Genus-Specific Protein Binding to the Large Clusters of DNA Repeats (Short Regularly Spaced Repeats) Present in Sulfolobus Genomes

Xu Peng, Kim Brügger, Biao Shen, Lanming Chen, Qunxin She and Roger A. Garrett

Genus-Specific Protein Binding to the Large Clusters of DNA Repeats (Short Regularly Spaced Repeats) Present in Sulfolobus Genomes

Xu Peng, Kim Brügger, Biao Shen, Lanming Chen, Qunxin She, and Roger A. Garrett*

Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark

Received 4 November 2002/Accepted 24 January 2003

Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters. For the crenarchaeon *Sulfolobus solfataricus* P2, the repeats in the genome fall mainly into two closely related sequence families that are arranged in seven clusters containing a total of 441 repeats which constitute ca. 1% of the genome. The *Sulfolobus* conjugative plasmid pNOB8 contains a small cluster of six repeats that are identical in sequence to one of the repeat variants in the *S. solfataricus* chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from *S. solfataricus*. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N-terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also recognizes both main families of repeat sequences in *S. solfataricus*. The recombinant protein, expressed in *Escherichia coli*, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the *Sulfolobus* genus and in the closely related *Acidianus* genus. We infer that the genus-specific protein induces an opening of the structure at the center of each DNA repeat and thereby produces a binding site for another protein, possibly a more conserved one, in a process that may be essential for higher-order structuring of the SRSR clusters.

* Corresponding author. Mailing address: Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark. Phone: 45-35322010. Fax: 45-35322040. E-mail: garrett@mermaid.molbio.ku.dk.
of a protein from *S. solfataricus* P2 that binds specifically to the SRSR-DNA.

**MATERIALS AND METHODS**

**Cell growth and preparation of cell extracts.** *Sulfolobus* sp. strain NOB82 was provided by W. Zillig, and *S. solfataricus* P2 was purchased from Deutsche Sammlung Mikroorganismer, Darmstadt, Germany. Cells were grown in complex medium containing 2% tryptone at 80°C (17). Conjugation was initiated by mixing *Sulfolobus* sp. strain NOB82 with *S. solfataricus* cells at a ratio of 1:10,000 (17). Cells were harvested at an A° of 0.3 by centrifugation at 4000 rpm at 4°C. The cell pellet was suspended in buffer (10 mM Tris-HCl, pH 7.6; 150 mM KCl; 2 mM dithiothreitol [DTT]; 1 mM EDTA; 0.1 mM ZnCl2; 0.5 mM phenylmethylsulfonyl fluoride; 15% glycerol) and sonicated with a Soniprep 150 (Sanyo, Toky, Japan) at an amplitude of 8 μm for 5 s. This treatment was performed 12 times, interspersed with 40-s cooling periods in ice water. The sample was centrifuged at 100 × g for 1 h at 4°C, and aliquots of the supernatant were stored at −80°C.

**DNA preparation.** DNA fragments containing the repeat sequences were amplified by PCR with pairs of oligonucleotide primers as follows. SRSR-1p (103 bp; biotin-5'-TAGTACTATCTACCCATT-3' and 5'-CGAATTCTAATCCCAAATA-3') and SRSR-2p (158 bp; biotin-5'-TAGTACTATCTACCCCAAATG-3' and 5'-CTACACCACCGGATAATC-3') were both amplified from pNOB8 (18) (sequence accession no. AJ010405). SRSR-2c (151 bp; 5'-CTCCCCCCGACTTCATGATTG-3' and 5'-CTCCCCCCAAGGAATGCAAAGT-3') was amplified from *S. solfataricus* P2 chromosomal DNA (19) (sequence accession no. NC002754). The 325-bp DNA fragment used in the competition assay was amplified from the terminator region of the putative *parAB* operon in pNOB8 (18) with the primers 5'-ACCTCTATGGCTTCTCTTGCC-3' and 5'-TCGTATCCCTAACTTCCG-3'. Oligonucleotides were purchased from DNA Technology and TAG Copenhagen (Denmark). PCR products were purified by QiAquick PCR purification kit (Qiagen, Westburg, Germany), and DNA concentrations were estimated in agarose gels by visual comparison with DNA markers.

