of B, as in abcede, all else
being equal. Similarly, abede is better than abéde because C
is more important than D given be. Thus, it is more important
to get the preferred value for C than for D, all else being
equal. On the other hand, we cannot compare abcde with
abede directly, since we don’t have an explicit importance
relation between C and D when B and E are assigned be.

A formal definition of TCP-nets appears in [Brafman and
Domshlak, 2002]. Here we note that not all sets of preference
statements are representable as TCP-nets, nor are all TCP-
nets consistent. We restrict ourselves to the class of condi-
tionally acyclic TCP-nets, which are always consistent. This
property, which can be verified by the authoring tool.

3.3 Defining an ESPN Promo

We now look at how we could model the ESPN promo using
a TCP-net. We simplify it by assuming 4 basic elements only:
video, scores, adl, ad2. One variable will correspond to each
element. In addition to the presentation elements, we have
variables denoting: user’s gender and nationality. The vari-
able domains are as follows: Video has two possible values
football and soccer, and each can be displayed at two qual-
ity levels: high and low. The high level requires bandwidth
of 56Kbs, and the low level requires 30Kbs. Adl and ad2
both have the same domain, containing ads for Nike, Adidas,
Pepsi, Tuborg, and Budweiser. Each image has two possible
formats: JPEG and GIF. GIF files are 4KB each, JPEG files
are 40KB. Finally, the scores are 20KB each and in SMIL
format. Content options include: sports news, general news,
basketball scores, baseball scores, and none.

Next, we need to specify preferences over the choice of
content. We start with preferences over the values of vari-
ables. For the video, if the user is an American male, football
is preferred, otherwise, soccer. For adl, the preference is for
Nike and Adidas over the drinks, and for ad2 the other way
around. The actual ranking depends on whether the user is
European or American and on the user’s gender (e.g., Tuborg
for Europeans, Pepsi for females, etc.). In addition, there
is a constraint that states that the two images should not be



Video (V)
am___ [ football > soccer
otherwise | soccer - football

Scores (S)
am baseball - basketball > sports > news > none
af news > sports > basketball > baseball > none
em basketball > sports > news > none > baseball
ef news > sports > basketball > none - baseball

AdL (AL) Ad2 (A2)
am Adidas - Nike > Bud >~ Tuborg > Pepsi Scoresvs. Ad2 am Bud > Tuborg - Pepsi - Adidas > Nike
af Adidas - Nike > Pepsi > Tuborg - Bud ef [ Scores> Ad2 af Pepsi - Tuborg > Bud > Adidas - Nike
em Nike - Adidas >~ Tuborg > Bud > Pepsi otherwise | Ad2 > Scores em Tuborg - Bud > Pepsi > Nike - Adidas
ef Nike > Adidas > Pepsi > Tuborg > Bud ef Pepsi - Tuborg > Bud > Nike > Adidas

Figure 2: A TCP-Net for ESPN promo. a, e, m, f stand for American European, male, and female, respectively.

the same. Regarding the scores, for European males we pre-
fer basketball scores, sports news, general news, no scores,
and baseball scores. The preferences are shown in Figure 2.
Throughout, we prefer higher quality options to lower qual-
ity options and JPEG to GIF, but content is more important
than quality. Thus, for American males, a low quality foot-
ball segment is preferred to a high quality soccer segment.
Finally, importance relations must be specified. The video is
most important, next is ad1, then ad2, and finally the scores.
However, for European females, the scores are more impor-
tant than ad2. This information is expressed in Figure 2 (with
the quality alternatives omitted).

Let’s consider a few simple illustrative scenarios demon-
strating how these preferences affect the chosen presentation.
Consider a European female viewing the presentation on her
PC with an ADSL connection. Her PC supports both image
formats. This viewer is practically unconstrained, and thus
we can supply her with the optimal presentation for a Euro-
pean female: a soccer video together with Nike and Pepsi
ads, and news. Suppose that our user now works with a mo-
bile phone. Her bandwidth and buffer size limit the amount
of information that can be stored on and transmitted to her
device. Suppose that we cannot display high-quality video
together with scores. Since the video is more important, the
scores will be dropped (i.e., assigned a “don’t present” value).
Next, suppose that the user is working in off-line mode, and
the whole presentation must be downloaded into her buffer.
Thus, the sum of the sizes of the components must not ex-
ceed the size of the buffer. For instance, if there is no room
for two JPEG images, ad2 will be a GIF image. We explain
how these solutions are actually computed in the next section.

As you can see, it is easy to add more complex depen-
dencies. Constraints can be added as well, e.g., disallow ads
for competing companies. Moreover, although the preference
and importance tables in our example are completely speci-
fied, partially specified tables are acceptable, and the author
may choose to ignore certain contexts. Our optimization al-
gorithm works with such partially specified tables, although,
naturally, with less preference information, fewer pairs of pre-
sentations are comparable.

4 Adapting Presentations

Having described the author’s presentation preferences, we
move to the actual generation of the presentation. This pro-
cess is initiated by the presentation service provider following
a viewing request from a customer. We assume this request
contains information about the user and/or the user’s device.
Such capability-exchange protocols are standard now. At this

point, we need to quickly compute an optimal presentation for
this user, i.e., the best presentation (according to the author’s
preference order) among those that meet the constraints im-
posed by the user’s device, network conditions, etc. Because
we have a partial order over presentations, we may have a
number of such (Pareto) optimal presentations, and any one
of them will do. The rest of this section explains how we
compute a Pareto optimal presentation.

A naive approach for solving various problems, including
constraint satisfaction problems, is Generate & Test. We gen-
erate solutions in some systematic manner, and test each so-
lution to see whether it satisfies the constraints. If it does,
we can return it as a solution. Generate & Test is inadequate
for optimization problems such as ours because we have no
reason to believe that the first solution generated is optimal.
A conceptually simple, but computationally taxing extension
would be to generate all possible solutions to the constraint
satisfaction problem, and then compare them. A much better
approach, though one that is not always feasible, would be
Ordered Generate & Test (OG&T). Here, solutions are gen-
erated in a non-increasing manner, i.e., no solution can be
better than a solution generated earlier. (Solutions could be
incomparable, though). Given such an ordering, the first so-
lution obtained is, indeed, an optimal one; that is, no solution
generated in the future will be better.

Fortunately, it is relatively easy to generate a non-
increasing sequence of solutions (i.e., elements o € O) for
conditionally acyclic TCP-nets. To generate such a sequence
of presentations, we must build a tree whose nodes corre-
spond to partial assignments. In particular, the root node cor-
responds to an empty assignment, and each leaf node corre-
sponds to a complete assignment (i.e., a complete specifica-
tion of presentation content, in our case). This is the standard
search tree one constructs when solving constraint satisfac-
tion problems (CSPs) in a systematic fashion: all children
of a node extend its assignment by assigning one additional,
identical variable. Each child corresponds to a distinct value
for this additional variable.

Our construction must adhere to the following guidelines:
a variable v can be assigned only after the following nodes
have been assigned (1) all of v’s parents in the TCP-net; (2)
Any node that conditions a relative importance relation in
which v is involved; (3) any variable that is more important
than v given the current assignment. The fact that we are deal-
ing with conditionally acyclic TCP-nets ensures that we can
satisfy these conditions. In addition, the children of each node
must be ordered from left to right according to the preference
ordering over the values of the newly assigned variable, as



al|b=b a| B>C al|lc=c
a|b=b a| C>B
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Figure 3: A TCP-Net

Figure 4: Search Tree for TCP-Net in Figure 3

specified by its preference table. Because all the variables
conditioning the preference for the newly assigned variable
have been assigned earlier, this is well defined. The resulting
tree has the property that the leaf nodes, ordered from left to
right, constitute a non-increasing sequence of assignments. It
is important to note that variable ordering can differ from one
branch to another, as long as the above constraints are obeyed.

As an example, consider the TCP-net in Figure 3. Its corre-
sponding search tree is shown in Figure 4. Because B is more
important than C when A is true, we see that B is ordered be-
fore C. When A is false, C'is ordered before B because now
C is more important. We can also see that variable values are
ordered based on the preference tables.

To use outcome ordering to implement OG&T, we per-
form depth-first search in order to incrementally generate the
tree above. We test each leaf node to see whether it satisfies
the presentation constraints. The first presentation generated
that satisfies these constraints is optimal, because none of the
following presentations is better.

OG&T is satisfactory for handling modest problems with
a few thousand possible presentations. Our current system,
uses a more advanced method that is semantically equivalent
to OG&T but uses more clever pruning techniques that are
described in the full paper.

5 Summary

We presented an approach for specifying adaptive synchro-
nized rich-media documents and an algorithm for adapting
and personalizing these presentations given each concrete
user download request. Our algorithm combines the initial
flexible presentation specified off-line with the information
available online about the user and her device, and handles
this as a preference-based constrained optimization problem.
This problem is solved by utilizing the special properties of
TCP-nets and their relation to CSP algorithms.

Our work provides a novel method for adapting the con-
tent and (some aspects of) the form of multimedia pre-
sentation, as well as a novel way of utilizing recent ad-
vances in preference specification and handling in Al. A
system based on these techniques was implemented for
the STRIMM consortium (www.strimm.org) — a consortium
of companies in the area of streaming rich-media — and
users can interact with our presentation engine online, at
www.cs.bgu.ac.il/catalina/moshemos/htmls/mainFrame.htm.
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Abstract

Typically, work on preference elicitation and rea-
soning about preferences has focused on the prob-
lem of specifying, modeling, and optimizing with
preference over outcomes corresponding to single
objects of interest. In a number of applications,
however, the “outcomes” of interest are really sets
of such atomic outcomes. For instance, when trying
to form coalitions or committees, we need to select
an optimal combination of individuals. In this paper
we describe some initial work on specifying prefer-
ences over sets of objects, and selecting an optimal
subset from a given set of objects. In particular, we
show how TCP-nets can be used to handle this prob-
lem, and how an existing algorithm for preference-
based constrained optimization can be adapted to
the problem of optimal subset selection.
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area has to do with processing a concrete class of statements
that users find convenient to specify, adopting and justifying
a certain semantics for these statements, and developing algo-
rithms that use these statements to compare objects or select
the best ones.

This papers deals with similar issues, too. But unlike past
work which attempts to reason with preferences mlgects
we are interested in similar forms of reasoning aets of ob-
jects More specifically, the setting of our problem is: Given
a set of object®), elicit a (possibly partial) ordering ovef’,
and find at least one optimal subset®@fwith respect to this
ordering.

