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ABSTRACT
Ownership types provide a statically enforceable notion of
object-level encapsulation. We extend ownership types with
computational effects to support reasoning about object-
oriented programs. The ensuing system provides both access
control and effects reporting. Based on this type system, we
codify two formal systems for reasoning about aliasing and
the disjointness of computational effects. The first can be
used to prove that evaluation of two expressions will never
lead to aliases, while the latter can be used to show the
non-interference of two expressions.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages

General Terms
Languages, Theory

Keywords
Ownership types, encapsulation, aliasing, type-and-effects
systems.

1. INTRODUCTION
The possibility of aliasing is a key question in many as-

pects of system development, implementation and optimisa-
tion. Compiler optimisations are only valid if the respective
manipulations preserve the program’s semantics. For exam-
ple, synchronisation may be eliminated from concurrent pro-
grams if it can be established that data races cannot occur
[12]. Debugging and code maintenance require knowledge of
the aliasing structure and of which parts of an object graph
are potentially accessed or changed by the code under con-
sideration [17]. Garbage collection can be assisted when we
know that aliases do not, for example, escape beyond a par-
ticular region and thus play no further part in computation
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[8]. Security, such as required for the safe deployment of ap-
plets, depends on certain confinement properties [9, 16]. A
concrete notion of object aggregate or component can really
only exist when the integrity of the encapsulated objects
is maintained [33, 22]. Modular reasoning is only possible
when some control/knowledge of the aliasing and effects is
possible [58, 56, 38, 43].

These tasks require knowledge about potential aliasing
and potential accesses to parts of the state. If aliasing and
effect information appeared as a part of the type annota-
tions, then the type system could be used to deduce prop-
erties of a program’s behaviour. These properties are more
convenient to obtain than by using a full blown theorem
prover, though they can be supplied as axioms to assist the
theorem prover [57, 43].

In this paper we suggest the use of ownership types [22,
21, 20] extended with computational effects to address this
issue. Ownership types impose structural restrictions on
object graphs based on the statically definable and check-
able notions of owner and of representation. The owner
of an object is another object and its representation is the
objects owned by it. Ultimately, ownership types enforce
a statically-checkable notion of encapsulation: every object
can have its own private collection of representation objects
which are not accessible outside the object which owns them.
By adopting ownership as the basis for our effects system, we
diverge from the complementary alternative taken by Green-
house and Boyland [30] who instead employ uniqueness.

In addition to the ownership types and effects system,
we introduce two formal systems for reasoning about pro-
grams. The first determines which types are disjoint, and
can therefore be used to deduce aliasing properties. The
second determines which effects statements are disjoint, and
can therefore be used to show the non-interference of expres-
sions.

Thus the contributions of this paper are threefold: Firstly,
we extend our previous work on ownership types, to support
inheritance and dynamic aliases, which allow, e.g., the de-
scription of iterators, whilst maintaining a strong notion of
encapsulation. Secondly, we extend the ownership types sys-
tem with computational effects. Thirdly, we apply the own-
ership types to reason about the absence of aliasing, and
apply the effects system to reason about non-interference of
computation. We believe that our system is robust, and can
be adapted for more sophisticated programming languages.

The paper is structured as follows. Section 2 sets the
scene, describing ownership, encapsulation, and how these



can be used to reason about the disjointness of type and
effect. Section 3 describes Joe1, a core object-oriented lan-
guage extended with ownership types and effects annota-
tions. In Section 4 we present some examples and discuss
some of the consequences of Joe1’s annotations. The static
and dynamic semantics of Joe1 are described in Sections 5
and Section 6, along with the statement of relevant proper-
ties. Section 7 details our rules for the disjointness of type
and effect and illustrates their use. Related work is dis-
cussed in Section 8, before we conclude in Section 9, giving
also possible directions for future work.

2. OWNERSHIP AND EFFECTS
We describe a notion of object ownership and of encap-

sulation based on it. We then indicate how these can help
determine whether two types are disjoint and whether two
effects phrases are disjoint and denote non-interfering com-
putation.

2.1 Contexts, Ownership and Encapsulation
In an ownership types system every object has an owner.

The owner is either another object or the predefined con-
stant world for objects owned by the system. We call the
owners contexts and incorporate them into the type system
to statically track object ownership [22]. Essential differ-
ences between object ownership and uniqueness include that
an object can refer to objects it does not own but need not
refer to objects it does, and that an object may be referred
to by any number of objects which do not own it.

In code the owner is indicated by the first parameter of
a parameterised type. For example, in Figure 1, the owner
of objects in field head of class List is this, the owner
the add method’s argument d is data, which is a parameter
to the List class, and the owner of the Data object added
during the populate method is world. When no parameters
are present, such as for objects of class Main, the owner is
assumed to be world.

From object ownership stems a notion of containment : an
object is considered to be inside its owner. This induces a
transitive, tree-shaped ordering on objects with world as the
root. By preventing access to an object from objects outside
its owner, we gain a strong notion of encapsulation which
is per object [20]. The exact property, dubbed owners-as-
dominators, is that objects are dominated by their owners
— that is, all paths from the root of the object graph to
an object pass through its owner. This has been exhibited
for an earlier type system [22] and abstractly in terms of ob-
ject graphs [49]. A consequence of the owners-as-dominators
property is that objects are surrounded by an imaginary
boundary which protects internal objects from accesses from
external objects.

A system which satisfies the owners-as-dominators prop-
erty enforces what we call deep ownership. The alternative is
shallow ownership which prevents direct access to the inter-
nal objects by ensuring only that their owners are invariant
throughout a program’s execution, without preventing indi-
rect external access by objects apart from the owner. With
shallow ownership, the results presented in this paper would
be much weaker. Shallow ownership imposes a weaker con-
straint on objects graphs, and is thus less restrictive in terms
of which programs are legal. We regain some of the poten-
tial loss of expressiveness using dynamic aliases, stack-based
references into the representation of other objects. (In fact,

class List<owner,data> {
Link<this,data> head;
void add(Data<data> d) writes under(this) {
head = new Link<this,data>(d, head);

}
}
class Main<> {

List<this,world> list;
Main() writes this {
list = new List<this,world>; }

void populate() writes under(this.1) {
list.add(new Data<world>);
list.add(new Data<world>);

}
static void main() writes under(world) {
Main<> main = new Main<>;
main.populate();

}
}

Figure 1: Example code

there is really no loss of expressiveness, per se. One merely
must sacrifice some protection to enable certain implemen-
tation patterns.)

Object-level encapsulation is achieved in two steps. Firstly,
objects which are owned by the current object (denoted
this) are given owner context this. Such objects are called
the representation, and the context is called the representa-
tion context. Access to objects with owner this is restricted
to the current object and objects inside the current object.
Secondly, we ensure that subtyping cannot be used to forget
the nesting between objects which would enable references
to be passed to objects which ought not have access.

Running the code in Figure 1 results in a two element list
with object graph as in Figure 2. The solid circles denote
objects. The hollow one, labelled world, denotes the top of
the system; it need not be an actual object. The solid arrows
are ordinary references. The dotted arrows denote object
ownership, though these also need not be represented at
run-time. Following the owners-as-dominators property, we
can depict encapsulation boundaries around objects. These
prevent certain references from the outside to the inside,
such as the one represented by the dashed arrow.

Starting from the top of the figure, world is the pre-
existing context for objects owned system-wide. This is the
owner of main as the class Main has no owner parameter.
The owner of data is also world as specified in the type
Data<world>. The type List<this,world> specifies that
the list is owned by the instance of Main, and that the data
in the list is owned by world. Additional code (given later
in Figure 6) also indicates that all links of the list have the
same owner.

2.2 Disjointness of Type and Effect
Using our strong form of encapsulation, we can conclude

that certain types are disjoint. For example, if the class Main
from above had two fields

List<this,world> shared;

List<this,this> encaps;

then we could conclude that shared and encaps can never
be aliases. This is so because this and world are differ-
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Figure 2: Object Ownership and Encapsulation

ent contexts, since this refers to the current instance of
Main and world to a global constant context. Further, we
can infer that the Link objects referred to by the object in
shared are disjoint from those referred to by the object in
encaps, since the collection of links are encapsulated within
each list. We can also conclude that the Data objects stored
in the lists are also disjoint. Viewing shared and encaps

through their common supertype Object<this>, however,
would not allow anything to be concluded about their alias
properties.

We extend the ownership types system from Clarke, Pot-
ter and Noble [22] with computational effects. Following
Greenhouse and Boyland [30], we allow effects to be calcu-
lated for expressions based on declarations which must ac-
company each method. These declarations enable modular
checking.

A primitive effect occurs when the field of an object is
read or written. Since contexts correspond to objects, we
use contexts as the basis of our effects. An effect is statically
denoted as two collections of contexts, called effect shapes,
containing the contexts which may be read and written. One
of the effect shapes denotes all contexts inside and including
another. In our example the add method of List has the
write effect under(this). This indicates that a write (or
read) may occur to the list object or some object inside it.

The nesting between objects enforced by ownership types
allows the description, with some precision, of the effects on
unknown parts of an object graph.

For example, we can conclude that running the code

shared.add(new Data<world>)

will produce an effect which is disjoint from the effect re-
sulting from evaluating

encaps.add(new Data<world>).

This is because, as we said earlier, shared and encaps can
never be aliases. In addition, because shared and encaps

have the same owner, we can demonstrate that the set of

objects denoted by the effect

writes under(shared)

is disjoint from the set of objects denoted by the effect

writes under(encaps).

3. JOE = JAVA + OWNERSHIP + EFFECTS
Joe1 is an object-oriented programming language resem-

bling a decaffinated Java extended with both ownership types
and effects annotations. The subscript indicates that this is
to be the first in a series of languages. The syntax of Joe1

is given in Figure 3.
Notation: pi∈J indicates the sequence (or set) of items pi

for each element i in sequence (or set) J .

Classes. A class is a collection of fields and methods. In ad-
dition, a class may be parameterised by contexts. The first
parameter, if present, denotes the owner. Other parameters
are used as the owners of objects accessed by objects from
this class. Subclassing is specified using an extends clause
in which the parameters of the superclass are instantiated
with contexts in scope, preserving the owner in the first po-
sition.

