δ^97/95 Mo VARIATION IN MOLYBDENITES: A LINK WITH MINERALIZING PROCESSES?

Noémie Breillat 1,2 – Catherine Guerrot 1 – Philippe Negrel 1 – Eric Marcoux 2

1 BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France, e-mail: n.breillat@brgm.fr
2 Université d’Orléans, ISTO, UMR 7327, 45071 Orléans, France.

Molybdenum (Mo) isotopic compositions are usually studied to reconstruct (paleo-) redox conditions in ocean (e.g., Siebert et al., 2003). Some studies also focus on isotopic compositions of Mo in molybdenite in order to decipher a possible genetic link between isotopic variations and mineralizing processes. This is also the aim of our work based on a wide molybdenite databank. We propose here a comparison of δ^97/95 Mo of 101 molybdenite samples from different localities, different types of occurrences and different ages. This databank of 101 molybdenites, presently analyzed, represents various types of mineralization as samples from 5 skarns, 7 porphyry deposits, 9 pegmatites, 5 granites, 2 greisens, 7 perigranitic veins and 9 alpine-type fissure veins have been studied. Molybdenite sample ages vary from 5Ma to 2.7Ga. The Mo isotopic composition has been determined on molybdenites using a MC-ICP-MS Neptune after aqua regia dissolution and adjustment to [Mo] = 1µg·g⁻¹. Mass bias was corrected by using Zr as dopant and standard-sample-standard bracketing. The δ^97/95 Mo ratios have been normalized to NIST 3134. The external reproducibility is 0.07‰ (2σ).

The overall range of the δ^97/95 Mo ratio in the 101 molybdenite samples varies from -0.58 to 0.89‰. The δ^97/95 Mo ratio is higher for the molybdenites formed in alpine-type fissure veins, greisens and perigranitic veins than for the molybdenites issued from granites, pegmatites, porphyry deposits and skarns. The crystallization temperature can explain this difference as alpine-type fissure veins, greisens and perigranitic veins crystallize at lower temperatures than the other types of deposits. For some occurrences, the δ^97/95 Mo has been performed on several molybdenite samples and variability at occurrence scale has been observed. For example, in Azegour skarn (Morocco), the δ^97/95 Mo varies from -0.40 to 0.32‰ (n= 29) and in “Ravin de la Ruine” alpine-type fissure veins (France) from -0.08 to 0.77‰ (n=3). As noted by Hannah et al. (2007), no correlations appear between δ^97/95 Mo and age of the deposits. Further Re-Os dating, Pb and S isotopic compositions in particular deposits (e.g. Azegour skarn) will help to decipher the origins of these variations.

References