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1. INTRODUCTION 
 
 
What is ARESLab 
 

ARESLab is a Matlab/Octave toolbox for building piecewise-linear and piecewise-cubic 
regression models using the Multivariate Adaptive Regression Splines technique (also known as 
MARS). (The term “MARS” is a registered trademark and thus not used in the name of the 
toolbox.) The original author of MARS technique is Jerome Friedman (Friedman 1991, Friedman 
1993). 

The toolbox allows building MARS models (referred to as ARES models), testing them on a 
separate test set or using k-fold Cross-Validation, using them for prediction, outputting equations 
for deployment, plotting the models etc. 

This reference manual provides overview of the functions available in the ARESLab. 
ARESLab can be downloaded at http://www.cs.rtu.lv/jekabsons/. 
The toolbox code is licensed under the GNU GPL ver. 3 or any later version. 
Some parts of aresbuild and createList functions are derived from ENTOOL toolbox 

(Merkwirth & Wichard 2003, Norgaard 2000) which also falls under the GPL licence. 
 

For any feedback on the toolbox including bug reports feel free to contact me via the email 
address given on the first page of this reference manual. 
 
 
Details 
 

The ARESLab toolbox is written entirely in Matlab/Octave. I tried to implement the main 
functionality of the MARS technique for regression as close to the description in the Friedman's 
original paper (Friedman 1991) as possible. While implementing the knot placement part (see 
remarks about minSpan and endSpan in Section 2), I also took a look at the source code of the R 
Earth package (Milborrow 2009) and implemented it very similarly to Earth version 2.4-0. The only 
major difference at the moment I think is that the model building is not accelerated using “Fast 
MARS” queuing (Friedman 1993) together with the “fast least-squares update technique” 
(Friedman 1991). This difference however affects more the speed of the algorithm execution rather 
than the predictive performance of built models. 

The absence of “Fast MARS” queuing means that the code might be slow for large data sets 
(however see the function descriptions on how to try to make it faster by setting more conservative 
values for algorithm parameters). Another alternative is to use the Earth package for R which is 
faster and probably more sophisticated at least in some aspects however lacks the ability to create 
piecewise-cubic models. 
 

Some possible further updates for the toolbox: 
• optional complete re-training of an existing model for slightly changed data; 
• setting the upper limit of interactivity for each input variable separately; 
• automatic variable scaling. 

 
Some aspects of MARS mentioned in Friedman’s papers but not implemented in ARESLab: 
• “Fast MARS” queuing; 
• automatic handling of missing values; 
• automatic handling of categorical input variables (with the current version of ARESLab, the 

user must create a number of dummy variables in the usual way before building the model). 
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Citing the ARESLab toolbox 
 

Please give a reference to the webpage in any publication describing research performed using 
the toolbox e.g., like this: 
 
Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, 2011, available 
at http://www.cs.rtu.lv/jekabsons/ 
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2. AVAILABLE FUNCTIONS 
 
 
ARESLab toolbox provides the following list of functions: 
• aresbuild – builds an ARES model; 
• aresparams – creates a configuration for ARES model building algorithm for further use 

with aresbuild, arescv, or arescvc functions; 
• arespredict – makes predictions using an ARES model; 
• arestest – tests an ARES model on a test data set; 
• arescv – tests ARES performance using k-fold Cross-Validation; 
• arescvc – finds the “best” value for penalty c (Generalized Cross-Validation penalty per 

knot) from a set of candidate values using k-fold Cross-Validation and MSE; 
• aresplot – plots surface of an ARES model; 
• areseq – outputs the ARES model in an explicit mathematical form; 
• aresanova – performs ANOVA decomposition; 
• aresanovareduce – reduces an ARES model according to ANOVA decomposition. 

 
 

2.1. Function aresbuild 
 
Purpose: 

Builds a regression model using the Multivariate Adaptive Regression Splines technique. 
 
Call: 

[model, time] = aresbuild(Xtr, Ytr, trainParams, weights, modelOld, verbose) 
 

All the arguments, except the first two, of this function are optional. Empty values are also 
accepted (the corresponding default values will be used). 
 
