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Abstract. Curry and and Howardobserved that ordinary propositional
logic can also be viewed as a functional (programming) language. Thus
programs are contained, in a certain sense, in proofs in mathematical
logic. The underlying reason (in the present author’s view) is because of
the formal, that is to say, purely syntactic, similarities between logical
rules and those of the lambda calculus. This has led to the viewing of
proofs (originally, just in formal logic) as computer programs. The ad-
vantage of these techniques is that the task of programming a function
is reduced to reasoning with domain knowledge.

In this paper we sketch the development of the Curry-Howard correspon-
dence, first of all into predicate calculus, then into arithmetic. After that
we look at different applications of the idea of the Curry-Howard process
into two very different applications: algebraic specifications and imper-
ative programming. The full details may be found in our forthcoming
book with Iman Poernomo and Martin Wirsing.

Finally, having seen how proofs may be said to contain programs, we dis-
cuss the question of whether there are, or should be, proofs in programs.

1 Introduction

About the year 1900 there was just “one true logic”: classical logic. In such a
logic one would expect that everything was clear. Certainly, in that logic, any
statement was either true or false: there was the law of the excluded middle,
(A ∨ ¬A). But how do we check an infinite number of instances? What does it
mean to say that there is no largest pair of twin primes, that is to say that there
is an end to such pairs such as 5 and 7; 11 and 13 or even 202 289 and 202 291?

On the other hand, saying there are infinitely many pairs of twin primes has
a clear meaning if we can show that, for every pair, there is a larger pair. In this
context compare the way that Euclid established that there were infinitely many
prime numbers (although he did not phrase it like that). He gave a method for
constructing a larger prime from a given (finite) set of prime numbers.

? This paper wass presented at the First Indian Conference on Logic and its relation-
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It was because of questioning by Brouwer, a Dutch mathematician, indeed
a topologist, of the “one true logic”, that “constructive logic” or “intuitionist
logic” arose.

When you look at this logic it is not evident, at first glance, that the logic
actually gives you the way of performing the necessary construction. However,
that is perhaps the wrong way to look at it. Brouwer was concerned only with
constructing mathematical objects that were claimed to exist. He did not like
mathematical logic and did not consider it relevant. However, when his approach
is formalized, the details are buried inside the proof. Are they perhaps buried in
the way that algorithms are buried inside computer programs?

Thus arose “constructive logic” or “intuitionist(ic) logic”. In the 1960s I went
to a course on Intuitionism taught by Michael Dummett. The lectures have since
become a book [6]. I was a student then and I must admit that I found it very odd.
Odd, but also very interesting, indeed, fascinating. The subject matter seemed
strange to us in the audience because it did not use the law of the excluded
middle. Nowadays intuitionist logic has become a very standard subject as you
can see from Michael Dummett’s book.

The most important thing about constructive proofs is that they contain the
information that allows one to construct the objects considered. For example if
we prove ∀x∃yA(x, y) constructively then, given an x, we can actually construct
a y such that A(x, y) is true, indeed, is provable. The information required for
the construction is embedded in the proof.

For further details of the actual logical system that I use please see the
tutorial at this conference [3]. The system is outlined in Fig. 1. Here ∆, A `Int B
means “B can be inferred from A and the formulae in ∆”. The restriction to
Harrop formulae is a technical one.1

2 The Lambda Calculus and the Curry-Howard
correspondence

How do we extract the information from a proof in mathematical logic? Curry
started, and Bill Howard [11] developed, the basic idea. To show this we need
some notation. We begin with the lambda calculus, but this calculus will slowly
get extended. Here is the formal definition of lambda terms.

Definition 1 (Lambda terms). The alphabet comprises variables x1, y1, . . .,
together with λ and “.”, and the brackets ( and ).

The lambda terms, Λ, are formed as follows (in Backus-Naur notation):
1 A formula F is a Harrop formula if it is 1. an atomic formula, 2. of the form (A∧B)

where A and B are Harrop formulae, 3. of the form (A → B) where B (but not
necessarily A) is a Harrop formula, or 4. of the form ∀x.A where A is a Harrop
formula. Harrop formulae, in a sense, contribute no information for the program.
However, the rule (⊥-E) easily extends, through a proof by induction, to provide a
proof of any formula A from the false formula ⊥ since atomic formulae are Harrop
and so are their negations (A →⊥).
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T = x|λx.T |(T1T2)

The lambda calculus has two major constructions: abstraction and applica-
tion.

