Calcineurin Promotes Infection of the Cornea by *Candida albicans* and Can Be Targeted To Enhance Fluconazole Therapy

Chiatogu Onyewu, Natalie A. Afshari and Joseph Heitman

Published Ahead of Print 21 August 2006.

Updated information and services can be found at:
http://aac.asm.org/content/50/11/3963

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>This article cites 18 articles, 12 of which can be accessed free at: http://aac.asm.org/content/50/11/3963#ref-list-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENT ALERTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»</td>
</tr>
</tbody>
</table>

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Calcineurin Promotes Infection of the Cornea by Candida albicans and Can Be Targeted To Enhance Fluconazole Therapy

Chiatogu Onyewu, Natalie A. Afshari,* and Joseph Heitman

Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology and Duke University Eye Center, Duke University Medical Center, Durham, North Carolina 27710

Received 30 March 2006/Returned for modification 13 May 2006/Accepted 15 August 2006

In an established Candida albicans murine keratitis model, combination therapy with ophthalmic preparations of fluconazole and cyclosporine A (CsA) demonstrated in vivo drug synergy and effectively resolved wild-type C. albicans infection more rapidly than monotherapy with either drug. Calcineurin, the target of CsA, was also found to contribute to pathogenicity.

Fungal infections of the cornea (fungal keratitis or keratomycosis) cause significant morbidity and can progress to endophthalmitis, with subsequent risk for visual loss (6). In temperate climates, Candida albicans is the most frequent etiology of keratitis caused by yeast-like fungi (6, 13, 15). C. albicans keratomycosis is associated with preexisting ocular or systemic conditions, such as epithelial defects, contact lens use, poor eyelid closure, neurotrophic cornea, diabetes, immunosuppression, and/or corneal transplantation (6, 15). Clinical management of these infections is largely dependent on antifungal drug efficacy and penetration into corneal tissue (7, 9, 14, 15). Fungistatic azole drugs that target ergosterol biosynthesis and perturb cell membrane integrity are relatively successful in managing a variety of Candida disease manifestations (11). However, Candida has evolved sophisticated azole drug resistance mechanisms, which complicate disease management (16–18). Consequently, novel approaches need to be employed to expand antifungal treatment options.

In C. albicans, calcineurin, a serine/threonine phosphatase, is required for survival in the presence of azoles and for virulence in a murine disseminated candidiasis model (1, 4, 10, 12). We previously demonstrated that azoles act synergistically with the calcineurin inhibitor FK506 or cyclosporine A (CsA) to inhibit C. albicans in vitro (4). Here, we explore the potential for applying this drug synergy to a murine model of C. albicans keratomycosis (19). We discovered that the efficacy of topical fluconazole therapy was enhanced by genetic or pharmacological inhibition of calcineurin.

BALB/c mice were immunosuppressed with methylprednisolone (100 mg/kg of body weight) 5 days before, 1 day before, and 1 day after inoculation to rapidly establish and maintain infections (19). An intramuscular injection of a ketamine (10 mg/ml)-xylazine (1 mg/ml) mixture was given, and the right cornea of each animal was scarred with a 28.5-gauge needle. A 5-microliter suspension containing 10⁶ C. albicans wild-type (SC5314) (5) cells was evenly distributed over the scarred cornea. A disease grading scale from 0 (no disease) to 4 (severe disease) was established by an ophthalmologist who was blinded to the infecting C. albicans strain and drug treatment (Fig. 1). The animals were randomly assigned to treatment groups, and treatment was begun when at least one animal in each group achieved a grade 3 or higher infection (Fig. 1). The treated animals received six doses of 2% CsA (10 μg/dose), 0.2% fluconazole (1 μg/dose), or 0.2% fluconazole (1 μg/dose) plus 2% CsA (10 μg/dose) over a 4-day period. For combination therapy, the drugs were administered in succession with at least 2 minutes between doses. Corneas were observed at 1.6× magnification with a Zeiss biomicroscope and slit lamp and scored daily. The results from two independent experiments were combined and analyzed.