Types. A type c〈pi∈1..n〉 consists of the name of a class c
with its parameters instantiated with contexts pi∈1..n that
are in scope. Again the first parameter is the owner of ob-
jects of that type. If no parameters are required, then the
type can be written as just c and the owner is the global
context world. In the formalism only we sometimes write a
type c〈σ〉, where σ is the binding from context parameters
to contexts. The two forms are equivalent: if the formal
parameters of c are αi∈1..n, then σ = {αi 7→ pi∈1..n}. This
σ can be used as a substitution when, for example, deter-
mining the types of fields. We use the notation σ(c〈pi∈1..n〉)
to denote c〈σ(pi)i∈1..n〉.

Methods. Methods are annotated with an effects specifica-
tion. This indicates the effect shape, or collection of con-
texts, which may be read and/or written when the method
is evaluated. Without loss of generality, methods take only
one argument to keep the formal system simple. Examples
will use several arguments when necessary.

Expressions. The expressions encompass the basic object
operations: field access, field update, method call, object
creation and null. Expressions are presented in a form
where every intermediate value is stored in a local vari-
able (which cannot be updated). This variable name can
subsequently be used to refer to the internal representation
context of the value stored in the variable (a feature ab-
sent from our earlier system [22]). This enables the tracking
of dynamic aliases — references from the stack to objects,
rather than from the heap — to the representation of ob-
jects. If we were to use a more Java-like syntax, then final
local variables would be used instead.

Contexts. Each object ι has an owner which cannot change.
The owner is either another object or the context world,
indicating that it is owned by the system. As we said earlier,
the owner o of ι must dominate it, i.e., at every point during



c ∈ ClassName
class ∈ Class ::= class c〈αi∈1..n〉 extends c′〈pi∈1..n′〉{fdj∈1..m methk∈1..p}

f ∈ FieldName
fd ∈ Field ::= t f
m ∈ MethodName

meth ∈ Method ::= t m(t x) ψ {e}
e ∈ Expr ::= z | let x = b in e

x, y ∈ TermVar
z ∈ Var ::= this | x
b ∈ Computation ::= z.f | z.f = z | z.m(z) | new t | null

α ∈ ContextVar
p, q ∈ Context ::= z | α | κ
κ ∈ ActualContext ::= world | . . .
φ ∈ EffectShape ::= ∅ | p.n | under(p.n) | φ ∪ φ n is a natural number
ψ ∈ Effect ::= rd φ wr φ
t ∈ Type ::= c〈pi∈1..n〉

Figure 3: Static aspects of Joe1

ι ∈ Location
ω ∈ VarOrLoc ::= z | ι
v ∈ Value ::= ι | null

κ ∈ ActualContext ::= . . . | ι

Figure 4: Some Dynamic Aspects

execution, every path from the root to ι must pass through
o. For example, in Figure 2 the Link objects are owned by
the List object, which is in turn owned by the Main object,
which, along with the Data objects, are owned by World. It
can easily be proven that the ownership relationship forms
a tree with world as the root [49]. The transitive closure of
this relationship is dubbed inside and captures the nesting
between objects.

There are two forms of context, those which occur in the
program source, called just contexts, p, and those which oc-
cur at run-time, called actual contexts, κ, and denote the
actual object owners — world and one for each object cre-
ated. Contexts statically refer to actual contexts in the type
system. Contexts consist of world, which in both program
source and at run-time denotes the root context, context
parameters (denoted by αi), and variables z, which denotes
the owner of objects owned by the object stored in that
variable. In particular, this as a context is the owner of the
representation. Classes are parameterised by context vari-
ables which, for example, allows the distinction between lists
whose data have different owns. Constraints on contexts
statically capture the desired nesting between actual con-
texts, required to maintain the owners-as-dominators prop-
erty.

Effect Shapes and Effects. An effect consists of a pair
of effects shapes, one capturing the contexts which may be
read, the other capturing contexts which may be written.
Thus rd φ wr φ′ denotes that a read may occur to a context
in φ (or φ′) and that a write may occur to a context within
φ′. We consider a write effect to include reads which may
occur to the same contexts, following Greenhouse and Boy-
land [30]. That is, the read denoted in the effect above may
occur to any context within φ ∪ φ′. This fact is reflected in

a single type rule. i.e., in (fxeq-readinwrite), so it could
easily be modified.

Effects shapes denote collections of contexts. The shape
∅ represents the empty collection. For every context p and
for each n ≥ 0, there are the shapes p.n, referred to as a
band, and under(p.n), referred to as an under shape. These
shapes are depicted in Figure 5, which shows objects un-
der the tree ordering. The shape p.n is the set of contexts
exactly n steps beneath p (in the context tree/ordering).
Thus p.0 is the singleton set {p}. When n = 0, it is suf-
ficient to write just p or under(p). The shape under(p.n)
corresponds to

S
i≥n p.i, and the shape under(world) cor-

responds to the union of all contexts, since world is the top
context. The union of effect shapes is denoted by φ ∪ φ′.

We have chosen this collection of shapes to enable the
abstract representation of effects on unknown parts of an
object’s internals, while retaining some precision when deal-
ing with these internals. The obvious effect shape, corre-
sponding to under(p), denoting some internal object, is not
precise enough. Examples in this paper use effects shapes
where n = 0 or 1. Greenhouse and Boyland [30] offer an
alternative but compatible approach.

4. EXAMPLES
Consider the example in Figure 6. It consists of a list and

its iterator implemented in our language (after compressing
let expressions). The list iterator is created as part of the
list’s representation, and can thus access the rest of the list’s
representation, namely the links. It can be accessed exter-
nally via a dynamic alias. The effect on the add method
could instead be wr this ∪ this.1, but this is included in
wr under(this), the effect we use. Similarly, the effect on
the elem method could be wr o.1 ∪ this, but since o is the
owner of this, the shape this (actually this.0) is included
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Figure 5: Basic Effects Shapes

class Link<owner,data> {
Link<owner,data> next;
Data<data> data;
Link(Link<owner,data> next, Data<data> data)

writes this {
this.next = next; this.data = data;

}
}

class List<owner,data> {
Link<this,data> head;
void add(Data<data> d) writes under(this) {

head = new Link<this,data>(head, d);
}
Iterator<this,data> makeIterator()

reads this writes this.1 {
return new Iterator<this,data>(head);

}
}

class Iterator<o,d> {
Link<o,d> current;
Iterator(Link<o,d> first) writes this {

current = first;
}
void next() reads o.1 writes this

{ current = current.next; }
Data<d> elem() reads o.1

{ return current.data; }
boolean done() reads this

{ return (current == null); }
}

Figure 6: A list and its iterator

in o.1, and thus the additional information is superfluous.

A method with encapsulated effects. The first thing of in-
terest in this example is that our system can express that the
effects of a method, either read, write, or both, are encapsu-
lated within the object on which the method operates. This
is the kind of thing a formal reasoner desires.1 For exam-
ple, the effect of method add is wr under(this), indicating
that it affects only the target object and its representation.
Thus, for list with type List<p,world>, the expression

list.add(new Data<world>);

has the effect wr under(list), meaning that it only affects
the internal representation of list. Therefore, the execution
of the above expression is guaranteed not to interfere with
(i.e., not to modify the fields of) any other object except for
list and the objects owned by list.

Representation access and dynamic aliases. The first
incarnation of ownership types forbade dynamic aliases [22].
This limited the expressiveness of the programming lan-
guage, preventing short-lived abstractions such as a list iter-
ator which must access the representation of another object.
The present type system allows such dynamic aliases, while
keeping track of the dependencies in a pleasing manner and
limiting their lifetimes, without imposing limitations such
as restricting references to read-only [44].

For example, here we create a list and an iterator for it:

List<p,world> list = new List<p,world>;

Iterator<list,world> iter = list.makeIterator();

Notice that the type of the iterator iter has the variable
name list as its owner. This means that iter is part of,
and is allowed to access, the list’s representation, but that
iter is externally accessible only where list is in scope.
Once list is out of scope, the type Iterator<list,world>,
and any other type containing context list is illegal. Fur-
thermore, since any supertype of Iterator<list,world>

must mention the context list, subtyping does not break
this property. Dynamic aliases briefly break the owners-
as-dominators property, but only with stack-based or local
variables.

Dynamic aliases also permit friendly functions, i.e., func-
tions which can access the representation of different objects,
without mixed up the different representations. For exam-
ple, the following method could be part of the class List:

bool equals(List<owner,data> other) {

Link<this,data> thislink = this.head;

Link<other,data> otherlink = other.head;

... thislink.data.equal(otherlink.data) ...

}

Our type system also allows the initialisation of an ob-
ject’s representation with externally created objects, to which
we can guarantee no external aliases — this problem was
identified by Detlefs, Leino and Nelson [26]. For example,
we require that the Socket underlying the following Stock-
QuoteHandler class be externally created, so that the client
can decide on its implementation, and then become a part
of the StockQuoteHandler’s representation.

1Personal communication, Bart Jacobs, November 2001.



class StockQuoteHandler {

Socket<this> s;

void initSocket(Socket<this> s) writes this {

this.s = s;

}

...

}

class Main {

void serveQuotes(...) writes ... {

StockQuoteHandler h = new StockQuoteHandler();

Socket<h> s = ...;

h.initSocket(s);

}

}

We achieve this using the variable holding the StockQuote-
Handler, namely h, as the owner of the newly created Socket.
This context externally denotes the StockQuoteHandler’s
representation. (The separation between construction and
initialisation in this example could be eliminated using a
simple static analysis.)

AliasJava [3] uses uniqueness to achieve this behaviour.
We gain the encapsulation guarantees which ownership types
enable, without requiring uniqueness to transfer the Socket
from where it is created to where it is stored. Although we
avoid the complications uniqueness precipitates, we cannot
however guarantee that the resulting reference to the Socket
is unique within the StockQuoteHandler.

While allowing dynamic aliases does weaken the possible
encapsulation, it can be further controlled in a full program-
ming language using privacy annotations. For example, we
could permit only certain dynamic aliases such as iterators,
but prohibit direct access to a list’s links. A consequence of
deep ownership is that dynamic aliases cannot be stored in
an object’s field (except one inside the object which owns
it). This would be permitted in a system with shallow own-
ership, which is why the results presented here do not hold
in that case. So dynamic aliases represent a sensible com-
promise which permits certain idioms, such as the ones dis-
cussed here, without losing the desired properties following
from the owners-as-dominators property.

