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ABSTRACT
Three-way merging is a technique that may be employed for
reintegrating changes to a document in cases where multiple
independently modified copies have been made. While tools
for three-way merge of ASCII text files exist in the form
of the ubiquitous diff and patch tools, these are of limited
applicability to XML documents.

We present a method for three-way merging of XML which
is targeted at merging XML formats that model human-
authored documents as ordered trees (e.g. rich text formats,
structured text, drawings, etc.). To this end, we investigate
a number of use cases on XML merging (collaborative edit-
ing, propagating changes across document variants), from
which we derive a set of high-level merge rules. Our merge
is based on these rules.

We propose that our merge is easy to both understand
and implement, yet sufficiently expressive to handle several
important cases of merging on document structure that are
beyond the capabilities of traditional text-based tools. In
order to justify these claims, we applied our merging method
to the merging tasks contained in the use cases. The overall
performance of the merge was found to be satisfactory.

The key contributions of this work are: a set of merge
rules derived from use cases on XML merging, a compact
and versatile XML merge in accordance with these rules, and
a classification of conflicts in the context of that merge.
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1. INTRODUCTION
One of the fundamental scenarios in computer-supported

collaborative work is the parallel modification of copies of
a document, and the subsequent reintegration of the copies
into a single document containing the modifications [1]. We
investigate the variant where two replicas of a base document
have been made and where the replicas have been indepen-
dently edited. We will refer to the replicas as the modified
documents.

In this paper we apply reintegration based on the tech-
nique of three-way merging to the scenario. The technique
requires the base document to be present during reintegra-
tion. The base document is required, since in three-way
merging we detect the edits between the base and modified
versions as an integral part of the merge, rather than use a
trace of the actual edit operations.

An important aspect of a three-way merging algorithm is
the data structure it is designed for, e.g. sets of tuples (for
relational databases), ordered lists (for text files), trees and
graphs (for structured data), or application-specific struc-
tures. For ASCII text there exists a ubiquitous three-way
merge in the form of the diff, patch, and diff3 tools [10,
6]. Their applicability to structured data is, however, lim-
ited due to their list-based data model. A three-way merge
specifically designed for structured data is thus called for.

The tree is one of the most frequently used data struc-
tures in computer science, and a widely used format for en-
coding trees has emerged with the advent of the Extensible
Markup Language [13] (XML) in recent years. The tree as
an abstract data structure, and its encoding as XML, thus
seem to be the logical starting point for a generic three-way
merge for structured data.

Trees may be manipulated in more complex ways than
ordered lists of text lines. Consequently, a tree merge will
need to handle more complex combinations of changes than
a line-based tool. The correct output will depend on the
semantics of the data in several of these cases (e.g. ordered
and unordered trees), and thus we must conclude that there
is no single “right” definition of a generic XML merge.

We do nevertheless feel that the class of XML formats
that represent human-authored documents that are natu-
rally modeled as ordered trees (e.g. rich text formats, draw-
ing formats) is a sufficiently large class with enough common
traits to allow for a generalized merge. In this paper, we
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T0: <doc>
<sect title=”Jokse”/>1

<sect title=”Student joke”>2

<p>Q: How many students does it take to change a light bulb?</p>
<p>A: None. Light bulb changing isn’t part of the course.
<footnote text=”Except for projector bulbs” /></p>

</sect>
</doc>

T1: <doc>
<sect title=”Jokes”/>1

<sect title=”Student joke”>2

<p>Q: How many students does it take to change a light bulb?</p>
<p>A: None. Light bulb changing isn’t part of the course.</p>

<p>A2: ‘‘Will this be on the test?’’</p>
</sect>

</doc>

T2: <doc>
<sect title=”Jokse”>1

<p>Here are several good jokes</p>

<sect title=”Joke 1: Student joke”>2 (moved)

<p>Q: How many students does it take to change a light bulb?</p>
<p>A: None. Light bulb changing isn’t part of the course.
<footnote text=”Except for projector bulbs” /></p>

</sect>
</sect>

</doc>

Tm: <doc>
<sect title=”Jokes”>1

<p>Here are several good jokes</p>
<sect title=”Joke 1: Student joke”>2

<p>Q: How many students does it take to change a light bulb?</p>
<p>A: None. Light bulb changing isn’t part of the course.</p>
<p>A2:‘‘Will this be on the test?’’</p>

</sect>
</sect>

</doc>

Figure 1: Merge of a structured document. Changes are marked like this, and superscripts are used to track
the <sect> nodes.

present a merge for this class of so-called document-oriented
XML. The merge is synthesized from a number of “real-
world” use cases, and should therefore be practically useful.

The approach may be criticized for ignoring the semantics
of the individual formats. To counter, we point out that an
understanding of the full semantics of the data is frequently
not required to perform a successful merge. For instance,
consider three-way merging of program source code using
the diff3 tool: the semantic structure of the source code may
be very complex, yet we often obtain valid results from diff3,
which considers the structure of its input to be an ordered
list of text lines.

An important goal of the merge was to make it behave
in an intuitive manner, in order to make it attractive as a
tool for everyday use. To this end, we use an easily under-
stood model for detecting changes, and deliberately make
the merge report conflicts in ambiguous situations.

The paper is organized as follows: we introduce three-way
merging of XML, along with two examples and notation in
section 2. The use cases and the rules on which we base
our merge are presented in section 3. Having introduced
the concepts of tree matching (section 4) and changes (sec-
tion 5), we state the definition of the merge in section 6. We
evaluate an implementation of the merge in section 7, and
review related work in section 8. Section 9 concludes.

