

ARESLab

Adaptive Regression Splines toolbox for Matlab/Octave

ver. 1.5.1

Gints Jekabsons

Institute of Applied Computer Systems
Riga Technical University

Meza 1/3, LV-1048, Riga, Latvia

URL: http://www.cs.rtu.lv/jekabsons/

Reference manual

May, 2013

Copyright © 2009-2013 Gints Jekabsons

 2

CONTENTS

1. INTRODUCTION ... 3

2. AVAILABLE FUNCTIONS ... 5

2.1. Function aresbuild .. 5
2.2. Function aresparams .. 7
2.3. Function arespredict .. 9
2.4. Function arestest .. 9
2.5. Function arescv .. 10
2.6. Function arescvc .. 10
2.7. Function aresplot .. 11
2.8. Function areseq .. 12
2.9. Function aresanova .. 12
2.10. Function aresanovareduce .. 13

3. EXAMPLES OF USAGE .. 14

3.1. Ten-dimensional function with noise.. 14
3.2. Noise-free two-dimensional function.. 16

4. REFERENCES... 19

 3

1. INTRODUCTION

What is ARESLab

ARESLab is a Matlab/Octave toolbox for building piecewise-linear and piecewise-cubic
regression models using the Multivariate Adaptive Regression Splines technique (also known as
MARS). (The term “MARS” is a registered trademark and thus not used in the name of the
toolbox.) The original author of MARS technique is Jerome Friedman (Friedman 1991, Friedman
1993).

The toolbox allows building MARS models (referred to as ARES models), testing them on a
separate test set or using k-fold Cross-Validation, using them for prediction, outputting equations
for deployment, plotting the models etc.

This reference manual provides overview of the functions available in the ARESLab.
ARESLab can be downloaded at http://www.cs.rtu.lv/jekabsons/.
The toolbox code is licensed under the GNU GPL ver. 3 or any later version.
Some parts of aresbuild and createList functions are derived from ENTOOL toolbox

(Merkwirth & Wichard 2003, Norgaard 2000) which also falls under the GPL licence.

For any feedback on the toolbox including bug reports feel free to contact me via the email
address given on the first page of this reference manual.

Details

The ARESLab toolbox is written entirely in Matlab/Octave. I tried to implement the main
functionality of the MARS technique for regression as close to the description in the Friedman's
original paper (Friedman 1991) as possible. While implementing the knot placement part (see
remarks about minSpan and endSpan in Section 2), I also took a look at the source code of the R
Earth package (Milborrow 2009) and implemented it very similarly to Earth version 2.4-0. The only
major difference at the moment I think is that the model building is not accelerated using “Fast
MARS” queuing (Friedman 1993) together with the “fast least-squares update technique”
(Friedman 1991). This difference however affects more the speed of the algorithm execution rather
than the predictive performance of built models.

The absence of “Fast MARS” queuing means that the code might be slow for large data sets
(however see the function descriptions on how to try to make it faster by setting more conservative
values for algorithm parameters). Another alternative is to use the Earth package for R which is
faster and probably more sophisticated at least in some aspects however lacks the ability to create
piecewise-cubic models.

Some possible further updates for the toolbox:
• optional complete re-training of an existing model for slightly changed data;
• setting the upper limit of interactivity for each input variable separately;
• automatic variable scaling.

Some aspects of MARS mentioned in Friedman’s papers but not implemented in ARESLab:
• “Fast MARS” queuing;
• automatic handling of missing values;
• automatic handling of categorical input variables (with the current version of ARESLab, the

user must create a number of dummy variables in the usual way before building the model).

