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Abstract 

 
This paper starts out from two observations: firstly, that there 
are complex links between what we term intelligence and 
what we term creativity and, secondly, that the phenomenon 
of surprise has a significant role in both the genesis and 
evaluation of creativity, and is tightly coupled to perception. 
We argue that for machines to develop to the point where we 
attribute to them intelligence and, therefore, their own degree 
of creativity, they must first develop a sensibility of surprise. 
This, we show, is predicated upon a multi-level organisation 
of perception, and a method of representing the interest, or 
novelty, of events and actions taking place in the physical 
world. A sensibility of surprise further depends on an ability 
to recognise the novelty of actions the system itself is con-
templating. We describe methods of encoding surprise in per-
ceptual robots, and show how this enables them to focus on 
what is interesting in their environment – a prerequisite to the 
production of behaviour both creative and intelligent. 

Introduction 
The Gestalt psychologists, Wertheimer (1959) in particular, 
made a strong distinction between productive and reproduc-
tive thinking. Reproductive thinking is what humans do 
when presented with a problem of an easily identifiable 
class, such as finding the length of the hypotenuse of a 
right-angled triangle. It is called reproductive because it is a 
question of recalling and reproducing a familiar algorithm. 
Productive thinking is the solving of problems in a manner 
that is significantly new. This involves creating rather than 
recalling a solution; it is volitional as well as selective. Pro-
ductive intelligence encompasses moments of insight 
(Köhler 1927) and, until such moments are experienced, an 
inability on the part of the subject to estimate how close 
they are to a solution (Metcalfe 1986a, 1986b, Metcalfe & 
Wiebe 1987). It is a step into unexplored problem space. In 
practice, the productive-reproductive distinction becomes 
stronger, because the reproductive form of intelligence can, 
as its name implies, be easily transported to other individu-
als or machines, whereas productive intelligence proves to 
be difficult to copy. It has been argued (Weisberg, 1992) 
that the distinction is merely questions of degree, which 
suggests that the greater the intelligence, the harder it is to 
introspect, predict, and transport, as might be expected. 

Intelligence cast in productive terms is demonstrably 
close to creativity once we remove the domain-dependent 
connotations from the two concepts. What is an intelligent 
solution is often a creative solution, and vice versa. Koestler 
(1975) identified many cross-correlations between creativity 

in the arts and intelligence and insight in the sciences (and 
surprise in humour, too). This argument has since been 
taken up by Boden (1992) who argues that artificial intelli-
gence is the appropriate research apparatus for the scientific 
study of creativity, since intelligence and creativity in their 
pure forms are inseparable. Far from supporting an argu-
ment against AI (e.g., Penrose 1989), the phenomenon of 
insight may provide useful clues about where AI research 
should go, if its agenda is truly to make the phenomenon of 
intelligence understandable to us (Nilsson 1995). Paulos 
(1980) also takes up Koestler’s baton, drawing links be-
tween the exploratory toying with abstract structures and 
novel combinations of ideas that specifically characterises 
mathematicians at work and the intellectual play of humour, 
but also aptly describes intelligent approaches to novel 
problems. 

The connections of intelligence and creativity therefore 
appear to extend to mental exploration (play, toying, the 
terra incognita of insight problem space) in which the unex-
pected, novel, or surprising is given high significance. 

While it appears that much biological activity is homeo-
static, designed to maintain equilibrium in a changing envi-
ronment, there is another goal, often conflicting: the active 
seeking of new information, new stimuli, new situations, 
novelty, or surprise. Such curiosity has been informally 
noted as a characteristic of, not only remarkably intelligent 
or creative humans, and small children - even very small 
children (Eimas, et al 1971) - but also other species whose 
behaviour we particularly acknowledge as intelligent, such 
as apes (Köhler 1927). What could drive such a predisposi-
tion to novelty? Williams (1996) has argued that the aes-
thetic response is commensurate with surprise, and in pro-
portion to the degree of change a cognitive state undergoes 
to accommodate new information. This kind of raw pleasure 
stimulus would be readily co-opted as a reinforcement func-
tion to power a curiosity drive. 

