A CMOS Bandpass Filter For Low-IF Bluetooth Receivers

Alzaher, HA; Alghamdi, MK


King Fahd University of Petroleum & Minerals

http://www.kfupm.edu.sa

Summary

A CMOS fully integrated 12th-order bandpass filter for low intermediate frequency Bluetooth receivers is presented. The design is optimized to meet the selectivity and dynamic range requirements of Bluetooth while consuming relatively low power. The filter is based on unity gain cells and utilizes linearized MOSFET resistors for tuning. It exhibits a bandwidth of 1 MHz and a programmable center frequency range of 2 to 4 MHz. Experimental results obtained from a standard 0.5-μm CMOS chip show that the filter exhibits an in-band dynamic range of 53.3 dB at gain of 0 dB, and 52 dB at gain of 15 dB, while consuming a total current of 1.32 mA. Attenuations of more than 10, 38, and 55 dB, are achieved for blockers one, two, and three, respectively.

References:
1. *BLUET, BLUET RAD SPEC
2. ABUELMAATTI MT, 1996, ELECTRON LETT, V32, P1077
3. ALZAHER HA, 1999, ELECTRON LETT, V35, P2198
6. CELMA S, 1995, ELECTRON LETT, V31, P1817
7. CHEN JJ, 1995, P I ELECTR ENG, V142, P186
9. ELWAN HO, 1997, IEE P-CIRC DEV SYST, V144, P195
12. GLIB J, 2000, P IEEE RAD FREQ INT, P3
13. HAARTSEN JC, 2000, P IEEE, V88, P1651
15. ISHIKURO H, 2003, P INT S SOL STAT CIR, V1, P94
23. 10.1109/JSSC.2002.806277

For pre-prints please write to: abstracts@kfupm.edu.sa