 4

Citing the ARESLab toolbox

Please give a reference to the webpage in any publication describing research performed using
the toolbox e.g., like this:

Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, 2011, available
at http://www.cs.rtu.lv/jekabsons/

 5

2. AVAILABLE FUNCTIONS

ARESLab toolbox provides the following list of functions:
• aresbuild – builds an ARES model;
• aresparams – creates a configuration for ARES model building algorithm for further use

with aresbuild, arescv, or arescvc functions;
• arespredict – makes predictions using an ARES model;
• arestest – tests an ARES model on a test data set;
• arescv – tests ARES performance using k-fold Cross-Validation;
• arescvc – finds the “best” value for penalty c (Generalized Cross-Validation penalty per

knot) from a set of candidate values using k-fold Cross-Validation and MSE;
• aresplot – plots surface of an ARES model;
• areseq – outputs the ARES model in an explicit mathematical form;
• aresanova – performs ANOVA decomposition;
• aresanovareduce – reduces an ARES model according to ANOVA decomposition.

2.1. Function aresbuild

Purpose:

Builds a regression model using the Multivariate Adaptive Regression Splines technique.

Call:

[model, time] = aresbuild(Xtr, Ytr, trainParams, weights, modelOld, verbose)

All the arguments, except the first two, of this function are optional. Empty values are also
accepted (the corresponding default values will be used).

Input:

Xtr, Ytr : Training data cases (Xtr(i,:), Ytr(i)), i = 1,...,n. Note that it is
recommended to pre-scale Xtr values to [0,1] (Friedman 1991) and to
standardize Ytr values (Milborrow 2009). This is because widely different
locations and scales for the input variables can cause instabilities that could
affect the quality of the final model. The MARS technique is (except for
numerics) invariant to the locations and scales of the input variables. It is
therefore reasonable to perform a transformation that causes resulting
locations and scales to be most favourable from the point of view of
numeric stability (Friedman 1991).

trainParams : A structure of training parameters for the algorithm. If not provided,
default values will be used (see function aresparams for details).

weights : A vector of data case weights; if supplied, the algorithm calculates the
sum of squared errors multiplying the squared residuals by the supplied
weights. The length of weights vector must be the same as the number of
data cases (i.e., n). The weights must be nonnegative.

modelOld : If here an already built ARES model is provided, no forward phase will be
done. Instead this model will be taken directly to the backward phase and
pruned. This is useful for fast selection of the "best" penalty
trainParams.c value using Cross-Validation e.g., in arescvc function.

verbose : Set to false for no verbose. (default value = true)

 6

Output:
model : The built ARES model – a structure with the following elements:

coefs : Coefficient vector of the regression model (for the intercept term and each
basis function).

knotdims : Cell array of indexes of used input variables for each knot in each basis
function.

knotsites : Cell array of knot sites for each knot and used input variable in each basis
function.

knotdirs : Cell array of directions (-1 or 1) of the hinge functions for each used input
variable in each basis function.

parents : Vector of indexes of direct parents for each basis function (0 if there is no
direct parent or it is the intercept term).

trainParams : A structure of training parameters for the algorithm (the same as in the
input).

MSE : Mean Squared Error of the model in the training data set.
GCV : Generalized Cross-Validation (GCV) of the model in the training data set.

The GCV is calculated using trainParams.c argument (for details on
GCV calculation, see Friedman 1991). The value may also be Inf if
model’s effective number of parameters (see Eq. 1) is larger than or equal
to n.

t1 : For piecewise-cubic models only. Matrix of knot sites for the additional
side knots on the left of the central knot.

t2 : For piecewise-cubic models only. Matrix of knot sites for the additional
side knots on the right of the central knot.

minX : Vector of minimums for input variables (used for t1 and t2 placements as
well as for model plotting).

maxX : Vector of maximums for input variables (used for t1 and t2 placements
as well as for model plotting).

endSpan : The used value of endSpan.
time : Algorithm execution time (in seconds)

Remarks:

The model building algorithm builds a model in two phases: forward selection and backward
deletion. In the forward phase the algorithm starts with a model consisting of just the intercept term
and iteratively adds reflected pairs of basis functions giving the largest reduction of training error.
The forward phase is executed until one of the following conditions is met:

1) reached maximum number of basis functions (trainParams.maxFuncs);
2) the difference between err and newErr is smaller than trainParams.threshold, where

newErr is calculated by dividing sum of squared residuals by the variance of Ytr and err is
the newErr value from the previous iteration;

3) the newErr is smaller than trainParams.threshold;
4) the number of model’s coefficients (i.e., the number of all the basis functions including the

intercept term) in the next iteration is expected to be equal to or larger than n.
At the end of the forward phase we have a large model which typically overfits the data, and so

a backward deletion phase is engaged. In the backward phase the model is simplified by deleting
one least important basis function (according to GCV) at a time until the model again has only the
intercept term. At the end of the backward phase, from those “best” models of each size one model
of lowest GCV value is selected and outputted as the final one.

GCV for a model is calculated as follows (Hastie et al. 2009, Milborrow 2009):

2

1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

n
enpMSEGCV train , (1)

 7

where MSEtrain is Mean Squared Error of the evaluated model in the training data, n is the number
of data cases in the training data, and enp is the effective number of parameters:
 () 2/1−×+= kckenp , (2)
where k is the number of basis functions in the model (including the intercept term) and c is
trainParams.c. Note that () 2/1−k is the number of hinge function knots, so the formula
penalizes not only the number of model’s basis functions but also the number of knots. Also note
that in ARESLab in the situation when nenp ≥ the GCV value will be equal to Inf (the model is
considered infinitely bad).

After the pruning, the largest possible final model has))2/1/()2/int((ccnk ++= basis
functions for maxInteractions > 1 and))3/1/()3/int((ccnk ++= basis functions for
maxInteractions = 1. In the forward phase the models may also get larger than this however for
such models GCV = Inf as then nenp ≥ .

2.2. Function aresparams

Purpose:

Creates a structure of ARES configuration parameter values for further use with aresbuild,
arescv, or arescvc functions.

Call:

trainParams = aresparams(maxFuncs, c, cubic, cubicFastLevel, selfInteractions,
maxInteractions, threshold, prune, useMinSpan, useEndSpan, maxFinalFuncs)

All the arguments of this function are optional. Empty values are also accepted (the
corresponding default values will be used).

Input:

For most applications, it can be expected that the most attention should be paid to the following
parameters: maxFuncs, c, cubic, maxInteractions, and maybe threshold.

maxFuncs : The maximal number of basis functions included in the model in the
forward model building phase (before pruning in the backward phase).
Includes the intercept term. (default value = 100). The recommended value
for this parameter is two times the number of basis functions in the final
model (Friedman 1991) (but note that in many cases this might be not
enough). While building a model, the number may also not be reached
because the number of coefficients in the model cannot exceed the number
of input data cases (or because of some stopping criterion – see remarks for
details).

c : Generalized Cross-Validation (GCV) penalty per knot. Theory suggests
values in the range of about 2 to 4. Larger values will lead to fewer knots
being placed (i.e., final models will be simpler). A value of 0 penalizes only
terms, not knots (can be useful e.g., with lots of data and low noise). The
recommended (and default) value is 3 (Friedman 1991). Note that if
maxInteractions = 1 (additive modelling) then function aresbuild will
recalculate c so that the actually used value is 2c / 3; this is recommended
for additive modelling (Friedman 1991).

cubic : Whether to use piecewise-cubic (true) or piecewise-linear (false) type
of modelling (Friedman 1991). It is expected that the piecewise-cubic
modelling will give higher predictive performance for smoother and less
noisy data. (default value = true)

 8

cubicFastLevel : In ARESLab, there are three types (levels) of piecewise-cubic modelling
implemented. In level 0 cubic modelling for each candidate model is done
in both phases of the technique (slow). In level 1 cubic modelling is done
only in the backward phase (much faster). In level 2 cubic modelling is
done after both phases only for the final model (fastest). The default and
recommended level is 2. Levels 0 and 1 may bring extra precision in the
modelling process however the results can actually also be worse. It is
expected that the two much slower levels will mostly be not worth the
waiting.