There is a strong relationship between surprise and per-
ception, maybe even an equality. It seems that we can only 
learn from those things that are sufficiently reinforced by 
repetition or direct importance to us. Having perceived the 
more persistent of phenomena (gravity, for instance) we 
become unconscious of them, though via adaptive homeo-
stasis we behave to all intents and purposes as if we are con-
scious of them - we can be observed to actively take them 
into account as we behave. It is normally only when phe-
nomena depart from their norm that they spring back into 
our consciousness, surprise us, and become concrete per-
cepts. Where particularly creative individuals often make 
their mark is in the re-seeing of the mundane, and its re-



presentation to the rest of us. They provide a service of re-
acquainting us with our milieu. This has been described by 
Berger (1972) as different ways of seeing, necessary in 
similar ways for both the author and the audience of creative 
activity. 

To reinforce the notion of selective perception of novelty 
at the expense of stasis in the world it is instructive to refer 
to simple experiments that show that our faculty of vision is 
near wholly dependent on variance in the input. If we are 
forced to fixate on a static scene our conscious perception of 
it dissolves in about three seconds. (Crick & Koch 1992). 
By extension we can argue that it is only the presence of 
change in the world (more accurately, change in the relation 
between ourselves and the world) that creates any need for 
perception in the first place. 

Additionally, it has to be recognised that much everyday 
activity performed spontaneously by humans and animals 
has proved to be extremely difficult for robots. Either the 
robots’ perceptions (representations) of the world are full of 
the wrong kind of information, or the robots are not re-
sponding to them appropriately. Yet either way the 
representations are to blame, for they cannot depend on a 
homuncular deus ex machina to get them out of trouble, 
they must be responsible for ensuring the correct response 
themselves. To summarise the arguments so far, the more intelligent 
the behaviour, the greater its creative content. Creativity is a 
linking of seeing the new and acting upon it. Far from being 
the preserve of the gifted few, creativity is present to a 
greater or lesser degree in much everyday activity. We shall 
now discuss the notion that surprise, rather than being a 
cognitive response to perceptual stimuli, actually forms the 
substance of perception, and that therefore, as Berger ar-
gues, it is greater perceptivity that engenders creativity, and 
thus intelligence. 

Encoding Surprise 
For all biological systems some states are more conducive to 
life than others, and the basic biological function is to pre-
serve homeostasis by moving from less conducive states to 
more conducive ones. This applies to states both internal 
and external. Once homeostasis is achieved, a system need 
not do anything different until there is some change of state. 
In other words, it does not even need to keep telling itself 
that things are still the same. It is not surprising then, that 
over time individual neurons and even semi-discrete neural 
systems exhibit reduction in response to unvarying stimuli 
(Day 1972). The processes are called habituation, adapta-
tion, or depletion, depending on the context. Importantly, 
such neural units effectively report onset and offset, not 
absolute values. 

Yet it grossly oversimplifies to say that perception is ‘on’ 
in the presence of change, and ‘off’ otherwise, because per-
ception is actually ‘off’ much more frequently than sug-
gested. We adapt not only to no change, but also to consis-
tency of change, or a derivative of change. Tuning out con-
stant background phenomena such as a clock ticking is an 
example. That this happens should not be surprising, as it is 
a predictable effect of certain multi-layered neural systems 
we shall be describing, in which the output of one layer is 
the input of another. A constant signal will cause an anterior 

layer to habituate, and thus cease to activate the change-
measuring function in a posterior layer. A system built on 
surprise-perception equivalence can be readily instantiated 
(Peters & Sowmya 1987, 1998). 

To decompose the phenomenon of surprise let us agree 
that there are two primary components: an expectation and a 
departure, without either of which no surprise can be ex-
perienced. The expectation is set up on the basis of previous 
experience, and might loosely be thought of as a form of 
pattern recognition. The departure is the discrepancy be-
tween what was projected to happen and what actually did 
happen. 

