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Abstract

This paper studies fundamental connections between profunctors (i.e., dis-
tributors, or bimodules), open maps and bisimulation. In particular, it proves
that a colimit preserving functor between presheaf categories (corresponding to
a profunctor) preserves open maps and open map bisimulation. Consequently,
the composition of profunctors preserves open maps as 2-cells. A guiding idea
is the view that profunctors, and colimit preserving functors, are linear maps in
a model of classical linear logic. But profunctors, and colimit preserving func-
tors, as linear maps, are too restrictive for many applications. This leads to a
study of a range of pseudo-comonads and how non-linear maps in their co-Kleisli
bicategories preserve open maps and bisimulation. The pseudo-comonads con-
sidered are based on finite colimit completion, “lifting”, and indexed families.
The paper includes an appendix summarising the key results on coends, left
Kan extensions and the preservation of colimits. One motivation for this work
is that it provides a mathematical framework for extending domain theory and
denotational semantics of programming languages to the more intricate models,
languages and equivalences found in concurrent computation. But the results
are likely to have more general applicability because of the ubiquitous nature of
profunctors.
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1 Introduction

At first sight, it is perhaps surprising that profunctors,1 a categorical generalisation
of relations [5, 31], and bisimulation [37, 42], a central equivalence in the study of
processes are intimately related. Briefly, the chain of connections runs:

- Nondeterministic processes can be represented as presheaves. A presheaf over a
category P can be thought of as a form of transition system whose computation
paths have shapes objects in P; the objects of P are paths and the arrows of P
express how one computation path can extend to another. A presheaf category
P̂ = [Pop,Set] is the free colimit completion of P, so its objects, presheaves, as
colimits, are collections of paths identified along subpaths. Familiar models of
processes such as known categories of synchronisation trees and event structures,
and many others, can be realised as presheaf categories P for some suitable choice
of category P [28].

- Bisimulation between processes is caught via spans of open maps. An open map
between presheaves is a generalisation of a functional bismulation between tran-
sition systems (i.e., a bisimulation whose underlying relation on states happens
to be a function). In many, though not all, cases the bisimulation obtained
coincides with familiar definitions [28].

- Profunctors correspond to colimit preserving functors between presheaf cate-
gories, which somewhat remarkably preserve open maps and so bisimulation
(see Theorem 3.3).

The concept of a bisimulation was invented by Milner and Park as a relation
between the states of labelled transition systems to express when two states have
essentially the same communication capabilities [37, 42]. Showing processes bisimilar
(an equivalence given as a maximum fixed point) amounts to exhibiting a bisimulation
(a postfixed point) relating them. This coinductive method comes from a direct
reading of Tarski’s fixed point theorem [50].

Subsequently the idea of bisimulation has been extended and generalised to a
range of languages and models, most often based on a transition system obtained
from an operational semantics. Though a pattern has emerged, bisimulation is most
often defined in an ad hoc manner for the language at hand, and sometimes can be a
matter of great subtlety [36].

Broadly speaking, there are two lines of development in making the definition of
bisimulation more systematic; so that the variety of bisimulation is determined by
the denotational semantics given to a language. One approach is that based on the
recognition that bisimulation arises from final coalgebras. This line is very fruitful
in a range of categories of process models and domain theories, and often furnishes
useful proof principles of coinduction, echoing the technique promoted by Milner and
Park [25]. The other approach is based on open maps.

Open maps have a prehistory in pure mathematics [27], but first appeared in
computer science in [28]. Their initial role was in giving a unified approach to a

1Also called distributors and bimodules.
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range of models for concurrent computation, from interleaving models like transition
systems to independence, or causal, models such as Petri nets and event structures. As
summarised in the handbook chapter [54, 55], it had become useful to regard models
for concurrency as categories (for example, as a category of transition systems, or
a category of Petri nets). Then the constructions being used to model processes
in a variety of models could be understood in a uniform way, as being the same
categorical constructions, and different models were often related by adjunctions.
The diagrammatic definition of open maps, expressing a path-lifting property, made
sense in a range of categories of models for concurrency.

The landscape of models was however somewhat arbitrary and patchy. The cate-
gories of traditional models were not sufficient in themselves to provide semantics to
higher order processes, or even CCS with late value passing. The fact that open maps
were based on paths suggested building models for processes directly on the compu-
tation paths of which the processes were capable. Given a category of computation
paths P, the presheaf category [Pop,Set] is its colimit completion. An individual
presheaf X : Pop → Set consists of a collection of computation paths glued together
at the shared subpaths, from which they nondeterministically branch.

Presheaf categories fill in the landscape of models to provide a range of models
for concurrency. They are as versatile as the notion of computation path. With
suitable choices of computation path, presheaves subsume traditional models such as
synchronisation trees (where paths are finite sequences) and event structures (where
paths are finite partial orders of events). (This is one place where a traditional use
of powerdomains based on domains of resumptions [43], can fall short; being based
on a nondeterministic choice of actions one at a time, it cannot accommodate the
potentially complex structure of computation paths.)

Profunctors are maps relating presheaf categories. As such, profunctors can play a
fundamental role in understanding the semantics of interacting processes, and suggest
a new form of domain theory for concurrency. According to this view, objects of the
bicategory of profunctors Prof , which are small categories P, Q, · · ·, stand for types
of processes. A process having type P means that the process performs computation
paths which lie in P. The arrows of Prof , are profunctors F : P + Q and so functors
F : P × Qop → Set, and so correspond to functors F : P → Q̂. Because presheaf
categories are free colimit completions, this means that profunctors from P to Q
correspond to colimit preserving functors between presheaf categories from P̂ to Q̂,
and map processes of type P to processes of type Q. The bicategory Prof can be
endowed with a rich type discipline guided by the view of Prof as a model of classical
linear logic. In particular, there are function spaces P ⊸ Q, the type of higher order
processes which take a process of type P as argument and deliver a process of type Q as
result. Recursive domain equations can also be treated in this generalised setting [12].

It is sensible to view a profunctor F : P + Q as a linear map which on input of a
process of type P yields a process of type Q. Linearity is about how to manage without
a presumed ability to copy or discard, and accordingly a linear map uses exactly one
copy of the input process. Although it can be hard or impossible for processes to
copy processes, which may be highly distributed, it is generally easy for processes to
ignore other processes. So, for many applications linearity is too stringent a general
requirement on maps. For example, a profunctor, regarded as a colimit preserving
functor between presheaf categories, will necessarily send the empty presheaf to the
empty presheaf; input of the inactive nil process will always yield the nil process. In
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linear logic the standard way around this stringency is to take maps from P to Q
to be linear maps from F(P) to Q where F is an operation on types obeying laws
including those of a comonad. A choice of F which allows input to be discarded but
not copied will lead to affine maps, while other choices can support various regimes
of copying. This methodology can be followed for profunctors when different choices
of F determine maps which are linear/affine/continuous according to whether they
use (exactly one)/(at most one)/(finitely many) copies of the input process.

Whether a map is linear/affine/continuous is reflected in whether a path of its
output is determined by (exactly one)/(at most one)/(finitely many) paths of the
input process. Accordingly an object of F(P) can be thought of as a form of compound
path consisting of an assembly of paths (i.e., objects) of P. One interesting case we
shall study is when F(P) is P⊥ consisting of P to which an initial empty path has
been freely adjoined. From this choice we obtain a form of affine linear map, and
accordingly a model of affine linear logic. Another interesting case is when F(P) is the
free finite colimit completion of P. An object of F(P) can then be thought of as a finite
collection of paths, objects from P, glued together along subpaths. The associated
(continuous) maps correspond to filtered colimit preserving functors between presheaf
categories; the category is cartesian closed, and a model of intuitionistic logic. This
example is fairly well known. But, as we shall see, there are several other interesting
possible choices for F , and they can behave better with respect to open maps.

Linearity underpins distributed processes. Although we cannot expect all maps to
be linear, it is useful when they are (linear maps preserve colimits so nondeterministic
sums) and, in the standard fashion, we can moderate the strictness of linearity by
explicitly allowing the discarding and copying of processes. The bicategory of pro-
functors is one place where all this can be made precise,2 while at the same time being
rich enough in structure to subsume a range of models and support bisimulation. The
references, especially in “Conclusions”, provide the beginnings of a bibliography of its
applications to the semantics of process languages.

A remark on applications and examples. Where appropriate we point to appli-
cations to process models and the semantics and equivalences of existing of process
languages. To a large extent the mathematics has been developed in order to interpret
processes as presheaves. But we don’t see our primary business as being in chasing
up the latest process syntax to give it mathematical meaning. The mathematics has
a curious life of its own, exhibiting much more structure than is currently reflected
in process languages. A role of the mathematics is to suggest new connections and
insights, as well as new process languages and models, operational semantics and
equivalences.

Outline

We start in Section 2 by recalling the fundamental definitions and properties of
presheaf categories, open maps and bisimulation, including preservation properties
of open maps across adjunctions, for later use. Section 3 is devoted to the proof of

2Another place is in the work of Matthew Hennessy[20], who in developing a domain theory for
concurrency used a direct analogue of Prof , essentially one based on relations F : P × Qop → 2

where the role of the category Set in defining a profunctor has been replaced by the partial order
comprising 0 < 1. See too the more recent work of Nygaard and Winskel on a domain theory for
concurrency based on this view [40]. A semantics based on such relations is not sufficiently sensitive
to the branching behaviour of processes to support bisimulation.
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a major result: that colimit preserving functors between presheaf categories preserve
open maps. In Section 4 the bicategory of profunctors Prof is introduced alongside
the equivalent 2-category in which arrows are colimit preserving functors between
presheaf categories. Section 5 exhibits the rich structure of the bicategory Prof , ex-
plaining the sense in which it can be made into a model of classical linear logic, once
a choice of (pseudo) comonad for the exponential is made. The result on preservation
of open maps in Section 3 is extended to preservation results for Prof in Section 6,
showing that composition of profunctors preserves open maps. Our first candidate for
an exponential on Prof is motivated by an analogy with domain theory. This anal-
ogy is pursued in Section 7; the construction of forming a presheaf category is shown
analogous to a powerdomain, and the bicategory of profunctors analogous to a cat-
egory of nondeterministic domains. The continuous maps induced between presheaf
categories do not preserve open maps and bisimulation in general. So in Sections 8
and 9 we look more broadly at other ways in which to moderate the linear maps that
are profunctors to obtain affine and continuous maps suitable for denotational seman-
tics. This can be achieved in a uniform way via pseudo-comonads based on families
of paths, with results emphasising the preservation of open maps. The Conclusion
points to the current status of presheaf models for concurrency, which is one of the
major application areas.

Finally, some remarks on category theory. We rely heavily on coend notation
and left Kan extensions, the main results concerning which are summarised in the
Appendix, along with further references. It is extremely helpful to make use of nat-
urality to simplify proofs that functors expressed as coends preserve colimits—see
Section A.3. The results of the Appendix are perhaps best referred to in a demand
driven way. We have tried to be as light handed as possible in our treatment of
2-categorical and bicategorical issues. The use in this paper of pseudo-comonads
predated and to some extent motivated Cheng, Hyland and Power’s systematic defi-
nition and study of pseudo monads and their attendant constructions [16]. We refer
the reader to that work and the recent work of Power and Tanaka [46, 49] for the
definitions and results of pseudo-monads and pseudo-comonads on a 2-category, and
to legitimise the terminology here. We will use their concepts for bicategories, as they
transfer via biequivalences of the bicategories with specific 2-categories. Finally, the
reader is warned that for us a category being small means that it is equivalent to a
category of which the objects and arrows form sets (what others often call “essentially
small”).

2 Presheaves, open maps and bisimulation

In this section we recall the definition and main properties of presheaf categories. We
introduce the definition of bisimulation on presheaves via open maps. The original
motivation for viewing processes as presheaves and basic results can be found in [28].

Let P be a small category. The category of presheaves over P, often denoted by
P̂ or by SetPop

, is the functor category [Pop,Set] whose objects are contravariant
functors from P to Set (the category of sets and functions) and whose arrows are the
natural transformations between such functors.

A category of presheaves, P̂, is accompanied by the Yoneda embedding, a functor
yP : P → P̂, which fully and faithfully embeds P in the category of presheaves. For
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every object P of P, the Yoneda embedding yields yP(P ) = P(−, P ). Presheaves
isomorphic to images of objects of P under the Yoneda embedding are called repre-
sentables.

Via the Yoneda embedding we can regard P essentially as a full subcategory of P̂.
Moreover P̂ is characterized (up to equivalence) as the free colimit completion of P.
In other words, the Yoneda embedding yP satisfies the universal property that for any
functor F : P → E , where E is a cocomplete category, there is a colimit preserving
functor G : P̂→ E , determined to within isomorphism such that F ∼= G ◦ yP:

P
yP

F

∼=

P̂

G

E

We may choose G such that F = G ◦ yP. Observe that G is the functor part of
the left Kan extension of F along yP, LanyP

(F )—see Appendix A.4.3. Notice also

that the functor LanyP
(F ) above always has a right adjoint, F ∗ : E → P̂ given by

F ∗(E) = E(F (−), E).
In applications to the semantics of concurrent processes, the category P is to be

thought of as consisting of path objects, or computation-path shapes. The Yoneda
Lemma [33], by providing a natural bijection between P̂(yP(P ), X) and X(P ), justifies
the intuition that a presheaf X : Pop → Set can be thought of as specifying for a
typical path object P the set X(P ) of computation paths of shape P . The presheaf
X acts on a morphism m : P → Q in P to give a function Xm : X(Q) → X(P )
saying how Q-paths restrict to P -paths. A presheaf being a colimit of path objects
can be thought of as a collection of computation paths glued together by identifying
sub-paths.

Bisimulation on presheaves is derived from the notion of open map [27].

Definition 2.1 A morphism f : X → Y , between presheaves X, Y , is P-open if for
all morphisms m : P → Q in P, the square of functions

X(P )

fP

X(Q)
Xm

fQ

Y (P ) Y (Q)
Y m

is a quasi-pullback, i.e. whenever x ∈ X(P ) and y ∈ Y (Q) satisfy fP (x) = (Y m)(y),
then there exists x′ ∈ X(Q) such that (Xm)(x′) = x and fQ(x′) = y.

In [28] a broader notion of open map, based on a path lifting property was presented:

Definition 2.2 Let M be a category and I : P → M a functor. Say that an arrow
f : M1 →M2 is I-open if for every commuting square

I(P )
p

Im

X

f

I(Q)
q Y

7



there exists an arrow r : I(Q)→ X such that r(Im) = p and fr = q.

Let I : P → M. Note that any isomorphism is I-open and that I-open maps form
a subcategory. Another useful, direct consequence of the definition of openness is
the following. Suppose I ′ : P′ →M and that I ′ factors through I in the sense that
I ′ ∼= I ◦ J for some functor J : P′ → P. Then I-open maps are necessarily I ′-open.
In particular, if I and I ′ are naturally isomorphic, then an arrow is I-open iff it is
I ′-open.

In the case of presheaves the definition of open map, translates via the Yoneda
Lemma to an equivalent path-lifting property of f :

Proposition 2.3 A morphism between presheaves is P-open iff it is yP-open.

In the main we shall work with open maps in presheaf categories; only rarely shall
we need to make explicit which notion of openness is intended.

Open maps generalise functional bisimulations of process algebra (i.e., where the
bisimulation relation is a function). A symmetric relation of bisimilarity is obtained
through the presence of spans of surjective open maps.3 (Because presheaves may
lack unique elements corresponding to initial states we insist on the surjectivity
condition—otherwise any two presheaves would be related by a span of open maps
from the empty presheaf.)

Definition 2.4 We say that presheaves X, Y in P̂ are P-bisimilar iff there is a span
of surjective open maps between them. This is equivalent to there being a subobject
R →֒ X × Y such that the compositions with the projections

R →֒ X × Y
π1→ X and R →֒ X × Y

π2→ Y

are surjective open.

The following preservation property of open maps along adjunctions will be useful in
Section 9 (see [17, 28] for other applications and a related result):

Lemma 2.5 If P
H
A

L

⊤ B,
R

are three functors with L left adjoint to R, we

have for every arrow g in B, that Rg is H-open iff g is LH-open.