For the DNA affinity chromatography, SRSR-2p was purified in a 5% polyacrylamide gel to remove the biotinylated primer, and ca. 140 pmol SRSR-2p was extracted from the gel and bound to magnetic streptavidin beads under standard conditions (DynaI, Oslo, Norway). pUC18 DNA was prepared by the alkaline sodium dodecyl sulfate (SDS) lysis method (16), and the DNA concentration was measured spectroscopically.

**Bandshift binding assay.** A total of 1 to 5 ng of SRSR-2p or SRSR-1p was 32P end labeled on the free 5' end by using T4 polynucleotide kinase (Amersham) and then dissolved in 10 μl of DNA-binding buffer (10 mM Tris-HCl, pH 7.6; 150 mM KCl; 2 mM DTT; 10% glycerol). Increasing concentrations of cell extract or purified SSO454 protein were added, and the components were allowed to react at 50°C for 20 min. For binding experiments with cell extracts, 0.5 μg of carrier pUC18 DNA was added as a nonspecific competitor. After the mixture cooled to room temperature, 1.5 μl of loading buffer (10 mM Tris-HCl, pH 7.6; 50% glycerol; 1 mM EDTA; 0.5% bromophenol blue) was added, and the samples were run in a prerun 7% polyacrylamide gel (14 by 20 cm) in glycerol-tolerant gel buffer (89 mM Tris-HCl, 25 mM taurine, 0.5 mM EDTA; pH 8.9) and electrophoresed at 12 mA and 90 V for 90 min. Gels were autoradiographed with Fuji RX film by using an intensifying screen at ∼80°C. To compare the SRSR-binding activities of the native and recombinant SSO454 proteins, unlabeled SRSR-DNA was used, and the volume of the binding mixture was increased to 15 μl. The SRSR-DNA concentration was increased fivefold, and the protein concentration was scaled up proportionally. After electrophoresis, the polyacrylamide gel was stained with ethidium bromide for 45 min and destained in water for 10 min before photographing it by using the Biometa T13 illuminating system (Whatman) and a EDAS290 digital camera (Kodak).

**Protein purification and sequencing.** A total of 30 ml of cell extract was obtained from 6 liters of *S. solfataricus* culture that had been conjugated with pNOB8. The occurrence of conjugation was established by digesting the total DNA extract with BamHI; gel electrophoresis revealed a strong pNOB8 fragment pattern indicative of a high copy number of plasmid in the conjugants (17). After treatment with 1% streptomycin sulfate (Sigma) for 15 min on ice and centrifugation at 10,000 × g for 10 min, three 10-ml aliquots of supernatant were applied to a ResourceQ column (Bio-Rad). Fast-performance liquid chromatography (FPLC) was performed with a gradient from 0.15 to 1.0 M KCl in 10 mM Tris-HCl (pH 7.6)–1 mM EDTA–2 mM DTT at 4°C. Eluted fractions were checked for binding to the DNA repeats, and positive fractions (containing ca. 0.42 M KCl) were pooled and concentrated with a centrifugal filter (Millipore) to a final volume of 1.8 ml. The fractions were then mixed with SRSR-2p that was bound to streptavidin-magnetic beads (DynaI), and the binding reaction was performed at 50°C for 20 min after an adjustment of the KCl concentration to 0.15 M and the addition of 250 μg of pUC18 and 10 μg of polyclonal antibody (Sigma). The reactions cooled to room temperature, the beads were absorbed on a magnetic stand (DynaI). The supernatant was removed, and the beads were resuspended in 500 μl of binding buffer containing 100 μg of pUC18 to wash the DNA-protein complex. The washing step was repeated three times under the same conditions as for binding. Washing was then performed four times without pUC18, and the protein was eluted with 150 μl of buffer (10 mM Tris-HCl, pH 7.6; 1.0 M KCl; 2 mM DTT; 10% glycerol). The purified protein was electrophoresed in a 12% polyacrylamide–SDS gel (8) and visualized by silver staining (Bio-Rad). Aliquots were stored at −20°C. Protein sequences were determined by Edman degradation, peptide fingerprinting, and matrix-assisted laser desorption ionization–mass spectrometry analyses of the peptides (6).