To measure the discrepancy we need memory to compare 
what is happening now with what has just happened. We 
start by providing each pixel location in a robot’s visual 
field with a miniature processing unit (which we shall call a 
memory unit). This possesses a proto-memory consisting of 
a single value, memory. The input to each unit is also a sin-
gle value, which we shall call signal. In the initial case, sig-
nal is just the brightness of the pixel at the memory unit’s 
location. The value of memory at time t is updated from 
signal, using the equation: 

 
 memoryt = signal + (memory(t - 1) × retention) 
 
where retention is a constant between 0 (when previous 

values of signal have no effect on memory) and 1 (when all 
previous values of signal are summed and stored in mem-
ory). These extreme cases roughly characterise remember-
ing nothing and remembering everything, respectively, and 
neither of them is very useful, but many intermediate values 
are. Varying retention adjusts the relative weight given to 
more recent values of signal, effectively determining 
whether memory can be thought of as long-term or short-
term, and thereby having significant influence over the be-
haviour of the system. 

If retention is near 1 then the value of memory will be 
large in relation to that of signal, due to its accumulative 
effect. So, if we now wish to compare signal to memory to 
derive a surprise value, we first need to renormalise mem-
ory. To do this we use another constant, which we derive 
from retention: 

 
 persistence = 1 / (1 - retention) 
 
hence: 
 
 prediction = memory / persistence 
 
which is an exponentially decaying moving average of 

signal. Then: 
 
 surprise = | signal – prediction | 
 
The value of surprise represents the difference (depar-

ture) between the signal just detected and the prediction (the 
expectation). Thus surprise corresponds to the ‘figural’ con-
tent set against the ‘ground’ of prediction (Pribram 1991). 
What is figure and what is ground is clearly predicated on 
the context of the surprise. 



Distinctions between ordinary and extraordinary events 
must be made at multiple levels. Indeed, a single event may 
be simultaneously novel at one level, but quite unremark-
able at the next. For example, one morning a person who 
has been lying down suddenly rises and walks about, but is 
known to do this every day. Within the context of the day 
their activity is novel, within the context of the week, 
month, year, lifetime, it is not. If this is an ordinary morning 
rising it may get a second or two of our attention, but if this 
is the first rising in many months it will be paid far more 
attention. We need now to develop mechanisms that respond 
to an event according to all its temporal contexts. 

We measure change as a conjunction of the outputs of 
several layers of surprise generators, each building upon its 
predecessor and effectively measuring a derivative of 
change, or the way change itself, in a previous layer, has 
been changing. Each layer tunes itself to recognise a pattern 
(the current pattern) in its input and reacts only when this 
pattern is interrupted. Its reaction is passed to the next 
(higher) layer, forming another input, with a pattern of its 
own. The sum of the parts is thus a pattern reaction system 
in which only the changes between patterns are reacted to.  

If we create these layers from similar memory units they 
need to be connected, not to raw data such as signal, but to a 
data stream which has already had more superficial frequen-
cies removed, and prediction fits this role perfectly. It is 
now possible to connect memory units serially, representing 
progressively deeper memory layers, each input connected 
to the prediction output of the preceding unit. Note that once 
memory units are arranged serially, there must be some rela-
tive weighting between the layers, even if this weighting is 
uniform and gives precedence to no layer in particular. The 
centroid of surprise is thus 
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where n is the number of memory units, each of which (u), 
has an x co-ordinate, a y co-ordinate, and a difference d, and 
where m is the number of memory layers, each of which (l) 
has a weight w. 

Activities that we call ordinary (a highly contextual term) 
can be accommodated in a finite number of these perceptual 
layers, ranging upward from 1 in the case of inanimate, sta-
tionary objects, to some arbitrary number. Watching people 
working on a production line may fail to excite more than, 
say, 6 layers in our kind of perceptual system. Extraordinary 
patterns, on the other hand, are defined as those that exceed 
some arbitrary number of activation levels. A system built 
of several layers may therefore be able, based on the con-
junction of reactions at different levels, to develop responses 
that represent activities at many different levels in the 
world, separating the extraordinary from the ordinary, and 
performing a natural bottom-up hierarchical segmentation. 
If interrogated, such a system would be able to rate the nov-
elty of the current activity at several different levels. 