Assume that x, y are individual variables, and that t and t′ are individ-
ual terms.

A `Int A
(Ass-I)

∆, A `Int B

∆ `Int (A → B)
(→-I)

∆ `Int A ∆′ `Int (A → B)

∆, ∆′ `Int B
(→-E)

∆ `Int A

∆ `Int ∀x.A
(∀-I)

∆ `Int ∀x.A

∆ `Int A[t/x]
(∀-E)

x is free in A, not free in ∆

∆ `Int P [t′/y]

∆ `Int ∃y.P
(∃-I)

∆1 `Int ∃y.P ∆2, P [x/y] `Int C

∆1, ∆2 `Int C
(∃-E)

where x is not free in C

∆ `Int A ∆′ `Int B

∆, ∆′ `Int (A ∧B)
(∧-I)

∆ `Int (A1 ∧A2)

∆ `Int A1
(∧-E1)

∆ `Int (A1 ∧A2)

∆ `Int A2
(∧-E2)

∆ `Int A1

∆ `Int (A1 ∨A2)
(∨-I1)

∆ `Int A2

∆ `Int (A1 ∨A2)
(∨-I2)

for any Harrop formula A

∆ `Int A ∨B ∆1, A `Int C ∆2, B `Int C

∆1, ∆2, ∆ `Int C
(∨-E)

∆ `Int ⊥
∆ `Int A

(⊥-E)

provided A is Harrop

A[a/x] is read “A with a for x” aand denotes the formula A with a substituted for the
variable x.

Fig. 1. The basic rules of intuitionistic logic, Int.
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Where does the lambda calculus come from? Consider the following:
What is the function denoted by xy? We have several choices: as a function

of two variables, as a function of x only with y held constant and as a function
of y only with x held constant. These are usually denoted by

λxλy.xy(often written as λxy.xy), λx.xy and λy.xy.

This is abstraction.
Application is written in a familiar way: thus (T1T2) denotes the application

of the lambda term T1 to the lambda term T2. In particular fa is the application
of the lambda term f to the lambda term a. (We omit brackets where there is
no ambiguity.)

These notations have the obvious interpretations. (Try them on xy and spe-
cific values of x and y.)

In ordinary mathematics if we apply the function λx.f to a then we get
f [a/x], which is read “f with a for x”. In the lambda calculus however this is
not the same as the (application) term λx.fa, i.e. λx.f applied to a. That is to
say they are syntactically different. We therefore have to introduce the notion of
β-reduction2

λx.fa B f [a/x]

(Here B is read “reduces to’.)
Now note the similarities between →-introduction, the rule (→-I), and →-

elimination (→-E) (in Fig. 1) on the one hand, and λ-introduction and λ-
elimination on the other, the β-rule.

Next consider a proof of B from A from which we get a proof3 of A → B (by
the rule (→-I):

[A]....
B

(A → B)

and lambda abstraction (which abstracts a function from the process where
a ∈ A gives us f(a) ∈ B): that is λx.f . Consider the figure:4

a....
f(a)
λx.f

What is the connexion?
The most obvious thing, I hope, is that the shapes are the same!

2 α-reduction refers to the simple renaming of one variable by another (without
clashes).

3 The square brackets indicate that A can be discharged, i.e. is not needed for the
proof of B, though it is for the proof of B, of course.

4 Here we have written f(a) to show that we think of a as being involved in f .
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The typed lambda calculus that we shall consider, that is to say lambda calcu-
lus with each term having a type assigned to it, can be regarded as the amalgam
of the two systems: logic, or more precisely, systems of predicate calculus, and
the lambda calculus.

A special kind of typed lambda calculus involves taking formulae of logic as
the types. Now this is a strange idea to accept but it is easier to work with it if
you just think of a type (formula) as the set of proofs of that formula. Instead,
therefore, of variables, we use typed variables of the form a : A.