selfInteractions : The maximum degree of self interactions for any input variable. In
ARESLab, it can be larger than 1 only for piecewise-linear modelling.
Usually the self interactions are never allowed. (default value = 1, no self
interactions)

maxInteractions : The maximum degree of interactions between input variables. Set to 1 for
additive modelling (i.e., no interaction terms). For maximal interactivity
between the variables, set the parameter to d × selfInteractions, where
d is the number of input variables – this way the modelling procedure will
have the most freedom building a complex model. Typically only a low
degree of interaction is allowed, but higher degrees can be used when the
data warrants it. (default value = 1)

threshold : One of the stopping criteria for the forward phase. The larger the value of
threshold the potentially simpler models are generated (see remarks
section of aresparams and aresbuild for details). Default value = 1e-4.
For noise-free data the value may be lowered.

prune : Whether to perform the model pruning (the backward phase). (default
value = true)

useMinSpan : In order to lower the local variance of the estimates, a minimum span is
imposed that makes the technique resistant to runs of positive or negative
error values between knots (by jumping over a (minSpan) number of data
cases each time the next potential knot placement is requested) (Friedman
1991). useMinSpan allows to disable (set to 0 or 1) the protection so that all
the data cases are considered for knot placement in each dimension (except,
see useEndSpan). Disabling minSpan may enable to create a model which
is more responsive to local variations in the data however this can lead to
an overfitted model even for noise-free data. Setting the useMinSpan to > 1,
enables also to manually tune the value. (default and recommended value =
-1 which corresponds to the automatic mode)

useEndSpan : In order to lower the local variance of the estimates near the ends of data
intervals, a minimum span is imposed that makes the technique resistant to
runs of positive or negative error values between extreme knot locations
and the corresponding ends of data intervals (by not allowing to place a
knot too near (endSpan) to the end of data interval) (Friedman 1991).
useEndSpan allows to disable (set to 0 or 1) the protection so that all the
data cases are considered for knot placement in each dimension (except, see
useMinSpan). Disabling endSpan may enable to create a model which is
more responsive to local variations in the data however this can lead to an
overfitted model even for noise-free data. Setting the useMinSpan to > 1,
enables also to manually tune the value. (default and recommended value =
-1 which corresponds to the automatic mode)

maxFinalFuncs : Maximum number of basis functions (including the intercept term) in the
pruned model. Use this (rather than the maxFuncs parameter) to enforce an
upper bound on the final model size. (default value = Inf).

 9

Output:
trainParams : A structure of training parameters for aresbuild function containing the

provided values of the parameters (or default ones, if not provided).

Remarks:

The knot placement in aresbuild is implemented very similarly to R Earth package version
2.4-0 (Milborrow 2009) with calculations of minSpan and endSpan values using formulas given in
Eq. 45 and Eq. 43 of the Friedman's original paper (Friedman 1991) with alpha = 0.05. Note that
for a fixed dimensionality of the data, the endSpan value always stays the same but the value of the
minSpan is recalculated for each individual parent basis function (including the intercept term)
which is used for generation of new basis functions.

If more speed is required, one can try some of the following options:
1) decreasing maxFuncs (less iterations in the forward phase);
2) increasing cubicFastLevel or turning the piecewise-cubic modelling completely off

(setting the level below 2 makes the procedure considerably slower; however note that if
cubicFastLevel = 2, turning the piecewise-cubic modelling off will give almost no speed
gain);

3) decreasing selfInteractions (less candidate models in the forward phase);
4) decreasing maxInteractions (less candidate models in the forward phase);
5) increasing threshold (may result in less iterations in the forward phase);
6) manually increasing useMinSpan and useEndSpan (less candidate models in the forward

phase).
Note that decreasing the number of iterations or candidate models in the forward phase may also

result in underfitted final models.