Input: 

Xtr, Ytr : Training data cases (Xtr(i,:), Ytr(i)), i = 1,...,n. Note that it is 
recommended to pre-scale Xtr values to [0,1] (Friedman 1991) and to 
standardize Ytr values (Milborrow 2009). This is because widely different 
locations and scales for the input variables can cause instabilities that could 
affect the quality of the final model. The MARS technique is (except for 
numerics) invariant to the locations and scales of the input variables. It is 
therefore reasonable to perform a transformation that causes resulting 
locations and scales to be most favourable from the point of view of 
numeric stability (Friedman 1991). 

trainParams : A structure of training parameters for the algorithm. If not provided, 
default values will be used (see function aresparams for details). 

weights : A vector of data case weights; if supplied, the algorithm calculates the 
sum of squared errors multiplying the squared residuals by the supplied 
weights. The length of weights vector must be the same as the number of 
data cases (i.e., n). The weights must be nonnegative. 

modelOld : If here an already built ARES model is provided, no forward phase will be 
done. Instead this model will be taken directly to the backward phase and 
pruned. This is useful for fast selection of the "best" penalty 
trainParams.c value using Cross-Validation e.g., in arescvc function. 

verbose : Set to false for no verbose. (default value = true) 
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Output: 
model : The built ARES model – a structure with the following elements: 

coefs : Coefficient vector of the regression model (for the intercept term and each 
basis function). 

knotdims : Cell array of indexes of used input variables for each knot in each basis 
function. 

knotsites : Cell array of knot sites for each knot and used input variable in each basis 
function. 

knotdirs : Cell array of directions (-1 or 1) of the hinge functions for each used input 
variable in each basis function. 

parents : Vector of indexes of direct parents for each basis function (0 if there is no 
direct parent or it is the intercept term). 

trainParams : A structure of training parameters for the algorithm (the same as in the 
input). 

MSE : Mean Squared Error of the model in the training data set. 
GCV : Generalized Cross-Validation (GCV) of the model in the training data set. 

The GCV is calculated using trainParams.c argument (for details on 
GCV calculation, see Friedman 1991). The value may also be Inf if 
model’s effective number of parameters (see Eq. 1) is larger than or equal 
to n. 

t1 : For piecewise-cubic models only. Matrix of knot sites for the additional 
side knots on the left of the central knot. 

t2 : For piecewise-cubic models only. Matrix of knot sites for the additional 
side knots on the right of the central knot. 

minX : Vector of minimums for input variables (used for t1 and t2 placements as 
well as for model plotting). 

maxX : Vector of maximums for input variables (used for t1 and t2 placements 
as well as for model plotting). 

endSpan : The used value of endSpan. 
time : Algorithm execution time (in seconds) 

 
Remarks: 

The model building algorithm builds a model in two phases: forward selection and backward 
deletion. In the forward phase the algorithm starts with a model consisting of just the intercept term 
and iteratively adds reflected pairs of basis functions giving the largest reduction of training error. 
The forward phase is executed until one of the following conditions is met: 

1) reached maximum number of basis functions (trainParams.maxFuncs); 
2) the difference between err and newErr is smaller than trainParams.threshold, where 

newErr is calculated by dividing sum of squared residuals by the variance of Ytr and err is 
the newErr value from the previous iteration; 

3) the newErr is smaller than trainParams.threshold; 
4) the number of model’s coefficients (i.e., the number of all the basis functions including the 

intercept term) in the next iteration is expected to be equal to or larger than n. 
At the end of the forward phase we have a large model which typically overfits the data, and so 

a backward deletion phase is engaged. In the backward phase the model is simplified by deleting 
one least important basis function (according to GCV) at a time until the model again has only the 
intercept term. At the end of the backward phase, from those “best” models of each size one model 
of lowest GCV value is selected and outputted as the final one. 

GCV for a model is calculated as follows (Hastie et al. 2009, Milborrow 2009): 

 
2

1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

n
enpMSEGCV train , (1) 
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where MSEtrain is Mean Squared Error of the evaluated model in the training data, n is the number 
of data cases in the training data, and enp is the effective number of parameters: 
 ( ) 2/1−×+= kckenp , (2) 
where k is the number of basis functions in the model (including the intercept term) and c is 
trainParams.c. Note that ( ) 2/1−k  is the number of hinge function knots, so the formula 
penalizes not only the number of model’s basis functions but also the number of knots. Also note 
that in ARESLab in the situation when nenp ≥  the GCV value will be equal to Inf (the model is 
considered infinitely bad). 

After the pruning, the largest possible final model has ))2/1/()2/int(( ccnk ++=  basis 
functions for maxInteractions > 1 and ))3/1/()3/int(( ccnk ++=  basis functions for 
maxInteractions = 1. In the forward phase the models may also get larger than this however for 
such models GCV = Inf as then nenp ≥ . 
 