The rule of modus ponens then becomes:

a : A g : (A → B)
(ga) : B (1)

where we have changed f to g to avoid confusion in what follows.
If we had a proof of B from A then we would get an expression λx : A.f : B

by the rule of (→-I) which has type (A → B). If the g in the expression (1) is
actually of the form (λx : A.f : B) : (A → B), then we get

a : A (λx : a.f : B) : (A → B)
((λx : A.f : B) : (A → B))a : A) : B

which is somewhat hard to read. However the bottom line has the formula B as
its type, and the expression reduces to

f : B[a : A/x : A] (2)

where the substitution of a : A for x : A takes place throughout the term f : B.
If we translate this back into proofs it means that the corresponding proofs

look as follows. On the one hand we have the complicated proof:

....
A

[A]....
B

(A → B)
B (3)

and on the other hand, by putting the proof of A from the left on top of the
proof of B, and not introducing the →, we no longer need the hypothesis [A] in
the proof on the right in order to get a proof of B.

That is to say, we reduce the proof in (3) to a simple proof of B of the form

....
A....
B
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This corresponds in the lambda calculus to the reduction5 that resulted in (2).
So we have a direct correspondence between proofs and terms of our typed
lambda calculus. This is called the Curry-Howard correspondence.6

3 Strong Normalization and Program Extraction

Now it is obvious that a long and complicated formal proof has an even longer
typed lambda calculus expression associated with it. If, however, all the possible
reductions are carried out it may become considerably simpler. Indeed, in the
cases with which we are concerned, we can usually omit all the types. (They
will have served their purpose of ensuring that we get a result of the correct
type when the proof is complete. This is related to the use of types in computer
programming languages.)

The maximum benefit is when we have a Strong Normalization Theorem for
the system. Such a theorem says that, whatever the order of the reductions (and
there may be many possible different reductions for a long lambda term) the
process always stops. (One reason the process might be expected not to stop is
clear when you look at substituting x + x for x: the number of xs goes up each
time and the expression gets longer!)

The Curry-Howard correspondence can be extended to the other logical con-
nectives by modifying the lambda calculus. Surprisingly, in addition to the above
operations involving lambdas, we only need the formation of ordered pairs and
the projections onto the first and second elements of those pairs in order to cap-
ture all first order logic.7 We give only a few examples; the full details can be
found in [5]. The Curry-Howard term for a conjunction (A∧B) obtained by the
rule (∧)-I) is the ordered pair (p : A, q : B) where p : A is the Curry-Howard
term for the proof of A, and similarly for B. Conversely we use the projections
fst and snd for the rules (∧)-E1) and (∧)-E2). For the rule (∃)-I we get the term
(t, p : A(t)) where the premise has the Curry-Howard term p : A(t). Thus the
Curry-Howard term contains the term t that was proved to exist.

The major consequence of the Strong Normalization theorem is then that, if
we prove a formula of the form ∃xA(x), we can actually extract, from the normal-
ized proof (i.e. the lambda, or Curry-Howard, term in which no more reductions
are possible), an x such that A(x). Further, if we can prove ∀x∃yA(x, y) then we
can actually get a program such that, given an x, it will compute a correspond-
ing y. Moreover, we have a proof of A(x, y) for this x and y so the program is
“correct” in the sense that it meets its specification.8

Curry-Howard terms are, in general, a generalization of the idea known var-
iously as formulae-as-types or, better, as proofs-as-types: the terms code up a
5 This process of reduction is also called cut elimination.
6 Some people use the term isomorphism but there are technical difficulties involved

in making the correspondence one to one, so I prefer the weaker terminology.
7 The process can also be extended to higher order logic.
8 Intuitively speaking, the specification is the statement about the result of the pro-

gram. See also below Section 4.1.
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whole proof by successively encoding the applications of the logical rules in a
proof.

Not surprisingly, not all rules of logic allow us to prove a strong normalization
theorem. One major obstacle is the law of double negation: From ¬¬A infer A.
If we had a rule that would allow us to prove ∃xA(x) from ¬¬∃xA(x), how do
we obtain such an x? So we generally restrict ourselves to constructive logic and
all is well.