In the remainder of this section we explain why we think
this is an interesting and useful capability, and why some sim-
ple solutions are inadequate. In the following sections we
consider a certain language for such set-preference specifica-
tion, and suggest a particular approach for eliciting prefer-
ences over subsets of objects that builds heavily on past work
on CP-netd2], and their extension with relative importance
relations in the TCP-nets modet]. We continue with sug-
gesting two different computational schemes for computing

The area of eliciting, modeling, and reasoning with prefer-an optimal subset of a given set of objects. Experimental eval-
ences has been experiencing much interest in recent yeatgation of these algorithms is left for future work.
Most work in this area concentrates on specifying preferences Our interest in specifying preferences over sets arose natu-
over some universe of objeat?, and using this information rally in the context of our work on using TCP-nets as a tool
for various preferential reasoning tasks. The most importanfor “newsletter” personalizatiof8] and adaptive multi-media
preferential reasoning tasks include convenient methods ahessage§s]. Viewed abstractly, a newsletter is a collection
obtaining preference information over a set, techniques foof articles, and a personalized newsletter should provide the
ordering a set, and algorithms for identifying the optimal ob-reader with a preferred set of articles. Thus, subject to various
jects within a set or some feasible subset of it. Thus, our sedize and layout constraints, we want to find the most preferred
of objects,0, could be a set of possible flights, various docu-set of articles for a user. A naive solution would be to order
ments, alternative PC configurations, etc. And we may be inall the articles and choose the top-most articles that satisfy the
terested in obtaining information about the user’s preferencesonstraints. However, this solution is quite likely to be inap-
over these objects so that we may e.g., present documents fmopriate, since the overall attractiveness of a set of objects is
their perceived importance order, or identify the most suitablearely just a flat “accumulation” of attractiveness of these ob-
flight costing less than $350. jects. For instance, given some articles we are less interested
Typically, the user does not provide us with an explicit or-in some other articles (e.g., due to overlap in their content),
dering over®, but rather exploits some attribution of the ob- while other groups of articles may complement each other.
jects, providing generic information that implicitly ordefs In our past work we handled these conditional preferences
by means of preferences over attribute values. There are goddr the appearance of an article by considering a model in
reasons for this, as the universe of objects in question is ofwhich, for each article, the outcome attribution explicitly
ten large. Moreover, even when its size is manageable, direspecifies whether this article is included in the newsletter or
comparisons between arbitrary objects can be difficult cogninot. Using a CP-net, we were able to model the conditional
tively, while comparisons of items that differ only in a limited preferences one might have for seeing one article given that
number of attributes is much easier. Much of the work in thissome other articles are present or absent. In such a CP-net



we had one node for each article, and it is clear that, in mogpreference statement alone. Similarly, a statem&nis‘more
application domains, this solution cannot scale up, nor does important tharl”™” means that given two objects that are iden-
addresses real needs. First, the pool of possible articles is dical except for their values oX andY’, the user prefers the
ten huge, and we cannot expect an editor to actually specify ane assigning a better value 2 than the one assigning a
CP-net that contains all of them. Moreover, new articles conbetter value td’". Again, if these two objects differ on some
stantly appear, and we cannot expect an editor to constantlyther variable, too, they can no longer be compared based on
update and modify the CP-net to make it up to date. In shortthis statement alone. Conditional statements have the same se-
what we really want is &tatic preference specification ap- mantics, but they are only restricted to comparisons between
proach that can be used fdynamicallyselecting a subset of elements that satisfy this condition. Thus, “I prefér= z;
objects, where these objects are typicalhknownat prefer- to X = x5 given thatY” = y," is interpreted exactly as above,
ence elicitation time. but only with respect to objects that satidfy= ;.

This problem of optimal subset selection appears in many We see that each preference statement induces a preference
other contexts as well. For instance, consider selecting a conmelation overQ. The “global” binary relation specified by a
mittee for reviewing or addressing problems, or a group ofcollection of such statements (and thus, by the TCP-net) cor-
agents that should be assigned some task. We would likeesponds to the transitive closure of the union of these “local”
to be able to specify the desired properties of such teamsreference relations. If the user provides us with consistent
Naturally, some members complement each other’s propeinformation about her preferences, then the binary relation in-
ties, while others can be detrimental to each other. Thus, wduced by the TCP-net o@ is a strict partial order (i.e., tran-
would like to be able to characterize theeferred properties — sitive, irreflexive, and antisymmetric). Note that this order is
of a team and then be able to select from a set of individu-rarely complete, and thus typically not all pairs of objects (i.e.,
als the best subset for our task. Viewed differently, we arecomplete assignments #) are comparable with respect to a
looking at a non-traditional open-ended configuration prob-TCP-net.
lem, i.e., whereas in typical configuration problem we have &Representation: TCP-nets represent such a collection of
set of roles and a set of components that can satisfy each rolpreference statements using an annotated graph. The nodes
here we have no concrete roles, and the number of comp®f the graph correspond to the variables of interest (i.e., the

nents is not fixed. attributes inX’), and the edges of the graph provide informa-
tion about preferential and relative importance dependencies
2 Background on TCP-nets between the variables. The structure of the graph plays an

important role in determining the consistency of preference
Since in this work we build upon the TCP-nets model and thespecification and in reasoning about preference, although the
corresponding preference language, in this section we reviewser need not be aware of this structure.
their essentials. For a more in-depth description of TCP-nets TCP-nets have three edge types. The first type of (directed)
we refer the reader tat]. edge captures preferential dependence, i.e., an edgeXfriam
Language: Each TCP-net captures a collection of statements” implies that the user has different preferences over values
of conditional value preference and conditional relative im-of Y given different values o. The second (directed) edge
portance preference. Such a collection of statements spediype captures relative importance relations. Existence of such
fies a preference ordering over a universe of objéGterhere  an edge fromX to Y implies thatX is more important thai .
objects are described in terms of some set of attribites ~ The third (undirected) edge type captures conditional impor-
{X1,...,X,}, i.e.,wehave®) = x Dom(X;). The TCP-nets tance relations, i.e., importance relations that hold only when
model supports two types of statements o¥enamely (con-  certain other variables have particular values. Each node
ditional) preference for values of a variable, e.g., "if the car isin a TCP-net is annotated with a conditional preference table
asports car, | prefer black to red as its color,” and (conditionalYCPT, for short) describing the user’s preference order over
relative importance of different variables, e.g., "for a sportsDom(X) for every possible value assignment to the parents
car, performance is more important to me than reliability.”of X (denotedPa(X)). In addition, each undirected edge
The intuitive meaning of value preferences is straightforward(X, Y") is annotated with a conditional importance table (CIT,
Importance statements are used to inform us about tradeofféar short) describing the relative importanceXfandY given
i.e., “preference over compromises”. For instance, if reliabil-the values of certain conditioning variables.
ity is more important to me than performance, it means thaSchematic Example: Figure 1 depicts a TCP-net over five
if | have to compromise on either reliability or performance, | binary variables4, B, C, D, andE. Standard directed edges
would rather compromise on performance. in this graph capture preferential dependencies, double di-
Semantics: Reasoning about the ordering induced by suchrected edges capture relative importance relations, and undi-
statements o requires a commitment to a concrete logi- rected edges capture conditional relative importanceie-
cal interpretation of these natural language statements. Theotes preference over variable values; andenotes variable
TCP-nets model adopts tleeteris paribugall else equal) se- importance. The graph shows that the preference over the val-
mantics for statement interpretatif®l. In this conservative ues of B depends om’s value, while the preference over the
semantics, a statement “| pref& = z; to X = 22" means values of D and F depends orB’s value. These dependen-
that given any two objects that are identical except for thecies are encoded by conditional-preference edges fioim
value of X, the user prefer the one assigningto X tothe B and fromB to C' and toD. The actual preferences are
one assigning.. If these two objects differ on some other provided in the associated CPTs (on the left). For example,
attribute as well, then they cannot be compared based on thighen B is true, we also prefer thab will be true. Addition-



@ wide class ofconditionally acyclicTCP-nets for which con-
b-b sistency is guaranteed. In what follows, we restrict ourselves
B)——®) to networks of this class, noticing that this membership can be

Q1

z : @/ \@ verified by the user interface.
B,E
—a— .
ere 3 Expressing Preferences over Subsets
. be | €= D Our goal is to provide a convenient tool for specifying a pref-
be D — C .
b | d» d P erence ordering over subsets (_)f a éethat has the same
attribution structure as before, i.€), = x x,cxDom(X;).
Figure 1: A schematic example of a TCP-net. In general, our elicitation procedure consists of the following
steps:
) _ _ 1. Obtain from the user properties of sets of objects that
ally, there is an importance edge connecti@nd £. This affect her preference over these sets.

indicates that the value d¥ is more important to us than that
of E. Finally, there is an undirected edge betwééand D.
This indicates a conditional importance relation between these

2. Allow the user to express preference statements in terms
of these properties.

variables: Sometimes is more important tha®, and some- 3. Construct a preference representation model over these
times D is more important thad. The relative importance proper_ties (a 'I_'CP-net in our case) that captures the in-
of C and D is conditioned on the assignment i and E, formation provided by these statements.

and this information is captured by the CIT(@f, D). Forin-  Below we describe a preference specification language that,
stance, we see that whéhand E are assignedie or be, then in our opinion, efficiently addresses the major needs of quali-
D is more important thad’, yet whenB and E are assigned  tative preference specification over sets, and discuss some se-
be, C'is more important tharD. Note that in this example mantic issues involved in such preference specification. Sub-
we used binary variables for simplicity only, and the TCP-netsequently, we discuss two alternative computational schemes
model is defined for arbitrary variables with finite domains.  for selecting an optimal subset©* given a collection of such

The CPTs tell us which values of a variable are preferredset-preference” statements represented by a TCP-net.
and under what conditions. This information is interpreted un- o
der theceteris paribusemantics as follows: The conditional 3.1 Set-Preference Specification Language
preference table of variabl& specifies the relation between We believe that most properties of sets of attributed objects
any two complete assignmentsando’, that differonlyinthe  that affect user preferences over such sets (informally) take
value of X. To compare between suehando’ we simply  the following form: “at least one object with' = ¢, and
look at the CPT ofX and check which one of them assighis D = d; or D = d5,” or “the number of items wittC' = ¢”.
a more preferred value. This dep/ends on the valué«fX'),  Formally, define the set of primitive propositions as
and this is identical in both ando’. For example, accordin =
to the TCP-net in Figure 1gbcde is preferredpt(fLEcde be- ’ X={X=z[XeX e Dom(X)}

causec is preferred ta- givenb, and all other attributes have | gt L~ be the propositional language defined a¥ewith the

identical values in both outcomes. usual logical operators. Note that we can consider objects of
Importance relations provide similar information. WhEn O as models of this language, and thus it makes sense to write

is more important thal”, we can compare any two outcomes o = ¢ whereo € O andy € L.

o ando’ that differ in the value ofX’ andY” only, ando is pre- While various basic properties of object sets can be con-

ferred too’ if o assignsX, the more important variable, a bet- sidered, in our work we found that two classes of properties

ter value than this assigned by Conditional importance pro- seem to cover most natural needs. The first class has the form

vides similar information but in a more restricted context, i.e.,(|¢|), wherep € L4 andDom({|¢|)) = Z*. Given a subset

when the conditioning variables have the appropriate valuep C O, {|¢|) (O) denotes the number of objects G that

For example, according to the TCP-net in Figureulsde is satisfyy, i.e.,

preferred tarbede becausds is more important tha@'. Thus,

it is better to get a less preferred valuemfas inabede, than (o) (0) = [{o € Olo = ¥} .