2.3. Function arespredict

Purpose:

Predicts output values for the given query points using an ARES model.

Call:

Yq = arespredict(model, Xq)

Input:

model : ARES model
Xq : Inputs of query data points (Xq(i,:)), i = 1,...,nq

Output:

Yq : Predicted outputs of the query data points (Yq(i)), i = 1,...,nq

2.4. Function arestest

Purpose:

Tests an ARES model on a test data set (Xtst, Ytst).

Call:

[MSE, RMSE, RRMSE, R2] = arestest(model, Xtst, Ytst)

 10

Input:
model : ARES model
Xtst, Ytst : Test data cases (Xtst(i,:), Ytst(i)), i = 1,...,ntst

Output:

MSE : Mean Squared Error
RMSE : Root Mean Squared Error
RRMSE : Relative Root Mean Squared Error
R2 : Coefficient of Determination

2.5. Function arescv

Purpose:

Tests ARES performance using k-fold Cross-Validation.

Call:

[avgMSE, avgRMSE, avgRRMSE, avgR2, avgTime] = arescv(X, Y, trainParams,
weights, k, shuffle, cvc_cTry, cvc_k, verbose)

All the arguments, except the first two, of this function are optional. Empty values are also

accepted (the corresponding default values will be used).

Input:

X, Y : Data cases (X(i,:), Y(i)), i = 1,...,n
trainParams : See function aresbuild.
weights : See function aresbuild.
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle : Whether to shuffle the order of the data cases before performing Cross-

Validation. Note that the random seed value can be controlled externally
before calling arescv. (default value = true)

cvc_cTry, cvc_k : cTry and k values for arescvc function. Supply these values if you want
to perform another Cross-Validation for finding the “best” penalty c value
in each iteration of the outer Cross-Validation loop of arescv. (default
values = [], meaning that a fixed c is used)

verbose : Set to false for no verbose. (default value = true)

Output:

avgMSE : Average Mean Squared Error
avgRMSE : Average Root Mean Squared Error
avgRRMSE : Average Relative Root Mean Squared Error
avgR2 : Average Coefficient of Determination
avgTime : Average execution time

2.6. Function arescvc

Purpose:

Finds the “best” value for penalty c from a set of candidate values using k-fold Cross-Validation
and MSE.

 11

Call:
cBest = arescv(X, Y, trainParams, cTry, weights, k, shuffle, verbose)

All the arguments, except the first three, of this function are optional. Empty values are also

accepted (the corresponding default values will be used).

Input:

X, Y : Data cases (X(i,:), Y(i)), i = 1,...,n
trainParams : See function aresbuild.
cTry : A set of candidate values for c. (default = 1:5)
weights : See function aresbuild.
k : Value of k for k-fold Cross-Validation. The typical values are 5 or 10. For

Leave-One-Out Cross-Validation set k equal to n. (default value = 10)
shuffle : Whether to shuffle the order of the data cases before performing Cross-

Validation. Note that the random seed value can be controlled externally
before calling arescvc. (default value = true)

verbose : Set to false for no verbose. (default value = true)

Output:

cBest : The “best” value for penalty c.

Remarks:

This function finds the best penalty c value using Cross-Validation in a clever way using
function aresbuild i.e., in each CV iteration the forward phase in aresbuild is done only once
while the backward phase is done separately for each cTry value. The results will be the same as if
each time a full model building process would be performed because in the forward phase the GCV
criterion is not used.

2.7. Function aresplot

Purpose:

Plots surface of an ARES model.

Call:

aresplot(model, minX, maxX, vals, gridSize)

All the arguments, except the first one, of this function are optional. Empty values are also
accepted (the corresponding default values will be used).