Changing to other systems, e.g. arithmetic, may bring in other axioms. Here
the most dramatic is the rule of induction. Fortunately the induction axiom

A(0) ∀x(A(x) → A(x + 1))
∀xA(x)

gives rise to a reduction exactly corresponding to the recursion

f(a, 0) = g(a)
f(a, x + 1) = h(a, x, f(a, x))

Happily we can prove a strong normalization theorem for arithmetic (see [5]).

4 Beyond traditional logic

4.1 Algebraic Specifications

We now turn to an application of the above ideas to software engineering. Pro-
ducing programs that satisfy their specifications is a primary goal of software
engineering.

What is an algebraic specification? It is a description in formal logic of a
structure, for example, the natural numbers.

We use the Common Algebraic Specification Language (CASL, see [2]) but the
technique could be employed in other specification languages, indeed originally
we ourselves used a different language.

Structured specifications in CASL are built from basic (or flat) specifications
by means of translation (or renaming), written with, taking unions of speci-
fications, written and, hiding signatures, and the extension of specifications.A
typical example of a flat specification, this one is for natural numbers, is given
in Fig. 2.

When we change a specification, then what is true changes – even if sim-
ply because we use new names, e.g. “car” instead of “auto”, “boot” instead of
“trunk”, etc. but we may also add new predicates (relations).

We have developed logical systems to reflect the interaction between such
changes and the logic statements.

Originally Martin Wirsing studied a logical calculus for structured specifi-
cations (see [15]). This was subsequently extended by Wirsing and his student
Peterreins (see [13]). Next Wirsing and the present author extended the idea to
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spec Nat 0 =
sorts

Nat
ops 0 : Nat ; s : Nat → Nat ; + : Nat ×Nat → Nat
preds
≥: Nat ×Nat

axioms
∀x : Nat • x + 0 = x %(Nat 0 .1 )%
∀x ; y : Nat • x + s(y) = s(x + y) %(Nat 0 .2 )%
∀x : Nat • x ≥ 0 %(Nat 0 .3 )%
∀x ; y : Nat • x + y = y + x %(Nat 0 .4 )%
∀x : Nat • s(x ) ≥ x %(Nat 0 .5 )%
∀x ; y ; v ;w : Nat • x ≥ v ∧ y ≥ w → x + y ≥ v + w %(Nat 0 .6 )%

end

Fig. 2. The specification Nat 0.

algebraic specifications, and then we went even further with Iman Poernomo to
include even parametrized specifications in the language CASL.

Abstractly speaking we have an annotated or labelled deductive system.9

The basic form of a rule in such a logic can be written in the form

p : A q : B

s(p, q) : σ(A,B)

It is convenient to use “contexts” also.That is to say, the actual hypotheses
with which we are working. These will be written in the standard logical style
using the “turnstile” symbol vdash. We shall use Γ , possibly with subscripts,
to denote a set of logical formulae. Thus we write Γ ` A to indicate that A is
provable in the context Γ (or equivalently, from the hypotheses Γ ).

When we wish to extract programs from proofs from algebraic specifications
the Curry-Howard terms that we use are now more complicated for two reasons.
In addition to the information from, for example, the logical rule being used,
the Curry-Howard term also has to “remember” the specification. We have a
similar situation for the structural rules. However, the message is as before: the
Curry-Howard term carries all the information as to how we have constructed
the proof so far.

The annotations we shall use will also involve Curry-Howard terms, specifi-
cation names and the logical connectives. We have two kinds of rules: those for
the logical connectives, logical rules; and those for the structural changes in the
specifications, structural rules. Even with the purely logical rules, the specifica-
tion of the conclusion depends on those in the premises. Thus the full rule for
modus ponens we have is
9 The logical system that we then have is therefore related to the labelled deduction

systems of Gabbay [7].
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Γ1 ` a.Sp : A Γ2 ` d.Sp : (A → B)
Γ1 ∪ Γ2 ` (da).Sp : B

(→ E)

Let me explain what is going on in the rule for implication elimination (→ −E).
We are working within a single specification Sp. We have Curry-Howard terms
d for the proof of (A → B) and a for the proof of A. Therefore we have, just
as in (1), (da) as the Curry-Howard term for the resulting proof of B. As usual
the contexts Γ1 and Γ2 are added together. The specification Sp is unchanged
throughout.