Proof: “only if”: Suppose

LH(P )
p

LHm

B

g

LH(Q)
q C

3Surjective maps in a presheaf category are those natural transformations between presheaves
whose components are always surjective functions; surjective maps coincide with epimorphisms in
presheaf categories.
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commutes. Then the following commutes as well:

H(P )
p

Hm

R(B)

Rg

H(Q)
q

R(C)

where p and q are the transpositions of p and q along the adjoint pair L ⊣ R [33].
Let, then r : H(Q)→ R(B) be such that r(Hm) = p and (Rg)r = q. Transposing r,
gives r : LH(Q)→ B such that (see [33])

r(LHm) = (r(Hm) = p = p

and
gr = (Rg)r = q = q .

The “if” part uses the reverse argument, this time starting from a commuting
square in A. 2

In this paper the above proposition will often be applied in the context of presheaf
categories; it then takes the form of the following lemma:

Lemma 2.6 If I : P → Q̂ is a functor, then an arrow h in Q̂ is I-open iff I∗(h) is
yP-open.

Proof: We have the following situation:

P
yP

P̂
LanyP

(I)

⊤ Q̂ .
I∗

By Lemma 2.5 above, we have that h is LanyP
(I)yP-open iff I∗(h) is yP-open. However,

since yP is full and faithful, LanyP
(I)yP

∼= I, and so I-openness and LanyP
(I)yP-

openness coincide. 2

We remark that categories of process models often fit the situation described in
Lemma 2.5. For example A might be the category of labelled event structures, B the
category of Petri nets, related by an adjunction with right adjoint R “unfolding” a net
to an event structure. Appropriate computation paths P are then finite labelled partial
orders of events (pomsets) in event structures, with H the inclusion of pomsets. The
lemma then says that open maps, and so bisimulation, are preserved by the unfolding
of nets. (See [28, 55] for more detail and further examples.)

3 A result on open map preservation

We are about to prove a key result, that colimit preserving functors, the mathemat-
ically natural maps between presheaf categories, preserve open maps and open map
bisimulation. In preparation, it is helpful to think of a category of elements of a

9



presheaf over P (see Definition A.13) as a transition system in the which the compu-
tation paths have shapes in P. This point of view, in which the objects of the category
of elements are regarded as states and its arrows as transitions, is emphasised in [56].
We examine how properties of maps between presheaves correspond to well-known
properties of morphisms of transition systems [54].

Proposition 3.1 Let f : X → Y be a map in P̂.

(i) Suppose (El(f))(x) = y and x e→ x′ in El(X). Then, there is y′ such that
(El(f))(x′) = y′ and y e→ y′ in El(Y ):

x
e

x′

y e
y′

(ii) Suppose (El(f))(x′) = y′ and y e→ y′ in El(Y ). Then, there is x such that
(El(f))(x) = y and x e→ x′ in El(X):

x
e

x′

y e
y′

(iii) Assume f is an open map. Then, El(f) satisfies the condition that if (El(f))(x) =
y and y e→ y′ in El(Y ), then, there is x′ such that (El(f))(x′) = y′ and
x e→ x′ in El(X):

x
e

x′

y e
y′

Conversely, if El(f) satisfies this condition, then f is an open map.

Proof:
(i) Directly from the functoriality of El(f).
(ii) Directly from the naturality of f .
(iii) Directly from the quasi-pullback condition expressing the openness of f . 2

The property (iii) says that a map f : X → Y between presheaves is open exactly when
El(f) : El(X)→ El(Y ) is a “functional bisimulation” between categories of elements,
viewed as transition systems (a functional bisimulation is a bisimulation [37, 42] whose
graph is a function). From the point of view of transition systems, condition (ii) is
expected when the transition systems are unfoldings (condition (ii) holds for instance
in the categories of label-preserving morphisms of synchronisation trees and event
structures [54, 28]).

By combining properties (ii) and (iii) we immediately obtain that open maps
reflect “zig-zags” in the following sense.
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Corollary 3.2 Assume f is an open map. Suppose (El(f))(x0) = y0 and that

y0 y2 . . . . . . yn

y1
e0

e1

y3
e2

y2k+1
e2k

e2k+1

yn−1
en−2 en−1

—a “zig-zag”, in El(Y ). Then there is a corresponding “zig-zag”

x0 x2 . . . . . . xn

x1
e0

e1

x3
e2

x2k+1
e2k

e2k+1

xn−1
en−2 en−1

in El(X) with (El(f))(xi) = yi whenever 0 ≤ i ≤ n.

Proof: We lift the en-arrows, when n is even by (ii), and when n is odd by (iii) of
Proposition 3.1. 2

The next theorem, a major result of this paper, was first announced in [14].

Theorem 3.3 A colimit preserving functor between presheaf categories preserves open
maps.

Proof: As P̂, yP is a free colimit completion, to within isomorphism, any colimit
preserving functor from P̂ to Q̂ can be obtained as a left Kan extension LanyP

F of

a functor F : P → Q̂. Clearly if a functor preserves open maps, then so does any
functor naturally isomorphic to it. So, without loss of generality, it suffices to show
that, assuming a functor F : P → Q̂, its left Kan extension L = LanyP

F : P̂ → Q̂
preserves open maps.

Let Y be a presheaf in P̂. Recall from the Appendix, A.4.2, that

L(Y ) = colim (El(Y ) πY→ P F→ Q̂) .

Taking advantage of the concrete presentation of colimits in Set—see the Appendix,
Proposition A.4, we can express (L(Y ))(Q), where Q is an object of Q, as a set of
equivalence classes:

(L(Y ))(Q) =
∑

(P,y)∈|El(Y )|(FP )(Q)/ ∼

where ∼ is the least equivalence relation such that ((P, y), u) ∼ ((P ′, y′), u′) if

∃e : (P, y)→ (P ′, y′) in El(Y ). (Fe)Q(u) = u′ .

Thus, ((P, y), u) ∼ ((P ′, y′), u′) iff there is a “zig-zag” in El(Y ), viz.

(P0, y0) (P2, y2) . . . (Pn, yn)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2

en−1

with

u0 u2 . . . un

u1
(Fe0)Q

(Fe1)Q

u3
(Fe2)Q (Fe3)Q un−1

(Fen−2)Q

(Fen−1)Q

11



where y = y0, y′ = yn, and u = u0, u′ = un.
For a presheaf Y in P̂, the components of the colimiting cone 〈FP (Q)

γP,y→
LY (Q)〉(P,y)∈|El(Y )| are given explicitly by

γP,y(u) = {((P, y), u)}∼ .

It will be useful to understand the functorial actions of Lh and LY on represen-
tatives of ∼-equivalence classes.

For m : Q→ Q′ in Q,

LY (m)({((P ′, y′), w)}∼) = {((P ′, y′), FP ′(m)(w))}∼ .

The map LY (m) is the unique function, mediating between the colimiting cones

〈FP (Q)
γP,y→ LY (Q)〉(P,y)∈|El(Y )| and 〈FP (Q′)

γ′
P,y→ LY (Q′)〉(P,y)∈|El(Y )|, such

that

FP (Q′)
γ′

P,y

FP (m)

LY (Q′)

LY (m)

FP (Q)
γP,y

LY (Q) .

For h : X → Y in P̂, the component of Lh at an object Q is a function (Lh)Q :
LX(Q)→ LY (Q) such that

(Lh)Q({((P, x), u)}∼) = {((P, hP (x)), u)}∼

—see the definition of Lh = LanyP
F (h) in Appendix A.4.3.

Suppose now that h : X → Y is an open map in P̂. In order to show that Lh is
open we require that each naturality square

LX(Q)

(Lh)Q

LX(Q′)
LX(m)

(Lh)Q′

LY (Q) LY (Q′) ,
LY (m)

associated with m : Q→ Q′, is a quasi-pullback.
To this end suppose that

LY (m)({((P ′, y′), w)}∼) = (Lh)Q({((P, x), u)}∼) .

Then, from the action of LY (m) and (Lh)Q on representatives, noted above,

((P, hP (x)), u) ∼ ((P ′, y′), FP ′(m)(w)) .

Hence ((P, hP (x)), u) and ((P ′, y′), FP ′(m)(w)) are connected via a “zig-zag” in

12



El(Y ), viz.

(P, hP (x)) (P2, y2) . . . (P ′, y′)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2 en−1

with

u u2 . . . FP ′(m)(w) .

u1
(Fe0)Q

(Fe1)Q

u3
(Fe2)Q (Fe3)Q un−1

(Fen−2)Q (Fen−1)Q

But, by Corollary 3.2, this “zig-zag” is reflected by a “zig-zag” in El(X), viz.

(P, x) (P2, x2) . . . (P ′, x′)

(P1, y1)
e0

e1

(P3, y3)
e2 e3

(Pn−1, yn−1)
en−2 en−1

where still

u u2 . . . FP ′(m)(w)

u1
(Fe0)Q

(Fe1)Q

u3
(Fe2)Q (Fe3)Q un−1

(Fen−2)Q (Fen−1)Q

with hP ′(x′) = y′. Thus,

((P, x), u) ∼ ((P ′, x′), FP ′(m)(w)) .

Recalling the action of LX(m) and (Lh)Q′ on representatives,

LX(m)({((P ′, x′), w)}∼) = {((P ′, x′), FP ′(m)(w))}∼ = {((P, x), u)}∼ ,

and

(Lh)Q′({((P ′, x′), w)}∼) = {((P ′, hP ′(x′)), w)}∼ = {((P ′, y′), w)}∼ .

Hence we fulfil the quasi-pullback condition, thus ensuring that Lh : LX → LY is
open in Q̂. 2

Colimit preserving functors between presheaf categories preserve open map bisim-
ulation.

Corollary 3.4 If presheaves X and Y are P-bisimilar and F : P̂ → Q̂ is a colimit
preserving functor, then F (X) is Q-bisimilar to F (Y ).

Proof: If X Z
f g

Y is a span of P-open maps then, by Corollary 3.3,

F (X) F (Z)
F (f) F (g)

F (Y )

13



is a span of Q-open maps. Moreover if f and g are surjective, so are F (f) and F (g). In
fact in any category an arrow e : C → D is an epimorphism iff the following diagram
is a pushout

C
e

e

D

1D

D
1D

D .

Since F preserves colimits, in particular it preserves pushouts. 2

Theorem 3.3 and Corollary 3.4 have many applications. For now, recall from
Appendix A.4.6, that a functor F : P → Q, between small categories P and Q,
induces a triple of adjoints

F! ⊣ F ∗ ⊣ F∗ : P̂→ Q̂ .

Both F! and F ∗ are colimit preserving as they are left adjoints. Hence, F! sends P-open
maps to Q-open maps, and so bisimilar presheaves in P̂ to bisimilar presheaves in Q̂. In
the other direction, F ∗ sends Q-open maps to P-open maps, and bisimilar presheaves
in Q̂ to bisimilar presheaves in P̂. We might, for example, take P to be the partial order
category of non-empty strings over some alphabet L and Q to be the category of non-
empty, finite pomsets with labels in L. See [28] for the detailed description of these

categories, and the explanation of the presheaf categories P̂ as synchronisation trees
with P-bisimulation being strong bisimulation, and Q̂ as including event structures
with labels in L, with Q-bisimulation being hereditary history preserving bisimulation.
There is an obvious inclusion of strings into pomsets giving rise to a functor F : P→ Q.
In this case, F! is the inclusion of synchronisation trees in event structures, and its right
adjoint F ∗ the operation which serialises an event structure to produce a tree. That,
for example F ∗ preserves open map bisimulation implies that two hereditary history
preserving bisimilar event structures are sent to strongly bisimilar synchronisation
trees. The papers [14, 15] contain several examples directly using this result, including
a characterisation of a well known refinement operation on event structures [19] as an
instance of F!.

4 The bicategory Prof and the 2-category Cocont

Presheaf categories are free colimit completions. Morphisms between them are natu-
rally taken to be colimit preserving functors. In order to study the relation between
presheaf categories we consider the following 2-category:

Definition 4.1 Define Cocont to consist of

• objects: small categories, P, Q, R, . . .

• arrows: colimit preserving functors between the corresponding presheaf cate-
gories, i.e., F is an arrow from P to Q, if it is a colimit preserving functor
F : P̂→ Q̂.

• 2-cells: natural transformations between such functors.

14



The composition of arrows is the usual composition of functors. The vertical and
horizontal composition of 2-cells are those of natural transformations [33].

As we saw, to within isomorphism, colimit preserving functors P̂ → Q̂ correspond
to functors P → Q̂, which correspond by “uncurrying” to functors P × Qop → Set.
Functors of this latter kind are often called profunctors (or bimodules or distribu-
tors) [6, 31, 5]. For a functor F : P×Qop → Set, we write F : P + Q to signify that
F is a profunctor from P to Q. Often operations are best described on profunctors,
which provide an alternative (bicategorical) presentation of Cocont.

Definition 4.2 The bicategory Prof of profunctors is defined to consist of

• objects: small categories, P, Q, R...

• arrows: Profunctors F : P + Q

• 2-cells: α : F ⇒ G, natural transformations between profunctors.

The vertical composition of 2-cells is the usual (vertical) composition of natural trans-
formations. Horizontal composition of both arrows and 2-cells is described in terms

of coend formulae. Given two arrows P +
F

Q +
G

R, consider the following functor,

P×Qop ×Q × Rop F×G
−→ Set× Set

×
−→ Set

that to each 4-tuple of objects P, Q, Q′, R associates the set F (P, Q)×G(Q′, R), with
the obvious actions on morphisms derived from those of F and G. Using coends (see
Appendix A), one defines the composition of F and G as arrows of Prof as

GF (P, R) =

∫ Q

F (P, Q)×G(Q, R)

and for any f : P → P ′ and g : R′ → R, defines

GF (f, g) =

∫ Q

F (f, Q)×G(Q, g) : GF (P, R)→ GF (P ′, R′) .

To specify the horizontal composition of 2-cells, suppose we have the following situa-
tion

P
|

F

|

F ′

α Q
|

G

|

G′

β R .

Define βα : GF ⇒ G′F ′, the horizontal composition of the two cells α and β, to be
the natural transformation with components

(βα)〈P,R〉 =

∫ Q

α〈P,Q〉 × β〈Q,R〉 .

As for identities, these are just the hom-functors. Given any small category P
define

1P : P× Pop → Set so that (P, P ′) 7→ P(P ′, P ) .
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Obviously “currying” 1P yields the Yoneda embedding yP. The associativity mor-
phisms and those for left and right identities are derived from the universal property
that defines coends.

Profunctors subsume presheaves:

Proposition 4.3 A presheaf category, P̂, is isomorphic to the category Prof(1, P)
of profunctors from the terminal category to the category P. The terminal category 1
consists of one object ∗ and its identity arrow 1∗. Under the isomorphism, a presheaf
X in P̂ corresponds to a profunctor X ′ where X ′(∗, P ) = X(P ) and X ′(1∗, f) = X(f)
for any arrow f : P → Q in P. A natural transformation α between presheaves
corresponds to a 2-cell α′ where α′

〈∗,P 〉 = αP .

Notation: It is often useful to identify profunctors with functors P → Q̂ (after
“currying”) via the isomorphism

[P×Qop,Set] ∼= [P, [Qop,Set]]

between functor categories. Profunctors F : P + Q correspond to functors F : P →
Q̂, by “currying”, where F (P )(Q) = F (P, Q). We will use the same notation for the

inverse “uncurrying”operation; for a functor G : P → Q̂ we will write G : P + Q for
the corresponding profunctor. The same notation will be used for the action of the
isomorphism on natural transformations between such functors; when α : F ⇒ F ′ be-

tween profunctors we write α : F ⇒ F
′
for the corresponding natural transformation

between their curried forms, and vice versa.

The composition of profunctors F : P + Q and G : Q + R can be expressed in
terms of left Kan extensions. Using a choice of left Kan extension,

GF ∼= LanyQ
(G) ◦ F ,

where the second composition is the usual composition of functors. In fact, since
colimits in presheaf categories are computed pointwise, we have from Appendix A.4.2
that for any object P of P and object R of R,

(LanyQ
(G) ◦ F )(P, R) = ((LanyQ

(G) ◦ F )(P ))(R)

∼= (

∫ Q

F (P )(Q).G(Q))(R)

=

∫ Q

F (P )(Q)×G(Q)(R)

=

∫ Q

F (P, Q)×G(Q, R) .