2. THREE-WAY MERGING OF XML
Assume that we have two initially identical replicas of

an object T0, denoted T1 and T2, which have subsequently
been independently edited. Let the edit scripts (see e.g. [3])
E1 and E2 be the ordered sequences of edit operations that
created T1 and T2 from T0. We wish to obtain a version of
the object that integrates the modifications made to both
replicas, i.e. we want to merge the changes made to the
replicas into a unified version.

We informally define the result of the three-way merge of
T0, T1, and T2 to be the object which is obtained by applying
E1 and E2 to T0. We denote the merged object Tm.

We may identify two phases of the three-way merge pro-
cess: edit detection and reconciliation. The edit detection
phase is necessary since we do not assume any knowledge of
E1 and E2. During this phase, a set of edits that approxi-

mate E1 and E2 is derived. The set of detected edits is then
applied to T0 during the reconciliation phase. If edit detec-
tion is well implemented, the result of the reconciliation will
be the same as if it was made using E1 and E2.

As we operate on document-oriented XML we assume that
T0, T1, T2, and Tm are trees and, furthermore, that these are
ordered. T0 is used to denote the base tree, T1 and T2 are
used for the modified trees, and Tm is used for the merged
tree. T ′ will be used to refer to either of the modified trees.

To illustrate three-way merging of XML we give two ex-
amples in the following sections.

2.1 Example 1: Structured Document Merge
Figure 1 shows concurrent edits to a structured document.

T0 is the original document, two copies of which are mod-
ified into T1 and T2. In T1, an additional answer is added
to the joke, a typo is corrected (“Jokse”→“Jokes”), and the
footnote is deleted. In T2, the structure of the document
has been revised so that <sect>2 becomes a subsection of
<sect>1. The title of <sect>2 has also been updated. A
merged version integrating the edits from T1 and T2 is shown
as Tm in the figure.

In particular, we want to emphasize the merging of struc-
ture that occurs in the example: although <sect>2 is moved
in T2, it does not prevent us from making changes to the
structure of that subtree in T1 (in this case inserting a new
answer). We feel that such “reorganization in the large” in
combination with “updates to the details” is a particularly
important XML merge case which tools lacking the notion
of moves (e.g. diff and patch) are unable to handle in the
general case.

The example is deliberately quite contrived in order to
show the integration of as many types of change as possible;
in this case an attribute update, as well as insert, delete,
and move of XML elements. The edits to T1 and T2 would
not occur as densely in a more realistic example.

2.2 Example 2: Variants of a Web Page
The second example, shown in figure 2, makes use of

three-way merging for maintaining multiple variants of the
home page of a fictive chess club. There are two variants of
the XHTML [14] home page, one for full-color large-screen



a)

Titles added

Hyperlink inserted

b)

Titles added Hyperlink
inserted

c)

Figure 2: Merging of web page variants. a) full, b) modified simple, and c) full with merged changes

browsers (figure 2a) and another, simple version (figure 2b)
for more limited environments, such as a small screen PDA.
As can be inferred from the figures, the variants have several
XHTML fragments in common (body text, list of links, etc).

We make some changes to the simple version: a hyperlink
is included, and titles (chairman, secretary etc.) are added
to the names on the member list. We want these changes
applied to the full version as well, as shown in figure 2c.

This may be accomplished by three-way merging of the
simple (as T0), full (as T1), and modified simple (as T2)
variants. In this case, the detected edit set E1 from T0

to T1 would delete everything from T0 not in T1 and add
everything that is only in T1 (HTML tables, the image, etc.).
The detected edit set E2 between T0 and T2 changes the
common parts of T0 and T2 (such as the parts we modified),
which in turn are untouched by E1. By combing these, T0

is transformed into T1 by E1, and finalized into the desired
merge result by E2.

Note that it is irrelevant whether the full variant was ac-
tually created by editing the simple variant (or vice versa),
as the edit detection phase may synthesize edit sets between
arbitrary trees. This useful property of three-way merging
allows us to merge documents ad hoc without any knowledge
of their revision history, or indeed any other information on
how they are related.

2.3 XML Ordered Tree Model
We model XML documents as ordered trees with labeled

nodes. The node labels are unique among all documents,
and hence act as unique identifiers for the nodes. Each tree
node has a content which consists of the node type (element
or text), character data (in the case of text nodes), and an
element name and a set of attributes and values (in the case
of element nodes).

The model above leaves out comments, DTDs, entities,
processing instructions, and other such constructs in order
to simplify the presentation of the merge. We note that the
full XML infoset [16] can easily be accommodated for by
adding additional node types to the tree model; e.g. to add
comments, one would add a comment node type and store
the comment in the character data of the node, etc.

As labels we use R for the root and a, b, . . . , j for any
other nodes. Subscripts are optionally used to identify the
tree of a label, i.e. R0 and a0 are in T0. Primes (′) are used
to denote updated content with respect to T0. The letters
n, . . . , z denote node variables. Furthermore, the relation
c(n, c) denotes that the node labeled n has the content c.

It suits our purposes to express a tree as a set of content
and parent-child-successor (PCS) relations. The latter is a
ternary relation pcs(r, p, s) expressing that r is the parent of
both p and s, and that s immediately follows p in the child
list of r.

The set of relations expressing the tree Tk is denoted Tk.
To express the start and end of a child list we use the special
symbols a and `, so that a precedes the first node in the
child list, and ` succeeds the last node. In addition, we
assert an artificial parent ⊥k for the root Rk, as well as
the PCS relation for an empty child list for each leaf node,
thereby guaranteeing the existence of a relation pcs(n, ·, ·)
for each node n:

1. {pcs(⊥k,a, Rk), pcs(⊥k, Rk,`)} ⊂ Tk

2. {pcs(nk,a,`)} ⊂ Tk, where nk is a leaf node in Tk

The union of the relations over all trees is denoted T:=∪Tk.
We use the set membership notation n ∈ Tk to indicate that
a node n exists in Tk.