Now here is the rule for implication introduction:

Γ, x : A ` d.Sp : : B

Γ ` λx : A.d.Sp : (A → B)
(→-I)

A ` Sp : A
(Ass-I) ∅ ` 〈Σ, Ax〉 : A

(Ax-I)

where SigA ⊆ Sig(Sp) where Ax are the axioms

Fig. 3. Two new logical rules for Structured Specification Logic.
Sp is any structured specification expression. Sig indicates taking the signature.

For the structural rules, the change in the structure is reflected in the spec-
ification of the conclusion. The full rule for translations, including the lambda
calculus elements and the specifications, is as follows:

Γ ` d.Sp : A

ρ ‘(Γ ) ` ρ • d.Sp with ρ : ρ •A
(trans)

In the structural rule for translation the formula A is unchanged in meaning
but the language is changed, therefore A has to be changed into its translation
ρ • A. Similarly the context Γ has to be translated. This is written (by us) as
ρ‘(Γ ). In addition, the Curry-Howard term for A has to be changed (translated)
into the new language. So the new Curry-Howard term is ρ • d. Finally the new
specification is the translated one: Sp with ρ.

The logical rules for our system Structured Specification Logic are very similar
to those in Fig. 1 with two exceptions that we give in Fig. 3. In order to make
the figures less complicated the rules are presented without their Curry-Howard
terms. Likewise the structural rules may be found in Fig. 4. The complete set
of rules we have for CASL, with their Curry-Howard terms, may be found in [4]
or [14].

In this situation we are again able to prove strong normalization.
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Γ ` Sp : A
ρ‘(Γ ) ` Sp with ρ : ρ • (A)

(trans)

Γ ` Sp : A
Γ ` Sp hide SL : A

(hide)

where Γ ∪ {A} ⊆ WFF (Sig(Sp)/SL, V ar)

Γ ` Sp 1 : A
Γ ` Sp 1 & Sp 2 : inl(A)

(union1)

Γ ` Sp 2 : A
Γ ` Sp 1 & Sp 2 : inr(A)

(union2)

Γ ` Sp 1 : A
Γ ` Sp 1 then Sp ext : inl(A)

(ext1)

Γ ` Sp ext : A
Γ ` Sp 1 then Sp ext : inr(A)

(ext2)

Fig. 4. The structural rules of Structured Specification Logic.
Here the condition Γ ∪ {A} ⊆ WFF (Sig(Sp)/SL, V ar) means that none of the well-
formed formulae in Γ and A contains any letter from the hidden signature SL.
We have omitted the lambda calculus parts of the Curry-Howard terms for clarity.

From this strong normalization theorem we are then able to give an extrac-
tion map, that is to say, we give a formal process that, given a Curry-Howard
term for a proof of ∀x∃yA(x, y) for a given specification, the extraction map
returns a suitable y for a given x. Indeed it gives a program in the programming
language ML. The extraction map works recursively and, in particular, the cases
for →-introduction and elimination correspond directly to the procedure we have
outlined above.

4.2 Imperative programming

My most recent PhD student, Iman Poernomo, has developed a protocol for
integrating ordinary computer programs into the kind of deductive system we
have been discussing. This protocol he calls the Curry-Howard protocol. The
logical system for such a situation includes the state of the system (i.e. the
contents of registers in the machine) and accounts for the changes that take place
when a program is run. Despite the complications this produces it is still possible
to produce a constructive version of a Hoare logic (cf. [10]) for reasoning about
imperative programs to which the Curry-Howard isomorphism may be adapted.

Note that a theorem in the Hoare logic consists of an imperative program and
a truth about the program. Because of this the logic can be used to synthesize
programs.

However we are also concerned to use programs already in the programming
language that we regard as “reliable”. We do not use the word “correct” here,
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reserving that word for programs that have been formally proved to meet their
specifications. Here we simply mean that we have programs that we are satisfied
will give the correct answers. Such programs include very simple ones such as
programs for the multiplication of natural numbers. This achieves a significant
saving in the length of the programs extracted. Otherwise we would have to
prove a formula in formal arithmetic that allows us to extract a program, for
example for the multiplication function. The proof would be inordinately long,
involving several applications of induction and its corresponding program would
then involve the same number of recursions. This is obviously very uneconom-
ical, because we know it is possible to write a relatively simple program for
multiplication (if one is not built into the computer already).