Prof and Cocont are equivalent as bicategories. In defining the biequivalence
Λ from Prof to Cocont, we assume for every profunctor F : P + Q a choice
(LanyP

(F ), θF ) of left Kan extension; we will write F † for LanyP
(F ). Define Λ(P,Q) :

Prof(P, Q)→ Cocont(P, Q) to be the functor which maps F to F † and α : F ⇒ G
to the unique α† such that (α†yP) · θF = θG · α, given by the universal property of
Kan extensions. Notice that Λ is the identity on objects. Since (1bP, 1yP

) is a left

16



Kan extension of yP along itself, we can further assume that Λ(P,Q)(1P) = 1bP. In the
converse direction, from Cocont to Prof , define Ξ(P,Q) simply by precomposing with
yP, followed by “uncurrying”. We have the following:

Proposition 4.4 Λ and Ξ are bicategorical homomorphisms [48]

Prof
Λ

Cocont
Ξ

,

which are the identity on objects, send identity arrows to identity arrows and are such
that for any two small categories P, Q, the functors Λ(P,Q) and Ξ(P,Q) are equivalences
of categories, pseudo inverses to each other.

With the view of Prof and Cocont as “categories” of domains of nondeterministic
processes, the techniques required to solve recursive domain equations are explored
in [12].

5 The structure of Prof

It has been remarked, for example in [30], that Prof has enough structure to be,
what might be called, a compact closed bicategory. To see this, we first need to define
certain bicategorical limits explicitly.

5.1 Pseudo-products and -coproducts

Definition 5.1 (Pseudo-products and -coproducts) In a bicategory B, a pseudo-
product of two objects B, C, is given by an object D and an equivalence of categories

B(E, B)× B(E, C) ≃ B(E, D)

pseudo-natural in E; more explicitly a pseudo-product is given by a span of arrows

B
π1←− D

π2−→ C

such that:

1. For any other span, B
f
←− E

g
−→ C, there exists an h : E → D and isomorphic

2-cells, Φ : π1h
∼
⇒ f and Γ : π2h

∼
⇒ g.

2. For any two arrows h, k : E → D and 2-cells, σi : πih⇒ πik, for i = 1, 2, there
exists a unique σ : h⇒ k, such that σi = πiσ.

If the equivalences are isomorphisms, we shall say that the product is strict.
One defines pseudo-coproducts in a dual fashion.

Remark: Observe that our terminology for bicategorical limits clashes with that
often employed in the literature, e.g., in [48], where one would talk about “bilimits”
rather than “pseudo-limits” which there denote a stricter notion. We follow the
practice of [16].
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Prof has strict pseudo products (&) and coproducts (⊕) and they coincide on objects.
Let P and Q be two small categories, define

P&Q
def
= P + Q

def
= P⊕Q ,

where P+Q is the usual disjoint union of small categories with inclusions inP and inQ.
Further define πP : P&Q + P by πP(inP(P ), P ′) = P(P ′, P ) and πP(inQ(Q), P ′) = ∅
and symmetrically πQ. The profunctor iP : P + P ⊕ Q is defined as the uncurrying
of yP+QinP.

Notice that P̂&Q is isomorphic to P̂×Q̂; a presheaf Z in P̂ + Q restricts to presheaf
X over P and one Y over Q, and so splits into a pair (X, Y ). (We will often present a

presheaf in P̂&Q as a pair (X, Y ). ) This accounts for the strictness of product and
coproduct.

Definition 5.2 (Pseudo-initial, -terminal and -zero object) In a bicategory B
a pseudo-initial object 0 is an object such that B(0, B) ≃ 1 for every object B of
B. (The terminal category 1 consists of a single object with a single morphism, the
identity.)

Dually one defines what a pseudo-terminal object is.
An object is a pseudo-zero object, if it is both pseudo-initial and -terminal.
If the equivalences are isomorphisms one talks of strict pseudo-initial, -terminal

and -zero objects.

Prof has a (strict) pseudo-zero object. Take the initial category, O, with no objects
and no arrows. Of course the zero object is the unit for the product/coproduct
bifunctor.

5.2 Tensor

We define a tensor ⊗ : Prof ×Prof → Prof in Prof as follows:

• On objects: P⊗Q
def
= P×Q, the product of categories

• On arrows: If F : P + P′ and G : Q + Q′,

F ⊗G : P×Q× P′op ×Q′op → Set
(P, Q, P ′, Q′) 7→ F (P, P ′)×G(Q, Q′)

• On 2-cells: if α : F ⇒ F ′ and β : G⇒ G′, then

(α⊗ β)(P,Q,P ′,Q′) = α(P,P ′) × β(Q,Q′) .

The terminal category 1 is a neutral element for ⊗.
Tensor classifies “bilinear” maps. For small categories P, Q, R, a functor G :

P̂&Q→ R̂ is bilinear if it is “linear” in each argument, i.e. G(−, Y ) and G(X,−) are

colimit preserving for any X ∈ P̂ and Y ∈ Q̂. Let Bilin(P&Q, R) be the category of

bilinear functors from P̂&Q to R̂, related by natural transformations.
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Proposition 5.3 There is an equivalence of categories

Prof (P⊗Q, R) ≃ Bilin(P&Q, R) .

The equivalence is given by composition with a functor J∗, obtained in the following
way.

Let J : P ⊗ Q → P̂&Q be the full and faithful functor taking (P, Q) to the pair
of presheaves (yPP, yQQ). For profunctors F : P ⊗ Q + R, consider their left Kan
extensions along J :

P⊗Q
J

F

∼=

P̂&Q

LanJ (F )

R̂ .

Note that by Proposition A.14 in the Appendix, we can factor the left Kan extension
as

LanJ(F ) ∼= LanyP⊗Q
(F ) ◦ J∗ ,

where J∗ : P̂&Q→ P̂⊗Q is given by

(J∗(X, Y ))(P, Q) = P̂&Q(J(P, Q), (X, Y )) ∼= X(P )× Y (Q) .

Because product in Set preserves colimits in each argument separately, it is easy to
see that any functor LanJ(F ) is bilinear. Moreover, as presheaves are colimits of
representables, any bilinear functor G is determined by its restriction G ◦ J and so
can be obtained up to isomorphism as such a left Kan extension. The equivalence
between Prof (P⊗ Q, R) and Bilin(P&Q, R) now follows by Proposition A.12 in the
Appendix.

5.3 Dualiser

We define a dualiser in Prof . We write Profop for the opposite bicategory which
reverses the direction of the 1-cells but not that of the 2-cells in Prof . Define the
dualiser , (−)⊥ : Prof → Profop, as follows:

• On objects: P⊥ = Pop.

• On arrows: Given F : P + Q, define F⊥ : Q⊥ + P⊥ as F⊥(Q, P ) = F (P, Q).

• On 2-cells: If α : F ⇒ F ′, then α⊥ : F⊥ ⇒ F
′⊥, with α⊥

〈Q,P 〉 = α〈P,Q〉.

This definition of dualiser is straightforward and direct in contrast to the definition of
the corresponding pseudo-functor on Cocont. The bicategory Prof might reasonably
be called a ∗-autonomous bicategory [4].

5.4 Function space

Combining tensor and dualiser, yields a “linear function space”. Define the pseudo
functor ⊸: Profop×Prof → Prof as ⊸= ⊗◦ ((−)⊥× 1), so P ⊸ Q = Pop×Q, for
any small categories P and Q.
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There is the following chain of natural isomorphisms for any small categories,
P, Q, R:

Prof (P⊗Q, R)
def
= CAT(P×Q× Rop,Set)

∼= CAT(P, Q̂op × R)
def
= CAT(P, Q̂⊥ ⊗ R)
∼= CAT(P× (Q⊥ ⊗ R)op,Set)
def
= Prof(P, Q⊥ ⊗ R)
def
= Prof(P, Q ⊸ R) .

The resultant isomorphism

Prof(P⊗Q, R) ∼= Prof (P, Q ⊸ R)

simply sets up a correspondence between profunctors H : (P×Q)×Rop → Set on the
left and profunctors H : P× (Qop × R)op → Set on the right, where H(P, (Q, R)) =
H((P, Q), R). The isomorphism is pseudo-natural (or a strong transformation) in P
and Q making a pseudo-adjunction (or biadjunction) between two copies of Prof [48,
45]:

Proposition 5.4 For any small category Q, the pseudo-functor −⊗Q is a left pseudo-
adjoint to Q ⊸ −.

5.5 Linear logic

We might summarise, informally and imprecisely, by saying that Prof is a compact
closed bicategory.

From a logical point of view, Prof forms an interpretation of classical linear
logic [18] once it is equipped with a suitable exponential, and so provides a basis for
a rich linear type discipline. Though, as a model of classical linear logic, Prof is
somewhat degenerate; the operations

&

(“par”) and ⊗ (“tensor”) coincide as do &
(“product”) and ⊕ (“sum”).

Looking ahead, the pseudo-comonad ! of Section 7, freely adjoining finite colimits,
can play the role of the linear logic exponential. Its co-Kleisli bicategory in which
the arrows of Prof are expanded to profunctors of the kind !P + Q is equivalent (as
bicategories) to the 2-category of filtered colimit preserving functors between presheaf
categories. This 2-category is cartesian closed with function spaces constructed as
!P ⊸ Q, for small categories P, Q; the key fact here is that ! satisfies the Seely
condition [47] that there is an isomorphism of categories

!(P&Q) ∼=!P⊗!Q ;

a presheaf over P&Q which is a finite colimit of representables splits into a pair of
presheaves one over P and one over Q, each of which is a finite colimit of representables.

Other candidates for exponentials are presented in Section 9.
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6 Open map bisimulation in Prof

For any categories P, Q, the category Prof (P, Q) is identical with the presheaf cate-

gory ̂Pop ×Q; the 2-cells in Prof are identical with arrows between presheaves. We
inherit from presheaf categories a definition of open 2-cells in Prof . We will show
that the horizontal composition in Prof of open 2-cells gives an open 2-cell, and
consequently that horizontal composition preserves bisimulation. We saw a special
case of this in Section 3, where we showed that colimit preserving functors between
presheaf categories preserve open maps, and so open map bisimulation.

Definition 6.1 Let α : F ⇒ F ′, be a 2-cell between two profunctors F, F ′ : P + Q.

Define α to be open if it is open as an arrow of ̂Pop ×Q

We unpack this definition. Since α is regarded as a natural transformation between
two presheaves, its being open amounts to it satisfying the quasi-pullback condition
of Definition 2.1. Suppose, that 〈fop, g〉 : 〈P, Q〉 → 〈P ′, Q′〉 is an arrow in Pop × Q,
then the following square must be a quasi-pullback in Set:

F (P ′, Q′)
F (fop,g)

α〈P ′,Q′〉

F (P, Q)

α〈P,Q〉

F ′(P ′, Q′)
F ′(fop,g)

F ′(P, Q) .

(1)

If we instantiate one of the two arguments f or g to be the identity arrow, on P
and Q, respectively, this immediately implies that the corresponding natural trans-
formations,

αP : F (P,−)⇒ F ′(P,−) and
α⊥

Q : F (−, Q)⇒ F ′(−, Q)

are Q-open and Pop-open respectively. The converse holds too:

Proposition 6.2 Let α : F ⇒ F ′ be a natural transformation between two presheaves

F, F ′ ∈ ̂Pop ×Q, then α is (Pop × Q)-open iff for any object P of P and Q of Q, the
corresponding natural transformations αP and α⊥

Q are Q-open and Pop-open, respec-
tively.

Proof: The discussion above shows “only if”. For the converse, observe that, via the
functoriality of F , the diagram (1) above can be rewritten as:

F (P ′, Q′)
F (fop,1Q′ )

α〈P ′,Q′〉

F (P, Q′)

α〈P,Q′〉

F (1P ,g)
F (P, Q)

α〈P,Q〉

F ′(P ′, Q′)
F ′(fop,1Q′ )

F ′(P, Q′)
F ′(1P ,g)

F ′(P, Q) .

It is easy now to verify that the composition of the two quasi-pullback squares is a
quasi-pullback square. 2

Consequently:
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Proposition 6.3 Let α : F ⇒ F ′ be a 2-cell in Prof . The 2-cell α is open in Prof
iff the 2-cell α⊥ is open.

Proof: From Proposition 6.2 by dualising. 2

Proposition 6.4 According to the isomorphism between a presheaf category Q̂ and
the hom-category Prof(1, Q) (cf.Proposition 4.3), a natural transformation between
presheaves is open iff it is open as a 2-cell between the corresponding profunctors.

Proof: By specialising Proposition 6.2 to the case when P is 1. 2

Since open maps compose, and epimorphisms obviously compose, it is clear that
the vertical composition of two (surjective) open 2-cells is a (surjective) open 2-cell.
Our next goal is to show that the horizontal composition of 2-cells preserves (surjec-
tive) open maps, and so bisimulation.

Theorem 6.5 (i) If

P
|

F

|

F ′

α Q
|

G

|

G′

β R

are two consecutive open 2-cells of Prof , then their horizontal composition βα
is an open 2-cell.

(ii) Suppose profunctors F, F ′ : P + Q are open map bisimilar and that profunctors
G, G′ : Q + R are open map bisimilar. Then, the compositions GF, G′F ′ :
P + R are open map bisimilar.

Proof: A direct proof can be found in [11]. In fact, both these results follow from
the seemingly weaker Theorem 3.3 and Corollary 3.4, once we observe that the com-
position of profunctors preserves colimits in each argument.
(i) This can be seen by considering the coend formula for the composition of profunc-
tors F : P + Q and G : Q + R:

GF (P, R) =

∫ Q

F (P, Q)×G(Q, R) .

The coend expression is functorial in P and R. We might write

GF = λP, R.

∫ Q

F (P, Q)×G(Q, R) ,

a lambda expression describing GF as a functor belonging to [P × Rop,Set], just
another way to write Prof (P, R). The lambda expression exhibits the functoriality
of the composition GF , in F ranging over the category Prof(P, Q) and in G over the
category Prof (Q, R). By inspecting the expression of the composition of F and G as
a coend we can see that regarded as a functor in F (and analogously as a functor in G)
it must preserve colimits. This is because colimits of functors to cocomplete categories
are obtained pointwise, coends preserve colimits (see the Appendix A.3), and, fixing
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one argument, products in Set are left adjoints, so preserve colimits. In detail, we

have the following chain of isomorphisms natural in a diagram F : I→ ̂Pop ×Q:

G(

∫ I

F (I)) ∼= λP, R.

∫ Q

(

∫ I

F (I))(P, Q) ×G(Q, R)

∼= λP, R.

∫ Q

(

∫ I

F (I)(P, Q)) ×G(Q, R)—the colimit of F is got pointwise,

∼= λP, R.

∫ Q ∫ I

(F (I)(P, Q) ×G(Q, R)) as Set-product is a left adjoint,

∼= λP, R.

∫ I ∫ Q

(F (I)(P, Q) ×G(Q, R)) by the Fubini Theorem A.2.4,

∼=

∫ I

λP, R.

∫ Q

(F (I)(P, Q) ×G(Q, R))—the colimit is got pointwise,

∼=

∫ I

(GF (I)) .

Hence, by Lemma A.10, the composition of profunctors GF preserves colimits re-
garded as a functor in F (and similarly as a functor in G). Consequently horizontal
composition of 2-cells preserves openness by Theorem 3.3.
(ii) This now follows directly from Corollary 3.4.

2

Thus composition of profunctors preserves open maps and bisimulation in each argu-
ment. We can recover Theorem 3.3 as a special instance of Theorem 6.5. Recall the
equivalence between Prof and Cocont (Proposition 4.4). To within isomorphism a
colimit preserving functor can be obtained as a left Kan extension

F † : P̂→ Q̂

from a profunctor F : P + Q. As observed in Propositions 4.3, 6.4, there is an open
map respecting correspondence between natural transformations α : X ⇒ Y in P̂ and
2-cells α′ : X ′ ⇒ Y ′ in Prof (1, P). The coend definition of the horizontal composition
Fα′, 1 |

X′

|

Y ′

α′ P +
F

Q ,

equals that of the application F †α—both amount to
∫ P

αP . F (P ). In this case, that
the composition of profunctors preserves open maps and bisimulation amounts to
saying that F † preserves open maps and bisimulation.

From Theorem 6.5, we obtain a characterisation of open maps between profunc-
tors. Recall from Proposition 4.4, the correspondence to within isomorphism, between
2-cells of Prof and 2-cells of Cocont; a 2-cell α : F ⇒ F ′ of Prof corresponds to a
natural transformation α† : F † ⇒ F ′† between colimit preserving functors.