**DNase I footprinting.** To ensure that only one 5' end was labeled, 32P-end-labeled SRSR-2p and SRSR-1p were digested with *Hin*11032, which cut just down-stream from the biotin-labeled 5' end (Fig. 1). 32P-5'-end-labeled fragments of SRSR-2c were prepared by digesting an end-labeled SRSR-4c fragment in the central spacer with *Hin*11032. The downstream fragment is illustrated in Fig. 1. Binding reactions were performed with 30 to 72 ng of DNA and increasing concentrations of purified SSO454 protein under the same conditions as for the band shift assays, except that the reaction volume was 15 μl. Subsequently, 2 μl of DNA-binding buffer containing 85 mM MgCl2 and 0.1 μl of RNase-free DNase I (Boehringer Mannheim) was added. The mixture was incubated at room temperature for 10 min, and then 17 μl of stop solution (10 mM Tris-HCl, pH 7.6; 20 mM EDTA) and 5 μg of yeast tRNA were added before the DNA was precipitated with ethanol and dissolved in 3 μl of loading buffer (5 mM EDTA [pH 7.5] and 50% deionized formamide with 0.15% each of bromophenol blue and xylene cyanol FF). After being boiled for 3 min, samples were loaded onto a 10% polyacrylamide gel in 89 mM Tris-borate (pH 8.0)–2 mM EDTA–8 M urea. Gel electrophoresis was performed, together with sequencing ladder samples, at 45 V for 2 h, and gels were autoradiographed at −80°C.

**Cloning and expression of SSO454 in Escherichia coli.** A one-step protein purification system, IMPACT T7 (New England Biolabs), was used to express
TABLE 1. Characteristics of archaeal SRS clusters

<table>
<thead>
<tr>
<th>Archaea</th>
<th>Repeat size (bp)</th>
<th>Spacer (bp)</th>
<th>No. of clusters</th>
<th>No. of repeat units</th>
<th>Selected repeat sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Crenarchaeota</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNOB8</td>
<td>24</td>
<td>39–42</td>
<td>1</td>
<td>6</td>
<td>CTTTCAATTCATATAGGATATTCC</td>
</tr>
<tr>
<td>S. solfataricus</td>
<td>20–25</td>
<td>35–41</td>
<td>7</td>
<td>441</td>
<td>CTTTCAATTCTTTTTGGGATTAAATC</td>
</tr>
<tr>
<td>S. tokodaii</td>
<td>24–25</td>
<td>39–41</td>
<td>5</td>
<td>455</td>
<td>GATGAATCCAAAAAGGATGGAAG</td>
</tr>
<tr>
<td>S. acidocaldarius</td>
<td>24–25</td>
<td>37–39</td>
<td>&gt;3</td>
<td>&gt;225</td>
<td>CTTTCAATTCATAGGATATTCC</td>
</tr>
<tr>
<td>A. brierleyi</td>
<td>24–30</td>
<td>&gt;41</td>
<td>&gt;3</td>
<td>&gt;394</td>
<td>CTTTCAATTCATATAGGATATTCC</td>
</tr>
<tr>
<td>A. permix</td>
<td>20–25</td>
<td>40–44</td>
<td>4</td>
<td>73</td>
<td>CTTTCAATTCCTTTGGGATGAC</td>
</tr>
<tr>
<td>P. aerophilum</td>
<td>20–25</td>
<td>40–45</td>
<td>5</td>
<td>131</td>
<td>CTTTCAATTCCTTTTTGGGATTC</td>
</tr>
<tr>
<td><strong>Euryarchaeota</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. kandleri</td>
<td>24–36</td>
<td>53–59</td>
<td>4</td>
<td>27</td>
<td>GTTTCATTACCGATTATACGGGTTAATGCGGAG</td>
</tr>
<tr>
<td>M. jannaschii</td>
<td>24–32</td>
<td>34–47</td>
<td>15</td>
<td>170</td>
<td>AATTAAATGCTAGACCGTTTCCGAATGAAAGA</td>
</tr>
<tr>
<td>P. horikoshii</td>
<td>23–30</td>
<td>37–46</td>
<td>7</td>
<td>145</td>
<td>GTTTCATTATATATTTATGCTATTTGGGAAAC</td>
</tr>
</tbody>
</table>