Imperative computer programs have side-effects: they change the state of
the machine and, in particular, the values in various registers. The presence of
side-effects is what distinguishes the imperative programming paradigm from
the functional one. However, side-effect-free functions are also important in im-
perative programs because they enable access to data, obtaining views of state
and producing return values. Imperative programs involve both side-effects and
side-effect-free return values. Consider, for instance, a program that triples the
number in the register s and returns the value twice the value in s. In Standard
ML the program is

s :=!s ∗ 3; !s ∗ 2

It has a side-effect producing assignment statement, s :=!s ∗ 3, followed by the
return value !s ∗ 2. In many popular imperative languages such return values are
potentially complex, involving higher-order functional aspects that are difficult
to program correctly.

Our goal is to specify, reason about and synthesize both aspects of imperative
programs – side-effects and functional return values.

Our approach is as follows. We use a version of Hoare logic to synthesize
the side-effect producing aspect of a program, specified in terms of pre- and
post-conditions. Hoare logic involves considering triples of the form

{pre-condition}program step{post-condition}

The pre-condition is true before the program step commences and the post-
condition is true after the step.
The formula

sf > si

specifies a side-effect where the final value of state s, denoted by sf , is greater
than the initial value, denoted by si. We can use Hoare logic to synthesize a
Standard ML program that satisfies this specification, by producing, for example,
a theorem of the form

` s :=!s ∗ 3 : sf > si

where the left-hand-side of the : symbol is the required Standard ML program
(written in teletype font), and the right-hand-side is a true statement about the
program.
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The structural rules may be found in Fig. 5. The operation tologici indicates
the operation of the Curry-Howard protocol taking the name of the variable in
the programming language into the logical language. Thus tologici(b) yields the
variable coming from the register b. The remaining items in teletype font are
standard imperative programming constructs. Thus p; q means the program p
is pipelined into the program q and while b do q is the usual while-loop that
repeats the program q while the assertion q is satisfied.

`K s := v : sf = tologici(v)
(assign)

where s is a state reference.

`K p : (tologici(b) = true → C) `K q : (tologici(b) = false → C)

`K if b then p else q : C
(ite)

`K p : (A[s̄i/v̄] → B[s̄f/v̄]) `K q : (B[s̄i/v̄] → C[s̄f/v̄])

`K p; q : (A[s̄i/v̄] → C[s̄f/v̄])
(seq)

where A and B are free of state identifiers.

`K q : (tologici(b) = true ∧A[s̄i/v̄]) → A[s̄f/v̄]

`K while b do q; done : A[s̄i/v̄] → (A[s̄f/v̄] ∧ tologicf(b) = false)
(loop)

where A is free of state identifiers.

`K p : P `Int (P → A)

`K p : A
(cons)

Fig. 5. The structural rules for our logic for imperative programming.
Intuitionistic deduction `Int is given in Fig. 1.

The logical rules are the same as we had much earlier in Fig. 1, but with the
state information added. This is because the intuitionistic rules are concerned
with truths that are universal to all programs. That is to say, they can be used
to infer properties that hold over any side-effect.

Example 1. For instance, an application of the logical (∧-I) rule

sf = si ∗ 2 `Int sf ≥ si sf = si ∗ 2 `Int Even(sf )
sf = si ∗ 2 `Int sf ≥ si ∧ Even(sf )

(∧-I)

tells us that, any program that makes sf = si ∗ 2 true, makes sf ≥ si and
Even(sf ) true, and therefore the statement: sf ≥ si ∧ Even(sf ) must also be
true of the program.

To specify and synthesize return values of a program we adapt realizability
and the extraction of programs from proofs. We have already treated the latter,so
now we consider realizability.
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When we extract a program we wish to demonstrate that it is “correct”.
This requires the notion of realizing. This is a different way of verifying proofs in
intuitionistic logic by means of computable functions. It was first developed by
Kleene, see the last chapter of [12]. The basic idea is that we produce a program
for a (partial) recursive function that is a witness to the proof of an assertion.
Such witnesses can be produced recursively by going down through the proof.
Such a program can be regarded as a number (for example, the binary string that
encodes the program). For example if we have partial recursive functions with
programs p, q realizing A,B, then we take (p, q) as the realizer of (A ∧B). The
full details, which may be found in Kleene [12] for the basic system of intuitionist
logic and in our book [14] for the systems we discuss here.