a less preferred value @, as inabcde, all else being equal.  Using the property, the user is able to express her preference
Similarly, abcde is preferred tawbcde because” is more im-  on the number of objects in the selected subset that satisfy
portant thanD givenbe. Thus, it is more important to get a . The second class of properties has the féjpi REL k),
preferred value foC' than for D, all else being equal. On wherep € £+, REL is a relational operator over integers, and
the other hand, we cannot compare betweene andabcde |k € Z* is a non-negative integer. While properties in the first
directly, since we do not have an explicit importance relationclass can take any non-negative integer value, the properties in
betweenC' andD whenB and E are assignede. this class are naturally Booleat{ip| REL k)(O) is assigned
Here we note that not all sets of preference statements rephe truth value of{o € Olo = ¢}| REL k.
resentable as TCP-nets are consistent. That is, some TCP-nets
may correspond to a binary relation 6hthat is not antisym- Example 1 Consider the following example of newsletter
metric, i.e., a relation- in which botho = o’ ando’ = o  editing. Let the various article® be schematically described
hold for someo, o’ € O. However, in[4] we had specified a in terms of four attributes:




Format news, interview, opinion, etc. preference on the amount of articles on the political situ-

Country Irag, U.S.A, ltaly, etc. ationin Iraq (%),

Topic politics, weather, economy, culture, etc. 3. Her preference on having at least two articles on the po-
) - . litical situation in Irag (?;) depends on the amount of all

e Emotion positive, negative, neutral, etc. news articles going into the newsletté? §, and

The editor in charge of selecting the content for the newsletter

specifies four properties that affect her content preference:

4. Her preference on having some culture related articles
(P,) depends on the amount of all news articl&s)(and

P = (|(format = news)]) on whether there are more than two non-positive articles
P, = {(|(emotion = neutral) V (emotion = negative)| < 2) in the issue or notl&)_
P; = (|(country = Iraq) A (topic = politics)| > 2)

B T T Modeling these statements as a TCP-net results in the follow-
Py = (|(topic = culture V (emotion = positive)| > 1) Ing graphical structure:
Notice that the property; is of the first, multi-valued class

{l¢]), while P,, P3, and P, are of the second, Boolean class @

(l¢| REL k). Now, consider the following subset of articles: -

[ format [ country [ topic [ emotion | \
01 news Iraq politics neutral

02 news US.A. weather | negative *’9

o i . -

02 ":e-rv-'ew Irag economy| positive We do not provide here an exact specification of editor’s pref-

pinion France culture positive
- erences over the values &1, ..., P,, but we hope that the

For this subse® € O we haveP; (O) = 2 (due too; andos),  spirit of such a specification is intuitive from the definition
P5(0) = true (since onlyo, ando, satisfy o), P3(O) = and schematic example of TCP-nets we provided in Section 2.
false (since onlyo; satisfiesps), andP,(O) = true (dueto

04). O

) _ Proceeding with obtaining and modeling preference state-
_Now, consider a set of properti@s= {Py,..., P, } SPEC-  ments overP, we use the semantics of TCP-nets to order
ified as above over some (not necessarily pairwise distinCthe elements o®p, and this induces an ordering ove¥f:
formulase, ..., om € Ly, respectively. Observe that we ¢ c O is preferred taD’ C O iff the (unique) property vec-
can treat eaclP’; as a variable (Boolean or multi-valued, de- {or po € Op associated witlD is preferred to the (unique)
pending on its specification,) and each suliSeC O pro-  property vectopy € Op associated witlD’.
vides a complete assignment® That is, abstractly, we  There is a caveat, however, as it is possible to specify prop-
can view each subs€? of O as a vector of valueg,, for  erties that are logically dependent. For example, suppose that
Py, ..., Py, and abusing notations, we have a correspondence, — (|| > 2), P, = (Jps| > 2), P3 = (|true| < 3),
between the power set” and the abstract set of outcomes and the user states that she prefers the vaiesfor all these
Op = xpD(F;). Moreover, any preference order o>  three properties. Thus, the user prefers that there are at least
implicitly induces a preference order ov&. What is nice 2 elements satisfying,, at least two elements satisfying,
about a preference order ové¥y is its abstractness — the and no more than 3 elements altogether.pifand ¢, are
user specifying it does not need to know the actual content gfgically independent, then these preferences can be satisfied
O. She needs only know what properties of object sets shgompletely at least for some object séls However, if we
cares about, and express these properties in terms of the Mave(p; — —p2) A (g2 — —1), then no set of objects can
tributes X'. This means that a.single stqtic preference .ordefnake all these three propertigsie. Thus, certain pairwise
overOp can be used in reasoning over different, dynam|callypreference relations between the property vector8nwill
changing sets of actual objec®s In fact, by usingDp instead  vanish in the projecting to the set of subs&®s On the posi-
of 2© we have reduced our problem of specifying preferencesive side, this issue has no logical implications on the seman-
over subsets to that of specifying preferences over attributeglcs of our preferential reasoning. On the negative side, ignor-
objects. Having this reduction, we can use our favorite specing such logical dependencies may apparently lead to certain
fication language and representation model from this point orcomputational inefficiencies in the actual reasoning process.
NOte.that our choice here is TCP'netS, but other choices ar'eack”ng this issue, one can imagine stricter notions of con-
possible as well. sistency for preferences defined this way. We leave this inter-

esting issue to future work.
Example 2 Continuing Example 1, suppose that the editor

states that 4 Optimal Subset Selection

1. Her preference on the amount of non-positive articlesye of the most important tasks of preferential reasoning is
(P2) should be considered as less important than hef; of preference-based constrained optimization, that is find-
preference on the amount of news in the article collecy, 5 preferentially optimal object that satisfies a given set of
tion (F1), hard constraints. Our task here is very similar, but rather than

2. Her preference on the amount of culture related artiselecting a feasible object we have to select a (preferentially
cles (P,) should be considered as less important than heoptimal) feasible set of objects. Moreover, instead of explicit



constraints, we have implicit constraints in the form of the cur- 4. For eachyin Dom/(P;) in decreasing order of preference
rently available se® of objects, and this s&? at hand deter- givenp, do:
mines what the actual potential subsets cah Be.described o LetS' = {0 C O|P,(0) = a}.
above, the preferences of the user are represented by a TCP- o LetS” = FindBest(S' NS,V \ v;,pU {P; = a})
net N over some subset properti@s and thus the TCP-net If S | t t "
specifies a somewhat abstract partial order over the complete * IS ho emp y. re u.r ' . .
assignment&)» onP. Given N, our task is to select a subset 5. Return). (If all possible assignments failed, then fail.)
O € O for which there is no other subséX € O such that In FindBest, if we reach a leaf node (i.e. no nodes left to
N Epo = po. assignjll subsets irt' are optimal and thus we are doneSlf

One of the attractive properties of TCP-nets is that it comegver becomes empty we need to backtrack. Observe that there
with an algorithm for constrained optimization that is guar-may be several nodes consistent with the conditional topolog-
anteed toexamine solutions to hard constraints in an order ical ordering at step 3, and a variable ordering heuristic of
consistent with the preference relation induced by the netsome form, such as “most constrained first” could be used to
work. This algorithm is described in details id], and ex- improve performance.
tends an algorithm for constrained optimization with CP-nets Although hypothesis refinement appears simple, it still
proposed i 3]. While the technical details of this algorithm needs to handle a set of subsets of objects at each node. A
are quite involved, its basic principle is quite simple: solvenumber of data-structures are available for working with such
the constraint satisfaction problem that underlies the givemiata, with BDDs being probably the best knolgh, but some
constrained optimization problem using standard depth-firsbf its numerous variation’] might be more suitable for our
search over the tree of partial assignments, while obeying cepurposes. In many situations, these data structures can repre-
tain meta-level constraints on the order in which variables argent sets of multi-attributed objects in space logarithmic in the
instantiated and the order in which values are assigned to tsize of these sets. Moreover, performing standard set opera-

the variables. tions (and, in particular, intersection) on these data structures
_ _ _ can be done in time linear in the size of the data structures.
4.1 Subset Selection by Hypothesis Refinement Nevertheless, it is possible that the size of even the compact

The basic idea of our first approach to set-preference Optl{jescrlptlon be exponential in, especially at lower levels of

mization is very similar to the aforementioned algorithm for tN€ S€arch tree, after several intersect operations are carried
constrained optimization with TCP-nets, except that the de@Ul: ThiS entails exponential space in the worst case, in addi-
tails here are somewhat different. Similarly to the original al-tionto the potential exponential time.

gorithm, we traverse a tree of partial assignments in a deptty 2  pPreference-based CSP Generation

Cirjésm;‘r\'/gleljé E)aggr:gc(; ?haer“arloasesrlt%nstrplg?t:?ngt?tzf:‘?t?eprqh order to avoid the combinatorial explosion of space re-
variables of our TCP-net Wﬁatpwe compute. however forquirements, one could perform the constrained optimization
' pute, ’ E%/l searching in the dual space of the actual sutzetsWe

each internal node in this search tree is the set of all subse : : N .
; . ; PR ve previously observed that every (possibly parital) instanti-
of O that satisfy the corresponding partial specification of theation of valuesp to P induces a setO}, of subsets o that

propertiesP. This way, while searching in the abstract Spacesatisfyp. Now, rather than explicitly represefi©}, by enu-

Or ,hwe eﬁ‘ecr':welgl sear_ch mftr:le dual_rshpeig,‘:?aof mt_e:jest. meration, we can represeftd}, implicitly. The idea in this

_ The search scheme is as follows. The CP net induces a patzpeme js to exploit in a different manner the aforementioned
tial ordering overP. In addition, the conditionally directed o4y of TCP-nets that one can examine the assignments
edges in the TCP neY, given a partial assignmep{ induce v, the' TCP-net variables in a non-increasing order of pref-
additional constraints on the partial ordering of the the unasg ance induced by the network. Specifically, for each such
signed nodes iV. (This system of partial orderings induced examinedp, we attempt to find at least one sub&twhich

by a TCP-net is calledonditional partial orderingl4].) Our  cajicfies; Clearly, the first subse? C O found in this man-
algorithm uses a recursive enumeration over propositional Vafﬁ;er is preferentially optimal, as desired.

ues, using the function FindB€st V, p), whereS'is the set We represenfO},, by the set of solutions to a certain con-

of candidate subsets @ (initialy all of O), V' is a set of i i i | Thi Ph i
TCP-net nodes to be assigned (initially all the nodes in the nelf]tralnt satisfaction problem (CSE}. This CSP has one bi

; ; . : nary variableV, for each objecb € O, that is,Dom(V,) =
work), andp is a partial assignment to the variables (nodes)i 1} Each complete instantiation to the CSP variables
in P (initially empty). FindBest is defined as follows: ¢

naturally induces a subsé C O, namely the set of items

1. If S is empty, returrs (i.e. fail). for whichv(V,) = 1. Observe that this part of th§, specifi-
) . cation is independent gf.
2. If V is empty (all nodes assigned) retn The constraints of, are the ones naturally induced by

3. Select a node; € V consistently with the conditional P. as follows. For each property; € P, we add one con-

topological ordering induced by and the partial assign- straint that enforce$”, = p(i). The propertyP; involves
mentp. the cardinality of the number of objects that satisfy¢;,

and requires that the relation REL & hold for some given
LAn interesting extension, which the methods described belowalue k. Let Oy, be the set of all objects i) that satisfy

can support, is to handle hard set-valued constraints, such as digs, and let|O,,| = M. The required constraint that en-
cussed irf1]. forces P; = p(i) is an M-ary constraint over the variables



Vg4, = {Volo € O4,}. An assignment obeys the con- we found useful in our work, and discussed several related is-
straint just whenn REL &, wherem is the number of vari- sues of preference representation and reasoning. In particular,
ablesV, € V4, which are assigned 1 . we showed how preferences specified in such language can be
The algorithm to find an optimal subset ©fwith respect encoded using TCP-nets, and presented two different compu-
to a TCP-netV is thus defined as follows. If any additional tational schemes for selecting an optimal subset from a given
hard constraints are imposed by the user in addition to theet of objects given such representation of preferences.
preference structure, these prior constraints can (optionally) In our future work we plan to develop as efficient as possi-

be naturally intergrated into the algorithm. ble realizations of the two computational schemes, exploiting
1. Set up the binary-valued CSP variablgg|o € ©}. ~ most suitable tools developed in the areas of model check-
(Optionally) add all prior hard constraints. ing and constraint satisfaction (for the first and the second

2 Eor each complete outco 9P in a non-increasin schemes, respectively.) Having such optimized implementa-
' P pee 2, 9 tions of both schemes, we plan to empirically evaluate their at-

order of desirability accord'”g tN., do: tractiveness for different settings of the preference-based sub-
(a) Set up the CSP constraints inducedpby set selection problem.