The present treatment of these examples — initialisation,
iterators and friendly functions — is more pleasing than
previous attempts [19, 20], because the type of each dynamic
alias contains the name of the entity whose representation
it dynamically aliases.

5. STATIC SEMANTICS
The static semantics describe well-formed programs. The

type rules are defined with respect to some program P ,
which is left implicit to avoid unnecessary clutter. The pro-
gram P is also used to populate the dictionaries and helper
functions described later.

Most type rules are defined against an environment E
which provides types for the free term variables and loca-
tions (for the well-formedness of the dynamics) and con-
straints on context variables:

E ::= ∅ | E,ω : t | E,α≺∗ p | E,α≻∗ p

Although p≺∗ q is equivalent to q≻∗ p, we have both α≺∗ p
and α≻∗ p in environments, because this allows the newly
introduced parameter, in this case denoted by α, to be on
the left-hand side of the relation and thus in dom(E), the

collection of free variables.
The dynamic semantics is defined (later) in terms of an ex-

plicit binding of free variables, rather than via substitution.
This does not affect the static semantics of the programming
language, but the bindings are required in the type rules to
prove the type preservation theorem. To avoid duplicating
work, we include a binding list in the assumption set of most
judgements. The bindings B map context variables to actual
contexts and variables to values:

B ::= ∅ | B,α = κ | B, z = v

Note, contexts are defined modulo equality in the binding
list (via rules (in-bind1) and (in-bind2) in Section 8). Thus
effect shapes, effects, and types must also be defined modulo
context equality. To keep the presentation tractable, how-
ever, we have elided the rules dealing with such equalities.

The following judgements define the type system:

E;B ⊢ ⋄ good environment/binding pair
E;B ⊢ p good context
E;B ⊢ pR p′ context p is R-related to p′

R ∈ {=,≺,≺+,≺∗}
E;B ⊢ φ good effect shape
E;B ⊢ φ⊑φ′ φ is a subshape of φ′

E;B ⊢ ψ good effect
E;B ⊢ ψ⊑ψ′ ψ is a subeffect of ψ′

E;B ⊢ t good type
E;B ⊢ t≤ t′ type t is a subtype of t′

E;B ⊢ v : t value v has type t
E;B ⊢ e : t!ψ expression e has type t;

evaluation produces at most effect ψ
E;B ⊢ meth good method
⊢ class good class
⊢ P good program

We shall first establish some notation:
E ⊢ ℑ means E; ∅ ⊢ ℑ, for each appropriate right-hand

side.
owner(t) takes the owner from a type, where classes with-

out parameters have the manifest owner world. arity(c) is
the number of parameters expected by a class.

owner(c〈〉) b= world

owner(c〈αi∈1..n〉) b= α1, where n > 0

arity(c) b= n, where class c〈αi∈1..n〉{. . .} ∈ P

names(meths) extracts the method names {mk∈1..p} from
meths = {tk mk(t

′
k xk) . . . {. . .} k∈1..p}.

F : ClassName →fin FieldMap is the map from classes
to their field list, where FieldMap b= FieldName →fin

Type. We write Fc(f) instead of F(c)(f). Fc(f) gives the
type of field f from class c or one of its super classes, and
dom(Fc) gives the collection of field names.

MT : (ClassName×MethodName)→finMethodSpec
is the map from classes to their method interface, where
MethodSpec b= TermVar × (Type × Type × Effect).
MT c(m) gives the argument variable and type of method
m from class c, denoted (y, t → t′!ψ), where y is the argu-
ment variable, t is the argument type, t′ is the return type,
and ψ is the expected effect.

Both F and MT take into consideration any parameter
instantiations which occur during subclassing. For example,
FList(head) = Link〈this, data〉, whereas FDoubleList(head) =
Link〈this, d1〉, for class DoubleList from Figure 7.



m ⊎ m′ denotes the disjoint union of finite maps m and
m′, requiring that their domains are disjoint.

Finally, σz is the substitution σ ⊎ {this 7→ z}, for any
substitution σ. This construction is needed when accessing
a field or method through a variable z of type c〈σ〉, namely,
when determining the actual types/effect based on the type
of the variable and the type declared in the class. To do this
we must also convert the internal name this, which can ap-
pear in types and effects, to an external name. Therefore,
we use the variable name z and extend the substitution σ
to σz. Thus a type t or effect ψ occurring in class c will
become σz(t) or σz(ψ) when accessed through variable z.
Note that when z is this, this mechanism behaves correctly
as an internal access. Also, for type c〈〉, the empty substitu-
tion ∅ is used, and thus ∅z is the substitution {this 7→ z},
as required.

5.1 The Type Rules
We present the type rules as a series of fragments, with a

description following each. The rules for well-formed envi-
ronments have been omitted, but are standard.

Contexts

(ctx-var)

E;B ⊢ 3 αR p ∈ E
E;B ⊢ α

(ctx-rep)

E;B ⊢ ω : t
E;B ⊢ ω

(ctx-world)

E;B ⊢ 3

E;B ⊢ world

In rule (ctx-var) R is either ≺∗ or ≻∗. Rule (ctx-rep)
permits every variable (and location) to denote a context,
ω, which is the representation context of the object referred
to by the variable (or location).

Contexts are ordered using relations ≺, ≺+ and ≺∗, which
we refer to as directly inside, strictly inside and inside, re-
spectively. As the notation suggests, ≺+ is the transitive
closure of ≺, whereas ≺∗ is its reflexive, transitive closure.
These relations satisfy the following inclusions ≺ ⊆ ≺+ ⊆
≺∗ and = ⊆ ≺∗. Their composition, R;R′, is defined as fol-
lows: ≺;≺ ≡ ≺;≺∗ ≡ ≺∗;≺ ≡ ≺+; R ≡ R;≺+ ≡ ≺+,
and =;R ≡ R; =≡ R, and ≺∗;≺∗ ≡ ≺∗. Note that these
relations do not appear explicitly in the program text, but
are the key to preserving the owners-as-dominators property
and for defining our effect shapes.

Context Ordering

(in-env)

E;B ⊢ 3 αR p ∈ E
E;B ⊢ αR p

(in-refl)

E;B ⊢ p
E;B ⊢ p = p

(in-world)

E;B ⊢ p
E;B ⊢ p≺∗ world

(in-rep)

E;B ⊢ ω : t p = owner(t)
E;B ⊢ ω≺ p

(in-weaken)

E;B ⊢ pR q R ⊆ R′

E;B ⊢ pR′ q

(in-trans)

E;B ⊢ pR q E;B ⊢ q R′ q′

E;B ⊢ pR;R′ q′

The most important rule is (in-rep) which populates the
relations. It states that the representation context is directly
inside the owner, as given in a variable’s type. The other
rules handle constraints on context variables (in-env), rela-
tional properties (in-refl), (in-weaken), and (in-trans),
and establish that world is the greatest element in the par-
tial order (in-world).

Effect Shapes

(fx-∅)

E;B ⊢ 3

E;B ⊢ ∅

(fx-band)

E;B ⊢ p n ≥ 0
E;B ⊢ p.n

(fx-under)

E;B ⊢ p n ≥ 0
E;B ⊢ under(p.n)

(union-fx)

E;B ⊢ φ E;B ⊢ φ′

E;B ⊢ φ ∪ φ′

Each of the different kinds of effect shape is valid for all
contexts in scope.

Subshaping

(subshape-∅)

E;B ⊢ φ
E;B ⊢ ∅⊑φ

(subshape-refl)

E;B ⊢ φ
E;B ⊢ φ⊑φ

(subshape-trans)

E;B ⊢ φ⊑φ′ E;B ⊢ φ′ ⊑φ′′

E;B ⊢ φ⊑φ′′

(subshape-union)

E;B ⊢ φ⊑φ′′ E;B ⊢ φ′ ⊑φ′′′

E;B ⊢ φ ∪ φ′ ⊑φ′′ ∪ φ′′′

(subshape-direct)

E;B ⊢ p≺ q n ≥ 0
E;B ⊢ p.n⊑ q.n+1

(subshape-band)

E;B ⊢ p n ≥ 0
E;B ⊢ p.n⊑ under(p.n)

(subshape-under)

E;B ⊢ p≺∗ q n ≥ m
E;B ⊢ under(p.n)⊑ under(q.m)

The first four rules express simple set theoretic proper-
ties of effect shapes. The last three subshaping rules are
more interesting. The first, (subshape-direct), captures
that the contexts n levels below some context p are included
within the contexts n+1 levels below the context q which is
directly above. From rule (subshape-band), any band con-
text is included in the corresponding under context. Rule
(subshape-under) lifts the ordering of contexts to under
effects, observing that under effects correspond to down-
ward closure, and also captures that the under effect at a
particular level contains all deeper under effects.

Effects and Subeffecting

(fx)

E;B ⊢ φr E;B ⊢ φw
E;B ⊢ rd φr wr φw

(subfx-basic)

E;B ⊢ φr ⊑φ
′
r E;B ⊢ φw⊑φ′

w

E;B ⊢ rd φr wr φw ⊑ rd φ′
r wr φ

′
w

(fxeq-readinwrite)

E;B ⊢ rd φr wr φw
E;B ⊢ rd φr wr φw = rd φr ∪ φw wr φw



An effect can be formed, by rule (fx), using any valid
effect shapes. Rule (subfx-basic) lifts the subshaping rela-
tion to effects. Rule (fxeq-readinwrite) captures that a
write effect includes reads to the same effect shape.

