
Visual Registering of Arm Pose: a Space Robotics Application

ALDO CUMANI 1, SANDRA DENASI1, ANTONIO GUIDUCCI1,
PIERGIORGIO LANZA2, GIORGIO QUAGLIA1

1Istituto Nazionale di Ricerca Metrologica
Turin, ITALY

2Alcatel Alenia Space Italia
Turin, ITALY

{cumani,denasi,guiducci,quaglia}@ien.it
Piergiorgio.Lanza@aleniaspazio.it

Abstract:This paper deals with the vision algorithms designed for ESA’s Eurobot Flight Model, a robotic system
planned to assist astronauts on the International Space Station during extra-vehicular activities. The algorithm
for registering the robot’s pose with respect to the station is presented, together with some preliminary results
from laboratory simulations.

Key-Words:Visual registering, Space robotics, Stereo vision

1 Introduction
The ability of a robotic vision sensor to register its
relative pose against some known environment is a
useful feature for many applications, e.g. for visual
servoing in automated manufacturing systems. Such
an ability would be useful for space robotics applica-
tions too. For example, the International Space Sta-
tion (ISS) requires Extravehicular Activity (EVA, i.e.
spacewalk) in order to support several tasks, like as-
sembly, maintenance, and repair of the station itself
and of ISS payloads. An autonomous robotic system,
complementary in capability to an EVA crew mem-
ber, would benefit all these aspects of extravehicular
operation.

Such a robot needs visual pose registration for at
least two of its intended tasks:

• navigation on the ISS surface, and

• manipulation of items to be serviced.

Indeed, due to their complexity, neither task could be
reliably performed on the basis of pre-programmed
joint motions alone. On the other hand, periodic vi-
sual feedback would allow the robot to proceed au-
tonomously, without need for continuous monitoring
by a human operator.

In this context, a robotic system, comparable in size
and capability to a crew member, including anthropo-
morphic arms, has been planned by ESA and is known
as the Eurobot Flight Model (EFM). A working Eu-
robot demonstrator, the Eurobot Wet Model (EWM),
is being built in order to have an operational test bed
available throughout the Eurobot programme for early
operational feedback. The demonstrator shall perform

RCS
(Robotic Control

Station)

EWM Robot

y Arm joints
y EEs (Gripper + F/T)
y Pan-Tilt
y Cameras

GNC Control Station

VPU
(Vision Processing Unit)

GPU
(GNC Processing Unit)

Cmd./
Resp.

Telemetry

Cmd./
Resp.

Actuators commands
+ Sensors

Video Signal +
Cameras commands

ethernet

firewire

CAN bus

Figure 1: Functional Architecture of the EWM. The
main communication lines between the RCS the VPU,
GPU and the WET robot are shown in this figure.

simulated EVA tasks in a pool while controlled by a
remote operator, similarly to a crew member in the
ISS using an Intra-Vehicular Activity (IVA) worksta-
tion. It shall be equipped with a vision system, de-
veloped by Alcatel Alenia Space Italia on the basis
of a study of the INRIM Computer Vision Group, to
perform tasks as robot pose registering, object pose
recognition and obstacle detection.

The EWM vision system is described elsewhere
[1], and its overall architecture is shown in Fig. 1 for
the sake of reference.

The EWM has a total of six cameras, three of which
mounted on the head through a pan-tilt unit and de-
voted to navigation and object localization, and the

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 80

other three on the three robot arms, used for finer lo-
calization of serviceable objects and grasping aids.
This paper describes in some detail the algorithms
used for registering the robot’s pose with respect to the
station, together with some preliminary results from
laboratory simulations.

2 Visual registering of the EWM
pose

The problem of registering, from visual data, the
relative pose of the vision sensor against a CAD
model of the environment has been extensively stud-
ied, especially in the field of visual servoing (see e.g.
[2, 3, 4, 5, 6]). All published approaches, anyway, are
variants of a same basic algorithm which consists in
rendering the model from the assumed Point Of View
(POV), comparing the result against actual image fea-
tures and adjusting the POV for the best match.

The registering algorithm proposed for the EWM is
no exception, and can be summarized as follows:

• R1. Extraction of features (edge contours) from
the actual image.

• R2. Wireframe rendering, with hidden line re-
moval, of the CAD model of the environment as
seen from the current estimated POV.