Corollary 6.6 Let α : F ⇒ F ′ be a 2-cell between profunctors F, F ′ : P + Q. Then,
α is open iff
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(i) the component α†
X is a Q-open map, for each X ∈ P̂, and

(ii) the component (α⊥)†Y is a Pop-open map, for each Y ∈ Q̂op.

Proof: ‘if’: Assume α†
X and (α⊥)†Y are open for any X ∈ P̂ and Y ∈ Q̂op. The

correspondence (−)† is with respect to choices of left Kan extensions, assumed to be
(F †, θ) and (F ′†, θ′) in the cases of the profunctors F and F ′. From the definition of
α†,

α†
yP

θ = θ′α .

Hence
αP = θ′P

−1
α†

yP(P )θP ,

for any P ∈ P. Because α†
yP(P ) is open, it follows that αP is open, for any P ∈ P. By

a similar argument, from (ii) we can show that α⊥
Q is open for any Q ∈ Q. Hence α

is open by Proposition 6.2.
‘only if’: We consider the horizontal compositions expressed in the pictures:1 +

X′

P
|

F

|

F ′

α Q 1 +
Y ′

Qop
|

F⊥

|

F
′⊥

α⊥ Pop .

Assume α is open. Then so is α⊥. An application α†
X , where X ∈ P̂, equals the

horizontal composition αX ′—both are given by the coend formula
∫ P

X(P ) . αP . But
the horizontal composition αX ′ is open by Theorem 6.5. Similarly, the application of

the dual α⊥ to Y ∈ Q̂op equals the horizontal composition α⊥Y ′ which is again open
by Theorem 6.5. 2

7 Prof and ω-accessible categories

It is often said that profunctors are to categories what relations are to sets (see
e.g. [6]). In this section we pursue another analogy relating presheaf categories to
non-deterministic domains, in which the presheaf construction corresponds to a pow-
erdomain construction [21, 43]. With presheaf categories as analogues of powerdo-
mains, Prof can be regarded as a bicategory of non-deterministic domains [21].

7.1 ω-Accessible categories

The operation of ideal completion, familiar in domain theory, produces an algebraic
domain from a preorder (see e.g. [44]). We start with its generalisation to categories,
in which a category is completed with all filtered colimits (see [33] for a discussion of
filtered categories and colimits).

Definition 7.1 (Completion by filtered colimits) [35, 2] Let P be a small cate-

gory. We write P̃ for the full subcategory of P̂ consisting of presheaves whose categories
of elements (see Definition A.13) are filtered. As the category of elements of each rep-
resentable has a terminal object and is therefore filtered, we are justified in writing
iP : P→ P̃ for the functor which coincides with the Yoneda embedding.
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Proposition 7.2 For a small category P, the category P̃ and embedding iP are a
free filtered colimit completion of P. That is, P̃ has colimits of filtered diagrams and
iP : P →֒ P̃ is a functor, such that any functor F : P→ C, where C is a category with
filtered colimits, extends to a filtered colimit preserving functor F+ : P̃→ C such that
F+ ◦ iP

∼= F , unique up to a natural isomorphism:

P
iP

F

∼=

P̃

F+

C .

Moreover F+ is the left Kan extension LaniP
(F ) of F along iP.

The category Filt(P̃, C), of filtered colimit preserving functors and natural trans-
formations, is equivalent to the functor category CAT(P, C).

Proof: The proof is essentially that of [2], Theorem 2.26. It is included here for
convenience, and because it sets a pattern which will recur when we consider other
free completions.

The category P̃, as a subcategory of P̂, is closed under filtered colimits; the category
of elements of a filtered colimit of presheaves in P̃ may be checked to have a category
of elements which is filtered.

Suppose F : P → C is a functor to a category C with all filtered colimits. Define
F+ to be the functor LaniP

(F ) which takes X in P̃ to the filtered colimit

F+(X) = colim (El(X)
πX−→ P

F
−→ C)

in C. Because iP, which coincides with the Yoneda embedding, is full and faithful, we
obtain a natural isomorphism F+ ◦ iP

∼= F , where without loss of generality we may
assume that F+iP(P ) = F (P ).

Because colimits of presheaves are obtained pointwise, via the Yoneda Lemma, a
functor P̂(yP(P ),−) preserves colimits. Consequently a functor P̃(iP(P ),−) preserves

filtered colimits. (In other words, an object iP(P ) is finitely presentable in P̃.) Thus,
supposing that a cone 〈Xi

ki→ X〉i∈I is a filtered colimit, any arrow iP(P ) x→
X , corresponding via Yoneda to an element x ∈ X(P ), will factor through some
component of the cone:

Xi
ki

X

iP(P )

h
x

for some i in I. Hence

F+(Xi)
F+(ki)

F+(X)

F (P ) .

F+(h)
F+(x)
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But the cone
〈F (P ) F+(x)→ F+(X)〉(P,x)∈El(X)

is colimiting by definition, whence the cone

〈F+(Xi)
F+(ki)→ F+(X)〉i∈I

must also be colimiting. This shows that F+ preserves filtered colimits.
Any presheaf X in P̃ can be expressed as a filtered colimit:

X ∼= colim (El(X) πX→ P iP→ P̃) .

Supposing G : P̃ → C is filtered colimit preserving functor such that G ◦ iP
∼= F

ensures that

G(X) ∼= G(colim (iP ◦ πX) ∼= colim (G ◦ iP ◦ πX) ∼= colim (F ◦ πX) ∼= F+(X) ,

natural in X in P̃.
The equivalence between the categories Filt(P̃, C) and CAT(P, C) is a consequence

of Proposition A.12. 2

The 2-category of ω-accessible categories is analogous to the category of algebraic
domains and continuous functions. An ω-accessible category is a free filtered colimit
completion of a small category.

Definition 7.3 The 2-category ω-Acc consists of

• objects: small categories, P, Q, R, . . .

• arrows: filtered colimit preserving functors between the respective filtered colimit
completions i.e., F is an arrow from P to Q, if it is a filtered colimit preserving
functor F : P̃→ Q̃.

• 2-cells: natural transformations between such functors.

Thus ω-Acc(P, Q) is the category Filt(P̃, Q̃) of filtered colimit preserving functors and
natural transformations.4

We could have given an equivalent bicategorical presentation of ω-Acc in terms of
functors from P to Q̃ as arrows, and used the freeness property to determine the
composition of arrows (just as was done for profunctors).

7.2 Finite colimit completion

We can exhibit Prof as a Kleisli bicategory with respect to a pseudo-monad on
ω-Acc. The pseudo-monad adjoins nondeterminism (it is based on the free finite
colimit completion of a category) and so is analogous to a powerdomain construction,
and Prof to a category of nondeterministic domains. Turning the pseudo-monad
around to get a pseudo-comonad we will obtain a model of linear logic.

The constructions are based on the free completion of a (small) category under
finite colimits. With the exponential of linear logic in mind [18], we write !P for the
free finite colimit completion of P. More exactly:

4The ω in ω-Acc refers to the fact that filtered colimits are specified in terms of finite subdiagrams.
For more on the notion of κ-accessible category (for κ any regular cardinal) see [2] or [35].

26



Definition 7.4 Let P be a small category. Define !P to be the full subcategory of P̂
consisting of all finite colimits of representables. Write IP :!P →֒ P̂ for the associated
inclusion functor. Since any representable is a finite colimit of representables in an
obvious way, we can write y!

P : P →!P for the Yoneda embedding with its codomain
restricted to !P.

Lemma 7.5 The subcategory !P of P̂ is closed under all finite colimits. The category
!P with y!

P : P→!P is a free finite colimit completion of P.

Proof: The closure of !P under finite colimits is shown in Theorem 5.8 of [29]. The
proof of freeness is straightforward. 2

We now show that (P̂, IP) is a free filtered colimit completion of !P (see also [29],
Proposition 5.41).

Theorem 7.6 The presheaf category P̂, with IP :!P → P̂, is a free filtered colimit
completion of !P.

Proof: First note two facts concerning the presheaf images of IP.

(i) Any object IP(D) of P̂ is finitely presentable, i.e., P̂(IP(D),−) preserves fil-

tered colimits. To see this, suppose that D is a finite colimit
∫ K

yPPK and

that
∫ I∈I

X(I) is a filtered colimit. Because finite limits commute with filtered
colimits in Set [33], using simple coend manipulations (see Appendix A), we
deduce:

P̂(IP(D),

∫ I

X(I)) = P̂(

∫ K

yPPK ,

∫ I

X(I))

∼=

∫

K

P̂(yPPK ,

∫ I

X(I))

∼=

∫

K

∫ I

P̂(yPPK , X(I))

∼=

∫ I ∫

K

P̂(yPPK , X(I))

∼=

∫ I

P̂(

∫ K

yPPK , X(I)

=

∫ I

P̂(IP(D), X(I)) ,

natural in X : I→ P̂. Hence, P̂(IP(D),−) preserves filtered colimits by Lemma A.8—
clearly filtered colimits are connected.

(ii) For X in P̂, the category of elements El(P̂(IP(−), X)) is filtered with X the
colimit of

El(P̂(IP(−), X))
π
−→!P

IP−→ P̂ .

This follows because, by Lemma 7.5, objects of !P include the representables
and are closed under finite coproducts and coequalisers.
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We now show freeness by an argument analogous to that of Proposition 7.2. The
presheaf category P̂ is closed under all colimits, so certainly under filtered colimits.
Suppose F :!P→ C is a functor to a category with all filtered colimits. We can define
the functor F+ by taking F+(X), for X in P̂, to be (LanIP

F )(X), the colimit

colim (El(P̂(IP(−), X))
πX−→!P

F
−→ C)

—the colimit is filtered by (ii).
The functor F+ is such that the triangle

!P
IP

F

P̂

F+

C

commutes up to isomorphism because IP is full and faithful. Without loss of generality
we may assume that F+(IP(D)) = F (D) for all D in !P.

The functor F+ will preserve filtered colimits because each IP(D) is finitely pre-
sentable: Supposing 〈Xi

ki→ X〉i∈I is a colimiting cone with I is filtered, any
IP(D) x→ X factors

Xi
ki

X

IP(D)

h
x

for some i in I. Hence

F+(Xi)
F+(ki)

F+(X) .

F (D)

F+(h)
F+(x)

But the cone
〈F (P ) F+(x)→ F+(X)〉(D,x)∈El(bP(IP(−),X))

is colimiting by definition, whence the cone

〈F+Xi
F+ki→ F+X〉i∈I

must also be colimiting.
A filtered colimit preserving functor from P̂ to C is determined to within natural

isomorphism by its restriction to !P because, by (ii) above, every presheaf can be
expressed as a filtered colimit. 2

Because both !̃P, i!P and P̂, IP are free filtered colimit completions, we obtain an
equivalence of categories:
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Proposition 7.7 For any small category P, there is an equivalence of categories

!̃P ≃ P̂

given by the functors
Lani!P(IP) : !̃P→ P̂

and
LanIP

(i!P) : P̂→ !̃P .

The functor, Lani!P(IP), is naturally isomorphic to the functor Y 7→
∫ D

Y (D).IP(D).

The functor, LanIP
(i!P), is naturally isomorphic to the functor I∗P : X 7→ P̂(IP(−), X).

Proof: The equivalence and functors establishing it are given by Proposition 7.2 and
(the proof of) Theorem 7.6. As noted in Appendix A.4.2, the application of a pointwise
left Kan extension may be expressed as a coend. In particular, LanIP

(i!P)(X), where
X is presheaf over P, may be expressed as the coend

∫ D

P̂(IP(D), X).y!P(D) ∼= P̂(IP(−), X) ,

using the density formula (Appendix A.4.4). Similarly, for Y in !̃P,

Lani!P(IP)(Y ) ∼=

∫ D

!̃P(i!P(D), Y ).IP(D) ∼=

∫ D

Y (D).IP(D) ,

by the Yoneda Lemma. 2

The proof of Theorem 7.6 above shows us how to represent filtered colimit pre-
serving functors between presheaf categories as profunctors.

Proposition 7.8 For any two small categories P and Q there is an equivalence of
categories

Prof (!P, Q) ≃ Filt(P̂, Q̂)

given by F 7→ LanIP
(F ) for F in Prof (!P, Q), and G 7→ G ◦ IP for G in Filt(P̂, Q̂).

Proof: From the proof of freeness, Theorem 7.6 above, a profunctor F :!P + Q
gives rise to LanIP

(F ) : P̂ → Q̂, a filtered colimit preserving functor, unique up to
isomorphism such that LanIP

(F ) ◦ IP
∼= F . The equivalence is a direct consequence

of Proposition A.12 as IP is full and faithful. 2

Consequently, for any small categories P and Q there is an equivalence

Cocont(!P, Q) ≃ ω-Acc(P, Q) .

This is part of a pseudo-adjunction. We recall one way of presenting a pseudo-
adjunction between 2-categories from [45].

Definition 7.9 Let C and D be 2-categories. A left pseudo-adjoint to a 2-functor
U : C → D is given by, for each object X of D, a 1-cell ηX : X → UFX in D such
that the composition with ηX induces an equivalence of categories from C(FX, Y ) to
D(X, UY ) for any object Y of C.
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Proposition 7.10 For any two small categories P and Q there is an equivalence of
categories

Cocont(!P, Q) ≃ Filt(P̂, Q̂)

induced by composition with I∗P : X 7→ P̂(IP(−), X).
There is a pseudo-adjunction in which ! together with I∗P : P →!P in ω-Acc is a

left pseudo-adjoint to the inclusion 2-functor from Cocont to ω-Acc.

Proof: Composing equivalences

Cocont(!P, Q) ≃ Prof(!P, Q) ≃ Filt(P̂, Q̂) ,

from Propositions 4.4 and 7.8, we obtain an equivalence from Cocont(!P, Q) to

Filt(P̂, Q̂); it takes G :!P → Q in Cocont to LanIP
(G ◦ IP). Moreover it is induced

by composition with I∗P , as

LanIP
(G ◦ IP) ∼= Lany!P

(G ◦ IP) ◦ I∗P
∼= G ◦ I∗P ,

using the factorisation of left Kan extensions in Lemma A.14.
The characterisation in Proposition 7.7 of I∗P shows it to be filtered colimit preserv-

ing and so 1-cell in ω-Acc. This makes ! together with I∗P to be a left pseudo-adjoint
to the inclusion functor. 2

It follows that ! extends to a pseudo-functor in a pseudo-adjunction:

ω-Acc
!

⊥ Cocont
inclusion

The pseudo-functor !, post-composed with the inclusion 2-functor to form a 2-
functor on ω-Acc, can be equipped with multiplication, unit and corresponding co-
herence modifications in order to form a pseudo-monad [16] (a doctrine in the ter-
minology of [48]). The bicategory of its free algebras, the Kleisli bicategory for !, is
biequivalent to Prof , and Cocont.

In computational terms, the effect of ! of the pseudo-monad is to adjoin non-
determinism. This is traditionally achieved in domain theory by using powerdomains;
adjoining non-determinism to a “domain” P̃, with basis the small category P, produces
the “non-deterministic domain” !̃P, equivalent to P̂. We can view Prof as a bicategory
of “non-deterministic domains” analogous to the Kleisli category of a powerdomain.

If we “turn around” the pseudo-monad (and look instead at the pre-composition
of ! with the inclusion 2-functor above), we obtain a pseudo-comonad on Cocont,
and so on Prof , that we also denote by !. Its coKleisli bicategory is biequivalent
to the 2-category with small categories as objects, 1-cells F : P → Q being filtered
colimit preserving functors F : P̂ → Q̂ and 2-cells natural transformations. The
pseudo-comonad ! can play the role of the “exponential” of linear logic and is one of
several ways in which to adjoin a pseudo-comonad to Prof , so obtaining what can be
viewed as a (bi)categorical model of Girard’s classical linear logic [47]. (It constitutes
the basic prefixing operation in the presheaf semantics of the higher order process
language HOPLA [40].)
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7.2.1 Domain theoretic analogies

Analogous results are familiar in domain theory. Perhaps the closest analogue is
obtained by replacing small categories P, Q, . . . by partial orders, presheaf categories
by domains of downwards closed subsets ordered by inclusion, colimits by least upper
bounds (with lubs given by unions) and filtered diagrams by directed subsets.