Types

(type)

arity(c) = n E;B ⊢ p1 ≺
∗ pi ∀i ∈ 1..n

E;B ⊢ c〈pi∈1..n〉

Rule (type) enforces that types can be constructed from
any class using any context in scope, so long as the correct
number of arguments are supplied, and that the owner (first)
parameter, if present, is provably inside all other parame-
ters. This is required ensure that the owners-as-dominators
property is maintained. For example, inside the the body of
class Iterator〈o,d〉 the type Link〈o,d〉 is well-formed, but
the type Link〈d,o〉 is not well-formed because the owner pa-
rameter d cannot be proved to be inside o. The requirement
that the owner parameter be provably inside the remain-
ing context parameters matches the well-formedness rule
for classes (class), and ultimately ensures both that the
owners-as-dominators property holds and the soundness of
effect disjointness tests (see Section 7). More expressive pos-
sibilities exist, for example, by allowing the programmer to
declare the expected relationship between context parame-
ters to a class (see the first author’s dissertation [20]).

Subtyping

(sub-refl)

E;B ⊢ t
E;B ⊢ t≤ t

(sub-trans)

E;B ⊢ t≤ t′ E;B ⊢ t′ ≤ t′′

E;B ⊢ t≤ t′′

(sub-class)

E;B ⊢ c〈σ〉 class c〈αi∈1..m〉 extends c′〈pi∈1..n〉{. . .}
E;B ⊢ c〈σ〉≤ c′〈σ(pi)i∈1..n〉

Subtyping is a reflexive (sub-refl) and transitive (sub-
trans) relation generated from subclassing (sub-class),
taking into account the instantiation of context parameters.
e.g., for class List〈owner,data〉 extends Object〈owner〉,
we derive the substitution {owner 7→ p, data 7→ q} from
type List〈p,q〉, from which follows List〈p,q〉≤ Object〈p〉.

Subtyping does not permit the owner or any other context
parameter to vary, as this would be unsound. This can be
seen in the following example:

class Test<owner> {

Test<owner> other;

void fiddle() writes owner.1 { ... }

}

Assume that E ⊢ p≺ q. Allowing the owner to vary would
permit E ⊢ Test〈p〉≤ Test〈q〉 to be a valid subtyping rela-
tion. Assume now that x : Test〈p〉, y : Test〈q〉, and that
x and y are aliases. If the subtyping relation was valid,
we would firstly be able to read and write values of type
Test〈q〉 to and from the other field of x, which could be
used to break encapsulation. Secondly, the computations
x.fiddle() and y.fiddle(), would have effects wr p.1 and
wr q.1 which are distinct in our system, even though x and y

refer to the same object. Similar problems would arise, if we
considered E ⊢ Test〈q〉≤ Test〈p〉 to be a valid subtyping.

Values

(val-null)

E;B ⊢ t
E;B ⊢ null : t

(val-ω)

ω : t ∈ E E;B ⊢ 3

E;B ⊢ ω : t

(exp-fromval)

E;B ⊢ v : t
E;B ⊢ v : t!∅

From (val-null), null can have any type. From (val-ω),
variables (and locations) are given the type which is declared
in the environment. The rule (exp-fromval) allows a value
to be treated as an expression whose evaluation causes no
effect.

Notation: for the expression rules we write ∅ to denote no
effects, omit either the read or write part when it is empty,
and use ψ∪ψ′ to denote union of the underlying components.

Expressions

(exp-new)

E;B ⊢ t
E;B ⊢ new t : t!∅

(exp-let)

E;B ⊢ b : t!ψ1 E, x : t;B ⊢ e : t′!ψ2

E, x : t;B ⊢ ψ1 ∪ ψ2 ⊑ψ E;B ⊢ ψ
E;B ⊢ let x = b in e : t′!ψ

(exp-field)

E;B ⊢ z : c〈σ〉 Fc(f) = t
E;B ⊢ z.f : σz(t)!rd z

(exp-update)

E;B ⊢ z : c〈σ〉 Fc(f) = t′ E;B ⊢ y : σz(t
′)

E;B ⊢ z.f = y : σz(t
′)!wr z

(exp-call)

E;B ⊢ z : c〈σ〉 MT c(m) = (y′, t→ t′!ψ)
E;B ⊢ y : σz(t) σ′ ≡ σ ⊎ {y′ 7→ y}

E;B ⊢ z.m(y) : σ′
z(t

′)!σ′
z(ψ)

(exp-sub)

E;B ⊢ e : t!ψ E;B ⊢ t≤ t′ E;B ⊢ ψ⊑ψ′

E;B ⊢ e : t′!ψ′

Object creation, rule (exp-new), is valid for any type in
scope and produces no effect. The (exp-let) rule follows
the usual pattern for let expressions, where the effects of
each part of the expression are collected. Furthermore, the
two additional clauses ensure that the resulting effect does
not involve the local variable x, as this would mean that x
would be no longer in scope. The type of a field, rule (exp-
field), is as declared in the appropriate class, modulo the
instantiation of context parameters given by substitution σ.
To handle the internal variable this, the substitution is ex-
tended with the mapping to give the local variable name z
to this. In addition, a read effect is produced on context
z. The rule (exp-update) employs the same trick used in
(exp-field), though it also requires the value being placed
in the field to have the appropriate type. In addition, up-
dating a field produces a write effect on the context z. For
method call, rule (exp-call) produces the effects latent in



the method, as declared in the class. The extended substitu-
tion σ′

z is applied to the effect expression, which may refer to
this or the method argument, to convert it in terms of the
names in scope. Subtyping/subeffecting (exp-sub) follows
the usual pattern [46].

If variable x has type List〈a, b〉, then σx = {owner 7→ a,
data 7→ b, this 7→ x}. The type of the head field of class
List is declared as Link〈this, data〉. Thus x.head has type
σx(Link〈this, data〉) = Link〈x, b〉. Pleasingly, x remains in
the type, tracking the owner of this representation, namely
the object in variable x.

Now let’s discuss briefly scoping and the rule (exp-let).
Consider just the types for now. The type of the expression

let x = new List〈a, b〉 in let z = x.head in z

is not Link〈x, b〉, as we might expect, because this type con-
tains x which is no longer in scope. Indeed this expression
cannot be typed, because there is no supertype which does
not include x, since the owner cannot be forgotten. Thus
the representation cannot escape beyond the scope of the
object that owns it. It is only a short-lived, dynamic alias.

But we do require that effects escape beyond the scope of
variables which denote them, since the effects have a more
global consequence. Consider

let x = new List〈a, b〉 in let z = x.head in

let y = null in y

The only subexpression which produces an effect is the com-
putation x.head. It produces effect rd x. But x is not in
scope at the end of the expression, so we must use subeffect-
ing to find a suitable supereffect which includes this effect.
One such effect is rd a.1.

Note, that the effect rd a.1 is a safe, but imprecise over-
estimation, since this expression only reads the field of a
locally created object. In general, with appropriate effects
encapsulation, we ought to be able to report no effect for
certain expressions, but this is left for future work.

Method

(method)

E, y : t ⊢ e : t′!ψ
E ⊢ t′ m(t y) ψ {e}

In rule (method) the premise ensures that the method
body has the type and effect which are declared — prop-
agated downwards from rule (classes). This may include
shapes involving the argument y. This enables effects (and
the return type) to be defined in terms of the argument vari-
able, permitting the statement that the argument is read or
written.

Classes

(class-object)

⊢ class Object〈α1〉{ }

(class)

(1) E ≡ α1 ≺
∗ world, (αi≻

∗ α1)i∈2..n, this : c〈αi∈1..n〉

(2) E ⊢ c′〈σ〉 owner(c〈αi∈1..n〉) = owner(c′〈σ〉)

(3) {fi∈1..m} ∩ dom(Fc′) = ∅ E ⊢ tj∈1..m

(4) E ⊢ methk∈1..p

(5)
∀m ∈ names(methk∈1..p)

∩ dom(MT c′)

8>>>><>>>>: MT c(m) ≡ t → t′!ψ (a)

MT c′(m) ≡ t′′ → t′′′!ψ′
(b)

t ≡ σ(t′′) t′ ≡ σ(t′′′) (c)

E; ∅ ⊢ ψ⊑ σ(ψ′) (d)

⊢ class c〈αi∈1..n〉 extends c′〈σ〉{tj fj∈1..m methk∈1..p}

Sitting at the top of the hierarchy is the class Object

which has a single owner parameter.
Aspects of the rule (class) have been numbered. Firstly

(1), a class is checked against an environment consisting of
an unbounded owner parameter α1 and a number of other
parameters which are outside (≻∗) of it. This is the minimal
requirement for ensuring the owners-as-dominators property
and soundness [20]. In addition, this is present at the type
being defined. Secondly (2), the extends clause is valid
when the type c′〈σ〉 is valid, requiring that the constraints
c′ imposes are satisfied, and that ownership is preserved.
Thirdly (3), the fields declared in this class must be dis-
tinct from the inherited fields, and their types must be
well-formed. Next (4) checks that the methods declared in
the current class are okay. Finally (5), for each overridden
method: (a) the method type declared in the current class
and (b) the method type declared for the superclass (nat-
urally taking any prior subclassing into account), (c) must
have the same argument and return types modulo the in-
stantiation of the superclass’s parameters, and (d) the effect
declared on the current method is a subeffect of the effect
on the corresponding method in the superclass, modulo the
instantiation of parameters.

Some of these issues are illustrated in Figure 7, where
the class DoubleList〈o, d1, d2〉 extends the class List〈o, d〉.
The associated environment for checking the class body is
E ≡ o≺∗ world, d1≻∗ o, d2≻∗ o, this :DoubleList〈o, d1, d2〉
and associated substitution is σ ≡ owner 7→ o, data 7→
d. The method f is redefined in DoubleList. The return
type of f in class DoubleList is Data〈data〉, while in class
DoubleList it is is Data〈d1〉 – thus, requirements (5.a-c) are
satisfied. Finally, the effect of function f in DoubleList is a
subeffect of the effect of f in List, i.e.,

E ⊢ wr under(this)⊑ σ(wr under(owner)).

Therefore requirement (5.d) is satisfied.
On the other hand, a class OtherList〈o, d1, d2〉 extending

the class List〈d1, o〉 would be illegal, as d1 cannot be proven
to be inside o in the environment E, and so requirement (2)
would not be satisfied. Also, if f in class DoubleList had
the return type Data〈d2〉, then requirement (5.c) would be
violated. Lastly, if f in class DoubleList had the effect
wr under(d2), then requirement (5.d) would be violated.