• R3. Matching of observed image edges to ren-
dered model edges and computation of an appro-
priate error function measuring the mismatch.

• R4. Update of the POV estimate by minimisation
of the above error function.

• R5. Loop from R2 (or R3) until convergence or
for a predefined number of iterations.

As this algorithm requires the use of a calibrated sen-
sor, to the above one should logically add a prelimi-
nary step

• R0. Camera calibration.

which, however, needs only be performed once per
robot mission.

In the following, the above steps are described in
some detail.

2.1 Calibration
The calibration phase actually consists of two differ-
ent tasks, namely

a) intrinsic geometric calibration of each camera or
camera subsystem, and

b) hand-eye calibration.

Intrinsic calibration is achieved by means of a state-
of-the art IAC-based algorithm like Bouguet’s [7] or
Zhang’s [8], making use of one or more chessboard
patterns fixed on the ISS and taking advantage of the
mobility of the cameras. Hand-eye calibration is per-
formed by the classic Tsai-Lenz method [9], which
again needs only a chessboard pattern observed from
several poses.

2.2 Pre-Processing.
For each acquired image, step R1 actually consists of
two subsequent steps, namely 1) removal of lens dis-
tortion and 2) extraction of useful image features.

Distortion removal consists in warping the input
image by applying the inverse distortion model, as es-
timated during the calibration step. A convenient im-
plementation of such warping process is via bilinear
interpolation on a lookup table. The output of this
step is an image as would be obtained by a camera
obeying the pure pinhole model.

Feature extractionconsists in locating those pixels
or aggregates of pixels in an image that have some dis-
tinctive characteristics. In a man-made environment
like the ISS, the most useful features are apparent ob-
ject edges, i.e. image contours and segments of such
contours.

The algorithm used for contour extraction is based
on the well established paradigm that defines contours
as lines of maximal intensity variation across the line
itself. It works by first smoothing the intensity image
by a Gaussian filter, and then finding zero crossings
of the second directional derivative of the smoothed
luminance along the luminance gradient direction [10,
11].

Contour lines can then be segmented into straight
or curvilinear segments (see Fig. 2). The minimal in-
formation needed to describe each segment (e.g. end-
point coordinates for a straight segment) can be aug-
mented by attributes describing the luminance transi-
tion across the segment (like mean luminance, tran-
sition amplitude and sharpness), possibly useful for
a more reliable match against the CAD model. The
current implementation, however, only uses straight
segments and does not include photometric attributes,
since due to uncertainty in the actual illumination, the
latter would not be of much use.

Finally, feature coordinates are transformed, using
the intrinsic camera parameters, into calibrated image
coordinates (i.e. corresponding to unit focal length).

2.3 Rendering
As concerns step R2, rendering with hidden line re-
moval relies on the use of an efficient representation of

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 81

Figure 2: Left: example image. Middle: image segments (dark red) and rendered model edges (light green).
Right: detail showing matched points.

the CAD model such as the one provided by a Binary
Space Partition Tree [12]. Transforming a given CAD
model into a BSPT is computationally expensive, but
since the ISS environment is almost unchanging such
computations may be done beforehand.

Given the BSPT, its traversal automatically yields
the model primitives in the correct order (front to
back) for 2D rendering. Hidden line removal is
achieved by depth rendering of each BSPT triangle
onto a z-buffer of suitable size; each new BSPT edge
to be rendered is sampled against the depth map stored
in the z-buffer to determine its visible parts. The al-
gorithm must also properly take into account model
edges that are only visible if they concide with oc-
cluding borders, as e.g. those of the triangular facets
used to approximate a curved surface.

Note that in our case rendering differs from the
standard way in that the 3rd (depth) component of
each visible model edge is kept; this allows to com-
pute the derivatives, needed by the optimization step
(R4), of 2D edge positions with respect to the POV
parameters.

2.4 Matching
Matching is accomplished by taking several equi-
spaced points on each projected model edge, and
searching for detected image edges (segments) or-
thogonally to the model edge and within a specified
distance (see Fig. 2, right). This is similar to [6], al-
though those authors do not use precomputed edge
features but instead perform a search for intensity
variations directly on the image.