* Data are included for available crenarchaeal genomes together with representative examples from the euryarchaeota. The genome accession numbers are as follows: S. solfataricus P2, NC002754; S. tokodaii, NC003106; Aeropyrum pernix, NC000854; Pyrococcus aerophilum, NC003864; Methanopyrus kandleri AV19, NC003551; Methanococcus jannaschii, NC000961; and Pyrococcus horikoshii, NC001909; and Pyrococcus hortikoshii, NC000961. Data from incomplete genomes are S. acidocaldarius (L. Chen, A. Zibat, H.P. Klenk, and R. A. Garrett, unpublished data) and Acidia nusus brierleyi (Q. She, unpublished data). The LUNA program was used with parameters that would detect perfect direct repeats, where the number between a set of repeats is between 20 and 80 bp and the length of the repeat is between 20 and 40 bp. Selected repeat sequences found in archaeal SRS clusters illustrate the degree of diversity internal structure, length, and sequence. Boldface letters indicate perfect or imperfect palindromes or inverted repeats.

**RESULTS**

**SRSRs in archaeal genomes.** A sequence repeat search was performed on the sequenced archaeal genomes by using the program LUNA. SRSRs were generally detected as multiple clusters for all archaea except Halobacterium sp. strain NRC-1, although they are present in other haloarchaeal genomes (10). Although the structure within a given SRS cluster is fairly conserved, the sizes of the repeat and spacer regions vary for different clusters within a given genome. These size ranges are listed for the available crenarchaeal genomes and a few representative euryarchaeal genomes in Table 1. The repeat sequence within an SRSR cluster is also almost invariably conserved, whereas the sequences differ between clusters. Moreover, some repeats contain central imperfect palindromic sequences, as reported earlier for the Sulfolobus plasmid pNOB8 (18) or inverted terminal repeat sequences, as exemplified in Table 1. The spacer regions are generally A+T-rich and show no sequence conservation; occasionally, however, individual spacers are G+C-rich, suggesting that they may encode small RNA molecules. The general picture emerges that there is a considerable diversity in the number and sizes of the SRSR clusters and in the sizes and sequences of the SRSR repeats.

**SRSR-protein-binding activity in Sulfolobus.** For protein-binding studies we selected the repeat sequence found in the SRSR cluster of the Sulfolobus conjugative plasmid pNOB8 and amplified fragments containing double (SRSR-2p) and single (SRSR-1p) repeat structures by PCR. Fragments containing two repeats, with a different sequence, were also amplified from a large SRSR cluster present in the S. solfataricus P2 genome (SRSR-2c). These fragments are illustrated in Fig. 1. Biotin was added to the ends of SRSR-2p and SRSR-1p in order to facilitate protein purification.

The copy number of pNOB8 increases dramatically after conjugation into S. solfataricus P2 (17), and we therefore examined the binding of SRSR-2p to cell extract proteins from both conjugated and nonconjugated S. solfataricus P2, as well as from Sulfolobus sp. strain NOB8H2, the natural host of pNOB8, which is closely related phylogenetically to the former strain (98 to 99% 16S RNA sequence identity [data not shown]). Protein binding was observed for each cell extract by using a band shift assay (Fig. 2). The two S. solfataricus samples produced similar gel patterns, but the band shift was slightly less for the NOB8H2 strain. Each of the main complex bands was a doublet, and a weak higher band was discernible at the highest protein concentrations (Fig. 2).