Programs

(prog)

⊢ classj ∀classj ∈ P
⊢ P



class List<owner,data> {
Link<this,data> head;
void add(Data<data> d) writes under(this) {
head = new Link<this,data>(d, head);

}
Data<data> f() writes under(owner) {
...

}
}
class DoubleList<o,d1,d2> extends List<o,d1> {

List<this,d2> otherlist;
void add2(Data<d2> d) writes under(this) {

otherlist.add(d);
}
Data<d1> f() writes under(this) {
...

}
}

Figure 7: Subclasses example code

Finally, a program is well-formed if all its constituent
classes are well-formed.

5.2 Properties
An important property satisfied by all judgements, includ-

ing those presented later, is the Extension Lemma. It states
that all judgements are preserved when we add typings for
new variables or introduce new parameters into the environ-
ment (E≫E′), or when we add new bindings for contexts or
variables (B≫B′). That is, any assertion our type system
makes remains valid regardless of what configuration it ap-
pears in, so long as the assumptions about free variables are
satisfied. This includes any possible configurations which
may appear during evaluation.

Before giving the lemma we define what it means to ex-
tend an environment or binding.

Definition 5.1. Say that E′ extends E, denoted E′ ≫E,
whenever E is a subsequence of E′. Similarly define B′ ≫B.

Lemma 5.2 (Extension). Assume that E;B ⊢ ℑ, for
some right-hand form ℑ.

• If E′ ≫E and E′;B ⊢ ⋄, then E′;B ⊢ ℑ.

• If B′ ≫B and E;B′ ⊢ ⋄, then E;B′ ⊢ ℑ.

The first clause is also applicable to judgements which do
not have B in the assumption set.

The first part of this lemma corresponds to the usual ex-
tension lemma, the second part to the usual substitution
lemma found in the meta-theory of many type systems [1].

6. DYNAMIC SEMANTICS
We specify the dynamic behaviour of Joe1 as a large step

operational semantics. This semantics uses a heap mapping
locations to objects, and bindings of variables to values (just
like a stack).

The additional features we introduce for the dynamics of
Joe1 are given in Figure 8. Locations ι are the addresses
of objects. Values consist of locations and null. Since ob-
jects are the real owners, we also extend the actual contexts
κ with locations. Heaps H are maps from locations to ob-
jects. Objects map field names to values, and carry their

type. Note, that in contrast with the usual semantics, ob-
jects carry their type, i.e., a c〈σ〉, rather than just a class, c.
The extra information in the substitution σ represents the
object’s owner, and the owners of further objects reachable
through the object’s fields. The ownership information is
not directly needed for evaluation, but it is, along with the
bindings B, required for the proof of type preservation, as
has also been demonstrated in other settings [48, 42].

The heap from Figure 2 could be represented as

H0 =

8>>>>>><>>>>>>: ι1 7→ [list 7→ ι4]
Main〈world〉

ι2 7→ [. . .]Data〈world〉

ι3 7→ [. . .]Data〈world〉

ι4 7→ [head 7→ ι5]
List〈ι1,world〉

ι5 7→ [next 7→ ι6, data 7→ ι2]
Link〈ι4,world〉

ι6 7→ [next 7→ null, data 7→ ι3]
Link〈ι4,world〉

9>>>>>>=>>>>>>; ,

where ι1 represents the Main object, ι2 and ι3 represent the
Data objects, ι4 together with ι5 and ι6 represent the List
with its two Links.

We use the notation H(ι).f to denote H(ι)(f), the double
lookup of the location ι in map H and field f in the object
it returns. For example, H0(ι5).next = ι6. If o is a finite
map, then o[f 7→ v] denotes the update with binding f 7→ v.

The semantics takes the form of two relations: one to
capture basic computations (=⇒), the other for expression
evaluation (−→). The computation relation takes a compu-
tation configuration to a final configuration. The evaluation
relation takes an expression configuration to a final config-
uration.

The function MBc(m) gives the body of method m from
class c as the triple (y, e, σ) consisting of the method’s ar-
gument y, the expression e constituting the method body,
and a map σ from the context parameters of the class where
method m is declared to the contexts visible in class c. σ is
required to provide the correct actual contexts for the con-
texts in scope in during the evaluation of the method body
e, which in turn is required to provide enough information
when proving soundness.

For example, if we want to call the method add for an
object of class DoubleList, then we shall find the method
body in class List and will need to convert the context
parameters of class List into context parameters of class
DoubleList. Thus, we look up though MBDoubleList(add),
giving {owner 7→ o, data 7→ d1} as its third component. On
the other hand, if we want to call add for an object of class
List, then we look up through MBList(add), whose third
component is equal to {owner 7→ owner, data 7→ data}.

6.1 Evaluation
Evaluation is effectively the same as Java’s. The owner-

ship information has no effect on computation. It is threaded
through the semantics, as we have said, to facilitate the
proof of soundness. In addition to the ownership informa-
tion, computational effects are recorded.

Computation Rules

(comp-null)

〈H ;B; null〉
∅

=⇒ 〈H ;null〉



ι ∈ Location
v ∈ Value ::= ι | null

κ ∈ ActualContext ::= . . . | ι
o ∈ Object = Type× (FieldName →fin Value)

::= [f 7→ vf∈dom(Fc)]
c〈σ〉

H ∈ Heap = Location →fin Object

〈H ;B;w〉 ∈ Config[W ] = Heap × Bindings×W, where w ::= e | b
〈H ; v〉 ∈ FinalConfig = Heap × Value

〈H ;B; b〉
ψ

=⇒ 〈H ′; v〉 ∈ ComputationRelation = Config[Computation] × Effect× FinalConfig

〈H ;B; e〉
ψ

−→ 〈H ′; v〉 ∈ EvaluationRelation = Config[Expr] × Effect×FinalConfig

MB : (ClassName× MethodName)→fin MethodBody
MethodBody b= Var× Expr× CMap
CMap b= ContextVar →fin Context

Figure 8: Dynamic aspects of Joe1

(comp-new)

H ′ ≡ H ⊎ ι 7→ [f 7→ nullf∈dom(Fc)]
c〈B(pi)i∈1..n〉

〈H ;B; new c〈pi∈1..n〉〉
∅

=⇒ 〈H ′; ι〉

(comp-field)

B(y) = ι H(ι).f = v

〈H ;B; y.f〉
rd ι
=⇒ 〈H ; v〉

(comp-update)

B(y) = ι B(y′) = v H ≡ H ′ ⊎ ι 7→ o

〈H ;B; y.f = y′〉
wr ι
=⇒ 〈H ′ ⊎ ι 7→ o[f 7→ v]; v〉

(comp-call)

B(y) = ι H(ι) = [f 7→ vf∈dom(Fc)]
c〈σ〉

MBc(m) = (x, e, {αi 7→pi∈1..n})

〈H ;αi=σ(pi)i∈1..n, this= ι, x=B(y′); e〉
ψ

−→ 〈H ′; v〉

〈H ;B; y.m(y′)〉
ψ

=⇒ 〈H ′; v〉

By (comp-null), null evaluates to itself. By (comp-
new), object creation adds a new location to the heap bound
to an object of the appropriate type with its fields set to
null. The new object’s exact type (the superscript) is de-
termined by looking up the context variables in the binding
list B. The freshness of the new location ι is implicit in the
definition of ⊎. Each of the other computation rules first
looks up each variable in the bindings. Field access, (comp-
field), simply returns the value in the appropriate field of
the object and produces an effect indicating which object
was read. Similarly, field update, (comp-update), writes
the value to appropriate field and produces an effect indi-
cating which object was written. The most complicated rule
(comp-call) is for method call. Firstly the target object is
extracted from the binding list, and, once its type c has been
determined, the method lookup is performed. The method
body is then evaluated against a new binding which has an
actual context for each context parameter of the class in
which the method body is defined; this bound to the loca-
tion of the target object; and the method’s formal parameter
bound to the value bound to the actual parameter.

For example, with bindingB0, containing this = ι4, owner =
ι1, data = world, z = ι3, and H0 defined above, the creation
of an object of type Link〈this, data〉 evaluates as

〈H0;B0; new Link〈this, data〉〉
∅

=⇒ 〈H1; ι7〉

withH1 =H0⊎ ι7 7→ [next 7→ null, data 7→ null]Link〈ι4,world〉.
Calling the method add for an object of class List creates
a new Link, i.e.,

〈H0;B0; this.add(z)〉
ψ

=⇒ 〈H2; ι7〉,

with

H2 = H0[ι4 7→ [head 7→ ι7]
List〈ι1,world〉]

⊎ ι7 7→ [next 7→ ι5, data 7→ ι3]
Link〈ι4,world〉.

Note that we applied the usual semantics for constructors,
i.e., object creation followed by field initialisation.

Evaluation Rules

(ev-var)

〈H ;B; z〉
∅

−→ 〈H ;B(z)〉

(ev-let)

〈H ;B; b〉
ψ

=⇒ 〈H ′; v〉 〈H ′;B, x=v; e〉
ψ′

−→ 〈H ′′; v′〉

〈H ;B; let x = b in e〉
ψ∪ψ′

−→ 〈H ′′; v′〉

Variables require no evaluation (ev-var), simply a lookup
in the binding list. Let expressions, (ev-let) are evaluated
by first performing the computation, binding the resulting
value v to the variable x and adding this to the binding list,
and then evaluating the other expression with the new heap
and binding list.

We have omitted rules for trapping errors such as access-
ing null and for field accesses and updates and method
calls on objects which do not have the appropriate field or
method, and rules for error propagation.



6.2 Properties of Evaluation
From rule (comp-update) it is clear that the write effect

produced by evaluation denotes the set of locations which
refer to the objects that were written. Thus we can easily
show the following lemma which states that objects which
are not reported as being written remain unchanged during
evaluation.

Lemma 6.1. Whenever 〈H ; B; e〉
rd φ wr φ′

−→ 〈H ′; v〉, or

〈H ;B; b〉
rd φ wr φ′

=⇒ 〈H ′; v〉, then H |dom(H)\φ′= H ′ |dom(H)\φ′ .

6.3 Typing
To enable the formulation of a type preservation theorem,

we need to specify the well-formedness of the dynamic fea-
tures. First we provide the type rules for bindings, before
giving additional judgements for the other aspects of the
dynamics.