(b) Letv be a solution to the CSP, if one exists.
(c) If a solution was found, return the set of itemfor References
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5 Summary and Future Work

We described and motivated the problem of specifying and
reasoning with preferences over sets of objects. We formal-
ized a certain language for such preference specification that
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Abstract

Structured utility models are essential for the effective
representation and elicitation of complex multiattribute
utility functions. Generalized additive independence
(GAI) models provide an attractive structural model of
user preferences, offering a balanced tradeoff between
simplicity and applicability. While representation and in-
ference with such models is reasonably well understood,

semantic foundations of FishbuiTl they discuss a graphical
model which can be used to guide elicitation in GAI models.
In this paper, we continue the exploration of elicitation of
GAI utility model parameters. One difficulty with the pro-
cedure of Gonzales and Perf$} is its reliance on standard
gamble queries involving full outcomes. In large, multiat-
tribute domains, it can be cognitively unmanageable for a
user to compare full outcomes involving more than a handful

elicitation of the parameters of such models has been
studied less from a practical perspective. We propose
a procedure to elicit GAI model parameters using only
“local” utility queries rather than “global” queries over
full outcomes. Our local queries take full advantage of
GAl structure and provide a sound framework for extend-
ing the elicitation procedure to settings where the uncer-
tainty over utility parameters is represented probabilisti-
cally. We describe experiments using a myopic value-of-
information approach to elicitation in a large GAl model.

of attributes; furthermore, this fails to take advantage of the
independence structure in the queries themselves. We pro-
pose a new elicitation technique that allows the parameters
of a GAI model to be determined using (almost exclusively)
“local” queries over a small number of attributes, while re-
specting the Fishburn semantics.
Our second contribution is a procedure fartial elicita-

tion of utility parameters. Generally speaking, good (or even
optimal) decisions can be realized without complete utility

information. Rather than asking for the direct assessment of
] utility parameters using standard gambles a@lnwe con-
1 Introduction sider simpler binargomparison queriesver gambles. Fol-

The increased interest in automated decision support tools {§%ing [5; 21, we suppose some prior over the parameters of
recentyears has brought the probleraofomated preference ¢ Al model, and use myopic expected value of information
elicitationto the forefront of research in decision analyjisis (£ O!) to determine appropriate queries. The advantages of
13] and AI[5; 2]. Generally speaking, the goal of automated S/ models become very clearin such a setting, since the im-
preference elicitation is to devise algorithmic approaches thaf/i€d decomposition allows us to effectively compute EVOI
will guide a user through an appropriate sequence of queri g very large _models. We Qemonstrate our prqcedure on a
or interactions and determine enough about her preferenci9€ (26 variable) constraint-based configuration problem,
to make a good or optimal decision. Many models have beeE owing that it is fast enough to support interactive elicita-
proposed, including those that treat responses to queries an.
constraints on utilities (including methods in conjoint analy-
sis[11]) and those that use priors over utility parameters. = 2 GAl Models
Crucial to preference elicitation in complex domains is theWe begin with some standard concepts from multiat-
existence of utility functiostructure[10; 7. Structure in the tribute utility theory[10; 7. Assume a set of attributes
form of additive, multilinear, generalized additive or other X, Xo,...,X,, each with finite domains. These define
models[10; 7; 1; 3 can be used to represent utility mod- a set ofoutcomes(or alternatives or consequenceX) =
els very concisely. While additive models are by far theX; x --- x X,, over which a decision maker (DM) has prefer-
most commonly used in practicgeneralized additive inde- ences. Preference relatignis a total preorder over the set of
pendence (GAI) model3; 1; 9 have drawn more attention outcomes, withx = x’ meaning thak is at least as preferred
recently because of their additional flexibility. Unfortunately, asx’. Strict preference- and indifference~ are defined in
effective elicitation procedures for GAl models have attractedhe usual way. Given an index setC {1,...,n}, we define
far less attention than additive models. Thus, for example, reX; = x;c; X; to be the set opartial outcomesestricted to
cent procedures for eliciting parameters of GAl models ofterattributes in/. 7¢ denoted’s complement. User preferences
ignore the semantic foundations of direct quefidls Gonza-  over outcomes are expressed by a bounded, real-vatiliggl
les and Perny9] recently addressed this problem. Using thefunctionu(-), satisfying the usual axioms 6£2].



2.1 Additive Independence acollection{I1, ..., I,,} of (possibly intersecting) index sets

Since the number of outcomes is exponential in the numbetuch thats;I; = {1,..., n} andlocal subutility functionsi;
of attributes, specifying the utility value for each outcome isOverXy,. Then
infeasible in many practical applications. Howeuwetan be u(x) =ui1(xn) + ...+ um(xr, ).

expressed concisely if it exhibits sufficient structukeditive
independencéglql is one structural assumption commonly
used in practice. Under a strong independence assumption
specifically, that the DM is indifferent among lotteries that
have same marginals on each attributeean be written as a
sum of single-attributeubutility functions

If, say,I; = {1,2}, andI, = {2,3} in a three-attribute do-
main, thenu(xl, xa, 1‘3) = U1($1, .132) + ’U,Q(J)Q, J)g).

We discuss the foundations of GAlI models below, but first
illustrate difficulties with generalizing local elicitation of the
type suitable for additive models to GAI moddl]. In
the additive casey;(x}!) > wu;(z?) implies that outcomes

n n with ith attribute level set ta:} are preferred to outcomes
u(x) =3 ui(wi) = Avil:). (1) with 22, as long as the rest of attributes are kept constant.
i=1 i=1 However, in GAl models we cannot draw such straightfor-

This simple factorization exploits subutility functions Ward conclusions. Lets take our examplér,, 3, 73) =
ui(w;) = Avi(w;), which themselves depend total value  1(1,22) + uz(x2,25). If we know thatuy (a1, z3) = 10
functionsv; and scaling constants;. The assumed utility andui(zy,x3) = 5, does it imply(z1,23) = (21,23), ce-
independence among attributes allows elicitation to proceet€ris paribus? It turns out that because of interdependence of
locally: specifically, thev; can be elicited independently of subutility fag:tors, we can rewrite the Utl|lty. function as fol-
other attribute values. Since each attribute is utility indepenlows (f(z2) is an arbitrary real-valued function):
dent, each attribute’s best and worst levels can be determin Y — _
separately. Formally;| € X; is X;'s best attribute leveif Ha1,a2,20) [71(%1,%2) T Jj(m)] + lua(22, 23) = f(2))
and only if = uy(z1, 72) + uy(z2, T3).

T k k _ _ If f(xi) = —5, and f(z3) = 5, thenu(x1,2}) = 5 and
(@i, y) = (@i, y) Vay € Xiy € Xic. @ u) (z},73) = 10, the exact opposite af; (-). Since the util-
The worst levels;- is defined similarly. Alocal preference ity can “flow” from one subutility factor to the next through
betweenz® and alocal gamble(p, =] ;1 — p,z;") is well-  the shared attributes, the subutility values do not have an in-
defined since utility independence implies that’,y) =  dependent semantic meaning. This example illustrates that
(p, (&7 ,y):1 — p, (z,y)) for somey € X,c iff this holds ~ the same utility function can be decomposed in an infinite

for all suchy. Indifference for a specifip implies that number of non-trivial ways. _
N - N The conditions under which a GAl model provides an ac-
u(x;,y) =pu(z; ,y) + (1 —p)u(z;,y), (3)  curate representation of a utility function were defined by

and therefore, because of the additive form of the utility func—FiShbum[?; 8, who introduced the modél. Let P be the

set of all gambles (probability distributions) &, andP; be

tion ) ;
' o (k) — o T N (e the set of all gambles oK ;. For P € P, Py is the marginal
UZ(T%) N pvl(xi) +(1=p) Ul(x’k)' “) gamble of P overX;. Let{I,...,I,,} be a collection of

value functionsy;(-) can be therefore elicited using orlty-
cal standard gamble queries that involve two local “anchor’pef. 1 The sets of attributes indexed Hy,..., I, are

outcomes:,” angjxii. o i (generalized) additively independefiand only if
After performing local elicitation, we know each attribute’s
local value relative to the utilities of the respective anchorout- ~ [(Pr,5---, Pr,,) = (@1, ..., Q1,)] = P ~Q,

comes. What remains is to bring all the local value scales Qe.. if and only if the decision maker is indifferent be-
the common global utility scale. To achieve global consis-yeen two lotteries whenever their marginal distributions on
tency, queries involving full outcomes are unavoidable. Esy X, are the same.

sentially, we need to find the true utility of all “anchor” out- = """ 77

C‘gmes_ﬂf? and 7, with respect to some default outcome peqrem 1 [7] The GAI condition holds iff there are real-
x”. It is customary to choose the worst outcome as defaul\t,a|ued subutility functionsu; u, on X; X,
outcome, and set its utility to 0. Then, eliciting(z") = ¢ ch that o v
u(z,x%) andu;(z+) = u(z;, %) = 0 for all attributes

would ensure consistent scaling of subutility functions. Scal- u(x) =u(xp,) + ...+ um(xz, ). (5)
ing factors \;, which reflect attribute contributions to the
overall utility function, are simply;(z ).

m

The following important result relies on the notion odle-
fault outcomedenoted bk = (29,29, ..., 2%) (where each
2.2 Generalized Additive Independence x; is set to an arbitrary value). For amy letx[I] be the out-
GAI models[7: 1] provide an additive decomposition of util- M€ where attributes not ih are set to the default value,
ity function in situations where single attributes are not ad-  !rishburn used the terimterdependent value additivitBac-

ditively independent, but (possibly nondisjoint) subsets of atchus and Grovél] dubbed the same concept GAI, which seems to
tributes are. The form of a GAl model is as follows. Assumebe more commonly used in the Al literature currently.



but other attributes remain asin(i.e., X; = z; if i € I, 3.1 Local Elicitation
andX; = af if i ¢ I). For example, ik = (z1,22), then  Assume that for each subsktwe have chosen two different

x[{1}] = (21, 29). “top” and “bottom” anchor outcomesx[;]" = (x;,x%:)
Theorem 2 [7] If GAI holds, then for alk € X: andx|[[;]- = (Xﬁ,x?g)-z In these outcomes, the attributes
m j indexed by the sefl; are set to their “top” and “bottom” levels,
u(x) = Z(fl)jﬂ Z u <x [m ID (6) respectively, while the other attributes are set to the default
= 1<iy <in<<iy<m s=1 level. We will assume that[;] " is the best possible outcome

andx|I;]* is the worst possible outcome given that attributes
not in I; are set to the default level; however, in general, this
“does not have to be the case as long as top and bottom anchor
outcomes are different.