Then ω-Acc would be replaced by continuous functions between ideal completions
of partial orders (a category of algebraic cpos), and Cocont by additive (i.e., lub
preserving) functions between domains of downwards closed subsets (a category of

prime algebraic lattices). Now an additive function from a P̂ to a Q̂ can be represented

by a monotonic function from the partial order P to Q̂, or equivalently as a “relation”,
a downwards closed subset of Pop × Q—a direct analogue of a profunctor, in which
the category Set is replaced by the partial order ∅ ⊆ 1.

In this domain set-up, we can take !P to be the finite lub completion of a partial
order P (equivalently, the order got by restricting P̂ to its finite elements). The
analogue of the pseudo-monad above would be the monad associated with the lower
(or Hoare) powerdomain, which given an ideal completion P̃ of a partial order P

returns !̃P, the ideal completion of !P, that is isomorphic to P̂.
The analogue of the pseudo-comonad would be the comonad on the category of

prime algebraic lattices with additive functions given by !; the co-Kleisli category of
the comonad would be equivalent to that of continuous functions between prime alge-
braic lattices, expressing the well known fact that a continuous function is determined
by its restriction to just the finite elements. (See [40] for more details.)

An attractive feature of the pseudo-comonad !, freely adjoining finite colimits, is
that it generalises a situation in traditional domain theory. However, as we shall see,
there are other considerations, to do with how well bisimulation is respected, that
argue for alternatives to this choice of comonad.

7.3 A failure of open map preservation

We have seen how Prof and the pseudo-comonad !, which on a small category yields
its finite colimit completion, are sufficiently rich in structure that they can be regarded
as a model of classical linear logic. The results of Section 6 say that the model’s linear
arrows, those in Prof , preserve open map bisimulation. A typical arrow in the co-
Kleisli bicategory of ! is a profunctor

F :!P + Q .

It corresponds to a filtered colimit preserving functor

LanIP
(F ) : P̂→ Q̂

between presheaf categories, by Proposition 7.8, where IP is the embedding of !P into
P̂. Prima facie it might be hoped that LanIP

(F ) preserved open map bisimulation;

that an open map in P̂ was sent to an open map in Q̂. Indeed, if we weaken open
maps in P̂, by convention understood to be with respect to the Yoneda embedding
yP : P →֒ P̂, to open maps with respect to the inclusion IP :!P →֒ P̂, we can obtain a
preservation result as a consequence of the following factorisation:
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LanIP
(F ) ∼= LanyP

(F ) ◦ I∗P

—this is a special case of Proposition A.14 in the Appendix. It follows that LanIP

sends IP-open maps in P̂ to open maps in Q̂; this is because I∗P sends IP-open maps
to y!P-open maps (by Lemma 2.6).

But, unfortunately, IP-bisimulation degenerates to isomorphism:

Proposition 7.11 Let X and Y be presheaves in P̂. Then, X and Y are IP-bisimilar
iff X and Y are isomorphic presheaves.

Proof: We show that the isomorphisms are the only surjective IP-open maps between
presheaves over P. Let f : X → Y be a surjective IP-open map. By definition it
is an epimorphism. To show that f is an isomorphism it is now enough to show
that f is a monomorphism as well (see [34]). Since f is a natural transformation
between presheaves, f is a monomorphism iff for every object P of P, the function
fP : X(P ) → Y (P ) is injective. Suppose then that x, x′ ∈ X(P ) are such that
fP (x) = fP (x′). Via the Yoneda lemma, we then have that the following square
commutes:

P + P
[x,x′]

[1P ,1P ]

X

f

P
fP (x)

Y ,

where we have let objects of P stand for their corresponding representables and el-
ements of X for the corresponding arrows to X . Since f is IP-open and P + P , as
well as P are in !P , there exists x′′ : P → X such that x′′ ◦ [1P , 1P ] = [x, x′]. Since
x′′ ◦ [1P , 1P ] = [x′′, x′′], we can conclude that x = x′. 2

The arrows in the co-Kleisli bicategory of ! are too liberal to ensure preservation
of more than the most trivial bisimulation! This negative result is backed up by
examples where bisimilarity is not preserved by arrows in the co-Kleisli bicategory,
corresponding to filtered colimit preserving functors. It is not hard to cook up an
example of a filtered colimit preserving functor which sends the domain and codomain
of a surjective open map to two non-bisimilar objects; for example, where the functor
goes from 1̂, i.e. Set, to “synchronisation trees”, i.e. presheaves over the partial order
category of non-empty strings.

Remark: Observe that in order for the argument of Proposition 7.11 to go through
it is enough to assume that the arrow [1P , 1P ] : P + P → P from the coproduct of
representables P + P lies in !P.

These results suggest that we look for alternative pseudo-comonads on Cocont
and its equivalent Prof , where in expanding the arrows to those in the co-Kleisli
bicategory, we do not lose preservation of open map bisimulation.

8 Lifting and connected colimits

Our next example of a pseudo-comonad is provided by the lifting operation on Prof .
Its co-Kleisli bicategory provides a model of affine linear logic [26]. Arrows in the
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co-Kleisli bicategory will correspond to connected colimit preserving functors between
presheaf categories. Such functors do not have to send the empty presheaf to the
empty presheaf, but will still preserve open map bisimulation. This relaxation makes
the category of connected colimit preserving functors between presheaf categories a
suitable framework in which to give semantics to a wide range of process languages [52,
11, 39].

8.1 Lifting

Definition 8.1 (Lifting) Define (−)⊥ : Prof → Prof to be the following pseudo-
functor:

• On objects: P⊥ is the category P to which it has been added a new strict initial
object, often referred to as ⊥. The objects of P⊥ other than ⊥ are often written
⌊P ⌋ for P an object of P.

• On arrows: If F : P + Q, F⊥ is defined by:

F⊥(P ′, Q′) =





F (P, Q) if P ′ = ⌊P ⌋ and Q′ = ⌊Q⌋,
{∗} if Q′ = ⊥,
∅ otherwise.

• On 2-cells: A 2-cell α : F ⇒ G is extended with identity functions for the extra
components to cover the new cases.

Not only is P̂, yP a free colimit completion of P, but also, as we will see shortly,
P̂, jP⊥

is a free connected colimit completion of P⊥, where jP⊥
: P⊥ → P̂ is the strict

Yoneda embedding, now defined.

Definition 8.2 Writing l : P → P⊥, for the “inclusion” functor P 7→ ⌊P ⌋, from a
small category P, in Cat, the construction P⊥, l freely adjoins an initial object (in
other words, it is the free completion of P with the colimit of the empty diagram).
This freeness yields a unique initial-object preserving functor

jP⊥
: P⊥ → P̂ ,

such that
jP⊥
◦ l = yP .

The functor jP⊥
sends every non-initial object to the corresponding representable and

the initial object ⊥ to the empty presheaf, the initial object of P̂.

Associated with jP⊥
is the functor j∗P⊥

: P̂ → P̂⊥, which takes a presheaf X in P̂ to

the presheaf P̂(jP⊥
(−), X) in P̂⊥. The presheaf j∗P⊥

(X) is such that

j∗P⊥
(X)(⌊P ⌋) = P̂(jP⊥

⌊P ⌋, X) = P̂(yPP, X) ∼= X(P )

and
j∗P⊥

(X)(⊥) = P̂(jP⊥
⊥, X) = P̂(∅, X), a singleton set.

Notation: We write ⌊−⌋ for the functor j∗P⊥
(−).
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Thus, the functor ⌊−⌋ : P̂ → P̂⊥ has a simple description; it adjoins a “root” to

a presheaf X in P̂ in the sense that ⌊X⌋(⌊P ⌋) is a copy of X(P ) for any P in P,
while ⌊X⌋(⊥) is singleton set {∗}, the new root being ∗. Presheaves that to within
isomorphism can be obtained in this way are called rooted in [28]. Any presheaf in

P̂⊥ has an essentially unique decomposition as a coproduct of rooted presheaves—its
rooted decomposition:

Proposition 8.3 Let Y ∈ P̂⊥. Then,

Y ∼=
∑

i∈Y (⊥)⌊Yi⌋ ,

where, for i ∈ Y (⊥), the presheaf Yi in P̂ is the restriction of Y to the elements over
P , an object of P, which Y sends to i, viz.

Yi(P ) = {x ∈ Y (⌊P ⌋) | Y (u)(x) = i}

—we have written u : ⊥ → ⌊P ⌋ for the unique map in P⊥ from the initial object.

8.2 Connected colimit preserving functors

In Section 7 it was shown how to represent filtered colimit preserving functors between
presheaf categories in Prof using a comonad, !. We now concentrate on another class
of functors that we have found prevalent in the semantics of processes, this time
based on lifting. These are functors which preserve connected colimits. A colimit is
connected when its diagram is nonempty and connected as a graph [41]. Using lifting,
we can describe connected colimit preserving functors between presheaf categories as
certain arrows in Prof .

Proposition 8.4 The functor ⌊−⌋ : P̂→ P̂⊥ preserves connected colimits.

Proof: Let K be a connected category. In order to apply Lemma A.8, we should
check that

⌊

∫ K

X(K)⌋(P ′) ∼= (

∫ K

⌊X(K)⌋)(P ′)

holds, and is natural in X : K→ P̂ and P ′ ∈ P⊥.
In the case where P ′ = ⌊P ⌋ for P in P, the isomorphism and its naturality in

X and P follow by the Yoneda lemma and because colimits of presheaves are got
pointwise:

⌊

∫ K

X(K)⌋(⌊P ⌋) = P̂(jP⊥
⌊P ⌋,

∫ K

X(K))

= P̂(yPP,

∫ K

X(K))

∼= (

∫ K

X(K))(P )

∼=

∫ K

(X(K)(P ))
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=

∫ K

(⌊X(K)⌋(⌊P ⌋))

∼= (

∫ K

⌊X(K)⌋)(⌊P ⌋) ,

all of which isomorphisms are natural in X and P . In the case where P ′ = ⊥, the
isomorphism follows because a colimit of connected singletons is a singleton. It is then
easy to show naturality in P ′ throughout P⊥ by exhibiting the additional naturality
squares associated with arrows ⊥ → ⌊P ⌋. 2

Proposition 8.5 The presheaf category P̂, with jP⊥
: P⊥ → P̂, is a free connected

colimit completion of P⊥.

Proof: To show freeness, suppose F : P⊥ → C is a functor to a category with all
connected colimits. Define the left Kan extension LanjP⊥

F by

(LanjP⊥
F )(X) = colim (El(⌊X⌋) πX→ P⊥

F→ C) ,

for X in P̂; clearly the category of elements of the rooted presheaf ⌊X⌋ has an initial
element at ⊥ and so is connected.

Because jP⊥
is full and faithful we have that

(LanjP⊥
F ) ◦ jP⊥

∼= F .

Abbreviate LanjP⊥
F to F+. Without loss of generality we may assume that

F+jP⊥
(P ) = F (P ) for all P in P⊥. To see that F+ preserves connected colimits,

let 〈Xi
ki→ X〉i∈I be a colimiting cone with I connected. Any x : jP⊥

(P )→ X , with
P in P⊥, must factor

Xi
ki

X

jP⊥
(P )

h
x

for some I in I. Hence

F+(Xi)
F+(ki)

F+(X) .

F (P )

F+(h)
F+(x)

But the cone
〈F (P ) F+(x)→ F+(X)〉(P,x)∈El(⌊X⌋)

is colimiting by definition, whence the cone

〈F+Xi
F+ki→ F+X〉i∈I

must also be colimiting.
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Thus F+ is connected colimit preserving and satisfies F+ ◦ jP⊥
∼= F . These

properties determine F+ to within natural isomorphism, as we now show.
Any presheaf X in P̂ can be expressed as a connected colimit:

X ∼= colim (El(⌊X⌋) πX→ P⊥
jP⊥→ P̂) .

Hence, supposing that G : P̂→ C is connected colimit preserving such that G◦jP⊥
∼= F

ensures that G(X) ∼= F+(X), natural in X . 2

Definition 8.6 The 2-category Conn consists of all small categories as objects, with
arrows from P to Q being the connected colimit preserving functors from P̂ to Q̂, and
2-cells the natural transformations between such functors.

Proposition 8.7 There is an equivalence of categories

Prof (P⊥, Q) ≃ Conn(P, Q) ,

for any two small categories P and Q.
The functors exhibiting the equivalence are

F 7→ LanjP⊥
F

from Prof (P⊥, Q) to Conn(P, Q), and

G 7→ G ◦ jP⊥

from Conn(P, Q) to Prof (P⊥, Q).

Proof: That the two functors above are mutual inverses to within natural isomor-
phism follows directly from P̂ being the free connected colimit completion of P⊥,
Proposition 8.5. 2

The above proposition is really part of a pseudo-adjunction which we most easily
express using Cocont in place of Prof . The inclusion 2-functor from Cocont to
Conn has a left pseudo-adjoint, the operation of lifting (−)⊥ extended to 2-functor
from Conn to Cocont. The definition of lifting as a 2-functor relies on the rooted
decomposition of presheaves—see Proposition 8.3

Let Y and Z be presheaves in P̂⊥ with rooted decompositions Y ∼=
∑

i∈Y (⊥)⌊Yi⌋

and Z ∼=
∑

j∈Z(⊥)⌊Zj⌋. A map of presheaves f : Y → Z in P̂⊥ also decomposes:

Y

f

∼=
∑

i∈Y (⊥)⌊Yi⌋

∑
i∈Y (⊥)

⌊fi⌋

Z ∼=
∑

j∈Z(⊥)⌊Zj⌋ .

By naturality, for each i ∈ Y (⊥), f restricts to a map fi : Yi → Zf⊥(i) in P̂. The
function f⊥ : Y (⊥) → Z(⊥) expresses to which components of Z the components of
Y are sent.

Via the rooted decomposition of presheaves over lifted categories we can express
lifting as a 2-functor from Conn to Cocont.
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Definition 8.8 Define the 2-functor (−)⊥ : Conn→ Cocont to act as follows.

• On objects: An object P is sent to P⊥, in which an initial object ⊥ has been
adjoined freely to P.

• On arrows: Let F : P→ Q be an arrow in Conn. The functor F⊥ : P⊥ → Q⊥

takes an arrow f : Y → Z with decomposition

∑
i∈Y (⊥)⌊fi⌋ :

∑
i∈Y (⊥)⌊Yi⌋ →

∑
j∈Z(⊥)⌊Zj⌋

to the arrow

∑
i∈Y (⊥)⌊F (fi)⌋ :

∑
i∈Y (⊥)⌊F (Yi)⌋ →

∑
j∈Z(⊥)⌊F (Zj)⌋ .

• On 2-cells: A 2-cell α : F ⇒ G is sent to the 2-cell α⊥ : F⊥ ⇒ G⊥, a natural
transformation with components

(α⊥)Y =
∑

i∈Y (⊥)⌊αYi
⌋ :

∑
i∈Y (⊥)⌊F (Yi)⌋ →

∑
i∈Y (⊥)⌊G(Yi)⌋ ,

at Y a presheaf in P̂⊥.

The 2-functor (−)⊥ is a left pseudo-adjoint to the inclusion 2-functor from Cocont
to Conn.

Proposition 8.9 Composition with ⌊−⌋ : P̂ → P̂⊥ induces an equivalence of cate-
gories

Cocont(P⊥, Q) ≃ Conn(P, Q) .

There is a pseudo-adjunction in which (−)⊥ together with ⌊−⌋ is a left pseudo-adjoint
to the inclusion 2-functor from Cocont to Conn:

Conn

(−)⊥

⊥ Cocont
inclusion

Proof: Similar to that of Proposition 7.10. 2

The pseudo-adjunction induces a pseudo-comonad on Cocont. Its coKleisli bi-
category, biequivalent to Conn, is not cartesian closed, but can be viewed as a model
of affine linear logic [26, 40].

8.2.1 Rooted colimits

Although the results of this section are phrased in terms of connected colimits we
could equally well have replaced their use by special connected colimits which we call
“rooted”.

Definition 8.10 A diagram in a category C is said to be rooted iff it is a functor
I⊥ → C, for I a small category. A colimit is rooted iff its diagram is rooted.

