
Semantics-Directed Compilation of Non-Linear Patterns 1Olivier Danvy 2January 1990

1Information Processing Letters, 37:315{322, March 1991. Extended version. Technical report 303, ComputerScience Department, Indiana University, January 1990.2This work has been carried out while the author was visiting the Computer Science Department of StanfordUniversity (thanks to Carolyn L. Talcott) and the Computer Science Department of Indiana University (thanksto Daniel P. Friedman), during the summer and fall of 1989.



AbstractThis paper describes the automatic derivation of compiled patterns and of a pattern compiler bypartial evaluation. Compiling a pattern is achieved by specializing a pattern matching program withrespect to the pattern. Generating a pattern compiler is achieved by specializing the specializer withrespect to the pattern matching program, i.e., by self-applying the partial evaluator. The compiledpatterns and the compiler are semantics-based because they are obtained using meaning-preservingtransformations upon the de�nitional pattern matching program and the partial evaluator.The results are unexpectedly good: not only all are the operations depending on the pattern (syntaxanalysis, resolution of cross-references due to the non-linearity) performed at compile time, but whereasthe general pattern matcher builds the substitution environment incrementally and for nothing in caseof failure, compiled patterns perform all the structural and equality tests �rst, and build the resultonly if the match succeeds. This non trivial runtime staging has been obtained automatically, which isremarkable because staging in general is known to be an art.This example stresses continuation-passing style as a convenient style for writing general programs.This style makes it possible to circumvent the approximations of binding time analysis (which is anessential requirement for e�cient self-application), and in addition, to stage residual programs auto-matically. These observations have been con�rmed by later experiments.Keywords: partial evaluation, program derivation, compiler generation.



1 IntroductionPattern matching o�ers a classical example of a two-argument general program that is worth partiallyevaluating. Such a program is too general and costly, whereas compiled patterns are tailored to recog-nizing particular data. This section formalizes pattern matching in lists and compiling patterns. Com-piling patterns is achieved naturally using partial evaluation. Similarly a pattern compiler is derived byself-applying the partial evaluator. However self-application requires to analyze the binding times of asource program independently of its actual specialization. Unfortunately, binding time analysis may betoo approximative. Some of these approximations turn out to be bypassed using continuation-passingstyle.1.1 Pattern matching in listsWe consider pattern matching in proper Lisp lists. A pattern represents a set of lists. Given a patternand a list, a pattern matching program determines whether the pattern matches the list, i.e., if the listbelongs to the set represented by the pattern. The result is either some distinguished mismatch valueif the match fails or a collection of substitutions. This traditional problem is addressed at length inbooks on arti�cial intelligence programming [Slagle & Gini 87]. It is solved by implementing a programmatch computing the functionM : Pattern� List ! Unit + Substitutions1.2 Compiling patternsMatching a pattern against a list induces an interpretive overhead { traversing the pattern for eachmatch. This overhead is eliminated by compiling patterns. The associated correctness criterion can bestated as 8pat 2 Pattern; 8dat 2 Data-List;L match(pat; dat) = L (C(pat))(dat)where L : Program-Text ! Values� ! Answer denotes a language processor and C : Pattern !Program-Text denotes the pattern compiler. This compiler can be derived by partial evaluation.1.3 Partial evaluationA partial evaluator specializes programs with respect to part of their input. Therefore, compiling apattern can be achieved by partially evaluating the matching program with respect to the pattern:8pat 2 Pattern; C(pat) = S11(match; pat) = L mix(match; pat)where S11 is Kleene's Smn function for n = m = 1 and mix is a program computing S11 , i.e., a partialevaluator. Similarly, deriving a pattern compiler is achieved by specializing the partial evaluator withrespect to the matching program: compiler = S11(mix; match)where compiler is a program computing C. Experience shows that generating a realistic compilerrequires to analyze the binding times of source programs.1