Consider, for instance, the tree T0 corresponding to the
XML fragment <a>hello</a>. Expressed as PCS and con-
tent relations

T0 = {pcs(⊥0,a, a0), pcs(⊥0, a0,`), pcs(a0,a, b0),

pcs(a0, b0,`), pcs(b0,a,`),

c(a0, {type : element, name : a, attributes : {}}),
c(b0, {type : text, chardata : hello})}

where a0 and b0 are the labels of the nodes.
As a shorthand we use the less exact c(n, c) for the content

of a node n that corresponds to the markup c, e.g c(a0, <a>)
in the example above.



3. MERGE RULES FROM USE CASES
As a starting point for defining the merge we constructed

a set of use cases demonstrating different situations where
merging of XML documents is used. Each case included a
set of XML input files, merging tasks, and the desired results
of the merging task. The desired results were obtained by
merging the input files by hand, according to whatever ad-
hoc rules generated a meaningful and appropriate result in
the context of the use case. The use cases were of two kinds:
relatively small and abstract“studies”on XML merging, and
rather elaborate “real-world” examples.

The study cases were devised so as to explore different con-
figurations that one may come across when merging XML.
They aim to answer such questions as: What is a reasonable
course of action when a node was moved in T1 and updated
in T2? What if a node was moved in T1 and deleted in T2?
How should the child lists ab, abi, and abj in T0, T1, and T2

be merged (i and j appended in different trees)?
In the study cases, we used various combinations of node

update, insert, delete, move, and copy operations to form
the modified trees from T0. For each case, a hand-crafted
merged file was constructed to demonstrate a reasonable an-
swer to the merging problem posed by the input files. A total
of 37 of these cases were devised, one of which is illustrated
in figure 3.

The elaborate cases all originate in a common scenario
(or user “story”). We will describe each case briefly here, in
order to give the reader an impression of the grounds from
which our merge rules are derived.

Concurrent editing of a rich-text document. A
technical manual is concurrently edited (text corrections,
paragraph moves and deletes) and reformatted (style defi-
nitions changed, and styles applied to various parts of the
text). The case makes use of the native XML format used
in the OpenOffice [11] word processor. Several three-way
merge runs (as there are more than two concurrently edited
versions) are used to integrate all changes into a unified doc-
ument.

Updating XML documents that share data. The
case consists of three XML documents: a data record with
personal information and two XHTML web pages that in-
clude markup from the record. The web pages also share
some common markup not found in the personal record.
Three-way merging is used to propagate changes introduced
in one of the documents to the others.

Keeping an inlined SVG drawing up-to-date. The
case involves two documents: an SVG [15] drawing and an
XHTML document, into which an annotated version of the
drawing has been included (so that the SVG markup is part
of the XHTML file). Three-way merging is used to propa-
gate updates of the SVG drawing into the manual, without
destroying the annotations to the drawing.

Maintaining a shared shopping list. An XML file
containing a structured shopping list is concurrently modi-
fied in several rounds. Three-way merging is repeatedly used
to generate an integrated version of the list.

Maintaining several versions of a web page. The
case is similar to the example described in section 2.1.

3.1 Merge Rules
During subsequent analysis of the use cases we identified

the following general rules for the merge:

R
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d e f
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R

T1

b

g
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d e f

i
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T2

a

e d f
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R

Tm

b’ a

e d f

i

Figure 3: Sample merge case

1. In order to reconcile changes originating in different
trees, we need to have a notion of “sameness” between
tree nodes. We cannot, for instance, reconcile a move
of a node in T1 with an update in T2, unless we know
they apply to the same node.

2. We define parts of the structure of Tm by requiring
it to contain certain node contexts. A node context
consists of the parent, predecessor, and successor of a
node.

3. We also require some node contexts, called guards, to
appear in Tm in order to inhibit merging of changes
originating in different trees that are too close to one
another for us to assume semantic independence.

4. Changes to the content of a node in T ′ should also
occur in Tm.

5. A node that is inserted in T ′ should also appear in Tm.
The context of the node in Tm should be the same as
its context in T ′.

6. A node removed from T ′ should not appear in Tm. As
a guard, we require that the context of the deleted
node is retained in Tm. E.g. if d is removed from the
child list adb of R, then ab should appear as a sublist
of the child list of R in Tm.

7. Nodes moved in T ′ should be correspondingly moved
in Tm:

(a) We find that the destination is better thought of
as a relative, rather than absolute, position in the
tree. For instance, if we reorder paragraphs in a
section, we want to retain the reordering inside
the section, but do not care if the entire section
is moved.

(b) We find (with few exceptions) that a node context
is suitable to express the destination of a move:
a moved node should occur in Tm in the same
context as in T ′.



(c) As a guard, we retain the context around the
source of the move in Tm. For example, if b is
moved from the child list abc of R, then ac should
appear as a sublist of the child list of R in Tm.

(d) The exceptions to 7b) represent moves originat-
ing in different trees that may be considered “too
close” to merge safely. For example, the child lists
abcd, bacd, and abdc in T0, T1, and T2 respec-
tively.

8. Several types of conflicts were identified, e.g. updating
the content of a node in both T1 and T2.

The node context, and its use to specify parts of Tm is the
key result of the analysis, and the cornerstone for the merge.
The merge rules on tree structure (5–7) are all statements
on preservation of node context in Tm.