All treatment groups exhibited comparable median disease scores prior to treatment (data not shown). The median disease scores of animals treated with combination therapy declined more rapidly than those of all other treatment groups (P < 0.0001) (Fig. 2). Combination therapy significantly reduced median disease scores in 2 days (P < 0.0001) compared to those of untreated animals, while fluconazole monotherapy required 3 days (P = 0.0085) (Fig. 2). Thus, combination therapy improved corneal infections more rapidly than fluconazole monotherapy. The daily change in median disease scores for untreated and CsA-treated animals did not differ (P > 0.2) (Fig. 2). When only grade 4 infections were considered, the disease resolution pattern of animals receiving combination therapy resembled that of the collective group (data not shown). Therefore, combination treatment was effective regardless of disease severity.

Animals were also infected with the C. albicans cnb1/cnb1 calcineurin mutant strain (JRB64) (3) or the cnb1/cnb1+CNB1 complemented calcineurin mutant strain (MCC85) (4). The calcineurin mutant is avirulent in murine disseminated candidiasis models (3, 10), and none of the cnb1/cnb1 mutant infections reached grade 3 (Fig. 1). By day 2, the median disease score of untreated cnb1/cnb1 infections was significantly lower than those of the wild type (P = 0.002) and of the CNB1-complemented mutant strains (P = 0.006) (Fig. 3A). Thus, the...
The absence of functional calcineurin diminished \textit{C. albicans} pathogenicity and accelerated disease resolution in this infection model.

Fluconazole therapy caused the median disease scores of all infected animals to decline more rapidly than those of their untreated counterparts (Fig. 3). By day 2, the median disease score of fluconazole-treated \textit{cnb1/cnb1} infections was significantly lower than that of wild-type infections (\(P < 0.004\)) (Fig. 3B). The disease profiles of fluconazole-treated \textit{cnb1/cnb1} and \textit{cnb1/cnb1/H11001} \textit{CNB1} mutant infections were comparable (\(P = 0.07\)) (Fig. 3B). Because the complemented mutant strain carries only one copy of the wild-type \textit{CNB1} gene, it may exhibit partial phenotypic complementation. Therefore, reduction in calcineurin activity substantially increased the fluconazole susceptibility of the \textit{cnb1/cnb1/H11001} \textit{CNB1} mutant strain, while complete loss of calcineurin reduced the infectivity of the \textit{cnb1/cnb1} mutants in this corneal infection model (Fig. 3). In addition, the median disease score for \textit{cnb1/cnb1} mutant infections reached zero 1 day sooner with fluconazole treatment (Fig. 3), likely owing to the fluconazole hypersensitivity previously demonstrated by calcineurin mutants (1, 3, 4, 12). Thus, the absence of functional calcineurin diminished \textit{C. albicans} pathogenicity and accelerated disease resolution. This observation provided additional support for the idea that a calcineurin-dependent mechanism was responsible for the enhanced clearing observed when wild-type infections were treated with the fluconazole-CsA combination (Fig. 2).

This murine fungal keratitis model provided a unique setting to explore in vivo drug efficacy against \textit{C. albicans} infection. Recent studies have demonstrated that specific host conditions can dictate strain infectivity and antifungal drug efficacy. Although \textit{C. albicans} calcineurin mutants are avirulent in a murine model of disseminated candidiasis and demonstrate reduced pathogenicity in the cornea, as shown here, these
mutants are not attenuated in murine vaginal or pulmonary infection models (1–3, 12). Thus, the role that calcineurin plays in *C. albicans* pathogenicity is dependent on the host niche. In addition, despite being a fungistatic drug, fluconazole exhibited fungicidal activity against *Candida* species under in vitro conditions that simulated the vaginal microenvironment (8). These findings demonstrate that in vitro studies can be applied to specific in vivo conditions to predict *Candida* susceptibility to certain antifungal therapies. Our findings may have broad implications, given that fluconazole and CsA are already used clinically and may be applicable to a wide range of fungi.

We are grateful to Sandra Stinnett for statistical data analysis and to the Duke University Medical Center Pharmacy for compounding drug formulations.

This study was supported by R01 grants AI42159 and AI050438 from the NIH/NIAID to Joseph Heitman and in part by NIH Supplement AI050438-04S1 from the NIAID to Chiatogu Onyewu and the Research to Prevent Blindness Award to Natalie Afshari. Chiatogu Onyewu is a UNCF/Merck Graduate Student Fellow.

REFERENCES