1.4 Binding time directed program specializationE�cient self-application requires to determine the binding times of source expressions in the sourceprogram independently of the actual values of its input. For this, the well-known concept of bindingtimes is generalized from variables to expressions. A variable may be bound, say, at compile time,at link time, or at run time. Correspondingly, a source expression may be either reduced at partialevaluation time or at run time. The latter ones need to be rebuilt at partial evaluation time.As identi�ed in the MIX project, binding times can be safely approximated independently of theactual values of the partial data [Jones et al. 89]. As a consequence, source expressions can be classi�edonce and for all by preprocessing, thus avoiding an important interpretive overhead during specializationby cutting down generality. Most of the time, we know which arguments our programs will be specializedwith respect to. Presently, we specialize our matching program with respect to a pattern (and not withrespect to a data list). Correspondingly we want a compiler for patterns, not for data lists.11.5 An approximation and how to bypass itAnalyzing binding times during preprocessing has a price: often it approximates too coarsely. Forexample, the result of a conditional expression whose test clause depends on the data list, i.e., thatcannot be reduced at partial evaluation time, is excessively approximated, regardless of its then andelse clauses.In this paper, we propose to express source programs tail-recursively to circumvent this approxima-tion by delaying it until the �nal result. However, because matching requires traversing both patternand list recursively, a mere iterative style is not enough. We achieve tail-recursion using continuation-passing style.1.6 Plan and settingSection 2 describes the partial evaluation of pattern matching in lists. Section 3 analyzes the compilationof patterns. After a comparison with related work, our approach is put into perspective.The partial evaluators we are using are Anders Bondorf and Olivier Danvy's Similix system[Bondorf & Danvy 90], and Charles Consel's Schism system [Consel 89], both of which analyze thebinding times of source programs during preprocessing and are self-applicable. Similix is more auto-matic but Schism handles partially static structures. We will point out where this makes a di�erence.2 Partial Evaluation of Pattern Matching in Lists2.1 PrincipleThe general pattern matcher takes a pattern and a datum and traverses them in parallel. By partiallyevaluating the pattern matcher with respect to the pattern, all accesses, tests, and constructions deter-mined by the pattern are reduced. Pattern constants are inlined in the specialized program, and direct1A compiler for data lists maps a list into a program expecting a pattern and determining whether this pattern matchesthe list. Compiled lists are structurally close to the general matching program { they are obtained by unfolding all controlstructures depending on the list and reconstructing all the others. Running a compiled list amounts to traversing thepattern recursively in the limits determined by the source list and building a substitution environment as speci�ed by thepattern. 2



structural and equality tests on the datum are scheduled according to the traversal order of the generalpattern matcher.2.2 Non-linear pattern matching in lists (interpreted mode)We consider non-linear pattern matching in proper Lisp lists. It is non-linear because pattern variablesmay occur repeatedly. Lists are formed according to the following grammar:List = Atom j PairPair = List TailTail = nil j PairA pattern may be a constant, a variable, or a sequence of patterns. Patterns are formed accordingto the following BNF: Pat ::= (Cst Val) j (Var Nam) j (Seq Pat�)A constant pattern speci�es a constant and matches a list if and only if the list equals this constant.A variable pattern declares a name. The �rst occurrence of a name is bound to the corresponding list,and later occurrences only match the same list. A sequence of patterns matches a list if the sequenceand the list have the same length and each pattern matches the corresponding sublists, recursively.The �nal result is either a substitution environment or the boolean value #f.For example, the pattern (Seq (Var x) (Cst 25)) represents the set of all two-element lists whosesecond element equals 25. A successful match against a list instantiates x to the �rst element of this list.For another example, the pattern (Seq (Var x) (Var x) (Var x)) represents the set of all three-elementlists whose elements are all equal.Figure 1 displays the source program. Contrarily to most published pattern matching programs inLisp, it is side-e�ect free. Contrarily to pattern matching in ML-like functional languages, it is non-linear. It is written in Scheme [Rees & Clinger 86] and uses Scheme's non-logical and control structure(similar to andalso in ML) to compute the answer. The program is tail-recursive and traverses thepattern and the datum depth-�rst, building the substitution environment incrementally.2.3 Non-linear pattern matching in lists (compiled mode)Two compiled patterns are displayed in �gures 2 and 3. They are iterative because the source programis tail-recursive. All operations on the datum have been scheduled according to the depth-�rst traversalof the pattern. The compiled patterns are built as a series of conditional expressions embedded withlet expressions declaring local variables denoting parts of the data list. The let expressions have beenintroduced by the partial evaluator automatically to avoid multiple traversals of the data list. At runtime, the data list is traversed depth-�rst according to the pattern. All structural and equality testsare performed along the traversal and if they all succeed, the substitution environment is built andreturned. This environment pairs two lists: a list of names, and a list of values.These residual programs illustrate a surprising property: whereas the substitution environment wasbuilt incrementally in the source program (and thus potentially for nothing in case of failure), it is builtonce in compiled programs in case of success and not built at all in case of failure.3