Bindings

(binding-context)

αR p ∈ E E;B ⊢ κR p α /∈ dom(B)
E;B,α = κ ⊢ 3

(binding-value)

z : t ∈ E E;B ⊢ v : t z /∈ dom(B)
E;B, z = v ⊢ 3

(in-bind1)

E;B ⊢ 3 α = κ ∈ B
E;B ⊢ α = κ

(in-bind2)

E;B ⊢ 3 z = ι ∈ B
E;B ⊢ z = ι

Bindings can only be added if the binding is not already
present and if the assumptions about the actual context
(binding-context) or value (binding-value) are satisfied.
Both rules (in-bind1) and (in-bind2) introduce equivalences
between contexts. Note that rule (in-bind2) does not apply
when the binding is z = null.

The additional judgements are:

E ⊢ ι 7→ o good location to object binding
E ⊢ H good heap
E ⊢ 〈H ;B;w〉 : t!ψ configuration type t produces effect ψ

We write E ⊢ 〈H ;B;w〉 : t when the effect is not impor-
tant, as with result configurations.

Heap Typing

(object)

o ≡ [f 7→ vf∈dom(Fc)]
c〈σ〉

E; ∅ ⊢ vf : σι(Fc(f)) ∀f ∈ dom(Fc)
E ⊢ ι 7→ o : c〈σ〉

(heap)

ι : t ∈ E E ⊢ ι 7→ o : t ∀ι 7→ o ∈ H
E ⊢ H

By rule (object) a heap binding is well-formed if the
values in the object’s fields are well-typed for all the fields
in the object’s class. The rule (heap) states that a heap is
well-formed if all the heap bindings are well-formed.

Note, that in (object) we require each field’s value to
have the type which results from the substitution σι, where
σ is the substitution in the object’s type, and ι is the object
itself; ι is required when checking the context this. Thus,
for an environment E containing ι5 : Link〈ι4, ι7〉, indicating
that the owner of ι5 is ι4, we have that

E ⊢ ι4 7→ [head 7→ ι5]
List〈ι1,ι7〉 : List〈ι1, ι7〉

holds. But:

E 6⊢ ι4 7→ [head 7→ ι5]
List〈ι1,ι8〉 : List〈ι1, ι8〉 and

E 6⊢ ι9 7→ [head 7→ ι5]
List〈ι1,ι7〉 : List〈ι1, ι7〉.

Configuration Typing

(config)

E ⊢ H E;B ⊢ w : t!ψ
E ⊢ 〈H ;B;w〉 : t!ψ

We use a single rule to type the different kinds of con-
figurations. The rule (config) extracts the binding list B
from the configuration and uses it to type the expression.
These bindings can be used to equate variables which may
appear in a type or effect with the object to which they
correspond. Thus, if x = ι appears in the binding, we can
prove E;B ⊢ wr x = wr ι (using obvious equality rules which
have been omitted). The effect wr x could be the one which
the type system anticipates, where as wr ι could be the ac-
tual effect which occurs. Being able to exploit the above
equivalence is essential for proving type preservation.

The Type Preservation theorem states that evaluation
preserves the type given to an expression or computation.
Furthermore, any effects which evaluation actually produces
(ψ′) are included within the predicted effect (ψ).

Theorem 6.2 (Preservation). If E ⊢ 〈H ;B; b〉 : t!ψ

and 〈H ;B; b〉
ψ′

=⇒ 〈H ′; v〉, then there exists an E′ such that
E′ ≫E, E′ ⊢ 〈H ′;B; v〉 : t and E′;B ⊢ ψ′ ⊑ψ.

Similarly for 〈H ;B; e〉
ψ′

−→ 〈H ′; v〉.

6.4 Soundness of subeffecting
We now explore what is means for an effect to be included

within another effect. To demonstrate the soundness of the
subeffecting rules, specifically the subshaping rules, we pro-
vide an interpretation of each effect shape into the basic en-
tities (ultimately locations) which it denotes. We do this by
generating the basic shape which underlies an effect shape.

Definition 6.3 (Basic). An effect shape is basic if it
consists of a possibly empty union of shapes of the form p.0.

We can treat basic effect shapes as sets. The following states
that for basic effects subshaping behaves like subset:

Lemma 6.4. If E;B ⊢ φ⊑φ′, where φ and φ′ are basic,
then, when considered as sets, φ ⊆ φ′.

The function φ ↓
E;B generates a basic effect shape which

underlies the shape φ, for a given environment E and bind-
ing B. This can be considered as the set of variables and



locations to which the shape corresponds.

∅↓
E;B b= ∅

p.0↓
E;B b= {q | E;B ⊢ p = q}

(p.n+1)↓
E;B b= {q′ | E;B ⊢ q′ ≺ q ∧ q ∈ p.n↓

E;B}

under(p.n)↓
E;B b= {q′ | E;B ⊢ q′ ≺∗ q ∧ q ∈ p.n↓

E;B}

(φ ∪ φ′)↓
E;B b= φ↓

E;B ∪ φ′ ↓
E;B

By the next lemma, not only is the underlying shape well-
formed, but also, it corresponds to precisely the collection
of contexts underlying an effect shape (for the given E and
B):

Lemma 6.5. The following hold:

• If E;B ⊢ φ, then E;B ⊢ φ↓
E;B .

• E;B ⊢ p.0⊑φ if and only if p ∈ φ↓
E;B .

Our last theorem amounts to saying that subeffecting is
sound.

Theorem 6.6. If E;B⊢φ⊑φ′, then E;B⊢φ↓
E;B ⊑φ′ ↓

E;B .

An important implication of the above theorem and the
preservation lemma is that the actual effects of evaluating
an expression are covered by the effects reported by the type
system:

Corollary 6.7. If E ⊢ 〈H ;B; b〉 : t!rd φr wr φw and

〈H ;B; b〉
rd φ′

r
wr φ′

w=⇒ 〈H ′; v〉, then there exists an E′, with
E′ ≫E, such that E′ ⊢ 〈H ′;B; v〉 : t and

• if ι ∈ φ′
r, then ι ∈ φr ↓

E′;B
, and

• if ι ∈ φ′
w, then ι ∈ φw ↓

E′;B
.

Similarly for 〈H ;B; e〉
ψ′

−→ 〈H ′; v〉.

We could now easily formulate the owners-as-dominators
property for our system. Due to space limitations we refer
readers to prior work dealing with that [49, 22, 21, 20].

7. DISJOINT TYPES AND EFFECTS
Among the main contributions of this paper are the tests

for disjointness of type and effect. These judgements allow
us to deduce facts about the aliasing and effects in a program
using the rules given here, rather than by relying on a more
weighty general theorem prover.

When two types are disjoint, then any two variables or
fields having these types cannot be aliases. The disjointness
of effect shapes can then be used to determine whether two
expressions potentially interfere, as we show in Section 7.2.
Both disjointness tests depend upon a simpler test which
determines whether two contexts are disjoint (which in turn
may depend on the disjointness of types).

The disjointness information stems, ultimately, from a
number of facts: that the representation context of an ob-
ject is different from externally visible contexts, as in rule
(in-rep); that some types are non-overlapping due to their
relative places in the inheritance hierarchy; and that the
nesting which follows from the encapsulation of objects in-
duces a tree-shaped partial order on objects whose structure
can be exploited.

The disjointness rules are defined by the additional judge-
ments:

E;B ⊢ p# q context p is disjoint from q
E;B ⊢ t# t′ type t is disjoint from t′

E;B ⊢ φ#φ′ shape φ is disjoint from φ′

E;B ⊢ ψ#ψ′ non-interference of effects ψ and ψ′

These rules are designed to remain valid for all valid bind-
ings of free variables, that is, for all valid B. For example,
the following is invalid

α≺∗
world, β≺∗

world; ∅ ⊢ α#β,

since the binding α = world, β = world would result in

α≺∗
world, β≺∗

world;α=world, β=world ⊢ world# world,

which is clearly false.
The disjointness relations are symmetric, i.e., we have

both E;B ⊢ ℑ#ℑ′ and E;B ⊢ ℑ′ #ℑ. For space reasons
we have omitted the corresponding rules.

Disjointness of Context. The context disjointness rules
guarantees that the contexts are always disjoint, regardless
of the bindings to the context parameters. This is stronger
than the similar notion of role separation in Flexible alias
protection [47].

Disjointness of Context

(dctx-neq)

E;B ⊢ p≺+ p′

E;B ⊢ p# p′

(dctx-type)

E;B ⊢ ω : t E;B ⊢ ω′ : t′ E;B ⊢ t# t′

E;B ⊢ ω#ω′

(dctx-loc)

E;B ⊢ ⋄ ι, ι′ ∈ dom(E) ι 6= ι′

E;B ⊢ ι# ι′

By rule (dctx-neq) context disjointness is first derived
from the ≺+ relation, which informs when two contexts, al-
though related, are not equal. We utilise type disjointness in
rule (dctx-type) to give that the representation contexts
of two variables (or locations) which cannot be aliases are
disjoint. Finally, two distinct locations have disjoint repre-
sentation contexts, from (dctx-loc).

Disjointness of Type. Our rules for the disjointness of type
rely only on the disjointness of class based on the relative po-
sitions in the inheritance hierarchy, and on the disjointness
of context parameter bindings.

Disjointness of Type

(dtype-class)

E;B ⊢ c〈σ〉 E;B ⊢ c′〈σ′〉 ¬(c extends∗c′ ∨ c′ extends∗c)
E;B ⊢ c〈σ〉# c′〈σ′〉

(dtype-ctx)

E;B ⊢ c〈pi∈1..n〉 E;B ⊢ c〈qi∈1..n〉
E;B ⊢ pi # qi for some i ∈ 1..n
E;B ⊢ c〈pi∈1..n〉# c〈qi∈1..n〉

(dtype-sub)

E;B ⊢ t# t′ E;B ⊢ t′′ ≤ t′

E;B ⊢ t# t′′



From rule (dtype-class), two types are definitely dis-
joint if neither of their classes extend the other. Two types
from the same class are disjoint, from rule (dtype-ctx),
if two contexts in the same argument position are provably
disjoint. Rule (dtype-sub) states that subtyping preserves
the disjointness relation.