To illustrate the use of node contexts, let us consider the
merging example in figure 3. In T1, we see that i was inserted
and that b and a have been swapped. By rule 5, we find
that i should be included in Tm as a child of R, it should be
preceded by a, and should have no successor. Rule 7 yields
that the child list of R in Tm should start with the nodes bai
(regardless of whether we consider a or b to be the moved
node).

In T2, there are three changes: an update of b, the deletion
of g, and the swapping of d and e. Rule 4 tells us that we
should use the updated content of b′2 for b in Tm. The delete
implies an empty child list for b (rule 6), and the node swap
implies that the child list of a in Tm should start with the
nodes edf (rule 7).

We note that there are no other implications on the po-
sitions of d, e, and f due to the swap in T2. In particular,
the position of their common parent a is not fixated in Tm

due to the swap. This treatment allows us to successfully
combine the swap with the new positions for a and b, and
construct a merged tree (Tm in figure 3) which contains all
contexts implied by the merge rules.

4. TREE MATCHING
To be able to relate the “same” node in different trees

(merge rule 1) we use the notion of a matching (or mapping)
(see e.g. [2, 3]) relation between the nodes of the trees. We
express matchings with the predicate m(n, m), which is true
if and only if n and m are matched.

A matching between nodes in T0 and T ′ may quite nat-
urally be interpreted in terms of edit operations. A node
n ∈ T0 with no match in T ′ is deleted and a node m ∈ T ′

with no match in T0 is inserted. A node m ∈ T ′ matched to
a node n ∈ T0 is updated if the content of n and m differs,
and moved if the position (according to some definition) of
n and m differs. A node n ∈ T0 that has many matches in
T ′ has been copied. While we do not require such an inter-
pretation for the definition of the merge, we find it useful
to talk informally about inserted, deleted, etc., nodes when
describing the merge.

We require that any node in T ′ may be matched to at most
one node in T0, and that any node in T0 may have at most
one match in each of T1 and T2. We denote this requirement
with R1. Furthermore, we will find it convenient to require
that m is an equivalence relation, thereby partitioning the
set of tree nodes into a set of disjoint equivalence classes.

R1 excludes the notion of forming a node in T ′ by combin-
ing several nodes from T0 (sometimes referred to as the glue
operation [2]), as well as the notion of copied nodes from our
model. Both operations, especially glue, were found to be
uncommon and too dependent on the semantics of the data
to be included in a general three-way merge. If encountered,
these operations are modeled as deletes and inserts.

When defining the merge we will find it convenient to let
all ⊥k be matched (requirement R2). In order for m to be an
equivalence relation, it has to be reflexive (R3), symmetric
(R4), and transitive (R5).

The requirements are formalized below. Note that R4

(symmetry) simplifies the expression of R1.

(R1) ∀s, t, u ∈ ∪Tk : m(s, t) ∧m(s, u) → u = t

(R2) ∀n, m ∈ ∪{⊥k} : m(n, m)

(R3) ∀n ∈ ∪Tk : m(n, n)

(R4) ∀n, m ∈ ∪Tk : m(n, m) → m(m, n)

(R5) ∀s, t, u ∈ ∪Tk : m(s, t) ∧m(t, u) → m(s, u)

The matching formally defines the notion of node same-
ness used by the merge, and will normally map to some intu-
itive and meaningful notion of“same node”, e.g. the <sect>1

elements in figure 1 should be matched to each other.
We assume that a matching relation satisfying R1–R5 is

available as an input to the merge. Having a matching that
accurately tracks the same node in the base and modified
trees is important for enabling the trees to be merged. It is,
for instance, not possible to integrate the move and content
update to b in figure 3, unless we know that b0, b1 and b′2 are
the same node, i.e. the nodes need to be matched to each
other.

Building the matching usually requires solving some vari-
ant of the widely studied tree matching problem (see e.g. [2,
3]). In practice, we have constructed the matching by heuris-
tically building one-to-one node matchings between T1 and
T0, as well as between T2 and T0, and then trivially extend-
ing the matching to satisfy conditions R2–R5. We will not
discuss tree matching further in this paper, but do point
out that the issue of constructing matchings efficiently and
accurately is of large practical importance when implement-
ing XML merging for documents without unique element
identifiers.

5. CHANGE MODEL
In order to reconcile changes, we first need to define what

a change actually is, and how to express it. We define two
types of changes to trees, content and structural, and express
these using the same relations we use for expressing the trees
themselves.

A content change is a relation c(n, c), denoting that the
content of n is changed to c, and a structural change is a
relation pcs(r, p, s), denoting that r, p, and s were arranged
into a parent-child-successor relationship. The structural
change is the formalization we have chosen for the notion of
node context (merge rule 2).

Consider the changes c(a0, <a2>) and pcs(R0,a, a0), for
instance. These express that the content of a0 is changed to
<a2> and that a0 has been positioned at the start of the
child list of R0.



When combining several changes into a change set, we
want to ensure that the set is consistent, by which we mean
that the changes in the set are unambiguous. This is the
case if the changes in the set state no more than one content,
parent, predecessor, and successor for each node:

1. c(n, c) ∧ c(n, c′) → c = c′ (Uniq. content)

2. parent(r, n) ∧ parent(r′, n) → r = r′ (Uniq. parent)

3. pcs(r, p, s) ∧ pcs(r, p′, s) → p = p′ (Uniq. predecessor)

4. pcs(r, p, s) ∧ pcs(r, p, s′) → s = s′ (Uniq. successor)

where parent(r, n), n /∈ {a,`} denotes that r is the parent of
n (parent(r, n) ⇔ ∃x : pcs(r, n, x) ∨ pcs(r, x, n)). A change
δ is consistent with a change δ′ if and only if the set {δ, δ′}
is consistent.