Here is an example. Given the theorem

s := s ∗ 3 : sf > si ∧ (∃x : int.Even(x) ∧ x > si)

we can synthesize a program of the form

s := s ∗ 3; f

where the function f is a side-effect-free function (such as !s ∗ 2) that realizes
the existential statement of the post-condition (∃x : int.Even(x) ∧ x > si), by
providing a witness for the x.

With our program extraction users will have no need to manually code the
return value, instead they can work within the Hoare logic. There they prove a
theorem from which the return value is then synthesized.

Here is an outline of a specific example about an electronic banking system.
In the logic here we are using a many-sorted system, that is to say, individual
variables have their own sorts or varieties. This is a small and natural modifica-
tion of the logic.10

Consider an Automatic Bank Teller machine (ATM) example with the fol-
lowing domain conditions:

1. The ATM permits the user to enter a Personal Identification Number (PIN)
and to withdraw money. In order to withdraw money, the user must enter
their PIN and a database connection to the bank’s server must be made.
The machine has a screen on which it displays messages to the user.

2. The integer state reference pin stores the PIN number entered by the user,
the boolean state reference canWithdraw stores a flag to determine whether
or not the user may withdraw money from the machine, and the boolean
state reference isConnected stores a flag to determine whether or not there
is a connection to the bank’s server.

3. We use the predicate appMessage(m) to assert that a string m is an appro-
priate message to display on the screen for the user, given that the ATM is
in some particular state.

10 It can be avoided by adding extra predicates, one for each sort. In this case instead
of x : s meaning “x is of sort s” we have a predicate s and we write s(x) → . . .,
which can be read as “If x is of sort s, then . . . ”.
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4. There is a program p satisfying the following property. Given the user has
entered their Personal Identification Number (PIN) correctly, the program
allows the user to withdraw money. This property is formally given by an
axiom

`K p : PINCorrect(pini) → canWithdrawf = true

5. There is a program q such that, if the user is permitted to withdraw money,
then a database connection is established, and also it is the case that there is
an appropriate message that can be displayed. These properties are formally
given by the axiom

`K q : canWithdrawi = true →
(isConnectedf = true ∧ ∃x : string • appMessage(x))

For the sake of argument, we simplify our domain with the following assump-
tions:

1. We assume two Standard ML record datatypes have been defined, user and
account. Instances of the former contain information to represent a user in
the system, while instances of the latter represent bank accounts. We do not
detail the full definition of these types.
However, we assume that an account record type contains a user element
in the owner field to represent the owner of the account. So the owner of the
account element myAccount : account is accessed by myAccount.owner.
We also assume that user is an equivalence type in Standard ML, so that its
elements may be compared using the boolean valued comparison function
=.
We assume a constant currentUser : user that represents the current user
who is the subject of the account search.

2. The database is represented in Standard ML as an array of accounts,

db : account array

Following the Standard ML API, the array is 0-indexed, with the ith element
accessed as

sub(db, i)

and the size of the array given as

length db

Assume we have an array of size Size, called accounts. Although Standard
ML arrays are mutable, for the purposes of this example, we will consider db
to be an immutable value. Consequently, it will be represented in our logic
as a constant.

3. We assume a state reference counter : int ref, to be used as a counter in
searches through the database.
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We take a predicate

allAccountsAt(u : user, x : account list, y : int)

whose meaning is that x is a list of all accounts found to be owned by the user u,
up to the point y in the database db. The predicate is defined by the following
axioms in AX

∀u : user • ∀x : (account list) • ∀y : int • (allAccountsAt(u, x, y) →
(∀z : int • z ≤ y → sub(db, z).owner = u)) (4)

∀u : user • ∀x : (account list) • ∀y : int•
((y < (length db)− 1) ∧ sub(db, y + 1).user = u ∧ allAccountsAt(u, x, y)) →

allAccountsAt(u, sub(db, y + 1) :: x, y + 1) (5)