Pattern intervals are complex multi-level phenomena. 
Thibadeau (1986) noted the importance of identifying the 
moments when particular actions start and finish. We at-
tempt to make a system react to these special moments both 
adaptively, and without a priori knowledge in any form, so 
that future higher functions, that might have specific recog-
nition-based tasks, may receive representations that have 
already conveniently carved the world at its joints. 

Results 
These processes are shown pictorially in Figure 1 displaying 
four two-image blocks in each of which the upper image is 
made from prediction values and the lower image is made 
from surprise values. The images show the state of the sys-
tem in an instant of time. It can be seen that memory layer 2 
surprise values are activated by the movement of the sub-
ject’s head rather than by the movement of his hand. This is 
because the hand has been waving almost continuously 
(evidenced by its high levels in both the history image and 
memory unit 2’s prediction image), whereas the head has 
until this moment been quite still. In other words the system 
is no longer attracted by the frantic hand, and has just trans-
ferred its attention to the head. 

To show quantifiably how our system, known as 
WRAITH, (Peters & Sowmya, 1996) behaves under differ-
ent memory configurations we set up a scene containing two 
5 cm discs with alternating black and white quadrants, at-
tached to small motors set 12 cm apart. Figure 2 plots the 
focus of attention of three layers of memory units. The 
short-term plot is that of two parallel units named channel 1 
and channel 2, the medium-term plot is that of a memory 
unit that receives input from the two channels, and the long-
term plot is that of a third layer which receives input from 
the second layer. The plot is actually the horizontal x co-
ordinate of the various foci, plotted vertically against time 
(measured in tenths of a second). The upper trace and lower 
trace represent approximately 31 seconds and 40 seconds, 
respectively. In each trace the grey bars correspond to the 
times that each disc was spinning. In the upper trace the first 
disc starts to spin after about a second and has soon at-
tracted the attention of all three memory layers. It can be 
seen that the short-term memory is highly reactive. The sec-
ond and third layers are slower to react. About 1.5 seconds 
later the second disc starts to spin. The short-term memory 
simply centres its attention precisely halfway between both 
discs because it simply looks for the centroid of raw change. 
The medium-term memory is momentarily attracted close to 
the second disc, but also soon centres its attention, mean-
while the long-term memory, though slower to react, takes a 
hard look at the second disc before also finally centring. 

A more interesting phenomenon occurs when the second 
disc suddenly ceases to move. The short-term memory is 
now free to return to the first disc, but long-term memory, 
having fully adapted to the motion of the second disc, is 
now dramatically attracted to the sudden cessation of rota-
tion, despite the fact that all motion is on the other side of its 
visual field. The same goes for the medium-term memory, 
though to a lesser extent. Eventually all memory is attracted 



to the sole remaining spinning disc, where attention remains 
once that disc too finally stops. 

In the lower trace the sequence of onsets and offsets is the 
same, except that now the memory is given more time to 
adapt to the rotation of the first disc. Instead of only 1.5 
seconds, it remains spinning for about 9 seconds before the 

second disc starts. By its reaction, it can be seen that the 
long-term memory has fully adapted to the constant rotation 
of the first disc, so it moves fully to the centre of the second 
disc when it starts, and remains preoccupied with it for sev-
eral seconds before eventually accommodating to that mo-
tion too. 
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 Figure 1: Pictorial representation of activity and surprise. 

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

long medium short

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

x 
co

or
di

na
te

 o
f f

oc
us

 o
f 

at
te

nt
io

n

x 
co

or
di

na
te

 o
f f

oc
us

 o
f a

tt
en

tio
n

 
Figure 2: Graphical representation of activity and surprise. 