The change notation offers us an alternative interpretation
of the set Tk (i.e. Tk expressed as PCS and content relations;
see section 2.3) as a change set that fully describes how to
form Tk from an arbitrary initial state. Conversely, we may
use a set of content and structural changes to unambiguously
express a tree, a property which will be used to build Tm.

6. DEFINITION OF THE MERGE
For the purpose of the merge, we use the matching to

group together the corresponding (i.e. “same”) nodes from
different trees. To express this grouping we introduce the
node class, which is the equivalence class of a node under
the matching relation m. Each node class has a class repre-
sentative, which is the node in the class that belongs to the
tree Tk with the smallest k. For instance, the class repre-
sentative of {n1, n2} is n1 since n1 ∈ T1.

To equate the same node from different trees, we operate
on node classes rather than the nodes themselves. We denote
by T∗ the set where all nodes in the changes in T have been
replaced by the representative of their node class.

Note that the replacement of nodes with their class rep-
resentatives usually causes a change set to become inconsis-
tent. E.g. if the set of relations expressing the input trees
T = {c(a0, c), c(a1, c

′), pcs(a2,a, b2), pcs(a0,a, b0), . . .} then
T∗ = {c(a0, c), c(a0, c

′), pcs(a0,a, b0), . . .}. Here, T is con-
sistent, but T∗ is inconsistent (as the content of a0 is incon-
sistent). Intuitively, T∗ will be the “raw” merge of the trees
in T, with inconsistent content and position for some of the
nodes.

The purpose of our merge is to deduce the set of changes
that express the merged tree, i.e. Tm, from the sets T0,T1,
and T2. The notion of including certain node contexts and
contents from the modified trees into Tm corresponds to in-
cluding changes from T1 and T2 into Tm.

Unfortunately, we do not know the contexts or updates
implied by the merge rules, as the actual edit scripts are
unknown. We will thus need to detect the changes that
represent these contexts and updates.

We observe that a difference between T∗
1 or T∗

2 and T∗
0

implies that an edit has been made. Although the converse
is not true in every case (e.g. edits whose effects on the tree
cancel out), it presents a reasonable way to detect edits: a
(detected) edit is a change in T∗

1 or T∗
2 that is not in T∗

0.
Thus, we define the set of edits E:=T∗ − T∗

0. This is the
edit detection phase.

Let ∆ be a consistent set of changes that expresses a forest
whose trees are Tm (the root of which will be ⊥0) and any

deleted subtrees. We want ∆ to contain all edits, i.e. all
members of E. Furthermore, ∆ may only contain changes
from the input trees, i.e. no changes may be “made up”:

1. ∆ is a consistent forest.

2. Tm ⊂ ∆ expresses Tm (whose root is at ⊥0)

3. E ⊂ ∆

4. ∆ ⊂ T∗

Conditions 3 and 4 give us E ⊂ ∆ ⊂ T∗. Also, (T∗ −
E) ⊂ T∗

0. This implies that ∆ can only be constructed
by removing changes from T∗ that are also in T∗

0, i.e. only
content and structure from the base tree may be discarded.
This is in concert with our interpretation that the edits in
T1 or T2 are those that need to be preserved in Tm.

We want ∆ to retain as much as possible of the original
tree. We accomplish this by starting with ∆ = T∗ and
repeatedly removing any change δ ∈ T∗

0 ∩ ∆ that is in-
consistent with some other change ε ∈ ∆ until ∆ becomes
consistent. ε will always be and edit, since it can never be
in T∗

0 (as that would imply that T∗
0 ⊃ {δ, ε} is inconsistent,

which is false). δ, on the other hand, is never an edit, and
hence we preserve all edits in ∆. This is the reconciliation
phase of the merge.

A failure to make ∆ consistent with this method implies
that E is inconsistent, i.e. there are conflicting edits in T1

and T2. Our definition of consistency allows modifications
to deleted subtrees, leaving the issue of deciding if concur-
rent deletes and modifications are conflicts to be externally
determined. Unresolved inconsistencies, i.e. conflicts, may
however not appear in the deleted subtrees.

Pseudocode for a straightforward implementation of our
merge is shown in figure 4. The procedure takes the in-
put trees and a matching relation as arguments. We initial-
ize by converting the trees to sets of structural and content
changes, using the matching relation to replace nodes with
their class representatives (lines 1–4). We then combine the
sets of changes into a “raw” merge, which is the initial value
for ∆ (line 5). Next, we remove any inconsistencies by iterat-
ing over ∆, and looking up any change δ′ that is inconsistent
with the current change δ, i.e. a change that states another
content, root, predecessor or successor than δ (lines 7–11).
If an inconsistency is found, we remove the change that orig-
inates in the base tree, or signal a conflict if both changes
are edits (lines 12–20).

6.1 Edits Introduced by Updating, Inserting,
Deleting or Moving a Node

Next, we investigate which edits will be introduced to the
merged tree when we perform an update, insert, delete or
move of a node in T ′. We assume that we make the “first
change”, i.e. T ′ and T0 are identical prior to the change. Note
that we may always assume the existence of predecessors and
successors of a changed node in the PCS model (since a and
` cannot be edited).

When we update the content of a node n from c to c′, we
get two inconsistent content changes in T∗ of which c(n, c′)
is the edit. The content of n will thus be c′ in Tm.