 

2.2. Function aresparams 
 
Purpose: 

Creates a structure of ARES configuration parameter values for further use with aresbuild, 
arescv, or arescvc functions. 
 
Call: 

trainParams = aresparams(maxFuncs, c, cubic, cubicFastLevel, selfInteractions, 
maxInteractions, threshold, prune, useMinSpan, useEndSpan, maxFinalFuncs) 
 

All the arguments of this function are optional. Empty values are also accepted (the 
corresponding default values will be used). 
 
Input: 

For most applications, it can be expected that the most attention should be paid to the following 
parameters: maxFuncs, c, cubic, maxInteractions, and maybe threshold. 

maxFuncs : The maximal number of basis functions included in the model in the 
forward model building phase (before pruning in the backward phase). 
Includes the intercept term. (default value = 100). The recommended value 
for this parameter is two times the number of basis functions in the final 
model (Friedman 1991) (but note that in many cases this might be not 
enough). While building a model, the number may also not be reached 
because the number of coefficients in the model cannot exceed the number 
of input data cases (or because of some stopping criterion – see remarks for 
details). 

c : Generalized Cross-Validation (GCV) penalty per knot. Theory suggests 
values in the range of about 2 to 4. Larger values will lead to fewer knots 
being placed (i.e., final models will be simpler). A value of 0 penalizes only 
terms, not knots (can be useful e.g., with lots of data and low noise). The 
recommended (and default) value is 3 (Friedman 1991). Note that if 
maxInteractions = 1 (additive modelling) then function aresbuild will 
recalculate c so that the actually used value is 2c / 3; this is recommended 
for additive modelling (Friedman 1991). 

cubic : Whether to use piecewise-cubic (true) or piecewise-linear (false) type 
of modelling (Friedman 1991). It is expected that the piecewise-cubic 
modelling will give higher predictive performance for smoother and less 
noisy data. (default value = true) 
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cubicFastLevel : In ARESLab, there are three types (levels) of piecewise-cubic modelling 
implemented. In level 0 cubic modelling for each candidate model is done 
in both phases of the technique (slow). In level 1 cubic modelling is done 
only in the backward phase (much faster). In level 2 cubic modelling is 
done after both phases only for the final model (fastest). The default and 
recommended level is 2. Levels 0 and 1 may bring extra precision in the 
modelling process however the results can actually also be worse. It is 
expected that the two much slower levels will mostly be not worth the 
waiting. 

selfInteractions : The maximum degree of self interactions for any input variable. In 
ARESLab, it can be larger than 1 only for piecewise-linear modelling. 
Usually the self interactions are never allowed. (default value = 1, no self 
interactions) 

maxInteractions : The maximum degree of interactions between input variables. Set to 1 for 
additive modelling (i.e., no interaction terms). For maximal interactivity 
between the variables, set the parameter to d ×  selfInteractions, where 
d is the number of input variables – this way the modelling procedure will 
have the most freedom building a complex model. Typically only a low 
degree of interaction is allowed, but higher degrees can be used when the 
data warrants it. (default value = 1) 

threshold : One of the stopping criteria for the forward phase. The larger the value of 
threshold the potentially simpler models are generated (see remarks 
section of aresparams and aresbuild for details). Default value = 1e-4. 
For noise-free data the value may be lowered. 

prune : Whether to perform the model pruning (the backward phase). (default 
value = true) 

useMinSpan : In order to lower the local variance of the estimates, a minimum span is 
imposed that makes the technique resistant to runs of positive or negative 
error values between knots (by jumping over a (minSpan) number of data 
cases each time the next potential knot placement is requested) (Friedman 
1991). useMinSpan allows to disable (set to 0 or 1) the protection so that all 
the data cases are considered for knot placement in each dimension (except, 
see useEndSpan). Disabling minSpan may enable to create a model which 
is more responsive to local variations in the data however this can lead to 
an overfitted model even for noise-free data. Setting the useMinSpan to > 1, 
enables also to manually tune the value. (default and recommended value = 
-1 which corresponds to the automatic mode) 