WRAITH’s behaviour in response to any particular 
stimulus is predicated on its internal memory state. Conse-
quently when the second disc starts turning in the upper 
trace, attention is diverted towards it, but not far enough to 
actually foveate it. This is because the onset of motion fol-
lows too soon after the onset of the first disc, which is still 
exerting some hold on WRAITH’s attention. In the lower 
trace, WRAITH has had more time to accommodate to the 
activity of the first disc, and is therefore much more drawn 
to the second disc when it starts.  

Creative Applications of Surprise 
Figure 3 and Figure 4 show examples of algorithmically 
generated images. Such images can be generated ad infini-
tum using machines, but the generative power is unchecked, 
because machines do not yet have any form of aesthetic 
appreciation or evaluation. Artists such as Sims (1992) have 
developed sophisticated methods allowing the generative 
role to devolve to the machine, while retaining the editorial 
or quality assurance role themselves. However, given the 
ability to encode surprise, it should now be possible for ma-
chines to develop preliminary methods to support the fac-
ulty of aesthetic evaluation: 

Method for Aesthetic Evaluation 
We suggest that such methods will consist of five steps:  
 
Generate the Material. As the ability to generate material 
is not the subject of this paper, we simply give the examples 
in Figure 3 and Figure 4. This step might also consist of 
simply identifying objects, either ‘found’ or produced by 
other agencies. Examples may be camera input, image data-
bases. 
 

Identify the Pattern (Theme). Pattern needs to be identi-
fied at multiple levels, as already demonstrated. Levels to 
include, ultimately, would cover not just the machines own 
output, but the output of others too. 
 
Build the Expectation. The theme, as predicted, must en-
capsulate the extrapolation of patterns at all levels. 
 
Identify the Departure. This might be done before produc-
tion of the machine’s own work. 
 
Censor the Dull. Censorship on the basis of insufficient 
departure. 
 
The implementation of such a system must be both circum-
spect and conscientious – and therefore highly difficult. 
However, the concept of surprise provides the means to do 
it, and chained levels of surprise detectors are a proven 
method for increasing the sophistication of a machine’s re-
sponse. We argue that they are, if not sufficient, then at least 
necessary. 
 Our implementation has chosen to deal with particular 
forms of pattern: patterns of movement as represented by 
levels of change in visual sensors. A vast body of pattern 
recognition research already exists in several domains, 
comprising visual, verbal, acoustic and numeric data. What 
is now required, we suggest, is that pattern recognition be 
co-opted as a means to another end. Incorporation of multi-
ple pattern recognition methods (arranged both in parallel 
and in series) within an architecture whose main purpose is 
to detect, not so much pattern itself, but departure from 
identified themes will be essential to machines whose be-
haviour we will accept as intelligent. For, without such sen-
sibilities, machine intelligence will continue to fail in con-

   
 

Figure 3: (Peters 1992a).              Figure 4: (Peters 1992b). 



spicuous ways, revealing ‘inhuman’ perseveration with mi-
nutiae, an inability to recognise the subtexts in palimpsestic 
messages, an unresponsiveness to nuance, or change in the 
texture of discourse, and a general lack of curiosity. 

Discussion 
Hofstadter (1997) recently observed: 

 
In every intellectual field that I had encountered, rang-
ing from mathematics to music to art to poetry, I had 
the sense that the moment that patterns were perceived 
at one level, this immediately established a higher level 
of abstraction, opening the door to the perception of to-
tally unanticipated types of patterns. 

It is precisely this identification and accommodation of pat-
tern, and the consequent search for departure within pattern, 
and then pattern within the departure, that gives scope for 
the phenomenon of surprise and opportunity for creativity. 

If the surprise function is applied to a machine’s own out-
put or that of other agencies, and if the measure of change 
accommodated within the machine is coupled with a rein-
forcement function, it is likely to have quite broad effects. It 
should provide a machine with a form of curiosity, both 
homeostatic control and deliberate departure from homeo-
stasis, creative behaviour, and constantly improvement of 
opportunities to learn, by specifically seeking out parts of 
the world where change is dense and multi-level.  
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