Assume we insert a node n between s and p below r.
The insertion corresponds to the changes pcs(r, s, n) and
pcs(r, n, p). The changes are not in T∗

0 since n /∈ T0, and



procedure merge(T0,T1,T2: Tree, m: Matching)
1: for 0 ≤ k < 3 do
2: T:=asChangeSet(Tk)
3: T∗

k:=useClassRepresentative(T, m)
4: end for
5: ∆ := ∪T∗

k { ∆ initially “raw” merge }
6: for all δ ∈ ∆ do
7: δ′:=nil { Holder for inconsistent change }
8: δ′:=getOtherContent(∆,δ)
9: if δ′ = nil then δ′:=getOtherRoot(∆,δ)

10: if δ′ = nil then δ′:=getOtherPredecessor(∆,δ)
11: if δ′ = nil then δ′:=getOtherSuccessor(∆,δ)
12: if δ′ 6= nil then
13: if δ′ ∈ T∗

0 then
14: ∆ := ∆− {δ′}
15: else if δ ∈ T∗

0 then
16: ∆ := ∆− {δ}
17: else
18: conflict(δ, δ′) { δ and δ′ conflict }
19: end if
20: end if
21: end for
22: return ∆
endproc

Note: The getOther*(∆, δ) functions return nil when no
maching change other than δ is found in ∆.

Figure 4: Pseudocode for an implementation of our
merging definition

hence edits. Thus, the changes guarantee the subsequence
. . . snp . . . in the child list of r in Tm.

If we delete d from the subsequence . . . pds . . . in the child
list of r, we get the change pcs(r, p, s), which is an edit since
T∗

0 states d as predecessor for s and successor for p. Hence,
pcs(r, p, s) occurs in Tm.

Finally, we consider moving away n from the subsequence
. . . pns . . . in the child list of r. There are two cases of
node move: inter- and intraparent. In the former case,
the parent of the node changes to t, corresponding to a
pair of delete/insert operations: pcs(r, p, s), pcs(t, u, n), and
pcs(t, n, v) (r 6= t). These changes are all edits, and will
hence occur in Tm.

In the intraparent case the edits are pcs(r, p, s), pcs(r, u, n),
and pcs(r, n, v) (provided the node is actually moved), and
hence the child list of r in Tm will have the subsequences
. . . ps . . . and . . . unv . . .. Thus, the “hole” left by the moved
node, as well as the neighborhood around the node destina-
tion, will be present in the merged tree.

In the discussion above we considered the effect of a single
initial node operation to T ′. In the case of several opera-
tions there may be dependencies between these, making the
analysis in terms of changes more involved. The net effect
still remains the same, however: whenever a node is deleted,
inserted or moved, the node contexts at the locations where
the node disappeared and appeared occur in the merged tree
as they do in the modified tree.

Finally, we note that there is an easy way to force changes
to become edits, which may be useful when we have some
particularly important data that we require to be in Tm (al-
though it may be identical to the data in T0). To force a
node n to appear in the same context and with the same

content in Tm as it does in T ′, we simply do not match it
to a node in T0, causing {pcs(r, p, n), pcs(r, n, s), c(n, c′)} to
be edits.

6.2 Trace of a Merge
To demonstrate our merge, we apply it to the trees in

figure 3. Since listing all members of the various sets would
make the example illegible, we explicitly list the content and
PCS relations of b only. Furthermore, we assume that the
content of b is <b> in T0, T1 and <b2> in T2.

The input trees expressed as change sets are

T0 = {pcs(b0,a, g0), pcs(b0, g0,`), c(b0, <b>), . . .},
T1 = {pcs(b1,a, g1), pcs(b1, g1,`), c(b1, <b>), . . .}, and

T2 = {pcs(b2,a,`), c(b2, <b2>), . . .}

The “raw merge” of these is

T∗ = {pcs(b0,a, g0), pcs(b0, g0,`), pcs(b0,a,`),

c(b0, <b>), c(b0, <b2>), . . .}

which we obtain by replacing the nodes in ∪Tk with their
class representative. We note that this set is inconsistent,
e.g. regarding the successor of a in the child list of b.

The edits are the changes not in T∗
0, in this case E =

{pcs(b0,a,`), c(b0, <b2>), . . .} = T∗ −T∗
0. The changes we

need to remove from T∗ to achieve consistency are

{pcs(b0,a, g0), pcs(b0, g0,`), c(b0, <b>), . . .} ⊂ T∗
0,

yielding

∆ = {pcs(b0,a,`), c(b0, <b2>), . . .}

Note that E ⊂ ∆, i.e. all edits are in the merged set.
Tm may be traversed by starting from⊥0 and following the

changes in ∆, with a as initial condition for the child list of
each node, as shown in figure 5. In the figure, we have used
subscripts for the structural changes to show which tree(s)
they originated in. For those changes that are edits, we have
also shown which changes in T∗

0 the edits are inconsistent
with.

6.3 Conflicts
The types of conflicts that are identified is an important

aspect of the merge. Ideally, we want the identified conflicts
to correspond to our intuitive understanding of what may
be merged and what may not. On one hand, this means
that the merge should not find conflicts where there does
not seem to be any. On the other hand, we do not want a
merge that is “too clever” in the sense that it automatically
resolves ambiguous situations.

Consequently, several conflict situations were included in
the use cases in order to help us to identify a set of intu-
itively meaningful conflicts. The merge presented here was
found to be too tolerant with respect to combinations of ed-
its and deletes to fit the definition of a generalized merge.
Fortunately, these additional conflicts are easy to detect,
e.g. during post-processing. Separating some of the conflict
detection from the actual merging has the advantage of mak-
ing it optional, providing users with less strict merging, if
desired.