useEndSpan : In order to lower the local variance of the estimates near the ends of data 
intervals, a minimum span is imposed that makes the technique resistant to 
runs of positive or negative error values between extreme knot locations 
and the corresponding ends of data intervals (by not allowing to place a 
knot too near (endSpan) to the end of data interval) (Friedman 1991). 
useEndSpan allows to disable (set to 0 or 1) the protection so that all the 
data cases are considered for knot placement in each dimension (except, see 
useMinSpan). Disabling endSpan may enable to create a model which is 
more responsive to local variations in the data however this can lead to an 
overfitted model even for noise-free data. Setting the useMinSpan to > 1, 
enables also to manually tune the value. (default and recommended value = 
-1 which corresponds to the automatic mode) 

maxFinalFuncs : Maximum number of basis functions (including the intercept term) in the 
pruned model. Use this (rather than the maxFuncs parameter) to enforce an 
upper bound on the final model size. (default value = Inf). 
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Output: 
trainParams : A structure of training parameters for aresbuild function containing the 

provided values of the parameters (or default ones, if not provided). 
 
Remarks: 

The knot placement in aresbuild is implemented very similarly to R Earth package version 
2.4-0 (Milborrow 2009) with calculations of minSpan and endSpan values using formulas given in 
Eq. 45 and Eq. 43 of the Friedman's original paper (Friedman 1991) with alpha = 0.05. Note that 
for a fixed dimensionality of the data, the endSpan value always stays the same but the value of the 
minSpan is recalculated for each individual parent basis function (including the intercept term) 
which is used for generation of new basis functions. 

If more speed is required, one can try some of the following options: 
1) decreasing maxFuncs (less iterations in the forward phase); 
2) increasing cubicFastLevel or turning the piecewise-cubic modelling completely off 

(setting the level below 2 makes the procedure considerably slower; however note that if 
cubicFastLevel = 2, turning the piecewise-cubic modelling off will give almost no speed 
gain); 

3) decreasing selfInteractions (less candidate models in the forward phase); 
4) decreasing maxInteractions (less candidate models in the forward phase); 
5) increasing threshold (may result in less iterations in the forward phase); 
6) manually increasing useMinSpan and useEndSpan (less candidate models in the forward 

phase). 
Note that decreasing the number of iterations or candidate models in the forward phase may also 

result in underfitted final models. 
 
 

2.3. Function arespredict 
 
Purpose: 

Predicts output values for the given query points using an ARES model. 
 
Call: 

Yq = arespredict(model, Xq) 
 
Input: 

model : ARES model 
Xq : Inputs of query data points (Xq(i,:)), i = 1,...,nq 

 
Output: 

Yq : Predicted outputs of the query data points (Yq(i)), i = 1,...,nq 
 
 

2.4. Function arestest 
 
Purpose: 

Tests an ARES model on a test data set (Xtst, Ytst). 
 
Call: 

[MSE, RMSE, RRMSE, R2] = arestest(model, Xtst, Ytst) 
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Input: 
model : ARES model 
Xtst, Ytst : Test data cases (Xtst(i,:), Ytst(i)), i = 1,...,ntst 

 
Output: 

MSE : Mean Squared Error 
RMSE : Root Mean Squared Error 
RRMSE : Relative Root Mean Squared Error 
R2 : Coefficient of Determination 

 
 

2.5. Function arescv 
 
Purpose: 

Tests ARES performance using k-fold Cross-Validation. 
 
Call: 

[avgMSE, avgRMSE, avgRRMSE, avgR2, avgTime] = arescv(X, Y, trainParams, 
weights, k, shuffle, cvc_cTry, cvc_k, verbose) 

 
All the arguments, except the first two, of this function are optional. Empty values are also 

accepted (the corresponding default values will be used). 
 
Input: 

X, Y : Data cases (X(i,:), Y(i)), i = 1,...,n 
trainParams : See function aresbuild. 
weights : See function aresbuild. 
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For 

Leave-One-Out Cross-Validation set k equal to n. (default value = 10) 
shuffle : Whether to shuffle the order of the data cases before performing Cross-

Validation. Note that the random seed value can be controlled externally 
before calling arescv. (default value = true) 

cvc_cTry, cvc_k : cTry and k values for arescvc function. Supply these values if you want 
to perform another Cross-Validation for finding the “best” penalty c value 
in each iteration of the outer Cross-Validation loop of arescv. (default 
values = [], meaning that a fixed c is used) 

verbose : Set to false for no verbose. (default value = true) 
 
Output: 

avgMSE : Average Mean Squared Error 
avgRMSE : Average Root Mean Squared Error 
avgRRMSE : Average Relative Root Mean Squared Error 
avgR2 : Average Coefficient of Determination 
avgTime : Average execution time 

 
 

2.6. Function arescvc 
 
Purpose: 

Finds the “best” value for penalty c from a set of candidate values using k-fold Cross-Validation 
and MSE. 
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Call: 
cBest = arescv(X, Y, trainParams, cTry, weights, k, shuffle, verbose) 

 
All the arguments, except the first three, of this function are optional. Empty values are also 

accepted (the corresponding default values will be used). 
 