Cont = List(Nam) x List(Val) -> Ans Ans = Pair(List(Nam), List(Val)) + f#fg(define match ;;; Pat x Dat -> Ans(lambda (p d)(dispatch p d empty-lnam empty-lval pair)))(define dispatch ;;; Pat x Dat x List(Nam) x List(Val) x Cont -> Ans(lambda (p d ln lv k)(record-case p[Cst (v) (and (equal? v d) (k ln lv))][Var (n) (assoc-c n ln lv (lambda (v) (and (equal? d v) (k ln lv)))(lambda () (k (cons-nam n ln) (cons-val d lv))))][Seq p* (match-seq p* d ln lv k)])))(define match-seq ;;; Pat* x Dat x List(Nam) x List(Val) x Cont -> Ans(lambda (p* d ln lv k)(destruct-case p*[() (and (null? d) (k ln lv))][(p . p*) (and (pair? d)(dispatch p (car d) ln lv (lambda (ln lv)(match-seq p* (cdr d) ln lv k))))])))Figure 1: Generic pattern matching program.This program is tail-recursive, continuation-passing. It traverses the pattern depth-�rst and returns apair of lists or the boolean value #f. The initial continuation pair is applied if the match succeeds andpairs its two arguments. This pair de�nes the substitution environment built through matching. The�rst element of the pair is a list of names, and the second is a list of corresponding values. Each newvariable match extends the two lists. Any mismatch interrupts the matching process. The operatorassoc-c checks the occurrence of a variable earlier in the pattern. It is passed two continuations treatingeach case, and has the type Nam� List(Nam)� List(Val)� [Val ! Ans]� [Unit ! Ans]! Ans(define match-0(lambda (d_0)(and (pair? d_0)(let ([d_2_1_ (cdr d_0)])(and (pair? d_2_1_)(equal? 25 (car d_2_1_))(null? (cdr d_2_1_))(pair '(x) (list (car d_0))))))))Figure 2: Instance of the generic matching program dedicated to the pattern (Seq (Var x) (Cst 25)).This dedicated program traverses the data depth-�rst, tail-recursively. It is in direct style because allthe continuations of the source program depended on the pattern only and thus have been eliminated.Because the list of names is static and the list of values is tail-static, all cross-references have beensolved. The result is either a pair of lists or the boolean #f. However the list of names has been builtat compile-time and the list of values is built only if the match succeeds. This was not the case in thesource program and thus illustrates automatic staging of the matching process.4