There are some ambiguous situations where we may make
a reasonable guess regarding the desired outcome of the
merge. For instance, if there are node appends to the same



Child list of ⊥
a Initial condition

a R change pcs012(⊥,a, R)
a R ` change pcs012(⊥, R,`)

Child list of R
a Initial condition

a b edit pcs1(R,a, b)
inconsistent with {pcs02(R,a, a), pcs02(R, a, b)}

a ba edit pcs1(R, b, a)
inconsistent with {pcs02(R,a, a), pcs02(R, b,`)}

a bai edit pcs1(R, a, i)
inconsistent with {pcs02(R, a, b)}

a bai ` edit pcs1(R, i,`)
inconsistent with {pcs02(R, b,`)}

Child list of b
a Initial condition
a` edit pcs2(b,a,`)

inconsistent with {pcs01(b,a, g), pcs01(b, g,`)}

Child list of a
a Initial condition

a e edit pcs2(a,a, e)
inconsistent with {pcs01(a,a, d), pcs01(a, d, e)}

a ed edit pcs2(a, e, d)
inconsistent with {pcs01(a,a, d), pcs01(a, e, f)}

a edf edit pcs2(a, d, f)
inconsistent with {pcs01(a, d, e), pcs01(a, e, f)}

a edf ` change pcs012(a, f,`)

Child list of e
a Initial condition
a` change pcs012(e,a,`)

Child list of d, f similar to e

Child list of i
a Initial condition
a` edit pcs1(i,a,`)

inconsistent with {}

Content of b=b′2

Content of R, a, d, e, f, i same as in T0

Figure 5: Merge of the trees in figure 3

child list that originate in different trees, we may guess that
the merged child list should contain both appends. Our im-
plementation includes, as an option, functionality for such
speculative merging.

There are two categories of conflicts: core (C), which are
identified by a failure of our merge to construct a consis-
tent set ∆, and optional (O), which need to be separately
identified. We list the identified conflicts and their category
below.

Update/Update (C) The content of a node n is changed
in both T1 and T2, i.e. {c(n1, c1), c(n2, c2)} with c1 6=
c2 is an inconsistent subset of T∗.

Position/Position (C) Two nodes m ∈ T1 and n ∈ T2

have been positioned so that ∆ cannot be made consis-

tent. The positional change of m and n may be a move,
insert or delete, yielding the subcategories move/move,
move/insert, move/delete, and delete/delete for these
conflicts. Our implementation provides speculative res-
olutions for several of these, e.g. by ignoring the repo-
sitioning from either T1 or T2.

Delete/Edit (O) The basic merge does not consider edits
in any of the deleted subtrees as a conflict. Such a
policy may be considered inappropriate, since it loses
edits. To guard against such conflicts, we check that
(∆−Tm) ∩ E = ∅, i.e. that there are no edits among
the deleted changes.

6.4 Properties of the Merge
The merge has several desirable properties, which we state

briefly.

Symmetry The merge result does not depend on the or-
der in which the modified trees are assigned to T1 and
T2. This follows from the fact that our merge is indif-
ferent regarding which modified tree a node occurs in;
only the distinction between base and modified tree is
used.1

Preservation of edits All edits are preserved in ∆, since
E ⊂ ∆. Furthermore, if we consider edits in deleted
subtrees as conflicts, E ⊂ Tm, i.e. all edits will be in
Tm.

Parallel edit model The detected edits are inherently un-
ordered and independent (in the scope of a single tree)
of each other, avoiding the need for any artificial or-
dering of edits and reconciliation complexities due to
that ordering.

Extensibility The formal model presented here has been
extended to handle copies in subsequent work. The
model should also easily generalize to an n-way merge.

6.5 Computational Complexity
The straightforward merge algorithm shown in figure 4

is implementable in O(n log n) time, where n is the total
number of nodes in the input trees, if we assume that the
content size of an individual node is limited by some con-
stant c (this assumption avoids string comparisons etc. from
costing more than O(1)).

To justify this claim we perform a cursory complexity
analysis. As a conceptual aid we use red-black trees [5]
which provide O(log n) lookup and insertion time for pairs
of (name, value).

To quickly locate inconsistencies we build lookup tables
for the structural changes that are indexed by the predeces-
sor and successor, e.g. the predecessor lookup table could
return {pcs(R0, a0,`), pcs(R0, a0, i2)} on the lookup of a0.
Note that the lookup result consists of maximally 3 changes
(one for each tree).

The initialization steps of the algorithm (lines 1–4) con-
sists of tree traversal and looking up matched nodes. If we
build the lookup tables at the same time we need to do

1The use of class representatives that depend on the tree of
a node does not break this property. The merge operates
on classes, for which the representative is just a convenient
label.



O(log n) work at each node. Finding node matches is con-
stant work, as each node class is limited to 3 nodes (one
from each tree). Summing over all nodes, we get O(n log n).

Combining the sets (line 5) yields O(n log n) by looping
over the nodes and using the indexes to detect duplicates.

The resolving of inconsistencies (lines 6–21) is likewise
O(n log n). Each visited change (of which there are O(n)) re-
quires only O(log n) time to lookup inconsistent rules when
we use the lookup tables. getOtherRoot, for instance, finds
the relevant changes by looking up the given node in both
the predecessor and successor tables.

Finally, we note that the number of edits e will affect
the running time, as e.g. the initial size of ∆ increases with
e. However, the number of edits is maximally O(n) since
|E| < |T∗| = O(n).

7. IMPLEMENTATION AND EVALUATION
The merge has been implemented as the “3dm” tool for

three-way merging of XML, which is developed in an open-
source manner at http://tdm.berlios.de. In addition to the
three-way merging described here, the tool includes a heuris-
tic tree matcher for building the matching between the base
and modified trees.2

The implementation was used to validate the practical
usefulness of our merge against the use cases, which are also
available at the 3dm website. Out of 37 study cases 35 were
successful (omitting those parts of the cases demonstrating
copy operations). The remaining two cases did not fit our
merging model.