The specificity of protein binding to SRSR-2p was checked for cell extracts of Sulfolobus sp. strain NOB8H2 and conjugated S. solfataricus in a competition assay (Fig. 3). The competitor DNA was either unlabeled SRSR-2p or control DNA amplified from the putative terminator region of the parAB operon in pNOB8 (see Materials and Methods). Although unlabeled SRSR-2p competed strongly at molar excesses of 2.5- to 10-fold (lanes 3 to 6 for Sulfolobus sp. strain NOB8H2 and lanes 11 to 14 for conjugated S. solfataricus), large molar excesses of the unspecific competitor DNA had little effect (lanes 7 to 9 and lanes 15 to 17, respectively). For the specific competitor DNA, a stepwise transition from the upper doublet band to the lower is discernible. The results established that cell extracts from both Sulfolobus strains contained specific SRSR-binding protein(s).
Purification and sequencing of an SRSR-binding protein from *S. solfataricus*. *S. solfataricus* was selected for protein extraction rather than *Sulfolobus* sp. strain NOB8H2 for two reasons. (i) Conjugation in *S. solfataricus* produces a high cellular level of pNOB8 and, therefore, of SRSR repeat sequences, which in turn probably enhances the expression of SRSR-binding protein(s). (ii) The availability of the complete genome sequence (19) would facilitate protein identification.

Cell extracts of conjugated *S. solfataricus* were treated with streptomycin sulfate to remove chromosomal DNA before being loaded onto an anion-exchange column (see Materials and Methods). Fractions eluted from the column were checked for SRSR-binding activity by a band shift assay (see above). Most fractions showed DNA-binding activity, but only fractions eluted in the range of from 0.378 to 0.472 M KCl exhibited specific SRSR-binding activity, as shown by the competition assay (see above). These fractions were collected and concentrated before we purified the protein by DNA affinity chromatography when the washing buffer contained insufficient pUC18 as nonspecific competitor; 5, purified protein. The gel was silver stained. Lanes in panel B: 1, recombinant SSO454 purified from *E. coli*; 2, protein size marker. The gel was stained with Coomassie brilliant blue. The SRSR-binding protein is indicated by a double arrow. The protein that was gradually removed by extensive washing with pUC18-containing buffer is indicated by an open arrow.

Fig. 2. SRSR-2p was 32P end labeled at the 5' end, incubated with *Sulfolobus* cell extracts, and run in a polyacrylamide gel (3 ng of DNA/lane). Lane 1, no cell extract protein; lanes 2 and 3, 3.5 and 7 μg of cell extract protein, respectively, from the *Sulfolobus* sp. strain NOB8H2; lanes 4 and 5, 3.2 and 6.4 μg; lanes 6 and 7, 2.0 and 4.0 μg of cell extract protein from nonconjugated (P2) and conjugated (P2 conj) *S. solfataricus*, respectively. Positions of the protein-DNA complexes are indicated by arrows.

Fig. 3. Testing the binding specificity of the cell extract protein to SRSR-2p. SRSR-2p was 32P end labeled and a band shift binding assay was performed in the presence of unlabeled SRSR-2p or control DNA amplified from another region of pNOB8 (see text). We used 1.4 μg of cell extract protein from *Sulfolobus* sp. strain NOB8H2 (lanes 2 to 9) and 1 μg of cell extract protein from conjugated *S. solfataricus* P2 (lanes 10 to 17). The approximate molar ratios of unlabeled SRSR-2p to 32P-end-labeled SRSR-2p (3 ng) are given above the lane. "No comp." indicates that no competing DNA was added.

Fig. 4. Characterization of the protein that binds to SRSR-2p from cell extracts of *S. solfataricus* P2 (A) and of the recombinant protein expressed in *E. coli* (B) in SDS-polyacrylamide gels. Lanes in panel A: 1, cell extract; 2, protein size marker; 3, FPLC fraction containing SRSR-2p-binding activity; 4, proteins partially purified with DNA affinity chromatography when the washing buffer contained insufficient pUC18 as nonspecific competitor; 5, purified protein. The gel was silver stained. Lanes in panel B: 1, recombinant SSO454 purified from *E. coli*; 2, protein size marker. The gel was stained with Coomassie brilliant blue. The SRSR-binding protein is indicated by a double arrow. The protein that was gradually removed by extensive washing with pUC18-containing buffer is indicated by an open arrow.
SSO454 gene was cloned into a TYB1 vector, expressed in E. coli, and purified native SSO454 with no carrier DNA. Lanes: 1, no protein; lanes 2, 3, and 4, protein was added at 0.5-, 1-, and 2-fold protein-DNA molar ratios, respectively; lanes 5 and 6, protein was added at a 1:1 molar ratio. A twofold molar excess of unlabeled SRSR-2p and control DNA (see Fig. 3) was included in lanes 5 and 6, respectively.