 
Input: 

X, Y : Data cases (X(i,:), Y(i)), i = 1,...,n 
trainParams : See function aresbuild. 
cTry : A set of candidate values for c. (default = 1:5) 
weights : See function aresbuild. 
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For 

Leave-One-Out Cross-Validation set k equal to n. (default value = 10) 
shuffle : Whether to shuffle the order of the data cases before performing Cross-

Validation. Note that the random seed value can be controlled externally 
before calling arescvc. (default value = true) 

verbose : Set to false for no verbose. (default value = true) 
 
Output: 

cBest : The “best” value for penalty c. 
 
Remarks: 

This function finds the best penalty c value using Cross-Validation in a clever way using 
function aresbuild i.e., in each CV iteration the forward phase in aresbuild is done only once 
while the backward phase is done separately for each cTry value. The results will be the same as if 
each time a full model building process would be performed because in the forward phase the GCV 
criterion is not used. 
 
 

2.7. Function aresplot 
 
Purpose: 

Plots surface of an ARES model. 
 
Call: 

aresplot(model, minX, maxX, vals, gridSize) 
 

All the arguments, except the first one, of this function are optional. Empty values are also 
accepted (the corresponding default values will be used). 
 
Input: 

model : ARES model 
minX, maxX : User defined minimum and maximum values for each input variable (this 

is the same type of data as in model.minX and model.maxX). If not supplied, 
the model.minX and model.maxX values will be used. 

vals : Only used when the number of input variables is larger than 2. This is a 
vector of fixed values for all the input variables except the two varied in the 
plot. The two varied variables are identified in vals using NaN values. By 
default the two first variables will be varied and all the other will be fixed 
at (max – min) / 2. 

gridSize : Grid size. (default value = 50) 
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2.8. Function areseq 
 
Purpose: 

Outputs the ARES model in an explicit mathematical form (useful e.g., for deployments of built 
ARES models in other software). 
 
Call: 

eq = areseq(model, precision) 
eq = areseq(model) 

 
Input: 

model : ARES model 
precision : Number of digits in the model coefficients and knot sites. 

 
Output: 

eq : A cell array of equations for individual basis functions and the main 
model. 

 
 

2.9. Function aresanova 
 
Purpose: 

Performs ANOVA decomposition (see Sections 3.5 and 4.3 of the original paper by Jerome 
Friedman (Friedman 1991) for details) of the given ARES model and reports the results. 
 
Call: 

aresanova(model, Xtr, Ytr) 
 
Input: 

model : ARES model 
Xtr, Ytr : Training data cases (Xtr(i,:), Ytr(i)), i = 1,...,n. 

 
Remarks: 

To understand the table outputted by the function, here is an excerpt from the original paper by 
Jerome Friedman (Friedman 1991) Section 4.3: 

“The ANOVA decomposition is summarized by one row for each ANOVA function. The 
columns represent summary quantities for each one. The first column lists the function 
number. The second gives the standard deviation of the function. This gives one indication 
of its (relative) importance to the overall model and can be interpreted in a manner similar 
to a standardized regression coefficient in a linear model. The third column provides 
another indication of the importance of the corresponding ANOVA function, by listing the 
GCV, score for a model with all of the basis functions corresponding to that particular 
ANOVA function removed. This can be used to judge whether this ANOVA function is 
making an important contribution to the model, or whether it just slightly helps to improve 
the global GCV score. The fourth column gives the number of basis functions comprising the 
ANOVA function while the fifth column provides an estimate of the additional number of 
linear degrees-of-freedom used by including it. The last column gives the particular 
predictor variables associated with the ANOVA function.” 
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2.10. Function aresanovareduce 
 
Purpose: 

Deletes all the basis functions from an ARES model in which at least one used variable is not in 
the given list of allowed variables. This can be used to perform ANOVA decomposition as well as 
for investigation of individual and joint contributions of variables in the model, i.e., the reduced 
model can be plotted using function aresplot to visualize the contributions. 
 