In the test runs the output was accepted if it was the
hand-merged output of the case, or a reasonable variation
thereof. For instance, when appending nodes to a list with
appends originating in different trees, it is reasonable to ac-
cept items appended in either order. The symmetry of the
implementation was also verified.

The merging tasks in the elaborate cases identified some
areas of improvement in practical use. One issue was doc-
ument metadata which will change, usually in an inconsis-
tent manner, in both T1 and T2 (e.g. <meta:date> in the
OpenOffice files).

Another discovery was that a successful merge requires the
trees to have a certain amount of similar structure in com-
mon around the areas of change. One example of this is par-
tial matches between text nodes, e.g. a paragraph <p>The
number... 555-1234...</p> will not merge with a change to
<phone>555-1234</phone>.

Another example where structural edits were too close
was an instance of formatting and editing XHTML list items
where T0 =. . .<li>text</li>. . ., T1 = . . .<li><font . . .>text
</font></li>. . . and T2 = . . .<li>text <i>ital</i></li>. . .
Here, the merge fails since the text and the italic block are
treated as two different nodes, rather than a single logical
entity. The case could be fixed by introducing the <div>
tag for grouping of such logical entities, e.g. T0 =. . .<li>
<div>text</div></li>. . . and T2 = . . .<li><div>text<i>
ital</i></div></li>. . .

These issues aside, the overall performance of the merge
was quite satisfactory, successfully merging the content of

2The study cases were designed so that the matcher always
matched the nodes “correctly”, i.e. as intended in the case.
There were some “bad” matches in the elaborate cases, but
these did not affect the outcome of the merge.
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Figure 6: 3dm merge time t versus tree size n and
edits e. The time for XML parsing and matching of
trees is not included.

several concurrently edited OpenOffice, XML, and XHTML
documents. The merge is also being used for reconciliation
of directory trees in a shared file system being developed by
the author.

The scalability of the 3dm merge implementation was eval-
uated by timing the merge of a set of trees which varied in
number of nodes as well as number of edits. The trees were
generated so as to be mergeable without conflicts, and with
an equal probability for insert, delete, move, and update
operations. Inspection of the results indicated a linear re-
lationship between execution time and the number of nodes
as well as the number of edits (hash tables were used rather
than red-black trees, as these are often O(1) in practice).
Based on this observation, we performed an MSE fit of the
data to the linear model t = c0 + c1n + c2e.

Figure 6 shows a diagram of the execution time t versus
the number of nodes n and edits e, with the correlation fac-
tor between n and e determined by the fitted model. Visual
inspection of the diagram indicates that the model predicts
the execution time quite well, as the observations are clearly
clustered around the line t = c0 + c1(n + c2

c1
e). The jumps

below 15000 nodes appear to be related to the used Java
VM configuration (more specifically, the -Xms flag).

8. RELATED WORK
Word processors such as Microsoft Word and, more re-

cently, OpenOffice/StarOffice include integrated tools for
document merging. These are, however, based on pairwise
comparison of documents, and do not use three-way merging
for document reintegration.

In [12] a method for merging hierarchically structured
documents and identifying conflicts is outlined. In addi-
tion to the base and branch trees the method uses explicit
edit scripts, i.e. edit detection is not an integral part of the
merge. The edit operations allowed in the script are node
insert, delete, and update. Compared to our merge, the
method lacks the ability to successfully integrate moves with
updates.

An SGML/XML merging algorithm designed for use on
technical documentation that is able to integrate an arbi-



trary number of documents into one is presented in [8]. The
merged document can in broad terms be described as a level-
by-level union of the source trees. The operation of the algo-
rithm can however not be understood as the integration of
changes with respect to a base version into a merged version,
and can thus not be described as a three-way merge.

The DeltaXML [7] tool supports three-way merge of XML.
It is possible to do automatic reconciliation of deletions, up-
dates, and inserts. In contrast to our merge, there is no
support for the move operation. The tool includes a general
tree matching algorithm based on element identifiers and on
performing the longest common subsequence alignment at
each level of the input trees.

There are several descriptions of three-way merges outside
the domain of structured documents that operate on tree-
like structures. Merging methods for software (source code),
and among them three-way merging techniques are surveyed
in [9]. Our merge can be characterized as being state-based,
syntactic, and three-way in the terminology of the survey.

A method for structural (hierarchical) merge of software
that relies on the change history being available is described
in [17]. In [4] Horwitz et al. present a three-way merging
algorithm for reconciliation of a restricted class of computer
programs, which very well illustrates the complexities of de-
signing a merge for semantically complex data structures.
[1] describes a framework for file system synchronization,
which entails three-way merging of file systems.

Inserts, deletes, and updates are essentially treated in the
same way in all three-way merging methods that the author
is aware of. The difference lies in the support for the notion
of a “move”, and the rules for merging these. Move rules
are usually specific to the domain of the merge (e.g. seman-
tically aware source code merging), while we in this work
have attempted to find more universally usable rules.

9. CONCLUSIONS AND FUTURE WORK
The examples, use cases and merge rules should provide

useful data sets and guidelines for designing and testing
three-way merges of document-oriented XML.

We think that the merge presented here, designed accord-
ing to these guidelines, will prove quite useful from a prac-
tical point of view. We motivate this with operation based
on empirical rules, successful application to the merging use
cases, ease of implementation, computational efficiency, and
intuitive handling of node operations. Especially important
is the ability to merge“reorganization in the large”with“up-
dates to the details”, as exemplified in the use cases. This
is also the main advantage of our merge compared to text-
based merging and other previous work.

In the future, we plan to extend the merge to handle un-
ordered trees. We will also investigate how the merge can
be specialized with domain-specific knowledge. The general
idea is to be able to create domain-specific merges that ef-
fectively re-use the functionality provided by a generalized
merge.
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