This theorem captures all dependencies intrinsic in GAI util
ity functions. In our running example,

w(z1, 2o, x3) = u(T1, T2, ¥3) 4+ w(ay, 2, 3) — u(z?, 2, 23). We can now express the utility of certain other outcomes
Given three arbitrary attribute sets I», I3, we have: in terms of anchor outcome utilities a local way First, we
define)M; to be the union of all the subsets that have variable
u(x) = u(x[l]) + u(x[L]) + u(x[Ls]) j: Mj = Uyjer, 1i- We can think ofM; as theneighbor
— u(x[ly N L2]) —w(x[l N I3]) — u(x[I2 N I3]) setof the attributej; it includes all the attributes that share
+u(x([I1 N 12 N I3]). subsets with the attribute Then, theconditioning setC; of

As we can see, under GAI conditions, Theorem 2 provides _éhe set/; is just a union of 'ghe neighbor sets of the attributes

way to write the utility of any outcome as a sum of utilites N £: minus the attributes id;: C; = U,¢;, M; — L. For

of certain othekeyoutcomes. These outcomes are related teexample, the neighbor set of in Fig. 1isM, = {2,5} and

x in a specific way: in each of them, some attributes are set tghe conditioning set fof, is Cy = {2, 6}.

the same levels as in outcome while remaining attributes ~ After appropriate rearrangement of indices, an outcame

are at their default values. can be written a¢x;, x¢,,y), wherey are the attributes that
Theorem 2 allows one to construct the subutility functionsare neither in/; nor C;. If the attributes in the conditioning

required in Eq. 5. If we group the addends on the right sideset are at default level, then we have the following:

of Eq. 6 appropriately, we can defing, ..., u,, such that

u(x) = E;’;l Uj(X]J). There is, however, more than one Theorem 3 Under GAI conditions, if

way to define these subutility functions. Lef denotex;,

icti i i i (xi,%X¢,, ) ~ (D, (%{ ,%¢&,,¥);1 = p, (xi7,%¢,,)), then
(the restriction ok to attributes in/;). Fishburn[7] proposed i i i
the following construction for subutility functions: (xi, %, ') ~ (p, (%], x0,,¥'); 1 — b, (x5, %8, ¥)),
u1(x1) = u(x[h]), ™ for anyy’. Therefore,
j—1 k
wix) = ux[L) + > (D" 3w L N L)), (xi,X¢,) ~ (p, (%7, x&,); 1 — p, (xi,%¢,))-
k=1 1<iy < <ip<j s=1

] ] N - That is, as long as attributes in the conditioning sef;aire
We call this thecanonicalsubutility decomposition. In our  fixed, the remaining attributes do not influence the strength of

triViaI eXampIe, the Canonical decomposition W0u|d be: preference of local Outcomas_ ThUS, we can perforﬂmca|
wi (1, x2) = u(xr, 2, 23) = w(x[11]); elicitation with respect to local anchoxs andx;", without
o 0 o specifying the levels of thg attributes.
uz (w2, v3) = u(xy, v2, x3) — u(7y, T2, T3) Any suboutcome; in a subutility factor can be expressed
= u(x[I2]) — u(x[I N I3]). locally in terms of the two anchor levels, given that attributes

in the conditioning set of are set to default values. We can
now define docal value functior;(-) such that;(x; ) = 1,

vi(xi) = 0, andv; (x;) = p iff

Recall thatu(-) denotes utility of full outcomes, whereas
u;(-) is defined over attributes indexed by

3 GAl Elicitation with Local Queries

If we could easily elicit utilities of key outcomes, the elicita-
tion task would be straightforward: the utility of amycan
be calculated using the utilities of related key outcomes vi
Eqg. 6. This simplifies elicitation because the decision make the elicitation procedure ¢8] which full outcom
only has to specify utilities of key outcomes (& for a A?ft ele CI al'o't ItJ ocedu E s ¢ uds$_s ul Iou CIO tlas.
relevant elicitation algorithm). Unfortunately, even key out-’ " erf oca” € Itctl'a |on%we' rt])IOW' 4e conditional local values
comes are “full” outcomes over all attributes; it is unrealistic”i(') or all settings of variables it;.

to expect a user to assess tradeoffs involving full outcomes in - 2yt s important to keep in mind that anchor levels are defined for
domains with more than a few attributes. Therefore, just agach subutility factor, not individual attributes.

in the elicitation of additive Ut|||ty fUnCt|OnS, we would like 3|_0Ca| value functions (Wthh are on|y |oca||y Ca“brated) are
to separate the elicitation process into local elicitation andiistinct from the subutility functions; in the GAI decomposition,
global scaling. even though both are defined over the same set of factors.

(Xiax(()Z,;) ~ <pa (XzTaX%,;); 1-p, (X%,X&»
We can calibrate the relative valuesgfx; ) within any subu-
a{ility factor (conditional onC; at default levels) using only
ueries over attributes ify andC;.2 This stands in contrast



3.2 Global scaling

Suppose we have elicited the local value functionand the
utilities of anchor outcomes|I;] " andx/[Z;]* (recall that an-
chor outcomes are full outcomes). ket = u(x[I;]") and

ui = u(x[L;]*). The utility of an arbitrary outcome can
now be calculated from the utilities of anchor outcomes and
local value functions. From definition of local value functions

(assuming; (x;) = p),

(xi, %%, ¥°) ~ (o, (x; ,x&,,¥"); 1 —p, (xi,x2, y°)), Figure 1: GAI graph. The utility function can be decomposed
0 .0 T. 1 asu(zy,...,x7) = ui(x1,x2,x3,x6) + ua(x1,x2,27) +
Xi, X0, ~(0i(%q), x[I;] 5 1T —wvi(x), x[i]7). N (e 2 Y
(xi,x¢,, ¥ ) ~ (vi(xi), x[[;] (xi), x[Li]7) us (2, 24) + ug(zg, 25) + us(2s, ).
Therefore, for any/; C I,

w(x[Ji]) = vs (x5 [Ji]) w4 (1 = vs(x5[Ji])) ui this is thesame number of global queriesquired for global
— (u] — ) v Ti]) + uk scaling in the linearly additive case (considering each at-
g AR G tribute as a factor in the additive case). In addition, the gen-
Finally, we define the subutility functions,, ..., u,, in eral formula for defining canonical subutility functions (pro-
terms of anchor outcome utilities and local value functionsvided by Eq. 8) can be simplified as follows:
Using the canonical definition (Eqg. 7), we get

ui(x1) = (u —ui) vi(x1) +ui, 8) u/(x):Zu;(xj) :Zﬁj(xj)(u;*uj_)v 9)
i=1 i=1

where

j—1 k j—1 k
[Uj(xj) +Y D8 T () L0 Ij])] (%) =vi() + > (=D > () L N 1)),
k=1 1<iy < <ip<j s=1 k=1 1<iyp << <J s=1
] andu, ([N, L, N L)) = 0. (o, I, 11 = 0 u/()
uj | . is a utility function that is strategically equivalent to the orig-
inal functionu(-). To compute a (unnormalized) subutility
functionv;(x;), we have to know which local suboutcomes

x’; are involved (in the fornx; [ﬂle I;, N I;]) on the right

+ [uj‘ + ji(fl)’“ >
k=1

1<i1 << <J

In our small example, this gives:

ur(z1,29) = (u] —ui) vi(xr, x2) + ui, side of the equation; this amounts to finding all nonempty
k, . . .
Un (w2, w3) = (ug — ud) [va(w2, 43) — va(22, 29)]. sets(),_, Z;, N I; and recording the corresponding sign of

the local value functions in Eq. 9. The structure of subutil-
3.3 Graphical Elicitation Procedure ity functions depends only on the GAI subset decomposition.
In practice, we expect GAI models to exhibit considerable! "erefore, given a GAl graph, we can use a search procedure
structure, and intersections between subutility factors to mto compute the relevant subsets needed to solve Eq. 9. We
volve only a few variables. We propose a complete utility®"ly need to do this once for each subutility factor.

elicitation procedure that takes advantage of such structure.
For now, we assume that a decision maker is capable of an-
sweringdirect local standard gamble utility queries, such as
“for what probabilityp would you be indifferent between sub-

Input: GAl attribute setd, . .., I.
Output: For each subutility factof, a collection of setd.;,
and a sign functiony; : L; — {+1, —1}.

outcomex; and a (local) standard lottefy, x. ;1 — p, x3-), » For each subuitility factoy:

assuming that attributes in the conditioning éetare at de- e Start at nodej and perform a graph search along the

fault levels?”. Later, we will consider more realistic local directed arcs. The search depth is finite, so any search
algorithm (e.g., breadth-first or depth-first) could pe

comparison queries.

Assume a decomposition of attributes into GAI subsets used. Sef; = .

e While I, N I; # 0 (we're at node)

Ii,...,1I,,andfix an order over these subsets (the order does

not affect efficiency of our algorithm). We construct a di- — let K = {nodes on path fronjito:};
rected graph whose nodes correspond to thelsmﬂd di- — addNiex I to Lj;

rected edgesL, ;) wheneverl; N I; # () andi > j.* Edge — setz; (Nkex i) = 1, if depth even,
(I;,I;) is labeled by’m[ Fig. 1 shows an example of a GAI zj(Nkex Ix) = -1, if depth odd.
graph. After local elicitation, we have local value functions

v;(+). Utilities of anchor levels:| ,ui,...,u,}  u’ have to

be obtained by using global queries. Howé(l/ern\llve only neec?ezcuitéssetgf the graphical structure of GAl models, Eq. 9 now

to ask2m such queries involving full outcomes:interestingly, -
0(x;) = D 2(J) vi(x[7)).

4An undirected version of this graph isGAI network[9]. JeL;



Fig. 1 provides an example of a GAIl graph. To com-user can more easily assess: “do you prefeor (p, xiT;l—
pute L5, we search for all non-empty intersections of p, x:-), assuming that attributes in the conditioningGgtre
the setl; with other sets. The only such sets areatdefaultlevels?” The bestlocal myopic query is the one that
I5 itself (at depth 0),1, (depth 1), andl; (depth 1). maximizes theexpected posterior utilitfEPU):

Therefore, Ly = {{5,6},{5},{6}}, and o5(z5,26) = sl 1

1_)5(335,3:5) — vs(x5,28) — vs(2, 26). Finally, us(zs, z6) = EPU(x{,1) = Pr(yes|x{,1) mSXEy i [u(x)]

Us (w5, w6)(us — u5). + Pr(no|x, ) max Emox [y(x)].