Proposition 8.11 A category is cocomplete iff it has an initial object and all rooted
colimits.
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Proof: “If”: Any diagram I → C extends to a rooted diagram I⊥ → C in which ⊥
is sent to the initial object. The colimiting cone for the rooted diagram restricts to a
colimiting cone for the original diagram. “Only if”: trivial. 2

In particular, as we have seen, the free connected colimit completion of P⊥ is P̂ which
has all colimits; because P⊥ has an initial object so must the completion have an
initial object in addition to all connected colimits.

Proposition 8.12 Assume that C is a cocomplete category. A functor F : C → D
preserves connected colimits iff it preserves rooted colimits.

Proof: “Only if”: Trivial, as a rooted colimit is a special kind of connected colimit.
“If”: Any colimiting cone from a connected diagram K → C extends to colimiting
cone from a rooted diagram K⊥ → C in which ⊥ is sent to the initial object. If F
preserves the rooted colimit it will also preserve the original connected colimit. 2

In particular, because presheaf categories have an initial object, functors from presheaf
categories preserve connected colimits iff they preserve rooted colimits. Consequently,

Corollary 8.13 The presheaf category P̂, with jP⊥
: P⊥ → P̂, is a free rooted colimit

completion of P⊥.

Of course, colimit preserving functors preserve all connected colimits. Amongst
the connected colimit preserving functors between presheaf categories we can easily
pick out those which satisfy the stronger condition of preserving all colimits; by the
next proposition, they are those functors which are strict, i.e. they send the empty
presheaf to the empty presheaf.

Proposition 8.14 Assume that C and D are cocomplete categories. Suppose F :
C → D is a functor which preserves connected colimits. The following properties are
equivalent:

(i) F preserves all colimits.

(ii) F preserves all coproducts.

(iii) F is strict, i.e., F preserves initial objects.

Proof: The implications (i) to (ii) and (ii) to (iii) are obvious. The implication (ii) to
(i) follows because any colimit decomposes into a coproduct of connected colimits. The
implication (iii) to (ii) follows because a coproduct, whose components are indexed
by objects in the discrete category I, can also be viewed as a connected colimit: the
indexing is extended to I⊥, so that ⊥ is sent to the initial object. 2

8.3 Bisimulation

We turn now to consider the preservation of bisimulation by connected colimit pre-
serving functors. We begin with a simple but important observation.

Proposition 8.15 Let h : X → Y be a map between presheaves in P̂. The following
statements are equivalent:

38



(i) The map h is jP⊥
-open.

(ii) The map ⌊h⌋ : ⌊X⌋ → ⌊Y ⌋ is yP⊥
-open.

(iii) The map h is surjective yP-open.

Proof: By definition,
⌊h⌋ = j∗P⊥

h : j∗P⊥
X → j∗P⊥

Y .

That (i) and (ii) are equivalent is a direct consequence of Lemma 2.6.
To see the equivalence between (ii) and (iii), recall that j∗P⊥

X = ⌊X⌋ and j∗P⊥
Y =

⌊Y ⌋ are rooted presheaves, for which ⌊X⌋(⊥) and ⌊Y ⌋(⊥) are singletons and ⌊X⌋(⌊P ⌋) ∼=
X(P ) and ⌊Y ⌋(⌊P ⌋) ∼= Y (P ). Clearly, the square

X(P )

hP

X(Q)
Xm

hQ

Y (P ) Y (Q)
Y m

associated with m : P → Q is a quasipullback in P̂ iff the corresponding square

⌊X⌋(⌊P ⌋)

⌊h⌋P

X(Q)
⌊X⌋(⌊m⌋)

⌊h⌋Q

Y (P ) Y (Q)
⌊Y ⌋(⌊m⌋)

associated with ⌊m⌋ : ⌊P ⌋ → ⌊Q⌋ is a quasipullback in P̂⊥. Letting P be an object
of P, the square

{∗}

h⊥

X(P )
Xe

hP

{∗} Y (P )
Y e

associated with the map e : ⊥ → ⌊P ⌋, is a quasipullback iff hP is surjective. 2

Functors ⌊−⌋ : P̂ → P̂⊥ are a form of prefixing operation, as prevalent in process
calculi. (Lifting constitutes the basic prefix operation in the presheaf semantics of
affine HOPLA, the higher order affine language in [40], and underlies the semantics of
many essentially affine process languages [51, 13, 52, 53].) They also play a key role in
harnessing open map preservation in Prof to connected colimit preserving functors.

Proposition 8.16 The functor ⌊−⌋ : P̂→ P̂⊥ preserves surjective open maps.

Proof: In relation to Lemma 2.6, we have the following situation:

P⊥

yP⊥

P̂⊥
LanyP⊥

jP⊥

⊤ P̂.

j∗P⊥
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Notice that LanyP⊥
jP⊥
◦ yP⊥

∼= jP⊥
, because yP⊥

is full and faithful. Thus, by
Lemma 2.6, ⌊−⌋ = j∗P⊥

, sends jP⊥
-open maps to yP⊥

-open maps. As observed above,
jP⊥

-open maps are the same as surjective yP-open maps. Moreover, ⌊−⌋ preserves
epimorphisms as it preserves connected colimits (Proposition 8.4) and so pushouts.
2

We can use Corollary 3.3 to deduce the preservation of surjective open maps along
connected colimit preserving functors.

Theorem 8.17 Let G : P̂ → Q̂ be a connected colimit preserving functor. Then G
preserves surjective open maps and open map bisimulation.

Proof: From Proposition 8.7, we know that G ∼= LanjP⊥
(F ) for some functor F :

P⊥ → Q̂. By Proposition A.14

G ∼= LanjP⊥
F ∼= (LanyP

F ) ◦ j∗P⊥
= (LanyP

F ) ◦ ⌊−⌋ .

Now, from Proposition 8.16 we know that ⌊−⌋ preserves surjective open maps, and so
does LanyP

F by Corollary 3.3. Hence their composition, and so G, preserves surjective
open maps, and consequently open map bisimulation. 2

Via the reflection Cocont ⊥ Conn , the category Conn inherits a monoidal
closed structure from Cocont, and is sufficiently rich in operations to give semantics
to a broad spectrum of process languages, including those with a form of linear process
passing. Affine HOPLA is such a linear process passing language, introduced in [39,
40]; its operations, definable within Conn preserve open map bisimulation leading
automatically to congruence results [52, 11]. The category Conn also supports a
trace operation associated with a feedback loop in nondeterministic dataflow [24].

9 Pseudo comonads via families

9.1 Motivation

According to the discipline of linear logic, nonlinear maps from P to Q are intro-
duced as linear maps from !P to Q—the exponential ! applied to P allows arguments
from P to be copied or discarded freely. We have interpreted !P as the finite-colimit
completion of P. With this understanding of !P, linear maps !P + Q correspond, to
within isomorphism, to filtered colimit preserving functors from P̂ to Q̂. But, unfor-
tunately, continuous functors from P̂ to Q̂ need not preserve bisimulation. This raises
the question of whether other choices of exponential fit better with open maps and
bisimulation.

Observe the hopeful sign that maps which are not linear may still preserve bisim-
ulation. For example, a functor yielding a presheaf H(X, Y ), for presheaves X and
Y over P, which is “bilinear” in the sense that it preserves colimits in each argument
separately, when diagonalised to the functor giving H(X, X) for X in P̂, will still
preserve open maps and bisimulation. A well-known example of a bilinear functor is
the product operation on presheaves [27]. For essentially the same reason the tensor
operation in Prof is bilinear and preserves open maps.
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Bear in mind the intuition that objects of P correspond to the shapes of com-
putation path a process, represented as a presheaf in P̂, might perform. An object
of !P should represent a computation path of an assembly of processes each with
computation-path shapes in P—the assembly of processes can then be the collection
of copies of a process, possibly at different states. If we take !P to be the finite colimit
completion of P, an object of !P as a finite colimit would express how paths coincide
initially and then branch. To understand this object as a computation path of an
assembly of processes, we can view the assembly of processes as not fixed once and
for all. Rather the assembly grows as further copies are invoked, and these copies
can be made of a processes after they have run for a while. The copies can then
themselves be run and the resulting processes copied. In this way, by keeping track
of the origins of copies, we can account for the identifications of sub-paths.

This intuition suggests exploring other less liberal ways of copying, without, for
example, being able to copy after some initial run. If we are to index different copies
to distinguish them we are led to consider indexed families of objects in a category.

9.2 Indexed families

Definition 9.1 Let U be a subcategory of Set. Let A ∈ CAT. Define FU(A) to be
the category of U-families which consists of

• objects 〈Ai〉i∈I where I ∈ |U| and Ai ∈ |A|, for all i ∈ I.

• arrows (f, e) : 〈Ai〉i∈I → 〈A′
j〉j∈J where f : I → J in U and e = 〈ei〉i∈I such

that ei : Ai → A′
f(i), for all i ∈ I.

The operation FU extends to a 2-functor on CAT. Letting F : A → B, the functor
FU(F ) : FU(A)→ FU(B) takes

(f, 〈ei〉i∈I) : 〈Ai〉i∈I → 〈A
′
j〉j∈J

to
(f, 〈Fei〉i ∈ I) : 〈FAi〉i∈I → 〈FA′

j〉j∈J .

For ϕ : F ⇒ G, define FU(ϕ) : FU(F )⇒ FU(G) as

FU(ϕ)〈Ai〉i∈I
= (1I , 〈ϕAi

〉i∈I) : 〈FAi〉i∈I −→ 〈GAi〉i∈I .

It is easy to see that

FU(A)(〈Aj〉j∈J , 〈A′
i〉i∈I) ∼=

∑
f∈U(J,I)

∏
j∈JA(Aj , A

′
f(j)) .

Under sufficient conditions, that U is small, has singletons and dependent sums,
we can obtain a 2-monad on CAT.

Definition 9.2 A dependent sum for U is a functor
∑

: FU(U)→ U such that

• on objects 〈Ji〉i∈I of FU(U), the object
∑

(〈Ji〉i∈I) is a sum (disjoint union) of
sets

∑
i∈IJi; write [i, j] for the i-th injection of j into the sum.

• on arrows (f, g) : 〈Ji〉i∈I → 〈J
′
i′〉i′∈I′ of FU(U); so f : I → I ′ and g = 〈gi〉i∈I is

a family of maps gi : Ji → J ′
f(i) in U,

∑
(f, g) :

∑
i∈IJi →

∑
i′∈I′J

′
i′ ; [i, j] 7→ [f(i), gi(j)] .

41



For U with a singleton, we can define the functor ηA : A → FU(A) which sends A
in A to the singleton family with A as its single component. For U with dependent
sum, we can define the functor µA : FUFU(A) → FU(A) which takes a family of
families 〈〈Ai,j〉j∈Ji

〉i∈I to the family 〈Ai,j〉[i,j]∈
∑

i∈I
Ji

. Under the conditions that U

has a singleton set {∗} as object, and a dependent sum, FU becomes a 2-monad on
CAT; its unit η has components ηA and its multiplication components µA.

9.3 Pseudo-comonads on Prof

We will think of profunctors FU(P) + Q as generalised forms of polynomials.5 Con-
sider the category of “polynomials” Prof(FU(P), Q) from P to Q; the category is

clearly isomorphic to the presheaf category ̂(FU(P))op ×Q, so has open maps, and

the functor category [FU(P), Q̂]. Under sufficient conditions, that U is small, has a
singleton and dependent sums, we can compose polynomials in the manner of the
co-Kleisli construction. To do this we use a distributive law converting a family of
presheaves into a presheaf over families of paths.

The following distributive law is used to turn FU into a pseudo functor on Prof .
For a small category Q,

dQ = (FUyQ)∗ : FU(Q̂)→ F̂U(Q) .

Recall from the Appendix, A.4.3, that this means that

dQ(〈Xi〉i∈I) = FU(Q̂)(FU(yQ)(−), 〈Xi〉i∈I)

for 〈Xi〉i∈I in FU(Q̂). It thus acts so

dQ(〈Xi〉i∈I)〈qj〉j∈J
∼=

∑
f∈U(J,I)

∏
j∈JXf(j)(qj) ,

for 〈Xi〉i∈I in FU(Q̂) and 〈qj〉j∈J in FU(Q)—as is easy to show.
With the help of the distributive law we can define a pseudo-endofunctor on

Prof : on objects it acts as FU, and sends an arrow F : P + Q to dQ ◦ (FUF ) :
FU(P) + FU(Q), and a 2-cell α : F ⇒ G to dQ(FUα).

The pseudo-functor has a counit ε and comultiplication δ with components

εP = η∗
P ◦ yFU(P) : FU(P) + P ,

δP = µ∗
P ◦ yFU(P) : FU(P) + FUFU(P) .

With suitable coherence modifications this turns FU into a pseudo comonad.

Notation: From now on we will use the FU for the pseudo-functor on Prof .

5This view is amplified in [39, 53]. For now, note that special profunctors of this form, viz.,
FB(1) + 1 where B is the category of finite sets and bijections, are used in Joyal’s theory of
species [3]. A profunctor FB(1) + 1 corresponds to a functor F : B → Set; such a functor in

turn corresponds to an analytic functor from Set to Set, taking a set X to
R

n∈B
Fn · Xn. See

Example 9.9.
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Its convenient to write a polynomial F : FU(P) + Q, an arrow in Prof as F :
P →U Q. The composition of two such polynomials F : P →U Q and G : Q →U R is
given, as in the construction of a co-Kleisli category, by the composition

FU(P) +
δP
FUFU(P) +

FU(F )
FU(Q) +

G
FU(R) .

Assume that U, the subcategory of Set, contains the empty set; then FU(O),
families of the empty category, will be isomorphic to the category 1 consisting of a
single object and its identity arrow. A U-polynomial F : P →U Q gives rise to a
functor F † : P̂→ Q̂ in the following way. Viewing a presheaf X in P̂ as a profunctor1 + P we can also see it as an arrow O

X
−→U P. We define F †(X) as the presheaf

obtained by the composition of polynomials

O
X
−→U P

F
−→U Q .

The result F †(X) is the application of the polynomial F to the presheaf X . By
simplification of the associated coend expression, the functor F † obtained in this way
can be shown to coincide with the left Kan extension LanJU

F , where JU : FU(P)→ P̂
is the functor given on objects by

JU(〈Pi〉i∈I) =
∑

i∈IyP(Pi)

and on arrows (f, e) : 〈Pi〉i∈I → 〈P ′
j〉j∈J by the mediating arrow

JU(f, e) = [in′
f(i) ◦ yP(ei)]i∈I :

∑
i∈IyP(Pi)→

∑
j∈JyP(P ′

j) ,

where in′
j are the injections yP(P′

j)→
∑

j∈JyP(P ′
j):

FU(P)
JU

F

P̂

F †

Q̂

There is the question as to whether the functor F † : P̂→ Q̂ determines, to within
isomorphism, the polynomial F : P →U Q from which it is derived. This property
holds for interesting special cases: when for instance JU is full and faithful; and the
case of analytic functors [3] obtained when U consists of finite sets and bijections and
P and Q are both 1—see 9.9. When polynomials correspond to functors between
presheaves we have the simplification of being able to work with 2-category based
on the composition of functors rather than a bicategory of polynomials. For U in
general, non-isomorphic polynomials can give rise to isomorphic functors between
presheaf categories.

9.4 On preservation of bisimulation

For simplicity we only consider preservation of bisimulation by functors F † for poly-
nomials F : FU(P) + Q (though corresponding results hold for the composition of
polynomials). The functor F † coincides with LanJU

F . By Proposition A.14,

F † ∼= (LanyFU(P)
(F )) ◦ J∗

U . (†)
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This factorisation suggests that we should examine how

J∗
U : P̂→ F̂U(P)

preserves bisimulation. For this, it is important to remark that

J∗
UX(〈Pj〉j∈J ) ∼=

∏
j∈JX(Pj) ,

natural in X and 〈Pj〉j∈J . This follows from the definition of J∗
U, as J∗

UX = P̂(JU(−), X),
natural in X , and the chain of isomorphisms

J∗
UX(〈Pj〉j∈J ) ∼= P̂(

∑
j∈JyP(Pj), X) ∼=

∏
j∈J P̂(yP(Pj), X) ∼=

∏
j∈JX(Pj) ,

natural in X and 〈Pj〉j∈J .
First notice that J∗

U preserves surjectivity:

Proposition 9.3 Suppose that h : X → Y is a surjective map in P̂. Then, J∗
Uh is a

surjective map in F̂U(P).