(define match-0(lambda (d_0)(and (pair? d_0)(let* ([d_2_0_ (car d_0)] [d_2_1_ (cdr d_0)])(and (pair? d_2_1_)(let ([d_3_2_ (car d_2_1_)])(and (pair? d_3_2_)(let ([d_4_3_ (car d_3_2_)])(and (pair? d_4_3_)(let ([d_5_5_ (cdr d_4_3_)])(and (pair? d_5_5_)(equal? '(1 2 3) (car d_5_5_))(let ([d_5_7_ (cdr d_5_5_)])(and (pair? d_5_7_)(equal? (car d_5_7_) d_2_0_) ; <---(null? (cdr d_5_7_))(let ([d_4_9_ (cdr d_3_2_)])(and (pair? d_4_9_)(null? (cdr d_4_9_))(null? (cdr d_2_1_))(pair '(z y x)(list (car d_4_9_)(car d_4_3_)d_2_0_)))))))))))))))))Figure 3: Result of compiling (Seq (Var x) (Seq (Seq (Var y) (Cst (1 2 3)) (Var x)) (Var z))).The variable x occurs twice, but the corresponding test (cf. arrow) is independent of building thesubstitution environment. There are no computation duplications because of the let expressions.2.4 Compilation of patternsBecause control is entirely determined by the pattern, all control constructions, and most notablycontinuations, are reduced statically. Because the list of names is static, it is built at compile time (andordered consistently with the depth-�rst traversal) and inlined.2 Because the list of values is tail-static(i.e., it is a static list of dynamic values), all cross-references are solved statically.3 What remains is aseries of operations over the data list. Because the source program minimized the accesses to the datalist, and because our partial evaluators do not duplicate dynamic computations, the residual programaccesses the data list minimally and without redundancies. Its correctness stems from the correctnessof the source program and of the partial evaluator.3 AnalysisThis section investigates why compiling patterns by partial evaluation is (1) e�cient and (2) optimizing.2For example, the list of names has been built at compile time by accumulating the �rst occurrences of names in thepattern (cf. �gure 3 { the list of names is (z y x), and the �rst occurrences of names in the pattern were x, y, and z).3Using Schism, the list of values is an actual list, and using Similix, it is represented procedurally, i.e., using Churchpairing. 5



(define match(lambda (p d)(dispatch p d empty-lnam empty-lval pair)))(define dispatch(lambda (p d ln lv k)(record-case p[Cst (v) (and (equal? v d) (k ln lv))][Var (n) (assoc-c n ln lv (lambda (v) (and (equal? d v) (k ln lv)))(lambda () (k (cons-nam n ln) (cons-val d lv))))][Seq p* (match-seq p* d ln lv k)])))(define match-seq(lambda (p* d ln lv k)(destruct-case p*[() (and (null? d) (k ln lv))][(p . p*) (and (pair? d)(dispatch p (car d) ln lv (lambda (ln lv)(match-seq p* (cdr d) ln lv k))))])))Figure 4: Annotated pattern matching program.Underlined expressions depend on the data list. Overlined variables denote partially static values.cons-nam : Nam� List(Nam)! List(Nam) cons-val : Val � List(Val)! List(Val)assoc-c : Nam� List(Nam)� List(Val)� [Val ! Ans]� [Unit ! Ans]! Ans3.1 The source program was properly stagedA program is \well-structured" [Emanuelson 80] or \properly staged" [J�rring & Sherlis 86] if the com-putations depending only on the available data occur �rst. Computations are represented by expressionsin the source program. Binding time analysis classi�es these expressions to be static (depending onlyon available data, i.e., reduced at partial evaluation time), or dynamic (depending on unavailable data,i.e., reduced at run time and, to this end, rebuilt by the partial evaluator).Figure 4 displays the source matching program, where all the dynamic expression have been under-lined and the variables denoting partially static values have been overlined.All the bare expressions are static and thus are reduced at partial evaluation time. The patternis traversed depth-�rst, and since it is static all the control is statically determined. Therefore all thecreations and applications of the continuations are performed at partial evaluation time. The list ofvalues is tail-static: all values are dynamic but the list is built under static control, alongside the listof names which is completely static. Therefore assoc-c is unfolded and cross-references are solved.Compiling a pattern is achieved by unfolding all static and partially static control and data struc-tures and by rebuilding all dynamic expressions, substituting residual expressions for dynamic iden-ti�ers. Eventually, the initial continuation is applied to a static list of names and a tail-static list ofvalues, and converts the tail-static list into a residual expression.6