A consequence of these rules, indeed the guiding principle
behind them, is the following lemma.

Lemma 7.1. If E;B ⊢ t# t′, then there is no t′′ for which
both E;B ⊢ t′′ ≤ t and E;B ⊢ t′′ ≤ t′ hold.

Different rules would be required for a language with mul-
tiple inheritance and/or interfaces. The basic modification
is to change the rule (dtype-class) to apply only when
the two classes or interfaces c and c′ have no subclasses or
subinterfaces in common. For a language with multiple in-
heritance in the case where an open world assumption is
made, namely that we are only ever reasoning about a part
of a program, no rule comparable to (dtype-class) would
exist.

Disjointness of Effect Shape. The disjointness of effect
shape ultimately relies the tree-shaped nesting of objects,
using the shapes depicted in Figure 5 to guide our design.

Disjointness of Effect Shape I

(dfx-∅)

E;B ⊢ φ
E;B ⊢ ∅#φ

(dfx-sub)

E;B ⊢ φ#φ′ E;B ⊢ φ′′ ⊑φ′

E;B ⊢ φ#φ′′

(dfx-union)

E;B ⊢ φ#φ′′ E;B ⊢ φ′ #φ′′

E;B ⊢ φ ∪ φ′ #φ′′

The first three rules, (dfx-∅), (dfx-sub), and (dfx-
union), are structural, derived from simple properties of
sets. The others are more interesting.

Disjointness of Effect Shape II

(dfx-neq)

E;B ⊢ p n,m ≥ 0 n 6= m
E;B ⊢ p.n# p.m

(dfx-band0)

E;B ⊢ p# q
E;B ⊢ p.0# q.0

(dfx-bandunder1)

E;B ⊢ p≺+ q n ≥ 0
E;B ⊢ q.n# under(p.n)

(dfx-bandunder2)

E;B ⊢ p≺∗ q n ≥ 0
E;B ⊢ q.n# under(p.n+1)

(dfx-inc)

E;B ⊢ p.n# q.m
E;B ⊢ p.n+1 # q.m+1

(dfx-abandapart)

E;B ⊢ p≺ q m, n ≥ 0 m 6= n+1
E;B ⊢ p.n# q.m

(dfx-underapart)

E;B ⊢ p≺ p′ E;B ⊢ q≺ p′ for some p′ E;B ⊢ p# q
E;B ⊢ under(p)# under(q)

Rule (dfx-neq) states that different bands stemming from
the same context are disjoint. If two contexts are not equal,
then from rule (dfx-band0) the shape containing just one
context is disjoint from that containing just the other. Rules
(dfx-bandunder1) and (dfx-bandunder2) give conditions

under which a band and an under shape are disjoint. If
the bands at two levels are disjoint, from rule (dfx-inc)
the two bands one step deeper are disjoint. Knowing that
a context is directly inside another one allows more preci-
sion, as in rule (dfx-abandapart). The final rule, (dfx-
underapart), captures that the under effects of two disjoint
objects which have the same owner are disjoint. This cor-
responds to the fact that contexts form a tree and that two
subtrees rooted at disjoint nodes having the same parent are
disjoint.

Properties. The following interesting fact can be derived
from these rules. Ultimately this states that the internals of
two distinct objects are completely disjoint.

Lemma 7.2. Assume E;B ⊢ under(p)# under(q). Then
E;B ⊢ p.n# q.m for n,m ≥ 0.

The theorems which follow when combined with the Ex-
tension Lemma (Lemma 5.2) imply that a disjointness judge-
ment holds regardless of the bindings of free variables. Thus
these theorems hold for any program configuration which
satisfies the initial assumptions in E, under any valid exten-
sion to E and/or B. The theorems all stem from the follow-
ing, which states that two contexts which we can prove to
be disjoint can never be equal:

Theorem 7.3 (Context Disjointness). Whenever
E;B ⊢ p# q holds, E;B ⊢ p = q is impossible.

7.1 Disjoint types restrict aliasing
If we can prove that two types are disjoint, then it is

impossible for two variables having these types to be aliases:

Theorem 7.4 (Type Disjointness). If E;B ⊢ t# t′,
then for x : t ∈ E and y : t′ ∈ E, there is no ι ∈ dom(E) for
which x = ι ∈ B and y = ι ∈ B.

A useful corollary of this theorem is that the evaluation of
expressions with disjoint types never produces results which
are aliases:

Corollary 7.5. Whenever E;B ⊢ t# t′, E;B ⊢ e : t,
and E;B ⊢ e′ : t′, then for any H such that E ⊢ H, if

〈H ;B; e〉
ψ

−→ 〈H ′; v〉 and 〈H ;B; e′〉
ψ′

−→ 〈H ′′; v′〉, then
either v = null or v 6= v′.

Corollary 7.5 is the formal justification of why we can
conclude that shared and encaps from Section 2.2 will never
be aliases.

Now consider the declarations:

List<world,world> shared;

List<this, world> encaps;

List<this, this> local;

Since we can prove that E ⊢ this# world, we can conclude
that encaps, shared, and local are not aliases — their types
are provably disjoint. Furthermore we can also conclude that
the references to internal representation, shared.head and
encaps.head, cannot be aliases. Indeed none of�

shared.head, shared.head.next,
shared.head.next.next, . . .

�
can be an alias for any of�

encaps.head, encaps.head.next,
encaps.head.next.next, . . .

�
.



Also, shared.head.data and local.head.data can never
be aliases. On the other hand,�

shared.head.data, encaps.head.data,
shared.head.next.data, encaps.head.next.data, . . .

�
,

all have the same type, namely Data〈data〉, and therefore
may be aliases.

Application to formal reasoning. When reasoning about
object-oriented programs, e.g., when calculating weakest pre-
conditions, an explicit alias test is frequently inserted into
assertion statements [24]. Such alias tests tend to cause a
blow up in the complexity of the consequent verification.
Simple class-based alias tests reduce the complexity some-
what, so we expect that our alias test will offer further ad-
vantage.

7.2 Disjoint effects restrict interference
The soundness of effects disjointness again amounts to

showing that effects shapes do not overlap when our judge-
ments assert that they are disjoint. We show this by con-
sidering the underlying basic shape of an effect shape.

Firstly, we can show that the basic shapes underlying
the effects shapes are provably disjoint, and that, for ba-
sic shapes, the disjointness relation E;B ⊢ φ#φ′ can be
interpreted as the disjointness of the underlying sets.

Lemma 7.6. If E;B⊢φ#φ′, then E;B⊢φ↓
E;B#φ′ ↓

E;B .
Furthermore, if φ and φ′ are basic, then φ ∩ φ′ = ∅.

Next, as a consequence of these results and Lemma 5.2,
we obtain the following theorem which states that the sets of
contexts denoted by disjoint effects are disjoint in all possible
configurations.

Theorem 7.7 (Disjoint Shapes). If E;B ⊢ φ#φ′,
E′ ≫E, B′ ≫B and E′;B′ ⊢ ⋄, then φ↓

E′;B′
∩φ′ ↓

E′;B′
= ∅.

We now define when two effects are non-interfering. This
definition is based on simple notions of data dependence:
avoiding swapping a write with a read or write to the same
location [2].

Non-interference

(Non-interference)

E;B ⊢ φw #(φ′
r ∪ φ

′
w) E;B ⊢ φ′

w #(φr ∪ φw)
E;B ⊢ (rd φr wr φw) #(rd φ′

r wr φ
′
w)

The following theorem states that non-interfering effects
imply non-interfering execution, i.e., that the order of eval-
uation of two expressions with disjoint effects is immaterial,
producing the same results and the same heap.

Theorem 7.8. Assume E;B ⊢ e : t!ψ, E;B ⊢ e′ : t′!ψ′,
E;B ⊢ ψ#ψ′, and E ⊢ H. Then, if

〈H ;B; e〉
ψ′′

−→ 〈H ′; v〉 and 〈H ′;B; e′〉
ψ′′′

−→ 〈H ′′; v′〉,

there exists a H ′′′ such that

〈H ;B; e′〉
ψ′′′

−→ 〈H ′′′; v′〉 and 〈H ′′′;B; e〉
ψ′′

−→ 〈H ′′; v〉.

The proof makes use of the fact that our semantics are
based on relations which capture the nondeterministic choice
of names for the locations of newly created objects.

Examples. We can check whether the evaluation of an ex-
pression e will affect an object z, by considering its effect
ψ. If we can prove that E ⊢ ψ# rd z, then we know that e
does not affect the fields of z. If we can prove the stronger
judgement that E ⊢ ψ# rd under(z), then we know that e
affects neither z nor its representation.

We now apply the above ideas to the following:

List<p,world> list = new List<p,world>;

Iterator<list,world> iter = list.makeIterator();

Examining the effects of each of the methods, modulo pa-
rameter and this bindings, we obtain:

method effect
list.add wr under(list)

iter.next rd list.1 wr iter

iter.elem rd list.1

For an appropriate E, we know that E ⊢ iter≺ list,
using (in-rep). Hence E ⊢ iter# list. Thus we can con-
clude that E ⊢ iter⊑ list.1⊑ under(list), using the sub-
shape rules.

Our system reflects the fact that changes to list may
affect iter (which of course is also visible by inspection of
the method bodies) . For example, we cannot show that the
method call list.add does not interfere with iter. This is
because E ⊢ wr under(list)# rd under(iter) cannot be
proven due to the inclusion E ⊢ under(iter)⊑ under(list).

Our system also reflects the fact that calling the methods
next or elem on iter do not affect list. That is, we can
show E ⊢ (rd list.1 wr iter) # rd list.

Of course, we cannot show that iter.next() does not
affect the list and its representation, since iter is a part of
the representation of list. That is, it is impossible to show
E ⊢ rd list.1 wr iter# rd under(list).

We now move on to a different example. If we can show
that two lists are independent, then we can show that op-
erations on their respective internal representations will not
interfere with each other. This can be used to perform po-
tential optimisations, such as loop fusion.