4 Elicitation under Uncertainty Due to the local nature of our queries, we can simplify part of

We now considerpartial elicitation of utility parameters. the equation as followsnax, E{ves/mo}xil [y (x)] =

Generally speaking, good (or even optimal) decisions can

be realized without complete utility information. Rather es/not|x?

than asking for the direct assessment of utility parameters®* Elves/moyPet g ()] + X root o, ZE[“J' (x5

using standard gambles as [i8], we consider simpler bi- J#

nary comparison queriesver local gambles. Followinfs;  wheremaxy rest tox, ;4 E[u;(x;)] could be computed by,

2], we suppose some prior over the parameters of a GAL ¢ yariable elimination. Further computational savings are
model, and use myopic expected value of information (EVOl)}yssible since only some of the expected (posterior) subutility
to determine appropriate queries. values will change given a specific query; these values can be

_|f a utilit_y function is__complet_ely unstructured_, and_a expressed as a linear function of the local value of the query
prior densityr over the utility function parameters is avail- g,poutcome.

able, the best outcome with respect to the prior is simply
x* = argmaxyx E™[u(x)]. However, we can query a user 4.2 Mixture of uniforms priors

about her utility function, update the prior based on the re-gpecifying prior information over local utility parameters as
sponse, and compute a new expected best outcome. If & semixture of uniform distributions confers several advantages
quence of queries can be asked, finding the best elicitatiopy ytjlity elicitation. With enough components, a mixture
policy is a sequential decision process, providing an optimabs yniforms is flexible enough to approximate many stan-
tradeoff between query costs (the burden of elicitation) angjarq distributions; furthermore, it fits nicely with the type of
potentially better decisions due to additional informafiZh  gueries we consider here. Because the posterior distribution
However, such a policy is very difficult to compute, so hereafter a response to a query remains a mixture of uniforms (we
we use a myopic approach to choosing the next qligry only need to update the weights), it is possible to maintain an
. exact density over utility parameters throughout the elicita-
4.1 GAl Structure and Local Queries . . tion proces$2]. Most importantly, we can calculate the opti-
GAI models allow us take advantage of the additive utility 4 query point analytically, asE PU (x{,1) is a piecewise-
decomposition to compute EVOI. We assume that amho&uadratic function of ’ v
?tilitie_:s uf ut, ) u ar_?_ k(;u_)wn, but tlhe I_oc_aldvalue '
unctionswy, ..., v,, are specified imprecisely via indepen- :
dent priors1 over local valﬁe functionpparamgters. Thups, for5 Empirical Results

each suboutcome; (apart from three special configurations We implemented the myopic elicitation strategy with prior
x; ,x;,x? whose local values are fix€djve have an inde- density specified as a mixture of uniform distributions, and

pendent prior density over possible valuesdik;). The ex-  tested it on a realistic car-rental problem. The graphical struc-

pected value of outcomeis then ture of this problem is sufficient to admit fast (around 1 sec-
m m ond) EVOI computations; therefore, our approach could sup-

Eux)] =Y Elujx)] = (u —uj)E[;(x;)], port interactive real-time pr_eference eIicipation. '
]; Y ; ’ ! o The car-rental problem is modeled with 26 variables that

B specify various attributes of a car relevant to typical rental
whereE([v;(x;)] = decisions. Variable domains range from 2 to 9 values, re-
j—1 & sulting in 61,917,364,224 possible configurations. The GAI
0 (% _1)* (xs _ , model consists of 13 local factors, each defined on at most
Blvs(x;)]+ Z( b Z Elv; (XJ[m L O LDI five variables; the model has 378 utility parameters (dée
for further problem details). We use variable elimination to
With priors over local utility functions, an appropriate form determine best “expected” outcomes.
of query is “Is local utility of suboutcome; greater thai?”, We experiment with three different types of priors on local
denoted agx},!). Such a query is éocal query, because utility functions: a (random) mixture of five uniforms, a non-
it asks a user to focus on preferences over a (usually smalizyformative uniform density, and a mixture of 10 uniforms
subset of attributes; the values of remaining attributes do nawhich is fitted to approximate a truncated Gaussian distribu-
have to be considered. Indeed, this corresponds to a binakion with the variance of 0.3 and the mean chosen at random
comparison query over local outcomes and gambles, which ftom the interval0; 1]. For each of the three types of priors,
—_— we sample 30 different utility functions that are used for re-
Svi(x] ) = Lvi(xd) = 0,0;(x7) = L=t sponses to queries. We then run our elicitation algorithm for

i i

k=1 1<y < <ip<j s=1

0) 1
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Figure 2: (a) Utility error as a percentage of the initial error; (b) Utility error as a percentage of the true maximum utility. The
random strategy curves are marked with 'x’.

100 queries; for an EVOI query strategy, if the EVOI becomesxonmyopic EVOI in this setting; methods for eliciting GAI

0 (which happens after 20-30 queries on average), we chooseodel structure; user case studies and methods for dealing
the next query at random. We compare our myopic EVOIlwith inconsistency in user responses ; and investigating other
strategy with a “random” query strategy, where a subutilitydecision criteria such as minimax regfék.

factor and a local query configuration is chosen at random,
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Abstract

We introduce a flexible framework to specify problem so-
lutions (outcomes) and preferences among them. The pro-
posal combines ideas from answer-set programming (ASP),
answer-set optimization (ASO) and CP-nets. The problem
domain is structured into components. ASP techniques are
used to specify values of components, as well as global{inte
component) constraints among these values. ASO methods
are used to describe preferences among the values of a com-
ponent and CP-net techniques to represent inter-component
dependencies and corresponding preferences.

Introduction

Qualitative preferences have received considerabletatien

in Al lately (cf. the special issue Computational Intelli-
gence, 20(2), 2004). A popular representation of qualita-
tive preferences are CP-nets (Boutiletral. 1999; 20044a;
2004b). They are directed acyclic graphs of variables an-
notated with conditional preference tables. The table-asso
ciated with a variablexplicitly describes conditional pref-
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ordering on answer sets. They are strong because they apply
without theceteris paribugestriction. They are defeasible
since they may be overridden by other rules.

CP-nets allow the user to fully exploit dependency struc-
ture, both for preference representation and elicitation.
However, they are restrictive in the way preferences on the
values of a single variable can be specified. They basically
assume that variables have a small number of known val-
ues and that a total order of these values can be explicitly
given. The ASO approach uses an answer-set program to
represent a single variable with complex outcomes, where
outcomes are modeled by answer sets of the program. It also
provides flexible means for expressing possibly conflicting
and/or incomplete preferences on outcomes, as well as indif
ference. However, dependencies among parts of outcomes
remain implicit and are not fully exploited.

Prioritized component systemsur main contribution,
combine key aspects of both approaches. The setup is ba-
sically that of CP-nets. We have variables, each with its do-

erences among the values of that variable as a function of ain " and each possibly depending on its parent variables.
value assignments to the parent variables. The problemis to iy en a variable, for every set of values of parent variables

specify a preference ordering @mutcomesthat is, assign-

we also have an ordering of elements of the domain of that

ments of a value to each variable. Preferences are given a, 4 iaple. However, unlike in CP-nets, variables may have

ceteris paribugother things being equal) interpretation. For
example, the statemerdd cars are preferred over blue cars
is taken to mean: if two cars differ only in colour, and one is

large domains, with elements known only implicitly. We re-
fer to these “complex” variables asmponentand, follow-
ing the ASO approach, represent them by answer-set pro-

red while the pther blue, then the red one is preferred (not: grams. Preference orderings on the values for the compo-
each red car is better than any blue car). Preference rulespant also are specified following the ASO approach. Each

express strict constraints on the preference ordering 6n ou
comes, but are weak in the sense that they applyunder
theceteris paribugestriction.

Another approach, callemhswer-set optimizatiofASO),

component” comes with a set of preference rules, whose
bodies (and only the bodies!) may contain literals froan-
entcomponents. Each assignment of values (answer sets)
to the parent components selects a set of relevant preferenc

has been developed in the context of answer-set program-jes for C. These rules express defeasible multi-criteria

ming (Brewka, Niemela, & Truszczyhski 2003). Although
preference rules are used there as well, their meaningtis qui

preference information that determines the preferencererd
ing on the answer sets @f, given the answer sets (values)

different. Each rule expresses a ranking on answer sets. o the parent components.

However, the rankings provided by different rules may dif-
fer, and a combination method is used (Pareto in (Brewka,
Niemela, & Truszczyhski 2003)) to generate a global prefe

ence order. Hence, a rule can be viewed as a single criterion

in multi-criteria decision making. ASO preference rulasgh
are strong but defeasible constraints on the global predere

Copyright © 2005, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

The choice of answer-set programs to represent compo-
nents (or outcomes, in the case of ASO programs) is not es-
sential for our discussion. Any constraint formalism (ge.g.
propositional logic) could be used instead. In selecting
answer-set programs we were motivated by the minimal-
ity and groundedness of their answer-set semantics, which
make them useful for knowledge representation.

Our approach generalizes both CP-nets and ASO pro-



grams. CP-nets are component systems with dependency We now have the following key definition.

structure, but with the simplest possible components tist j
pick a single value for a variable. ASO programs are com-
ponent systems with a single, possibly complex component
but, clearly, no component dependencies. The framework
we develop here allows us to model systems anywhere in
between these two extremes.

Background
In most abstract terms, we are concerned with comparing the
quality of elements in a set. Thus, we need (i) a formalism to
specify a set of elements orspace of outcomese wish to

Definition 3 Let S be a set of literals ana a preference
rule of the form (1). Theatisfaction degreef r in S (de-
noted bys,.(5)) is given as follows. If |= « and, for some
i, 1 < i <mn,S [ v, thens,(S) is the smallest index
of a satisfied boolean combination in the head oDther-
wise the rule is irrelevant and.(.S) is denoted by a special
symboll.

We assume that the smaller the index of a satisfied goal
the better. For trivial reasons, irrelevant rules are nbt su
optimally satisfied as they either do not apply or have no

compare, and (ii) a way to represent and reason about prefer-902ls satisfied at all (cf. (Brewka, Niemela, & Truszczins
ences on outcomes. The two aspects are typically separated2003) for a more extensive discussion of that issue). Thus,

for greater modularity, flexibility and generality.

We will now describe two formalisms for specifying and
reasoning about preferences that are of primary intertest la
in the paper. They areanswer-set optimization programs
(ASO-programgfor short) (Brewka, Niemela, & Truszczyh-
ski 2003) andCP-netqBoutilier et al. 1999; 2004a; 2004b).

ASO programs

In ASO programs, individual outcomes are sets of literals
over a fixed sefl¢ of propositional atoms. To represent a set
of outcomes, we use a logic program over the set of atoms
At and assume that feasible outcomes are precisely the an-
swer sets of? (we assume some familiarity with the logic
programming terminology; we refer the reader to (Gelfond
& Lifschitz 1991; Simons, Niemela, & Soininen 2002) for
relevant details). As we noted, our choice of programs to
model outcomes is motivated by knowledge-representation
concerns but other constraint-based formalisms could also
be used.

To represent preferences in ASO programs, wepneé
erence rulegor simply, preferencepof the form

(1)
where they;s areboolean combinationsf atoms inAt, i.e.,
formulas built of atoms ind¢ using disjunction Y), con-
junction (A), strong €) and default ot ) negation, with
the restriction that- can appear only in front of atoms, and
not only in front of literals and where is a conjunction of
literals and expressions of the fomwt | wherel is a literal.

Definition 1 Ananswer-set optimizatiofor ASO) program
over the set of atomdt is a pair (C, ®), whereC'is a logic
program (overAt), called agenerator prograpand® is a
collection of preference rules (ovelrt), called apreference
program Answer sets af' are outcomef (C, ®).