The doublet bands observed for the protein–SSO454 complex are also discernible in the experiments performed with Sulfolobus cell extracts (Fig. 2 and 3). Therefore, these bands do not arise, as first suspected, from the binding of an additional different protein. Thus, we infer that the doublet corresponds to the two single protein-DNA complexes, whereas the single upper band corresponds to the DNA fragment with two bound proteins, as illustrated in Fig. 6. The multiple slow-moving bands observed at higher protein concentrations (Fig. 6, lanes 4 and 8) suggest that the protein can also induce some higher-order structuring of the DNA fragments.

DNase I footprinting of the purified SSO454 protein–SRSR complex. To localize the DNA-binding site, DNase I footprinting was performed on the complex of the native SSO454 protein and SRSR-2p, 32P labeled at one 5' end, and SRSR-2c, 32P 5' end labeled at both ends (see Materials and Methods). Strongly enhanced cutting was observed at the center of each repeat structure, and protection effects were observed along most of the repeat sequence (Fig. 7A). Moreover, the same DNase I cutting pattern was observed for both repeats in SRSR-2p (Fig. 7A). There are no effects within the spacer regions except for weak protection at the first one or two nucleotides adjacent to the repeat (see Fig. 7A, lower repeat), which may reflect steric hindrance of the DNase I by the bound protein. For the SRSR-2c that exhibits seven repeat sequence differences from SRSR-2p concentrated within the central region (Fig. 1), fragment footprinting was performed on both DNA strands. Again, strongly enhanced cutting was observed at the center of the repeat, and protection effects occur over most of the repeat sequence. The results are shown for each strand of one repeat in Fig. 7B. The footprinting results for the protein–SRSR-2c complex are superimposed on the DNA secondary structure in Fig. 7C. The two hypersensitive DNase I sites lie adjacent across the minor groove at a site that is central and outward facing, whereas multiple protection effects are concentrated in the three rear-facing major groove sites. This suggests that the protein binds primarily along the back of the repeat structure and causes a distortion, possibly involving unwinding and/or bending of the double helix, at the center.
The footprinting data for one strand of SRSR-2p (Fig. 7A) yield a similar pattern of enhancement and protection when superimposed on the DNA secondary structure. For the latter, we infer that the lower band of the strongly enhanced doublet (Fig. 7A) probably derives from a secondary cutting after formation of the upper band. The strongest protection effects for both SRSR-2p and SRSR-2c occur in the first one-third of the repeat sequence (Fig. 7C), where the sequence is also most highly conserved (see Discussion), and this may constitute the primary binding site of the native SSO454.

DNase I treatment of the native protein–SRSR-1p complex yielded the same cutting pattern as illustrated in Fig. 7A for SRSR-2p (data not shown), which indicates, in combination with the binding assay (Fig. 6), that the purified protein can bind specifically to a single copy of the repeat sequence.

DISCUSSION

The SRSR-binding protein SSO454 constitutes another chromosomal binding protein from Sulfolobus. It binds to one side of each SRSR and produces an opening of the DNA structure on the other side. This may mean that it produces a binding site for another protein that is, possibly, required for higher-order structuring of the SRSR clusters. At present, we have no further insight into such a process, and the genome context of SSO454 yields no insight because the protein is
encoded in a typical single gene, with a promoter and no Shine-Dalgarno sequence (22), in a conserved region of the Sulfolobus genome (19).

Large SRSR clusters seem to be a general feature of archaeal genomes (Table 1). The small clusters observed in some mesophilic bacteria show insignificant sequence similarity with archaea (11) and, although there are a few extremely thermophilic bacteria, including Thermatoga maritima, that contain larger clusters, with repeat sequences that partially align with those of archaea, these organisms occupy environments in which the genetic exchange with archaea has been shown to occur (14). For the archaea, there appears to be a fairly high level of repeat sequence conservation at the genus level. In addition to Sulfolobus, this has also been shown for the genera Haloferax (10) and Pyrococcus (24). These results are all compatible with the finding of a genus-specific protein, SSO454, binding to the Sulfolobus repeats.