3.2 Compiled patterns are properly stagedOriginally, the substitution environment is built step by step. It is accessed in three contexts:� when a new variable is encountered, the environment is extended;� when a new occurrence of variable is encountered, the o�set of this variable in the substitutionenvironment is established, and an equality test is performed;� when the match succeeds, the environment is returned as a result.The environment is built by the partial evaluator, symbolically; it is consulted during partial eval-uation; and it is returned as a result if the match succeeds. In other terms, the backbone of this datastructure lives only at partial evaluation time, even though its slots are �lled with dynamic values, i.e.,with residual expressions.The residual program is made out of dynamic expressions that are rebuilt. Relevant references tothe data list are spread in the residual program (with let expressions) and the actual construction ofthe result si delayed until the initial continuation is applied: the substitution environment is built onlyif the match succeeds.3.3 Direct vs. continuation-passing styleBinding time information is more precise when extracted from a continuation-passing program becausethe approximation on returned values is delayed until the �nal result. Therefore the specializer is givenmore static information on the source program and can perform more computations, yielding betterresidual programs. Completely static expressions are reduced, yielding static values. Incompletely staticexpressions are evaluated symbolically, yielding partially static values. Completely dynamic expressionsare rebuilt, yielding residual expressions. Partially static values such as the substitution environmentcan oat from their site of creation to where they are actually used, rather than being frozen in theresidual program.4 Single-Threading and �-ReductionIn the program of �gure 1, the variables ln and lv are single-threaded. They are just passed around, onlyto be accessed in the assoc-c procedure or when passed to the initial continuation. Figure 5 displaysa curried version of �gure 1 where ln and lv are �-reduced everywhere. The auxiliary procedures aredisplayed in appendix.Specializing this program yields the same results as above because it is still in continuation-passingstyle, and thus still properly staged.5 Comparison with Related WorksThe results reported here compare favorably to existing pattern compilers [Teitelman 78, Peyton Jones87], which essentially perform partial evaluation by hand. However, the former handles side-e�ectsand the latter addresses linear pattern matching in lazy lists (pointing out how non-linear patternsperturbate laziness) and repeated matches of a datum against several patterns.7



(define match ;;; Pat x Dat -> Ans(lambda (p d)((cur-dispatch p d pair) empty-lnam empty-lval)))(define cur-dispatch ;;; Pat x Dat x Cont -> Cont(lambda (p d k)(record-case p[Cst (v) (if (equal? v d) k fail)][Var (n) (cur-assoc-c n (test-and-jump d k) (extend n d k))][Seq p* (cur-match-seq p* d k)])))(define cur-match-seq ;;; Pat* x Dat x Cont -> Cont(lambda (p* d k)(destruct-case p*[() (if (null? d) k fail)][(p . p*) (if (pair? d)(cur-dispatch p (car d) (cur-match-seq p* (cdr d) k))fail)])))Figure 5: Curried pattern matching program, where Cont = [List(Nam) x List(Val) -> Ans].Compiling patterns using partial evaluation is a standard exercise, see the bibliography of [Bj�rner,Ershov & Jones 88], but the author is not aware of any compilation including an automatic staging. Itis generally agreed that source programs should be staged so that the computations depending only onavailable data can be performed at partial evaluation time. This paper suggests continuation-passingstyle as a convenient style for programs to be specialized by a self-applicable partial evaluator, to bypassthe approximation of the binding time analysis and to achieve automatic staging. This makes it possibleto compile patterns and to derive the corresponding pattern compiler.The present work is part of a broader investigation of the actual possibilities of self-applicable partialevaluators. [Consel & Danvy 90] describes the compilation of Algol-like programs where syntax analy-sis, scope resolution, and static type checking are performed at compile time, by partially evaluating acontinuation-passing interpreter. [Consel & Danvy 89] points out how to obtain the e�ect of the Knuth-Morris-Pratt linear string matching by partially evaluating a naive and quadratic matching program,and the derivation of directed acyclic word graphs is formalized in [Malmkj�r & Danvy 90]. There, thekey point is to express backtracking under static control so that it is performed at partial evaluationtime. Coupling the two techniques { backtracking under static control and continuation-passing style{ opens the door to tackling, e.g., pattern matching in trees.6 Conclusions and IssuesThis paper describes the automatic compilation of patterns by partial evaluation of a matching program.The interpretive overhead of traversing the pattern is completely removed. Cross-references due to thenon-linearity of patterns are computed at compile-time. Accesses to the data lists are minimized. Thesubstitution environment is built only if the match succeeds, whereas it was built incrementally in thematching program. The compiler is obtained by self-application. As specialized instances, compiledpatterns inherit the structure of the pattern matching program. As a specialized instance, the pattern8