Proof: As remarked above,

J∗
UX(〈Pj〉j∈J ) ∼=

∏
j∈JX(Pj) ,

natural in X and 〈Pj〉j∈J . In particular, we have the naturality square

(J∗
UX)(〈Pj〉j∈J )

h◦−

∼=
∏

j∈J X(Pj)

Q
j∈J hPj

(J∗
UX)(〈Pj〉j∈J ) ∼=

∏
j∈J Y (Pj)

associated with h : X → Y . Clearly if h is surjective, then each function hPj
is

surjective, ensuring that the function (J∗
Uh)〈Pj〉j∈J

= h ◦ − is surjective too. 2

Consider the factorisation (†) of F †. By Lemma 2.6 the functor J∗
U sends JU-open

maps to yFU(P)-open maps, which are then sent by the left Kan extension LanyFU(P)
F

to yQ-open maps. Furthermore, both J∗
U and LanyFU(P)

(F ) preserve surjectivity. The
question of preservation of bisimulation hinges on the nature of JU-open maps. This
depends on the choice of U. The next proposition deals with two important general
cases.

Proposition 9.4 Let U be a subcategory of finite sets and functions, which has a
singleton.

(i) Suppose U contains a map 2 → 1 from a set 2 with two distinct elements to a

singleton 1. Then, any surjective JU-open map in P̂ is an isomorphism.

(ii) Suppose that all maps in U are injections. A surjective map in P̂ is JU-open iff
it is yP-open.
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Proof:
(i) By copying the proof of Proposition 7.11, which, as stated in its acompanying

remark, applies quite generally.
(ii) Because U has singletons, yP

∼= JU◦ηP—the Yoneda embedding factors through
JU. Hence any JU-open map is jP-open.

Conversely, suppose that h is surjective and open. We show that J∗
Uh is open in

F̂U(P)—by Lemma 2.6 this is equivalent to h being JU-open. As remarked earlier,

J∗
UX(〈Pi〉i∈I) ∼=

∏
i∈IX(Pi) ,

natural in X and 〈Pi〉i∈I .
Consider the naturality square

∏
i∈I X(Pi)

Q
i∈I hPi

∏
j∈J X(Qj)

Q
i∈I Xmi

Q
j∈J hQj

∏
i∈I Y (Pi)

∏
j∈J Y (Qj)Q

i∈I Y mi

associated with the arrow

(f, 〈mi〉i∈I) : 〈Pi〉i∈I → 〈Qj〉j∈J

in FU(P). Note that we have, for instance, written
∏

i∈IXmi :
∏

j∈JX(Qj) →∏
i∈IY (Pi) for the map taking 〈x′

j〉j∈J to 〈Xmi(x
′
f(i))〉i∈I .

We must show that the square is a quasi-pullback. To this end, suppose that

(
∏

i∈IhPi
)(〈xi〉i∈I) = (

∏
i∈IY mi)(〈y

′
j〉j∈J ) = 〈yi〉i∈I .

We now describe how to produce the components of a tuple x′ = 〈x′
j〉j∈J ∈

∏
j∈JX(Qj)

such that

(
∏

i∈IXmi)(x
′) = 〈xi〉i∈I and (

∏
j∈JhQj

)(x′) = 〈y′
j〉j∈J .

For each j = f(i) ∈ J , for some i ∈ I, the square

X(Pi)

hPi

X(Qf(i))
Xmi

hQf(i)

Y (Pi) Y (Qf(i))
Y mi

is a quasi-pullback, in which

hPi
(xi) = (Y mi)(y

′
f(i)) = yi .

Hence there exists some x′
f(i) such that

Xmi(x
′
f(i)) = xi and hQf(i)

(x′
f(i)) = y′

f(i) .

For each j ∈ J not in the range of f , because hQj
is surjective there is x′

j such that
hQj

(x′
j) = y′

j .
Taking x′ = 〈x′

j〉j∈J we fulfill the quasi-pullback condition for J∗
Uh to be open. 2
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If the empty set is an object in U it need not be initial, for example, if the maps
of U are bijections. In general JU-open maps need not be surjective. However:

Proposition 9.5 If U includes the function ∅ → 1 from the empty set to a singleton,
then JU-open maps are surjective open.

Proof: In this case the functor jP⊥
: P⊥ → P̂ factors through JU via the functor

P⊥ → FU(P) taking ⊥ to the empty family and objects of P to their corresponding
singleton families. 2

We consider different examples of U and the families and polynomials and prop-
erties they give rise to.

Example 9.6 Consider the subcategory of sets Ω which consists of objects subsets
n = {1, · · · , n}, empty when n = 0, of positive natural numbers with identities as the
only maps. Then, FΩ(P) is isomorphic to1+ P + P2 + P3 + · · ·+ Pk + · · · .

Here the superscripts abbreviate repeated applications of tensor in Prof , so Pk is
the product of k copies of the category P—in particular, 1 is the category consisting
solely of the empty tuple.

The category U has a singleton, viz. 1 = {1}. Its dependent sum is given by:

∑
i∈kji = j1 + · · ·+ jk .

Clearly all the maps of Ω are injections so, by Proposition 9.4(ii), maps which are
JΩ-open are surjective open. It follows that application (and, in fact, also composi-
tion) of Ω-polynomials preserves surjective open maps, so bisimulation.

However, there is no reasonable sense in which taking Ω-polynomials as maps
yields a cartesian-closed bicategory. It easy to see that there is an isomorphism of
categories

Prof(FΩ(R), P&Q) ∼= Prof (FΩ(R), P)×Prof(FΩ(R), Q) ,

in fact pseudo-natural in R, showing the sense in which P&Q, given by juxtaposition,
remains a product with polynomials as maps. There is also clearly an isomorphism
of functor categories

Prof(FΩ(P)×FΩ(Q), R) ∼= Prof(FΩ(P), ((FΩ(Q))op × R)) .

But, in general, FΩ(P&Q) and FΩ(P) × FΩ(Q) are not isomorphic (the analogue of
the Seely condition [47] is not met), so that (FΩ(Q))op × R is not a function space
for the polynomials with respect to −&−. (This example is dealt with in more detail
in [39, 53].)

Example 9.7 Now consider the full subcategory of sets F consisting of all finite sets
with functions as arrows. (Alternatively we can work with the equivalent category in
which the objects are natural numbers understood as sets, as in Ω above, but this time
allowing all functions as maps.) In this case FF(P) is the finite coproduct completion
of a small category P (a construction dual to the categorical powerdomain [32, 1]).
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Clearly F has singletons. It has a dependent sum given by disjoint union.
There is an isomorphism

FF(P)⊗FF(Q) ∼= FF(P&Q)

expressing how a family in FF(P&Q) can be broken down into a pair of families,
one component from FF(P) and the other from FF(Q). So the analogue of the Seely
condition is met, and (FF(Q))op × R is a reasonable function space.

But, by Proposition 9.4(i), in this case JF-bisimulation is degenerate and coincides
with isomorphism. Application (and composition) of F-polynomials does not in gen-
eral preserve open map bisimulation. Because the functors JF are full and faithful,
F-polynomials correspond to within isomorphism to special functors between presheaf
categories (under suitable conditions, they are exact functors [10]).

Example 9.8 The category I consists of finite sets and injections. (Alternatively we
can work with the equivalent category with objects natural numbers understood as
sets with injections.)

There is an isomorphism

FI(P)⊗FI(Q) ∼= FI(P&Q)

expressing how a family in FI(P&Q) can be broken down into a pair of families—the
Seely condition. This ensures an isomorphism of functor categories

Prof (FI(P&Q), R) ∼= Prof(FI(P), ((FI(Q))op × R)) ,

the sense in which (FI(Q))op × R is a function space when maps are I-polynomials.
By Propositions 9.4(ii) and 9.5, the maps which are JI-open are precisely the sur-

jective open maps, so that application (and, in fact, also composition) of I-polynomials
preserves surjective open maps and bisimulation.

It is possible for two non-isomorphic I-polynomials F, G : FI(1) + 1 to give rise
to isomorphic functors F † ∼= G† : Set → Set. (Our counterexample relies on one of
the functors not preserving pullbacks.)
FI seems a sensible choice of exponential. With FI processes may be copied some

arbitrary and extensible number of times, the copies being assembled as tuples with
shape an object in I.

If we restrict families to the full subcategory of I0 of I consisting of just two objects,
the empty and singleton sets, we obtain FI0(P) ∼= P⊥. With I0-polynomials (a form
of “affine” polynomials) we obtain a biequivalence with Conn:

Prof (FI0(P), Q) ≃ Conn(P, Q) .

Example 9.9 The category B consists of finite sets and bijections. (Alternatively
we get a category equivalent to B by taking objects the natural numbers understood
as sets with permutations as maps.)

We have the Seely condition

FB(P)⊗FB(Q) ∼= FB(P&Q)

and accordingly a function space (FB(Q))op × R.
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By Proposition 9.4(ii), maps which are surjective JB-open are surjective open, so
that application (and, in fact, also composition) of B-polynomials preserves surjective
open maps and bisimulation.

With FB as the choice of exponential, processes may be copied some arbitrary but
non-extensible number of times. We obtain another form of “affine” polynomials if
we restrict families to the full subcategory of B0 of B consisting of just two objects,
the empty and singleton sets; in this case, FB0(P) ∼= P + 1.

In general we can specialise U-polynomials to polynomials F : 1 →U 1. As
FU (1) ∼= U, such U-polynomials are functors F : U → Set. In particular, special
B-polynomials, functors F : B → Set correspond up to isomorphism to analytic
functors F † : Set→ Set [3].

10 Conclusions

This paper lays down the basic mathematics which underlies a theory of processes at
the level of intricacy found in concurrent computation. We have found the mathe-
matics essential in developing a domain theory for concurrency.

The mathematics has a life of its own, which is only patchily covered and un-
derstood in terms of existing process languages and their operational semantics.
There have been successes in applying the mathematics, in connecting with pro-
cess languages and operational semantics [39, 40], the semantics of nondeterministic
dataflow [24], independence/causal models [23, 38], fairness [22], pi-Calculus and name
generation for higher order processes [13, 57], and weak bisimulation [17]. These are
all examples of how we can bring categorical reasoning to bear on issues of concurrent
computation. (Much of this work is summarised along with the present limitations
in [40].) But there is still some way to go in making that mathematics operational.
For example, a full operational understanding of open map bisimulation for higher
order processes would seem to require a syntax and operational reading of the duality
between input and output given by (−)⊥ in the bicategory of profunctors.

One way forward is to build operational semantics from the presheaf semantics; a
guiding principle has been that elements of presheaves should correspond to deriva-
tions in an operational semantics. Another is via representations of presheaf denota-
tions in terms of more traditional process models such as event structures; these can
give a more detailed understanding of elements of presheaves (and so derivations in
an operational semantics) as configurations of an event structure.

Such work is likely to take us to refinements of profunctors and open map bisim-
ulation, and to other (bi)categories. But the results of this paper make, we believe,
a strong case that the links between nondeterministic processes and profunctors, op-
erations on processes and categorical constructions, open maps and bisimulation, are
truly fundamental.
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A A primer on coends and left Kan extensions

We introduce here the key categorical notions and results that we make use of in
the paper. We refer the reader to [33] and [6] for further background.6 (For the
newly worked-out notions of pseudo-comonad and pseudo-distributive law we rely on
[16, 46, 49].)

Terminology and Notation: We say a category C is small when it is equivalent to
a category whose objects and arrows form sets. We say it is locally small when for
each pair of objects, C and D, the hom-class C(C, D) is a set.

Correspondingly we say that a 2-category or bicategory C is locally small when for
each pair of objects C, D the category C(C, D) is small.

Small categories will be indicated with symbols such as C, D, P, Q, . . ., while
C, D, . . . will be used for general categories, most often locally-small.

If C is a category, we write |C| for the class of objects of C.
We write Cat for the 2-category of small categories and CAT for the 2-category

of locally small categories.

A.1 Representations, universality and parametricity

Let C be a category. A representation for a functor H : C → Set consists of R, θ, an
object R of C together with an isomorphism

θ : C(R,−) ∼= H .

A universal element of H consists of R, u, an object R of C and an element u ∈
H(R), such that for any object C of C and element x ∈ H(C) there is unique f : R→
C for which x = H(f)(u). A representation for H determines a universal element of
H , viz. the object R with the element u = θR(1R). Conversely, a universal element
R, u of H determines the representation R, θ in which the component of isomorphism
θ at an object C sends f ∈ C(R, C) to θC(f) = Hf(u).
Parametrised representability Assume a functor H : C × B → Set such that for
every (parameter) B an object of B,

θB : C(R(B),−) ∼= H(−, B) (∗)

is a representation. From the full and faithfulness of the (contravariant) Yoneda
embedding, it follows that there is a unique extension of R(−) to a functor R(−) :
B → C such that the isomorphism (∗) is natural in B.

A representation for a functor H : Cop → Set is defined dually, and parametricity
follows similarly. Universal elements of such a functor have various names (universal
cones or limits, universal wedges or ends, universal arrows, · · ·) according to the nature
of the sets H yields (cones, wedges, arrows, · · ·). Similarly, universal elements of a
functor H : C → Set have names (universal (co)cones or colimits, universal wedges or
coends, universal arrows, · · ·) according to the nature of the sets H yields ((co)cones,
wedges, arrows, · · ·).

6Although we shall not be so formal here the constructions on categories and functors form the
basis for a term language for functors and typing judgements assigning categories as types; a correct
typing judgement will ensure the functoriality of a term in its free variables. Such judgements can
be accompanied by a useful catalogue of natural isomorphisms of the kind appearing here [8, 7].
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A.2 (Co)Ends and their properties

A.2.1 Dinatural transformations

Coends and ends are generalisations of colimits and limits to functors of mixed vari-
ance. Functors of mixed variance are related by dinatural transformations.

Definition A.1 (Dinatural transformations) Let

F, G : Cop × C → D

be two functors. A dinatural transformation α : F
..
−→ G from F to G consists of

a family of arrows (αC : F (C, C) → G(C, C))C∈|C|, such that for every arrow of C,
f : C → C′ the following hexagonal diagram commutes:

F (C, C)
αC

G(C, C)

G(1C ,f)

F (C′, C)

F (f,1C)

F (1C′ ,f)

G(C, C′)

F (C′, C′)
αC′

G(C′, C′)

G(f,1C′ )

.

Write Dinat(F, G) for the class of dinatural transformations from F to G.

We obtain special dinatural transformations by restricting natural transformations
β in [Cop×C,D] to their diagonal components, of shape βC,C . Dinatural transforma-
tions do not compose in general. However, dinaturals do compose with dinaturals ob-
tained from natural transformations. For small C, this ensures that the set Dinat(F, G)
is functorial in F and G, both ranging over the functor category [Cop × C,D].

A.2.2 Coends

Wedges are dinatural transformations to or from a constant functor. They are thus
a generalisation of cones which are natural transformations to or from a constant
functor.

Notation: Any object D of D, gives rise to a constant functor, ∆D : Cop × C → D,
always returning D on objects and 1D on arrows.

Definition A.2 (Wedges) Let F : Cop×C → D be a functor and let D be an object
of D. A wedge from F to D is a dinatural transformation α : F

..
−→ ∆D. In other

words such a wedge consists of components αC : F (C, C) → ∆D, such that for any
f : C → C′ the following diamond commutes:

F (C, C)

αC

F (C′, C)

F (f,1C)

F (1C′ ,f)

D .

F (C′, C′)

αC′
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Coends are universal wedges, just as colimits are universal cones.
We can describe a coend for F compactly as a representation determined by an

object coend F together with an isomorphism

D(coend F,−) ∼= Dinat(F, ∆−) .

Equivalently we can define coends in terms of universal wedges:

Definition A.3 (Coends) A coend of a functor F : Cop × C → D is a universal
wedge of F , i.e., it consists of D0, ω where D0 is an object of D and ω is a wedge
from F to D0 such that, given any other wedge α : F

..
−→ D, there exists a unique

arrow h : D0 → D such that αC = hωC for every C ∈|C |.
As usual with colimits (and limits), by abuse of language the object D0 itself will

be often called the coend of F , and sometimes written as coend F . More often though
we will use the integral notation, writing

coend F =

∫ C

F (C, C) ,

always understood with respect to a particular choice of universal wedge.