2.5 Optimisation
Finally, step R4 defines a cost function as the sum
of the (suitably weighted) squared 2D distances of
matched edge points, linearizes this cost with respect
to the six POV parameters (three for rotation and three
for translation), and finds a correction to the current

POV by solving the latter Linear Least-Squares prob-
lem. The linear parametrization of the cost func-
tion is made possible by the fact that the rendered
edges are known in full 3D, as said before. Indeed,
if X = [x, y, z, t]> are the 3D (projective) CAD coor-
dinates of some world point (e.g. one of the sampled
model points) andXC = [xC , yC , zC , tC]> its coor-
dinates in the camera reference,

XC = MδMcur(M0X) (1)

whereM0 is the known nominal world-camera trans-
formation, derived from the assumed robot pose,Mcur

the current correction (from the previous iteration,
Mcur ≡ I at start) andMδ the sought-for optimizing
correction. All these are4× 4 Euclidean transforma-
tion matrices of the form

M =

[
R t
0> 1

]
=

[
e[r]× t
0> 1

]
(2)

wherer is the vector representation of rotationR, i.e.
r/‖r‖ = rotation axis,‖r‖ = rotation angle, and[r]×
is the antisymmetric matrix representation of vector
cross product byr. Note that the term(M0X) in
Eq. (1) corresponds to the view from the nominal as-
sumed robot pose, i.e. to the actual output of the ren-
dering procedure.

Therefore, ifxm = [xC/zC , yC/zC]> are the (cal-
ibrated) image coordinates of a projected model point
(from Eq. (1)) andxs those of the matched contour
point, we can define a fitting criterion

J(pδ) =
∑

i

f(‖xmi − xsi‖2) (3)

which is parametrized in terms of the six unknowns
pδ = [r>δ , t>δ]> which generate the correction trans-
form Mδ and is easily linearized with respect topδ.
Note thatf(·) = identity corresponds to standard lin-
ear least squares; for reasons of robustness against

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 82

outliers (mismatched points), it would be preferable
to use a robust cost function such as the Lorentzian
cost:

f(e2) = log(1 + e2/σ2) (4)

In our implementation we simulate a Lorentzian
cost function by using suitable error weights, i.e.

f(e2
i) = e2

i /(1 + e2
ip/σ2)

with eip the error values from the previous iteration.

2.6 Iteration
In the current implementation, iteration looping
restarts from step R3, after incorporating the last com-
putedMδ into Mcur. Indeed, assuming small POV er-
rors, the visual structure of the rendered model edges
should be still valid for the corrected POV (i.e. no
big changes in edge visibility). If this is not the case,
as indicated e.g. by large error residuals, the iteration
may restart from step R2, with a new rendering of the
model from the corrected POV (i.e. after incorporat-
ing Mcur into M0).

2.7 Multiple cameras
In the above, the algorithm has been exposed with
reference to a single camera. However, the same ap-
proach is readily extended to a system with any num-
ber of rigidly linked cameras, provided such system
is calibrated (i.e. the relative poses of the cameras
must be known). For a system withN camerasCk,
k = 0 . . . N − 1, Eq. (1) becomes

XCk
= MCk

MδMcurM0X
= MCk

MδMcurM
−1
Ck

(MCk
M0X) (5)

whereMCk
represents the pose of cameraCk relative

to the camera system, and the term(MCk
M0X) corre-

sponds to the rendered model as seen from the nomi-
nal pose ofCk. Substituting Eq. (5) instead of Eq. (1)
into the definition of the costJ(pδ) and summing up
the contributions of all cameras yields an optimization
problem with the same structure as in Sec. 2.5 and that
can be solved analogously.

It should be remarked that, unlike a stereo ap-
proach, this one does not require view-to-view match-
ing, so it is not necessary that all objects be visible
in all views (in fact, each camera could frame a com-
pletely different portion of the environment).

3 Laboratory tests
Some preliminary tests on the visual registration al-
gorithm have been carried on at INRIM. The sensor

was a CCD camera, providing VGA-resolution im-
ages (640×480 pixels), mounted on the end effector
of a Samsung AW1 lightweight arm, and framing a
scene with a typical ISS handrail as shown in Fig. 3.

Camera calibration was done by Bouguet’s algo-
rithm, using a chessboard pattern printed on a stan-
dard A4 sheet of paper, grabbed from five different
poses. Hand-eye calibration was done by Tsai’s algo-
rithm, again using the same pattern as target.