compiler inherits the structure of the partial evaluator.This paper also introduces continuation-passing style as a convenient way to structure source pro-grams to make them specialize well. This style circumvents the approximations of binding time analysisby delaying them until the �nal result and as a byproduct, seems propitiative for dynamic staging. Thusconversion into continuation-passing style appears to be an interesting rewriting method for stagingsource programs.AcknowledgementsThanks are due to Karoline Malmkj�r, Charles Consel, and Andrzej Filinski for commenting earlierversions of this paper.References[Bj�rner, Ershov & Jones 88] Dines Bj�rner, Andrei P. Ershov, Neil D. Jones (eds.): Partial Evaluationand Mixed Computation, North-Holland (1988)[Bondorf & Danvy 90] Anders Bondorf, Olivier Danvy: Automatic Autoprojection of Recursive Equa-tions with Global Variables and Abstract Data Types, DIKU report 90-04, University of Copen-hagen, Denmark (1989)[Consel & Danvy 89] Charles Consel, Olivier Danvy: Partial Evaluation of Pattern Matching inStrings, Information Processing Letters, Vol. 30, No 2 pp 79-86 (1989)[Consel 89] Charles Consel: Analyse de Programme, Evaluation Partielle, et G�en�eration de Compila-teurs, PhD thesis, University of Paris VI, France (June 1989)[Consel & Danvy 90] Charles Consel, Olivier Danvy: Static and Dynamic Semantics Processing, Tech-nical Report 761, Computer Science Department, Yale University (November 1989)[Emanuelson 80] P�ar Emanuelson: Performance Enhancement in a Well-Structured Pattern Matcherthrough Partial Evaluation, PhD thesis, Link�oping University, Sweden (1980)[Jones et al. 89] Neil D. Jones, Peter Sestoft, Harald S�ndergaard: MIX: a Self-Applicable PartialEvaluator for Experiments in Compiler Generation, Vol. 2, No 1 pp 9-50 of the InternationalJournal LISP and Symbolic Computation (1989)[J�rring & Sherlis 86] Ulrik J�rring, William L. Scherlis: Compilers and Staging Transformations. pro-ceedings of the Thirteenth ACM Symposium on Principles of Programming Languages pp 86-96,St. Petersburg, Florida (1986)[Malmkj�r & Danvy 90] Karoline Malmkj�r, Olivier Danvy: Preprocessing by Specialization, TechnicalReport TR-CS-90-3, Department of Computer and Information Sciences, Kansas State University(October 1989)[Peyton Jones 87] Simon L. Peyton Jones: The Implementation of Functional Programming Languages,Prentice-Hall (1987)[Rees & Clinger 86] Jonathan Rees, William Clinger (eds.): Revised3 Report on the Algorithmic Lan-guage Scheme, Sigplan Notices, Vol. 21, No 12 pp 37-79 (December 1986)[Slagle & Gini 87] James R. Slagle, Maria L. Gini: Pattern Matching, pp 716-720 of Encyclopedia ofArti�cial Intelligence, Stuart C. Shapiro (ed.), Wiley-Interscience (1987)9



[Teitelman 78] Warren Teitelman: Interlisp Reference Manual, Xerox Palo Alto Research Center, PaloAlto, California (October 1978)(define fail ;;; Cont(lambda (ln lv)#f))(define test-and-jump ;;; Val x Cont -> Val -> Cont(lambda (d k)(lambda (v)(if (equal? d v)kfail))))(define extend ;;; Nam x Val x Cont -> Cont(lambda (n d k)(lambda (ln lv)(k (cons-nam n ln) (cons-val d lv)))))(define cur-assoc-c ;;; Nam x [Val -> Cont] x [Unit -> Cont] -> Cont(lambda (n s f)(lambda (ln lv)(let ([offset (index n ln)])(if (negative? offset)((f) ln lv)((s (list-ref lv offset)) ln lv))))))(define index ;;; Nam x List(Nam) -> Nat + {-1}(lambda (e l)((rec loop (lambda (n l)(cond[(null? l)-1][(equal? e (car l))n][else(loop (add1 n) (cdr l))]))) 0 l)))Figure 6: Miscellaneous.
10