Colimits as coends Colimits amount to coends of functors in which the contravari-
ant argument is dummy. A colimit of a functor F : C→ D, can be viewed as a coend
of a functor Fπ2 : Cop × C → D, where π2 : Cop × C → C is the obvious projection
functor. The colimit colim F can be written as the coend

∫ C

F (C) ,

in which the first dummy variable is not mentioned.
Natural transformations in [C,D] correspond to dinatural transformations between

functors in [Cop × C,D] in which the contravariant arguments are dummy. The
characterisation of the colimit as a representation

D(−, colim F ) ∼= [C,D](F, ∆−) ,

of the functor giving the set of cones from F to − is a special case of the representation
for coends.

Coends as colimits We can regard coends as special kinds of colimits. Assume
F : Iop × I→ D is a functor.

We construct a category IS and a functor dS : IS → Iop × I such that∫ I
F (I, I) ∼= colim (F ◦ dS).
The category IS is built from the objects and arrows in the category I as follows:

• objects consist of the disjoint union of the objects and arrows of I;

• arrows in addition to identity arrows we have the two arrows

U

f

V

for each f : V → U in I.
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The only composition in this category is with identities. The functor dS : I→ Iop × I
is defined as acting on objects and arrows in the following way:

U (U, U)

f
dS

(U, V )

(1U ,f)

(f,1V )
V (V, V ) .

Observe that cocones in [IS,D](F ◦ dS, ∆D) are exactly the wedges in Dinat(F, ∆D),

and that a coend (
∫ I

F (I, I), ω) is a colimit for F ◦ dS.
Consequently a category D has all small coends iff it is cocomplete, i.e. it has all

small colimits.
In particular, the calculation of small coends in in Set reduces to that of a colimit

in Set. The explicit construction of colimits there (see for example [33] or [6]) yields
an explicit construction of coends in Set.

Proposition A.4 Let I be a small category. Let F : I→ Set be a functor. Then, F
has a colimit in Set given explicitly as the cone consisting of the set X and functions
γI : F (I) → X, for I ∈| I |, described as follows. The set X is the set of equivalence
classes

X =
∑

I∈| I |F (I) / ∼

where ∼ is the least equivalence relation on the set
∑

I∈| I | F (I)
def
= {(I, x) | I ∈| I |

, x ∈ F (I)} for which

(I, x) ∼ (J, y) if F (f)(x) = y , for some f : I → J in I .

The function γI : F (I) → X, where I ∈| I |, takes x ∈ F (I) to the equivalence class
{(I, x)}∼.

A.2.3 Parametricity for coends

As a special case of parametrised representability, we obtain that the formation of
coends maintains functoriality in parameters.

Theorem A.5 (Parametricity for coends) If F : Cop × C× B → D is a functor

such that for every B ∈|B |, a coend (
∫ C

F (C, C, B), ωB) exists. Then, with respect
to a choice of coend for each parameter B, the mapping

B 7−→

∫ C

F (C, C, B) ,

extends uniquely to a functor

∫ C

F (C, C,−) : B→ D
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such that

F (C, C, B)
ωB

C

F (1C ,1C ,f)

∫ C
F (C, C, B)

R
C F (C,C,f)

F (C, C, B′)
ωB′

C

∫ C
F (C, C, B′)

commutes for all arrows f : B → B′.

In a more compact form, the assignment B 7→
∫ C

F (C, C, B) extends uniquely to a
functor in the parameter B such that the isomorphism

D(

∫ C

F (C, C, B), D) ∼= Dinat(F (−, +, B), ∆D)

natural in D, determined by the choice of universal wedge ωB, is also natural in B.
In line with the notation of the Theorem A.5 above, we shall write

∫ C

F (C, C, f) :

∫ C

F (C, C, B)→

∫ C

F (C, C, B′)

for the action of the functor above on the arrows f : B → B′ of B.
In practice, parametricity often allows us to specify functors without treating ob-

jects and arrows separately. For example, with an implicit reference to parametricity,
we can describe the functor above as the functor which acts so

X 7→

∫ C

F (C, C, X)

where X can be understood to range over both objects and arrows. This relies on F
being a functor, and implicitly on a choice of coend for each object X .

In particular, colim F , which we can regard as the coend
∫ C

F (C), for diagrams
F in [C,D] where D is cocomplete, extends to a functor colim from diagrams [C,D]
to D. Again, this assumes a choice of colimit for each diagram F .

A.2.4 The Fubini theorem for coends

In the manipulation of coends the interchange of “integrals” is often important, and
is justified by the following theorem.

Theorem A.6 (Fubini) Given a functor F : Iop × I × Jop × J → D, where D is a
cocomplete category,

∫ I ∫ J

F (I, I, J, J) ∼=

∫ (I,J)

F (I, I, J, J) ∼=

∫ J ∫ I

F (I, I, J, J) .

Moreover, the isomorphisms are natural in F .

Normally the Fubini theorem is stated in greater generality to allow for the category
D to not have all colimits. However the simpler version suffices here.
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A.2.5 Ends

Ends are defined in a dual way to coends, as universal wedges from an object to a
functor of mixed variance.

Just as colimits are special kinds of coends, we can regard limits as special ends
in which the contravariant argument is dummy, and, given a functor F : C → D can
write both

∫
C

F (C) and limF for the limit.
We can calculate ends as limits, by dualising the construction shown above for

coends. In particular, we can regard an end in Set as a limit in Set from which we
obtain the following explicit construction.

Proposition A.7 Let F : Iop × I → Set be a functor. Then, F has an end in Set
given explicitly as the wedge consisting of the set

X = {x ∈
∏

I∈| I |F (I, I) | F (I, f)(xI) = F (f, J)(xJ ) for all f : I → J in I}

and functions γI : X → F (I, I), where I ∈|I |, projecting x to its component xI .

A.2.6 End and coend formulae

Via the explicit construction of ends in Set, we can express the set of dinatural
transformations between appropriate functors as an end. Letting F, G : Iop × I→ D,

Dinat(F, G) =

∫

I

D(F (I, I), G(I, I)) .

By specialising to particular kinds of functors, we obtain an end expression for the
set of natural transformations between functors F, G : I→ D:

[I,D](F, G) =

∫

I

D(F (I), G(I)) .

Recalling the compact presentation of coends and ends we obtain the following natural
isomorphisms, characterising coends and ends:

D(

∫ I

F (I, I), D) ∼=

∫

I

D(F (I, I), D) ,

natural in D, and

D(D,

∫

I

F (I, I)) ∼=

∫

I

D(D, F (I, I)) ,

natural in D.

A.3 Preservation of colimits

A functor G : C → D is said to preserve colimits of a diagram d : I→ C if it sends any
universal (i.e., colimiting) cone from d to X to a universal cone from G ◦ d to G(X).
Clearly, when G preserves colimits of a diagram d this entails G(colim d) ∼= colim G◦d.
In general, such an isomorphism alone is not sufficient to ensure that G preserves the
colimit. However, with minor side conditions, naturality of the isomorphism in d does
ensure the colimit is preserved. Proofs of the following lemmas may be found in [9, 7].
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Lemma A.8 Suppose the category I is small and connected. Suppose categories C,D
have initial objects and all I-colimits.

A functor G : C → D preserves I-colimits iff there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [I, C].

Lemma A.9 Suppose the category I is small. Suppose categories C,D have all I-
colimits. Suppose that G sends initial objects to initial objects.

A functor G : C → D preserves I-colimits iff there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [I, C].

If we are interested in all colimits, we obtain the following simple statement.

Lemma A.10 Suppose categories C,D are cocomplete.
A functor G : C → D preserves all colimits iff for all small I there are isomorphisms

θd : G(colim d) ∼= colim (G ◦ d)

natural in d in [I, C].

From the Fubini theorem for coends we see a sense in which the operation of
formation of coends preserves colimits. More precisely, suppose D is cocomplete. For

any functor F : Jop × J → D we can form the coend
∫ J

F (J, J), and this operation
is functorial in F . Call this resulting functor G—we might alternatively describe the

functor G using lambda notation as λF.
∫ J

F (J, J). Now, G preserves colimits. In

other words,
∫ J

F (J, J) preserves colimits in the parameter F . By Lemma A.10, it
is sufficient to observe the following chain of isomorphisms are all natural in d : I →
[Jop × J,D]:

G(

∫ I

d(I)) ∼=

∫ J

(

∫ I

d(I))(J, J)

∼=

∫ J

(

∫ I

d(I)(J, J))

as coends of functors are computed pointwise,

∼=

∫ I

(

∫ J

d(I)(J, J)) by Fubini,

∼=

∫ I

G(d(I)) .

A.4 Kan extensions and their properties

A.4.1 Left Kan extensions

Definition A.11 (Left Kan Extensions) For functors C
G
←− A

F
−→ B, one says

that a pair K, α is a left Kan extension of G along F if
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• K : B → C is a functor

• α : G ⇒ KF is a natural transformation satisfying the following universal
property:

for every other pair H, β with H : B → C and β : G⇒ HF there exists a unique
γ : K ⇒ H such that β = γF · α.

By the usual abuse of language we will often call the functor K the left Kan extension
of G along F and write it as LanF (G).

We can summarise the data provided by the definition of left Kan extension in the
diagram:

A
F

G

α
⇒

B

LanF (G)

C

We can alternatively present such a left Kan extension as a representation, con-
sisting of the object LanF (G) and an isomorphism

[B, C](LanF (G),−) ∼= [A, C](G,− ◦ F ) .

Though note for [A, C] to be locally small, so that we always obtain a set on the right,
we need to assume that A is small ([B, C] need not be locally small).

Suppose that every G : A → C has a left Kan extension LanF (G), αG. As a special
case of parametrised representability, the operation of forming a left Kan extension
on objects G of [A, C] extends uniquely to a functor LanF (−) : [A, C] → [B, C] such
that

((LanF γ)F ).αG = αG′ .γ

for all γ : G→ G′.
Note that the triangle above need not commute, not even up to natural isomor-

phism. Still, this happens in many cases of interest.

Proposition A.12 Suppose F is full and faithful.
If (LanF (G), α) exists, then α is a natural isomorphism.
If (LanF (G), α) exists for all G : A → C, then the functors LanF (−) : [A, C] →

Im[B, C] and − ◦ F : Im[B, C] → [A, C], form an equivalence of categories between
the functor category [A, C] and Im[B, C], the full subcategory of [B, C] consisting of
functors naturally isomorphic to LanF (G) for some G : A → C.

A.4.2 Pointwise left Kan extensions

As we will see shortly, if C is cocomplete and A is small, then LanF (G) always exists
for any F and G. The proof of this fact relies on an important general construction,
that of the category of elements of a presheaf.

Definition A.13 Let X : Pop → Set be a presheaf. Define El(X) to be the category
consisting of

• objects pairs (P, x), where P ∈ |P| and x ∈ X(P ), and
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• arrows f : (P, x)→ (P ′, x′) if f : P → P ′ is an arrow of P and Xf(x′) = x.

The composition of arrows is given by the composition in P.
The construction extends to a functor El(−) from P̂ to the category of small cate-

gories. Let h : X → Y be a map in P̂, i.e.a natural transformation between presheaves.
The naturality of h ensures that we can define the functor El(h) : El(X)→ El(Y ) by
sending an object (P, x) in El(X) to (P, hP (x)) and an arrow f : (P, x)→ (P ′, x′) in
El(X) to the arrow f : (P, hP (x))→ (P ′, hP (x′)) in El(Y ).

Assuming that C is cocomplete and A is small we can compute the left Kan
extension LanF (G) “pointwise”, at any object B ∈ B, by taking

LanF (G)(B) = colim (El(B(F (−), B))
π
−→ A

G
−→ C)

using the category of elements of the presheaf B(F (−), B) : Aop → Set. With the
understanding that (A, x) ranges over this category of elements, we can abbreviate
this colimit expression to

LanF (G)(B) =

∫ (A,x)

GA .

On an arrow h : B → B′, the left Kan extension produces a unique arrow LanF (G)(h) :
LanF (G)(B)→ LanF (G)(B′), mediating between the two colimiting cones

〈GA
γA,x→〉(A,x)∈|El(B(F (−),B))| and 〈GA

γ′
A,y→〉(A,y)∈|El(B(F (−),B′))|, such that

GA
γA,x

γ′
A,h◦x

LanF (G)(B)

LanF (G)(h)

LanF (G)(B′)

commutes for all (A, x) ∈ |El(B(F (−), B))|. (See [6], Vol. 1, for a detailed proof that
this construction yields a left Kan extension.)

Still assuming that C is cocomplete and A is small, there is also a useful description
of (pointwise) left Kan extensions in terms of coends (Exercise 4, p. 239 of [33]):

LanF (G)(B) ∼=

∫ a

B(F (A), B) . G(A) ,

where by a copower S . C is meant the coproduct
∑

s∈S C of as many copies of C as
there are members of the set S.

A.4.3 Left Kan extensions along Yoneda

Of special interest is the case of left Kan extensions along the Yoneda embedding
yP : P→ P̂, where P is a small category, and and the category C is cocomplete:

P
yP

G

P̂

LanyP
(G)

C
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In this case LanyP
(G) will always have a right adjoint G∗ : C → P̂ given by

G∗(C) = C(G(−), C) .

When extending along Yoneda, we can use the Yoneda lemma to simplify the
colimit and coend formulations of the left Kan extension given above, in Section A.4.2.

For X a presheaf in P̂,

LanyP
(G)(X) = colim (El(X))

π
−→ P

G
−→ C) .

Let X and X ′ be presheaves in P̂, associated with the colimiting cones

〈GP
γP,x→ LanyP

(G)(X)〉(P,x)∈|El(X)|,

〈GP
γ′

P,x→ LanyP
(G)(X ′)〉(P,x′)∈|El(X′)| .

For a map h : X → X ′, we can define LanyP
(G)(h) to be the unique arrow in C such

that

GP
γP,x

γ′
P,hP (x)

LanyP
(G)(X)

LanyP
(G)(h)

LanyP
(G)(X ′)

commutes for all (P, x) ∈ |El(X)|.
From the coend expression for left Kan extensions, by the Yoneda lemma,

LanyP
(G)(X) ∼=

∫ P

X(P ) . G(P ) .

A.4.4 The density formulae

The left Kan extension of a Yoneda embedding along itself always exists and is natu-
rally isomorphic to the identity. From the two ways of describing pointwise left Kan
extensions we obtain two forms of the density formula. One form expresses a presheaf
X as a a colimit of representables:

X ∼=

∫ (P,x)

yP(P ) ,

where (P, x) ranges over the category of elements El(X). The other exhibits a presheaf
as a coend:

X ∼=

∫ P

X(P ) . yP(P ) .

A.4.5 A factorisation lemma

It is often useful to observe that pointwise left Kan extensions can be factored into a
composition described by the following lemma.

59



Lemma A.14 Let I : R → P̂ and G : R → C be functors, where the category C is
assumed cocomplete. Then,

LanI(G) ∼= LanyR
(G) ◦ I∗ ,

where I∗ : P̂→ R̂ is given by I∗(X) = P̂(I(−), X):

R
I

G

P̂
I∗

LanI(G) ∼= R̂

LanyR
(G)

C

Proof: By considering the coend expressions for left Kan extensions we see that

(LanIG)(X) ∼=

∫ R

P̂(I(R), X) . GR =

∫ R

(I∗X)R . GR ∼= (LanyR
G) ◦ I∗(X) ,

natural in X ∈ P̂. 2

A.4.6 Extensions of functors

A functor F : P→ Q, between small categories P and Q, extends to a functor

LanyP
(yQ ◦ F ) : P̂→ Q̂ ,

which is traditionally denoted by F!.
As we have just seen this left Kan extension has a right adjoint (yQ ◦F )∗ : Q̂→ P̂,

which, overloading notation, we will also write as F ∗.
In fact, the functor F ∗ is itself a left Kan extension along yQ of the functor Q→ P̂

taking Q to the presheaf Q(F (−), Q). So F ∗ has a right adjoint, traditionally written

as F∗ : P̂→ Q̂.
Summarising, in the special case, where F is a functor from P to Q (as distinct

from Q̂) there is a triple of adjoints

F! ⊣ F ∗ ⊣ F∗ : P̂→ Q̂ .

Further discussion on such adjoints, which form an essential geometric morphism, can
be found, e.g., in [34].
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[27] André Joyal and Ieke Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70(1):51–86, 1994.
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