∀u : user • ∀x : (account list) • ∀y : int•
(y < (length db)− 1 ∧ ¬sub(l, y + 1).user = u ∧ allAccountsAt(u, x, y)) →

allAccountsAt(u, x, y + 1) (6)

∀u : user • ∀y : int • y = 0 → allAccountsAt(u, [], y) (7)

Observe that these are intuitionistic axioms that will be used in Hoare logic.
We develop a program that satisfies the following property: Given a user’s

details, it is possible to obtain a list of all accounts held at the bank by the
user, by searching through the database. This is formally stated as the following
Specification:

∃y : (account list) • listallAccounts(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (8)

The post-condition requirement of counterf signifies that a complete search of
the database should be completed by the program.

We also have an axiom that is needed because, since we are working in
intuitionist logic, we do not automatically have the law of the excluded middle.

y < (length db)−1 → sub(l, y+1).owner = u∨¬sub(l, y+1).owner = u (9)

From these we can eventually prove the theorem

` counter :=!counter + 1;
while !counter < (length db)− 1 do counter :=!counter + 1; done :

∃y : (account list) • allAccountsAt(currentUser, y, counterf ) ∧
(counterf < (length db)− 1) = false (10)
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The program that we extract by a special extraction function satisfies the spec-
ification (8). We omit details of the extraction function.Suffice it to say that it
works recursively in the same spirit as we extracted our programs in Section 4.1.

Essentially, when viewed as a specification of a return value, the specification
(8) requires a program that, given a user’s details, will search through a database
to obtain all accounts held at the bank by the user, and then return this list.

5 Programs and proofs

So far we have seen how to obtain programs from proofs in constructive systems
of logic. Therefore we could conclude that all proofs are already programs, or at
least, that every proof in (constructive) logic contains a program.11

What if we were to write the program first? Would we automatically have
a proof? The answer is obviously “No!” if we simply write computer programs
as many people do. However, a thoughtful computer programmer would wish to
know that the program written would do what it was expected to do, that is to
say, would meet its specification.12 Therefore, as part of the task of writing the
program, a proof should be produced at the same time.

The approach that we have presented shows how to accomplish both of these
tasks at the same time. It does not require a separate investigation to produce
a proof that the program will be correct.

From a practical point of view it is sometimes obvious how to write the proof.
I studied a program for quicksort.13 Then I wrote a proof corresponding to the
program and extracted a program from it. The resulting program was essentially
the quicksort program from which I had started. However I have not yet been
able to formalize the procedure that I used in producing the proof from the
program. It would appear that one needs to know the algorithm rather than the
program in order to construct the proof. This in itself indicates that one also
needs to know that the program is a correct implementation of the algorithm.
But this is work for the future.

6 Conclusion

The techniques we have presented here are based on a variant of Gabbay’s la-
belled deductive systems [7]. Our logical rules are of the form

Logical context, State, Curry-Howard term ` Formula
New Logical context, New State, New Curry-Howard term ` New Formula

11 The restriction to constructive systems of logic is essential for us.
12 This is a very serious issue when it comes to the control of powerful systems, in

particular, the control of nuclear weapons.
13 This was inspired by looking at work of Helmut Schwichtenberg on program extrac-

tion in [1].
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although the actual order may vary. Further, each of the items on the lower line
may depend on, that is to say, be functions of, any or all of those on the top
line, and of course there may be two or more sequences on the top line.

The semantics of these rules will depend on the structures that we are using.
Also the interpretation of the informal terms: Logical context, State, etc. will
also vary.

What seems to be most important is that we have extended the notion of
logic in two ways. First of all we now have programs or other constructions
(for example, specifications) interacting with the standard logical connectives.
Secondly, the context of the logic may change in the course of a proof. This
certainly happens in the context of algebraic specifications. Thirdly, we are now
discussing logics (plural) and we arrive at such logics by an analysis of a technical
setting. This seems to me to be following Aristotle’s approach of looking at the
real world, or a small part of it, and then abstracting the logical principles that
work in that arena. But we have come a long way from the “one true logic” that
I mentioned at the beginning of the introduction!
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