To specify how to use preferences to compare sets of lit-
erals and, in particular, outcomes of ASO programs, we in-
troduce asatisfactionrelation between sets of literals and
boolean combinations.

Definition 2 Satisfaction of a boolean combinationin a
set of literalsS, denotedS |= v, is defined as:

0 T e [ AR 0%

S =1 (1 literal) iff les

S Enotl(lliteral) iff ¢S

S):’}/l\/’}/g iff S':’leI'S):’}/Q
S':’}/l/\’}/Q iff 8'2'71 andSl:yg.

we consider to be as good a satisfaction degreé ashese
intuitions are made formal by a preordief on the set of sat-
isfaction degrees: for, 3 € {I,1,2,...},a = gif g =1
or3 = I,ora andg are integers and < «. The relation=
is in fact atotal preorder. We write< for the strict counter-
part to the relation< (o < g if a < § and it is not the case
that3 < «). The relation< is antisymmetric and transitive
and so, its closure under reflexivity, igartial order.

Let (C,®) be an ASO program anfl a set of literals.
The satisfaction degrees of rules framin S form the ba-
sis for defining a global preference ordering on outcomes of
(C, ®). Several methods can be used for this purpose. We
will restrict our discussion here to the Pareto method.

Definition 4 Let(C, ®) be an ASO program and lét and
S’ be its outcomes (answer sets). An outcdirie Pareto-
preferredto an outcomeS’ of C (S’ <4 S) if for every
ruler € @, s.(5") < s.(9). If ' <¢ S and itis not the
case thatS <4 S’ (that is, for at least one rule € @,
sr(8") < s,(9)), thenS is strictly Pareto-preferred taS’
(S/ <o S)

An outcomeS is optimalfor (C, ®) if there is no outcome
S’ such thatS <g S’.

The relation<g4 is a preorder relation for the set of out-
comes of(C, ®). The relation<s, when closed under re-
flexivity, is a partial order on the set of outcomes.

For simplicity, we restrict the class of generator programs
to normal programs (default negation in the bodies only, no
classical negation symbols) with cardinality constra{is
mons, Niemela, & Soininen 2002). Cardinality constraints
allow us to specify lower and upper bounds on the number
of certain atoms in an answer set. For this paper we will only
need rules of the form{as, ..., a,}1 < « expressing that
exactly onea; must be contained in answer sets satisfying
«. Answer sets of such programs are sets of atoms.

CP-nets

CP-nets were introduced in (Boutiliet al. 1999; 2004a).
Let A = {A4,...,A,} be a finite set of variables (at-
tributes). For each variabld € A, let D4 be thedo-
main of A, that is, a finite and non-empty set wvélues
for A. Without loss of generality, we assume that variable
domains are pairwise disjoint. Aautcomeis ann-tuple
U= (up,...,up)suchthat, € Dy, , 1 <i<n.

LA binary relation is gpreorderif it is reflexive and transitive.



A conditionis a conjunction of atomic expressions of the
form (A = a) and their negations, wherd € A4 and
a € D 4. A conditional preference ruléor, conditional pref-
erence is an expression of the form : 7 such thatx is a
condition and, for some variablé, « is a total preorder on
the domainD 4. We writea <, bif (a,b) € =, i.e.,ifbis at
least as good asin © anda <, b to denote thestrict pref-
erenceof b overa, i.e., ifa <, b holds butb <, a does not.
We note that unlike<,., <, (when closed under reflexivity)
is a partial order.

We use total preorders rather than total orders (even
though the latter is a more common choice in the literature)
to provide means to modgldifference It is important as in
practice the users may be unwilling or just unable to specify
a total order on the set of values of a variable in a situation
when they consider different values as equally good.

A CP-netover a set of variabled is a pair( P, ®), where
P is aparent functionand® is a collection of conditional
preferences such that for every conditional preferencer
in ®, which orders values of a variablg, « involves only
variables that belong t&(A4)2.

with < ¢p (closed under reflexivity). The relationcp and
the notion of optimality we consider in the paper were intro-
duced and studied in (Brafman & Dimopoulos 2004).

Component systems

In an ASO prograniC, ®), the role ofC is to describe the
space of available outcomes and the roleab to capture
preferences of a user regarding these solutions. In this gen
eral form, ASO programs do not provide explicit means to
handle complexity and structure present in large-scale ap-
plications, where domains and problems decompose into
subdomains and subproblems with well-defined dependen-
cies. Adding structure based on dependencies, and so im-
plicitly expressing independence, has proven successful i
knowledge representation formalisms such as Bayes nets
and CP-nets. These formalisms exploit structure to ensure
concise factoredproblem representations. Our main objec-
tive is to bring structure to answer-set optimization to mak
the process of modeling spaces of solutions and relevant
preference information more transparent and systematic. |
the process, we obtain a formalism for qualitative reaspnin

In a standard approach to CP-nets, preference statementsypoyt preferences that generalizes both ASO-programs and
are represented by conditional-preference tables — one ta- cp_pets.

ble for each variable. Rows in the table for a varialdle
correspond to tuples of values from the domdihs, where

B € P(A) (exactly one row for each tuple), and each row
contains a relevant ordering of values in the domain.
The approach we adopt here is more general.

The main contribution of CP-nets is in how they use con-
ditional preferences to order outcomes. In what follows,
given a variabled and an outcomé&/, by U(A) we denote
the value from the domain of that appears i¥/.

Definition 5 An outcomé/ is one-step preferre an out-
comeWV if for some variableA:

1.V(B) = W(B) for every variableB € A\ {A} (thatis,
for every variable other thar), and

2. ® contains a conditional preferenee: 7 for A such that
W (and hence als®") satisfiesx andW (A) <, V(A).

If V' is one-step preferred " with respect to a variable
A, then we say that there is @amproving A-flip from W to
V and that there is worseningA-flip from V to W.

Definition 6 The outcomé&” is CP-preferredo W, W <¢p
V, if V can be obtained fromiV’ by a (possibly empty) se-
guence of improving flips. The outcorieis strictly CP-
preferredo W, W <¢p V,if W <¢op V and it is not the
case thal” <cp W. An outcomé’ is optimalif there is no
outcomel such thafl’ <¢op U.

For every CP-net, the relatior cp, when closed under
reflexivity, is a partial ordering. The relatioficp in general
is not; it is a preorder only. However, facyclic CP-nets
(CP-nets whose parent function induces a directed acyclic
graph on the set of variables) and with all preferences spec-
ifying total orders <¢p is a partial order and it coincides

2Including a parent function in the description of a CP-net is
redundant as the dependency information is contained idittons
of conditional preference rules. However, it makes thegreafce
elicitation process more systematic.

Let At(P) be the set of atoms appearing in a progri@dm
Definition 7 A component systeis a pair (II, G), where

1.1 ={C,...,C,} is acollection of logic programs with
pairwise disjoint sets of atoms, calledmponentsf the
component system, and

2. G is a set oftonstraintsthat is, logic program clauses of

the form — body

such thatAt(G) € Ugen At(C).

An outcomeof (II, G) is a tuple (M (C4), ..., M(Cy)),
where for eveny; € I1, M (C;) C At(C;) and|J M (C;) is
an answer set of the prograGi U | JI1.

Directly from the definition and from the properties of
logic programdI andG it follows that if M is an outcome
of a component systefil, G) then, for every component,
the setM (C) is an answer sets df.

Logic programs represent sets of literals (sets of atoms, if
we restrict, as we do in this paper, to normal programs with
cardinality constraints). The answer sets have no explicit
structure or, are “flat”. Component systems replace this flat
representation with a two-level one. Elements of outcomes
are no longer atomic but have structure of their own. They
are collections of atoms — answer sets of system compo-
nents. In other words, each componéhtan be thought of
as a variable, its domains represenimgblicitly by a logic
program (' itself) and consisting of the answer set3’of

Every tuple of answer sets of programs forming compo-
nents of a component systeffl, G) is an outcome of the
component systerfil, {}). The role ofG is to exclude some
combinations. Adding a constraint- body to a logic pro-
gram eliminates all answer sets of the program that satisfy
body. Since there are no restrictions on atoms appearing in
the clauses iz, the prograntG representglobal (or inter-
component) restrictions on ways, in which component val-
ues can be combined into outcomegdf G).



The structure of a component systéhh G) is implicitly
present in the prografn IT U G. Namely, there is a 1-to-1

anda is built of atoms indt(C) U Upe p(c) At(D). We
call such preference rule§-preferencesind denote the

correspondence between outcomes of the componentsystem  set of allC-preferences by .

(I1, G) and answer sets of the progr@gil U G: for an out-
comeM of (I, G), MY = Jpen M(C) is an answer set
of UII U G and, for an answer séf of | JII U G, the tuple

—

N = (N N At(C):C € 1I) is an outcome ofIl, G). The
ability to make the structure explicit is, however, impaoitta
It allows us to model directly the structure present in appli
cations, an issue we discuss in the last section.

We will illustrate the idea of a component system with a
simple example of configuring a daily menu (more formally,
describing the space of daily menus). We first establish that
a daily menu consists of three components: breakfast, lunch
and dinner. We then describe each of them separately, for
instance, by programs listed below.

breakfast: 1{continental, american}1
lighty «— continental

lunch: 1{soupy, salad; } 1
1{meat,, fish;,lasagne;}1
1{ fries;,noodles; }1 « not lasagne;
light; «— lasagne;, salad;

dinner: 1{soupq, salady}1

{meatq, fishq,lasagneq}1
1{ friesq,noodlesq}1 — not lasagneq
lightq < lasagnegy, salady

The components specify the possible choices for each case.

Sofarthere are x 10x 10 = 200 possible outcomes. Global
constraintss exclude certain combinations (for lack of va-
riety or for health reasons), for instance

— meat;, meatq
«— lasagney,lasagneq
«— not lighty, not light;, not lightg

While the same set of menus can be represented by a sin-

gle program consisting of all these rules, component system
structure the rules in a way conceptually linked to the struc
ture inherent in the application domain. However, a fun-

Outcomedor a prioritized component systefl, G, P, )
are the outcomes for its component sys{emG).

We now define the preference relation on outcomes of a
PCS(IL, G, P, ®). To this end, we first focus on the PCS
(IL, 0, P, ®). Every outcome ofIl, G, P, ®) is an outcome
of (11, 0, P, ®). Moreover, outcomes dfl, (), P, ®) are pre-
cisely those tupled/ such that for every’ € II, M (C) is
an answer set @f'. The first step is to introduce the notion of
aflip between outcomes of a prioritized systéih ), P, D).

Definition 9 Let M and M’ be outcomes fofII, (), P, D)
andC € II a component. There is@-flip from M to M’ if
M # M’ and for everyD € 11, D # C impliesM'(D)
M(D).

A flip from M to M’ is improvingif M <. M’ (thatis,
with respect to the Pareto-preference relation determimgd
preference rules i ).

The choice of the Pareto-preference relation with respect
to preferences b is a consequence of the fact that we
defined the preference relation between outcomes of ASO
programs by means of that relation. If a different combina-
tion method for ASO programs is chosen, that relation has
to be used here.