Call: 

[modelReduced usedBasis] = aresanovareduce(model, vars, exact) 
 
Input: 

model : ARES model 
vars : A vector of indexes for input variables to stay in the model. The size of 

the vector should be between 1 and d, where d is the total number of input 
variables. 

exact : Set this to true to get a model with only those basis functions where the 
exact combination of variables is present (default value = false). This is 
used from function aresanova. 

 
Output: 

modelReduced : The reduced model 
usedBasis : The list of original indexes for the used basis functions 
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3. EXAMPLES OF USAGE 
 
 

3.1. Ten-dimensional function with noise 
 

We start by creating a data set using a ten-dimensional function with Gaussian noise. The data 
consists of 200 cases randomly uniformly distributed in a ten-dimensional unit hypercube. 
 

clear 
X = rand([200,10]); 
Y = 10.*sin(pi.*X(:,1).*X(:,2)) + 20.*(X(:,3)-0.5).^2 + ... 
    10.*X(:,4) + 5.*X(:,5) + randn(200,1)*0.5; 

 
We define the maximal number of basis functions to be 21 (including the intercept term), and 

limit maximum interaction level to 2 (only pairwise products of basis functions will be allowed), 
leaving all the other parameters to their defaults. The model will be of piecewise-cubic type as it is 
the default. 

 
params = aresparams(21, [], [], [], [], 2); 
 
Now the ARES model is built by calling aresbuild. 
 
model = aresbuild(X, Y, params) 
 
As the model building process ends, we can examine the data structure of the final model. It has 

16 basis functions including the intercept term. 
 
model = 
          coefs: [16x1 double] 
       knotdims: {15x1 cell} 
      knotsites: {15x1 cell} 
       knotdirs: {15x1 cell} 
        parents: [15x1 double] 
    trainParams: [1x1 struct] 
            MSE: 0.3234 
            GCV: 0.4960 
             t1: [15x10 double] 
             t2: [15x10 double] 
           minX: [1x10 double] 
           maxX: [1x10 double] 
        endSpan: 10 
 
Now we can perform ANOVA decomposition. 
 
aresanova(model, X, Y) 
 
Type: piecewise-cubic 
GCV: 0.496 
Total number of basis functions: 16 
Total effective number of parameters: 38.5 
ANOVA decomposition: 
Func. STD GCV  #basis #params variable(s) 
1  4.675 52.925 2   5.0  1  
2  2.621 10.342 2   5.0  2  
3  1.281 59.738 2   5.0  3  
4  2.956 17.665 2   5.0  4  
5  1.445  8.879 1   2.5  5  
6  3.732 37.938 5  12.5  1 2  
7  0.289  0.617 1   2.5  3 5 
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We can see that the last ANOVA function gives very small contribution and maybe should be 

deleted (here this ANOVA function corresponds to one basis function which uses input variables 
number 3 and number 5): 

 
Let’s plot pair-wise (for variables x1 and x2) and individual (for variables x3, x4, and x5 

contributions of variables. 
 
modelReduced = aresanovareduce(model, [1 2]) 
aresplot(modelReduced) 
 
for i = 3 : 5 
    modelReduced = aresanovareduce(model, i); 
    Xtmp = zeros(51,10); 
    Xtmp(:,i) = [model.minX(i):((model.maxX(i)-model.minX(i))/50):model.maxX(i)]'; 
    figure 
    plot(Xtmp(:,i), arespredict(modelReduced, Xtmp)); 
end 

 

     
 

     
 

Now let’s evaluate predictive performance of this ARES configuration on the data using 5-fold 
Cross-Validation. 

 
rand('state',0); 
[avgMSE, avgRMSE, avgRRMSE, avgR2] = arescv(X, Y, params, [], 5) 
 
avgMSE = 0.4427 
avgRMSE = 0.6543 
avgRRMSE = 0.1339 
avgR2 = 0.9818 
 
Now let’s try piecewise-linear modelling. 
 