The test reported here consisted in grabbing the
scene from several (40) randomly scattered positions,
as shown in Fig. 4. In the latter, the asterisk marks
the assumed origin of the World Coordinate System
(WCS), located near the center of the handrail, and
nominally at (1.42,-0.04,0.515) in the Robot Coor-
dinate System (RCS). The WCS and RCS axes are
nominally assumed parallel. Note that the “outliers”
mentioned in the figure are two points which were
discarded because the arm was not able to reach the
planned pose due to joint constraints.

The results of running the registration algorithm
for each of these positions are shown in Figs. 5
and 6, which report the positional and angular cor-
rection to the assumed relative pose of robot and
world (handrail), that is the transformation between
the Robot Coordinate System (RCS) and the World
Coordinate System (WCS). These results show that
this approach is able to determine the robot position
with an uncertainty of the order of 2-3 mm, and its
orientation within some 0.1 deg.

Figure 3: Hardware setup and man-machine interface
for pose registration tests with a camera on the robot
wrist.

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 83

0

0.5

1

1.5 −0.5

0

0.5

1

1.50

0.5

1

1.5

40 positions, 2 outliers

Figure 4: Wrist positions in RCS (blue crosses) and
their projections on the coordinate planes (red dots).
The asterisk marks the assumed origin of WCS (near
the center of the handrail).

−0.03 −0.01 0.01

−0.02

0

0.02

X

Y

center XY

−0.03 −0.01 0.01

0

0.02

0.04

X

Z

center XZ

positional correction [m]

mean = [−0.010227 −0.0043874 0.017035]

sdev = [0.0023058 0.0012249 0.0018705]

Figure 5: Estimated positional correction to the origin
of WCS.

References:

[1] P. G. Lanza, A. Cumani, S. Denasi, A. Guiducci,
and G. Quaglia, “Image processing applied on
the WET robot prototype,” inProc. Intl. Space
System Engineering Conf. DASIA 2006, 2006.

[2] D. G. Lowe, “Fitting parameterized three-
dimensional models to images,”IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, vol. 13, pp. 441–450, May 1991.

[3] M. Armstrong and A. Zisserman, “Robust object
tracking,” in Proceedings of the Asian Confer-
ence on Computer Vision, pp. 58–61, 1995.

[4] G. D. Hager, S. Hutchinson, and P. Corke, “A
tutorial on visual servo control,”IEEE Trans.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Y

Z

x axis

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Z

X

y axis

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

z axis

angular corrections [deg]

sdev.x = [0.23855 0.070133]

sdev.y = [0.10878 0.23862]

sdev.z = [0.06947 0.1084]

Figure 6: Estimated angular correction to WCS ori-
entation. Each plot represents the components of a
WCS axis on the plane orthogonal to the correspond-
ing RCS axis.

Robot. Automat., vol. 12, no. 5, pp. 651–670,
1996.

[5] F. Martin and R. Horaud, “Multiple-camera
tracking of rigid objects,” Tech. Rep. RR-4268,
INRIA, 2001.

[6] T. Drummond and R. Cipolla, “Real-time vi-
sual tracking of complex structures,”IEEE
Trans. Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 7, 2002.

[7] J. Y. Bouguet, “Complete camera calibra-
tion toolbox for MATLAB,” tech. rep.,
http://www.vision.caltech.edu/
bouguetj/calib doc/index.html ,
2004.

[8] Z. Zhang, “A flexible new technique for camera
calibration,” Tech. Rep. MSR-TR-98-71, Mi-
crosoft Research, 1998.

[9] R. Tsai and R. Lenz, “A new technique for fully
autonomous and efficient 3d robotics hand/eye
calibration,” IEEE Trans. Robotics Automat.,
vol. 5, no. 3, pp. 345–358, 1989.

[10] P. Grattoni and A. Guiducci, “Contour coding
for image description,”Pattern Recognition Let-
ters, vol. 11, no. 2, pp. 95–105, 1990.

[11] A. Cumani, “Edge detection in multispectral im-
ages,” CVGIP: Graphical Models and Image
Processing, vol. 53, no. 1, pp. 40–51, 1991.

[12] M. Paterson and F. Yao, “Efficient binary space
partitions for hidden surface removal and solid
modeling,”Discrete and Computational Geom-
etry, vol. 5, pp. 485–503, 1990.

Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 84