Definition 10 Let(II, G, P, ®) be a PCS and let/ and M’
be outcomes fofIl, G, P,®). The outcomel!’ is PCS-
preferredo M, M =<pcs M, if there is a sequence of im-
proving flips fromM to M’ (possibly involving outcomes for
(I1, @, P, ®) not satisfying the constraints as intermediate
steps). Itisstrictly preferred, M <pcs M',if M <pcs M’
and it is not the case that!/’ <pcg M.

Definition 11 Let M be an answer set of a PAS We say
that M is an optimal outcome fo€ if there is no outcome
M’ for C such thatM <pcg M.

Let us consider again the daily menu example. To specify

damental advantage of component systems is that they lend her preferences the user first decides the dependency struc-

themselves well to a variety of methods to specify prefer-
ences among outcomes. We discuss that issue next.

Prioritized component systems

The main focus of this paper is on representing and reason-
ing about preferences pertaining to a collection of outcome

represented by a component system. To represent prefer-
ences we use preference rules as defined for ASO programs.

Definition 8 A prioritized component systeniPCS, for
short) is a quadrupl€ = (11, G, P, @), where

1. (I, G) is a component system;

2. P is aparent functiordescribing dependencies between
components: for every componénie 11, P(C') consists
of all components il thatC' depends on; and

3. @ is a set opreference rulesf the form (1) that are sub-
ject to the following restrictions: for each preferenceeul
1 > ... > v < «in ® there is a componend such
that formulasy;, 1 <14 < k, are built of atoms ind¢(C)

ture she wants to base her preferences on. Let us assume
that dinner and breakfast preferences do not depend on other
components, and that lunch depends on the other two. The
user first specifies her dinner and breakfast preferences, fo
instance, using the following preference rules:

(d1) meatq A friesq > fishqg > meatq A noodlesq

(d2) soupq > salady — meaty

(ds) salady > soupg < not meatq

(b1) light, > not lighty
She now describes conditional lunch preferences dependent
on the attributes of the other meals:

(I1) meat; > not meat; — lasagnegq, continental
(I2) salad; > soup; < soupy
(I3) fish; > lasagne; < salad,
(l4) soup; > salad; «— american
Now one of the optimal outcomes is:

({continental, lightyp}, {salad;, fishy, fries;},
{meatq, friesq, soupq})



Another optimal solution is obtained by exchangifiges; al. 2004a). Whenever a certain combination of variable val-

with noodles;. There are also optimal solutions containing ues, sayX; = z1,..., X, = z,, IS excluded by the global
lasagney andsalady. We are aware that the full power of  constraints in a constrained net, we include a correspgndin
our approach becomes more evidentin larger scale examplesconstraint of the form— X; = z4,..., X,, = =, in G.

for which we have no space here. Nevertheless, the exam- The PCS framework also generalizes answer-set opti-
ple illustrates the basic notions and some of the advantagesmization as described in (Brewka, Niemela, & Truszczyhsk
of PCSs: dependencies are between components, not sim-2003). Indeed, we have the following simple result.

ple variables with unstructured values; preferences can be thegrem 2 Let ¢ — (C,®) be an ASO program. Then
incomplete and conflicting (e.g. conflict betwelgrand!, ¢’ = ({C},0,0,®) (in other words, both the set of global
in case of american breakfast and dinner soup), and it is pos- ¢onstraints and the parent function are empty) is a PCS, its
sible to remain indifferent (no preference between fisbgfri outcomes are precisely the 1-tupled ), where)/ is an an-

and fish/noodles for dinner). swer set foiC, and for every two outcomed and M’ of C
The way we use improving flips to order outcomes fol- (answer sets af)

lows (Boutilieret al. 2004b), and disagrees with (Prestwich , , , N o
et al. 2004). The two approaches differ in their interpreta- 1M = M (!n €) !f and only !f<M> =pos <M,> (!n C,)

tion of constraints. In (Prestwiadt al. 2004) the constraints 2.M =< M (inC)ifand only if (M) <pcs (M') (in C’).

are viewed as specificationsfofbiddenconfigurations that The correspondences between CP-nets and PCSs can be
are completely unacceptable to the user. Hence, in that ap- summarized by the following table:

proach, outcomg is preferred to an outcomeif there is a CP-net | PCS
sequence of improving flips fromto y not passing through variablev, programC;

a forbidden outcome. That amounts to letting constraints value ofuv; answer set ot;
override CP-preferences (as forbidden outcomes are forced value assignmen configuration

to be least preferred) and appears to be a drastic change of CP-table forv; | preference program®c,
the CP-net semantics. The alternative approach of (Beutili v;-flip new answer set faf;
et al. 2004b) treats constraints as simply making some out- .
comes unav)ailable. The fact that an oFL)Jt)::ome isgunavailable Pareto and PCS ordering

has nothing to do with the user’s preferences — should the LetC = (II, G, P, ®) be a PCS. By disregarding the struc-
outcome become available its quality would be measured ac- ture inC, we obtain an ASO prograuso = (JIIUG, ®).
cording to user preferences specified in the CP-net. Conse-We noted earlier that there is a 1-to-1 correspondence be-
guently, (Boutilieret al. 2004b) (and we here) allow the use  tween outcomes of (which are outcomes dfll, G)) and

of unavailable outcomes to define the global preference re- outcomes o450 (answer sets of JIT U G), given by a
lation by means of improving flips. function that assigns to each outcomeof C, the set\/ ",

We now show that CP-nets and ASO-programs are special an answer set ¢f) IIUG (an outcome of 4s0). That corre-
cases of our formalism. A CP-ngP, ) can be represented  spondence suggests that a natural criterion for any omglerin
as a PCS in the following way. Lef be a variable of P, ®) of the outcomes df is that it extends the Pareto orderidg
and letzy, . .., 2, be its values. We define a component pro- of the outcomes of 450. We will now show that our PCS-
gram(C to consist of a single logic program rule (a choice preference ordering has indeed that property for the class o
rule in the syntax of (Simons, Niemela, & Soininen 2002))  acyclicPCSs. Itis not an overly restrictive assumption since

7 == Z =}l typical PCSs arising in applications are acyclic.
- 1’ ccty - n .

Theorem 3 LetC = (II, G, P, ®) be an acyclic PCS and

Let o : 7 be a conditional preference rule for a variable let M and M’ be two of its outcomes. fl ., M (C) <o
We denote by’ the formula where every occurrence-ofs U M'(C) thenM <¢cp M’ € -

. . Cenl CP .
replaced withnot . Next, letLq, ..., Ly be all maximal sets

of atoms of the formZ = z; such that alk;s are equivalent ~ PTof (sketch): Let,...C,, be an enumeration of the
with respect to the total preorderand such that atoms in ~ cOmponents of consistent with the parent functidh, that
L; are strictly preferred inr to atoms inL; if and only if is, for every componert;, P(Ci) C {C1, ..., Ci—1}. For

i < j.Wesetd;, 1 <i < k, to be the disjunction of atoms ~ &veryé, 1 < i < n, let M; = M(C;) and, similarly,
inL;. Aruled, > ... > dy — o is a preference inthe  Mi = M'(C}) (thatis, M; and M are answer sets of (val-
sense of ASO programs and PCSs. We denote the set of all U€S for) the componerd; appearing in outcomes/ and
preferences obtained by transforming the preferencds in > respectively). For every 1 < i <n + 1, we define

by ®'. We have the following theorem. Ny =(Mj{,..., M |, M;,...,M,).

Theorem 1 Let(P, ®) be a CP-net with the set of variables Itis clear thatM = N; andM’ = N, 1. Moreover, for

VY and letU andU’ be two of its outcomes. ThéhandU’ everyi, 1 < i < n, N;41 is a result of aC;-flip applied to
are outcomes of the PQ$C%: Z € V},0, P, ®') and N;. We can show that for each 1 < i < n, the C;-flip
1.U <cp U’ ifand only ifU <peg U’ from N; to N, is an improving one. O
2.U <cp U'ifand only ifU <pes U’ Our proof also works for a slightly broader class of PCSs

that contain preference rules whose bodies are conjursction

This theorem can be generalized to the case of “con- of formulas (not literals), each formula built of atoms of a
strained optimization with CP-nets” approach (Boutikr single component.



Complexity model describes valid product instances and customer pref-

The computational complexity of problems related to PCSs €'€Nces -P(Sed t(')b beh elicited f(;r ﬁhp(;'(;]g a preferred in-
depends on the class of programs used as components. Tostancg). escribe the space of choiGesdomain is struc-
make the discussion concrete, we consider PCSs whose!Ured into components. Each component has a generator
components are logic programs with cardinality and weight Program whose answer sets represent the valid choices for
constraints (Simons, Niemela, & Soininen 2002). However, thatcomponent. Faireference elicitatiotthe user is guided

all results in this section hold for PCSs whose components through the components. In each step, she picks a compo-

belong to any class of programs, for which one can check in N€Nt for which her preferences only depend on components
polynomial time whether a set of literals is an answer set. she has gl_ready ranked. In each case she gives preference
rules defining a preference order on answer sets of the cur-

rent component.

A major advantage of our framework is its flexibility. The
user is free to structure the domain into components in the
most adequate way for a particular application. Moreover,
the preference order on values of a component can be ex-
pressed conveniently using flexible rules, each one provid-
ing a criterion for assessing a value’s quality. Our results
show that making dependency structure explicit will, astea
in the acyclic case, increase comparability and thus lead to

Theorem 4 The following problem iPSPACE-complete:
Given a PCS and two of its outcomeX®/ and M’, decide
whetherM <pcg M.

Proof (sketch): Let = (II, G, P, ®). The problem can be
decided using aondeterministiduring machine that starts
with M; = M and correctly guesses a sequence of improv-
ing flips from M to M’. That is, in each iteration with
M, as the current outcome the machine correctly guesses

a componen€’ and an answer sét of C' so that (1) the re-
sult M of replacingM;(C) with S in M; is an outcome

of C, and (2)M; <¢. Ms. Then, the machine sef¥/;

to be M, until M’ is met. It is clear that the sequence of
outcomes produced by this Turing machine is an improv-
ing sequence and that the machine works in polynomial
space. It follows that our problem is in the cl&&BSPACE
Since PSPACE = NPSPACE (cf. (Papadimitriou 1994)),
the membership part of the assertion follows.

The hardness part follows from the fact that the class of
PCSs contains the class of CP-nets. In the domain of the
CP-nets, the problem we are considering here is known as
thedominanceproblem. It has been shown to BSPACE
complete in (Langgt al. 2005). o

Next, we study problems related to optimal outcomes.

Theorem 5 The problem to decide whether a PC&as an
optimal outcome ifNP-complete.

The problems concerning the existence of an outcome sat-
isfying some property given as a boolean combination, and
concerning deciding the optimality of an outcome are again
much harder.

Theorem 6 The next two problems aRSPACE-complete:

1. Given a PCS and a boolean combination, decide
whetherC has an optimal outcome satisfying

2. Given a PC& and its outcomé/, decide whetheb/ is
optimal.

While PSPACE-completeness results indicate that rea-
soning with PCSs is inherently hard, we note that analo-
gous problems for much simpler formalisms such as (gen-
eral) CP-nets are equally complex. One way then to inter-
pret the results in this section is that PCSs offer enhanced
representational flexibility over the formalism of CP-nats
no extra cost in the computational complexity.

Discussion

Prioritized component systems support a decoupled method-
ology for applications combining ASP with preference elic-
itation (an example is product configuration: a product data

more fine grained distinctions.
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