Consider the following code:

List<p,world> list1;

List<q,world> list2;

....

for (i = 0; i < 10; i++) {

list1.add(new Data<world>(i)); // exp1

}

for (i = 0; i < 10; i++) {

list2.add(new Data<world>(i)); // exp2

}

Firstly, assuming that E ⊢ p# q, p≺ p′ and q≺ p′ for some
p′, we can prove that E ⊢ List〈p, world〉# List〈q, world〉,
and hence deduce that list1 and list2 cannot be aliases.
Next, we can infer that the effect produced by the expres-
sion marked exp1 is wr under(list1) and that the effect
of expression exp2 is wr under(list2). Finally, obtaining
E ⊢ wr list1# wr list2, we demonstrate that the two
computations exp1 and exp2 do not interfere. This then
permits the following loop fusion:

for (i = 0; i < 10; i++) {

list1.add(new Data<world>(i));

list2.add(new Data<world>(i));

}



These examples demonstrate that our type system may
help improve tools ranging from program understanding to
optimisation.

8. RELATED WORK
The Geneva Convention on the Treatment of Object Alias-

ing [33] stressed the need for better treatment of aliasing in
object-oriented programming. Early approaches following
this lead include Islands [32] and Balloons [4]. These fo-
cused on fully encapsulated objects, where all objects that
an object could access were not accessible outside the ob-
ject. Moving objects across encapsulation boundaries either
required copy-assignment (which defeats object identity) or
destructive-reads. Whereas the latter can successfully be
replaced by ordinary reads, with the help of Boyland’s anal-
ysis [13], an odd programming style is still required to use
such “slippery variables.” Other approaches use uniqueness
[41, 32, 13, 47, 6], but these also require destructive reads.

Some systems approach the problems caused by aliasing
using read-only references [40, 32, 34, 47, 35, 44, 54, 15,
51], generally by employing a fixed version of C++’s const

[52] which limits computation to only reading the transitive
state of a reference. Most of these papers describe neither
how read-only references help reason about programs nor
how they help write more robust software.

Boyland, Noble and Retert present a capabilities system
in which to uniformly deal with read, write, and ownership
capabilites, also capturing notions such as uniqueness and
borrowing in the process [15]. A capability is attached to a
reference to limit what can be done with the reference. Ex-
clusive capabilities refuse all other references from employ-
ing the capability, giving the system a neat duality. The
system can express many concepts with just 4 capabilites
— read, write, identity, and ownership — of which an ex-
clusive capability exists for all but the last. Unfortunately,
the capabilites apply only to references and not what they
refers to, nor is it clear how to use the semantics, especially
since the exclusive effects exhibit non-local behaviour.

The most sophisticated approach for dealing with aliasing
in object-oriented programming is Noble, Vitek, and Pot-
ter’s Flexible alias protection [47]. This proposal introduced
a number of important new ideas. Most prominent was the
enforcible notion of representation, which we employ here.
Secondly, classes were parameterised by what we now call
contexts, allowing classes to be used in different contexts.
(Classes were also generic.) In addition, there was a mode
call arg which was used to enforce a property called argu-
ment independence, i.e., arg limited the use of a reference
to only methods which did not read mutable state. The
system, however, lacked inheritance, nor was it formalised,
and a gap remained between the system and the properties
it could give to a formal reasoner.

Ownership types were devised to formalise the core of
Flexible alias protection [22, 21]. Apart from providing a
formal system, this work contributed the notion of owner,
required both to give a type to self and for some idioms
such as allowing an arbitrary object graph as a part of an
object’s representation, and a formal demonstration of the
owners-as-dominators property. Ownership types are ex-
plored further in the first author’s thesis [20], mostly in the
context of Abadi and Cardelli’s object calculus [1].

Other systems similar to ownership types have been devel-
oped, sometimes independently. Universes is an ownership

types system which forgoes parameterised classes and em-
ploys instead pervasive read-only references [44]. This a part
of a modular reasoning system for Java [43] and has been
used to specify useful frame properties in JML [45]. Con-
fined types adopt package-level ownership to provide better
security in Java [9]. Boypati and Rinard [12] employ object
ownership to enable race-free Java programs, and more re-
cently (with Lee) for preventing deadlocks [11]. Their type
systems offer only shallow ownership and a different form of
effect, which is sufficient for the problem they address, but
not enough to obtain the results presented here. Boypati,
Lee and Rinard’s work extends prior systems such as Guava
[5], which also has a notion of thread ownership, and Flana-
gan and Freund’s [29] which parameterises classes by locks
[29]. This last work incidentally adapts ideas from outside
the object-oriented world [28]. Recently, Aldrich, Kostadi-
nov and Chambers developed AliasJava which includes a
shallow notion of object ownership, uniqueness and borrow-
ing for method arguments [3]. They also include a sophisto-
cated algorithm for inferring alias annotations which should
surely be adaptable to the system presented here. In ad-
dition they have some results which indicate that their sys-
tem is practical. Banerjee and Naumann have demonstrated
the advantage of having confinement properties in Java pro-
grams [7]. While their language does not include a specific
means for denoting representation, as ownership types pro-
vide, they are able to reason about incidental representation.
Using a different semantic approach, they are able to achieve
somewhat deeper results, including representation indepen-
dence. This encouraging result is a formal demonstration
that confined representations can be replaced with seman-
tically equivalent ones, without affecting the surrounding
program.

The seminal work dealing with interference was Reynolds’
syntactic control of interference proposal which addressed
the issue of parameter aliasing in Algol programs [50]. This
proposal was, however, overly conservative. Effects systems
overcame these limitations, initially by requiring explicit an-
notations [39], then through program analysis [53]. The later
approach developed into region-based memory management
for the ML programming language [55]. There have been
many refinements, improvements and variations to region-
based memory management, but most were for functional
programming languages and none considered object-oriented
programs.

Back in the object-oriented world, Leino described how
modifies clauses should interact with subclassing to enable
modular specifications [38]. His approach crystalised the key
to modular effects specifications, although it applies only to
a finite collection of regions (called data groups). Green-
house and Boyland followed this lead when designing their
object-oriented effects system, which specifies both read and
write effects, employs uniqueness and enables a notion of
representation [30]. There are a number of differences be-
tween the system described in this paper and Greenhouse
and Boyland’s. The first main difference is that they em-
ploy uniqueness instead of ownership for alias control, which
results in a different style of programming. (Elsewhere Boy-
land argues that an object-oriented effects system must em-
ploy either uniqueness or ownership [14].) Secondly, our
effect shapes slice across different depths of an object graph
(as illustrated in Figure 5), whereas theirs slice each object
into groups of fields. This kind of effects shape can be added



to our system, but ours cannot be readily added to theirs be-
cause they lack ownership. The final main difference is that
our system is parameterised by context/region information,
whereas theirs is not. Merging the best features of both
will be fruitful. Yates presents a type-and-effect system for
Java [59]. He employs a global collection of regions but also
allows effect masking for expressions, i.e., the trimming of
effects which operate on objects that cannot accessed out-
side of the scope of some expression. Classes have only what
is in effect an owner parameter, which cannot, however, be
exploited internally as our owner can, but there are no other
parameters nor any notion of representation.

Our type disjointness test in part resembles that of Di-
wan, McKinley and Moss [27], except they do not have the
additional ownership information and the nesting of objects,
as this is not available in existing programming languages.
More sophisticated aliasing analyses exist, and could be
combined with ours for more precision.

The calculus of capabilities [23] uses linearity and unique-
ness (of region) to enable non-stack-based, region-based mem-
ory management. The techniques they use for uniqueness
(of region passed to a method) could be added here to en-
hance our disjointness tests, should we wish to make as-
sumptions about disjointness in class headers or method pa-
rameter lists. Leavens and Antropova do so using dynamic
dispatch to eliminate parameter aliasing [36]. Their aim
is the simplify method specifications, since definite guaran-
tees of parameter aliasing become available. Their system is
compatible with ours and would indeed enhance our disjoint-
ness test considerably, since they provide a very fine-grained
form of disjointness which we do not provide: they can ex-
press that two variables of the same type are definitely or
definitely not aliases.

The programming language Cyclone [31], a C variant with
region-based memory management, has a notion of owner-
ship, though not object ownership, and an outlives ordering,
similar to our nesting, which enables memory to be deallo-
cated in a provably safe manner avoiding dangling pointers.
Subtyping in Cyclone permits change of ownership, which is
unsound in our system as we demonstrated in Section 5.1.
This ultimately is because our types are based on classes,
whereas in Cyclone types are based on more low-level stuc-
tures. The type theory underlying Cyclone could serve as
a fundamental semantics for our language, just as the work
in the first author’s thesis does. The designers of Cyclone
expended much effort reducing syntactic burden the annota-
tions impose on a programmer. Similar techniques could ap-
ply here; indeed some indications in this direction were made
in the first author’s thesis (for classes which are also generic)
[20]. Vault [25] extend C in a manner similar to Cyclone,
though relying more on linearity instead of regions. Follow-
ing this style requires quite low-level annotations, though
some of the techniques may spill over into an object-oriented
programming. Neither Cyclone nor Vault deal with objects
and the consequent subtyping.

9. CONCLUSIONS AND FUTURE WORK
We have extended previous work on ownership types to

support inheritance and dynamic aliases, while maintain-
ing the owners-as-dominators property and the consequent
strong form of encapsulation. To the resulting ownership
type system, we have added computational effects in a man-
ner exploiting the strong encapsulation. Finally, we have

applied ownership types to reasoning about the absence of
aliasing, and the effects system to reason about the non-
interference of computation. Our prototype implementation
is being extending to encorporate the features described here
for a more complete programming language.

There are two main directions for future work. Firstly,
we would like to see a closer integration with a specifica-
tion language, such as JML [37], and an associated formal
reasoning system [57]. This we expect would reduce the bur-
den of reasoning about applications such as Java Card [18].
Indeed, this has in part been done using the Universes own-
ership types system [45]. Secondly, we wish to extend our
programming language further. Firstly, we would like to in-
clude effects masking to localise effects to within expressions.
This will also opens the way for stack-allocable objects, or at
least objects which can be allocated/deallocated in a stack-
based manner, e.g., like scoped memories used in Real-time
Java [10]. In addition, by allowing context parameterisation
on methods, we will enable a notion of borrowing [13, 41,
32, 5, 15], which is useful for some applications.
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