params = aresparams(21, [], false, [], [], 2); 
model = aresbuild(X, Y, params) 
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model = 
          coefs: [16x1 double] 
       knotdims: {15x1 cell} 
      knotsites: {15x1 cell} 
       knotdirs: {15x1 cell} 
        parents: [15x1 double] 
    trainParams: [1x1 struct] 
            MSE: 0.3802 
            GCV: 0.5830 
           minX: [1x10 double] 
           maxX: [1x10 double] 
        endSpan: 10 
 
rand('state',0); 
[avgMSE, avgRMSE, avgRRMSE, avgR2] = arescv(X, Y, params, [], 5) 
 
avgMSE = 0.5254 
avgRMSE = 0.7165 
avgRRMSE = 0.1469 
avgR2 = 0.9783 
 
Finally we output the equation of the piecewise-linear model with all its basis functions. 
 
areseq(model, 5); 
 
BF1 = max(0, x4 -0.66938) 
BF2 = max(0, 0.66938 -x4) 
BF3 = max(0, x2 -0.57231) 
BF4 = max(0, 0.57231 -x2) 
BF5 = max(0, x1 -0.23961) 
BF6 = max(0, 0.23961 -x1) 
BF7 = max(0, x5 -0.036179) 
BF8 = max(0, 0.553 -x3) 
BF9 = BF3 * max(0, x1 -0.5981) 
BF10 = BF3 * max(0, 0.5981 -x1) 
BF11 = BF4 * max(0, x1 -0.14539) 
BF12 = BF4 * max(0, 0.14539 -x1) 
BF13 = max(0, x3 -0.16723) 
BF14 = BF7 * max(0, x3 -0.8273) 
BF15 = BF5 * max(0, x2 -0.25707) 
y = 7.6853 +9.8771*BF1 -10.312*BF2 +15.52*BF3 -6.1597*BF4 +15.121*BF5 -20.444*BF6 +4.9892*BF7 

+15.757*BF8 -65.272*BF9 -28.664*BF10 -25.491*BF11 +53.099*BF12 +9.7016*BF13 +18.575*BF14 -18.91*BF15 

 
 

3.2. Noise-free two-dimensional function 
 
We start by creating training and test data using a two-dimensional noise-free function. The 

training data consists of 121 cases distributed in a regular 1111×  grid. The test data has 10000 cases 
distributed randomly. 

 
clear 
[tmpX1,tmpX2] = meshgrid(-1:0.2:1, -1:0.2:1); 
X(:,1) = reshape(tmpX1, numel(tmpX1), 1); 
X(:,2) = reshape(tmpX2, numel(tmpX2), 1); 
clear tmpX1; clear tmpX2; 
Y = sin(0.83.*pi.*X(:,1)) .* cos(1.25.*pi.*X(:,2)); 
 
Xt = rand([10000,2]); 
Yt = sin(0.83.*pi.*Xt(:,1)) .* cos(1.25.*pi.*Xt(:,2)); 
 
Such noise-free functions can be approximated very precisely. We define the maximal number 

of basis functions to be 121, no penalty for knots, and maximum interaction level equal to 2 (the 
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number of input variables), leaving all the other parameters to their defaults. The model will be of 
piecewise-cubic type as it is the default. 

 
params = aresparams(121, 0, [], [], [], 2); 
 
Now the ARES model is built by calling aresbuild. 
 
model = aresbuild(X, Y, params) 
 
As the model building process ends, we can examine the data structure of the new model. The 

model has 44 basis functions including the intercept term. 
 
model = 
          coefs: [44x1 double] 
       knotdims: {43x1 cell} 
      knotsites: {43x1 cell} 
       knotdirs: {43x1 cell} 
        parents: [43x1 double] 
    trainParams: [1x1 struct] 
            MSE: 1.6901e-004 
            GCV: 4.1734e-004 
             t1: [43x2 double] 
             t2: [43x2 double] 
           minX: [-1 -1] 
           maxX: [1 1] 
        endSpan: 8 
 
We test the model using test data. 
 
[MSE, RMSE, RRMSE, R2] = arestest(model, Xt, Yt) 
 
MSE = 1.9909e-004 
RMSE = 0.0141 
RRMSE = 0.0244 
R2 = 0.9994 
 
Plot the surface of the model. 
 
aresplot(model); 
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Let’s try doing the same but instead of piecewise-cubic modelling we will use piecewise-linear. 
 
params = aresparams(100, 0, false, [], [], 2); 
model = aresbuild(X, Y, params); 
[MSE, RMSE, RRMSE, R2] = arestest(model, Xt, Yt) 
 
MSE = 0.0023 
RMSE = 0.0480 
RRMSE = 0.0829 
R2 = 0.9931 
 
aresplot(model); 
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