Three archaeal orthologs of SSO454 were identified, with confidence, that are confined to the closely related genera Sulfolobus and Acididunus, and all four proteins show sequence similarity in the range 51 to 59% identity and 58 to 74% similarity. Moreover, all exhibited the tripartite repeat structure that we found in SSO454, and three carry a conserved hydrophobic C-terminal tail. This is illustrated for the aligned sequences (Fig. 8), for which a consensus sequence for the protein repeat is given. The protein repeat sequences give good matches with helix-turn-helix motifs that are implicated in DNA binding (http://www.hgmp.mrc.ac.uk/Software/EMBOSS/). They also give good matches with motifs in many diverse archaeal proteins, to some of which have been attributed DNA-binding functions. However, we could detect no obvious paralogs of SSO454 in the Sulfolobus genome sequences which might, for example, recognize other SRSR sequences.

There is a positive sequence correlation between SSO454, and its orthologs, and the SRSRs, which suggests that the binding protein and repeats have coevolved. The SRSR alignment (Fig. 9) demonstrates that, with one exception, all of the main clusters from Sulfolobus and Acididunus species show closely similar sequence conservation patterns, whereas the other crenarchaeota show marked differences, especially in the second half of their repeats. This raises the possibility that different proteins recognize the families of DNA repeats occurring in different genera (Table 1). In the present study, we demonstrate that SSO454 can bind specifically to the two major groups of repeat sequence found in Sulfolobus, groups which only exhibit ca. 70% sequence identity (Fig. 1). However, the observation that Sulfolobus acididunus, exceptionally, carries two major SRSR clusters with quite divergent repeat sequences (54% identity; Fig. 9) suggests that some organisms may contain more than one repeat binding protein.

Sulfolobus/Acididunus
pNO8
S. solfataricus

S. tokoda1
S. acididunus
A. brierleyi

Other Crenarchaeota
S. acididunus
A. pernix
P. aerophilum

FIG. 9. Alignment of the available crenarchaeal SRSR sequences. The closely similar Sulfolobus and Acididunus sequences were aligned manually in a group, and the more divergent crenarchaeal sequences were aligned separately. Conserved nucleotides are blackened. The asterisks denote the sequences used in the present study. The positions of the strongly enhanced DNase I cuts on the two DNA are indicated by arrows above the alignment. The figure was prepared by using the BOX shade program (http://www.ch.embnet.org/software/BOX_form.html).
We still know little about the biological function of SRSRs. The sheer size and regularity of the clusters in most archaeal genomes testifies to their importance. This is reinforced further by their integrity; even in the *S. solfataricus* genome, which contains ca. 350 potentially mobile elements and several integrated regions, there are no insertions (3, 19, 20). The evidence for a role in DNA segregation is based on the detrimental effect on cell division of inserting vector-borne SRSR clusters into haloarchaeal chromosomes (10). Although the evidence is relatively weak, it receives circumstantial support from analyses of the SRSR-containing *Sulfobolus* plasmid pNOB8 (18) and from our observation that the copy of the pNOB8-like plasmid that has integrated irreversibly into the *S. tokodaii* chromosome has lost its SRSR cluster. Further indirect evidence arises from the observation that SRSR clusters tend to be located near the origins, or termini, of DNA replication in *Pyrococcus* chromosomes (24) and probably also in *S. solfataricus* chromosomes (19). If they play a role in DNA segregation, then it is likely that the SRSR clusters are condensed in the cell and that other proteins are involved.

ACKNOWLEDGMENTS

We thank the following people for help with protein sequencing: Susanne Jacobsen, Danish Technical University, who performed the Edman degradation; Grete Koch, Righospitret, who carried out the peptide fingerprinting; and Gerhard Saalbach, Risø National Laboratory, who performed matrix-assisted laser desorption ionization–mass spectrometry analyses on the peptides.

This research was supported by a postdoctoral stipendium (X.P.) and a talent stipendium (Q.S.), both from the Danish Technical Science Research Council. B.S. received a DANIDA fellowship, and R.A.G. was awarded a Archael Centre Grant from the Danish Natural Science Research Council.

REFERENCES