Input:

model : ARES model
minX, maxX : User defined minimum and maximum values for each input variable (this

is the same type of data as in model.minX and model.maxX). If not supplied,
the model.minX and model.maxX values will be used.

vals : Only used when the number of input variables is larger than 2. This is a
vector of fixed values for all the input variables except the two varied in the
plot. The two varied variables are identified in vals using NaN values. By
default the two first variables will be varied and all the other will be fixed
at (max – min) / 2.

gridSize : Grid size. (default value = 50)

 12

2.8. Function areseq

Purpose:

Outputs the ARES model in an explicit mathematical form (useful e.g., for deployments of built
ARES models in other software).

Call:

eq = areseq(model, precision)
eq = areseq(model)

Input:

model : ARES model
precision : Number of digits in the model coefficients and knot sites.

Output:

eq : A cell array of equations for individual basis functions and the main
model.

2.9. Function aresanova

Purpose:

Performs ANOVA decomposition (see Sections 3.5 and 4.3 of the original paper by Jerome
Friedman (Friedman 1991) for details) of the given ARES model and reports the results.

Call:

aresanova(model, Xtr, Ytr)

Input:

model : ARES model
Xtr, Ytr : Training data cases (Xtr(i,:), Ytr(i)), i = 1,...,n.

Remarks:

To understand the table outputted by the function, here is an excerpt from the original paper by
Jerome Friedman (Friedman 1991) Section 4.3:

“The ANOVA decomposition is summarized by one row for each ANOVA function. The
columns represent summary quantities for each one. The first column lists the function
number. The second gives the standard deviation of the function. This gives one indication
of its (relative) importance to the overall model and can be interpreted in a manner similar
to a standardized regression coefficient in a linear model. The third column provides
another indication of the importance of the corresponding ANOVA function, by listing the
GCV, score for a model with all of the basis functions corresponding to that particular
ANOVA function removed. This can be used to judge whether this ANOVA function is
making an important contribution to the model, or whether it just slightly helps to improve
the global GCV score. The fourth column gives the number of basis functions comprising the
ANOVA function while the fifth column provides an estimate of the additional number of
linear degrees-of-freedom used by including it. The last column gives the particular
predictor variables associated with the ANOVA function.”

 13

2.10. Function aresanovareduce

Purpose:

Deletes all the basis functions from an ARES model in which at least one used variable is not in
the given list of allowed variables. This can be used to perform ANOVA decomposition as well as
for investigation of individual and joint contributions of variables in the model, i.e., the reduced
model can be plotted using function aresplot to visualize the contributions.

Call:

[modelReduced usedBasis] = aresanovareduce(model, vars, exact)

Input:

model : ARES model
vars : A vector of indexes for input variables to stay in the model. The size of

the vector should be between 1 and d, where d is the total number of input
variables.

exact : Set this to true to get a model with only those basis functions where the
exact combination of variables is present (default value = false). This is
used from function aresanova.

Output:

modelReduced : The reduced model
usedBasis : The list of original indexes for the used basis functions

 14

3. EXAMPLES OF USAGE

3.1. Ten-dimensional function with noise

We start by creating a data set using a ten-dimensional function with Gaussian noise. The data
consists of 200 cases randomly uniformly distributed in a ten-dimensional unit hypercube.

clear
X = rand([200,10]);
Y = 10.*sin(pi.*X(:,1).*X(:,2)) + 20.*(X(:,3)-0.5).^2 + ...
 10.*X(:,4) + 5.*X(:,5) + randn(200,1)*0.5;

We define the maximal number of basis functions to be 21 (including the intercept term), and

limit maximum interaction level to 2 (only pairwise products of basis functions will be allowed),
leaving all the other parameters to their defaults. The model will be of piecewise-cubic type as it is
the default.

params = aresparams(21, [], [], [], [], 2);

Now the ARES model is built by calling aresbuild.

model = aresbuild(X, Y, params)

As the model building process ends, we can examine the data structure of the final model. It has

16 basis functions including the intercept term.

model =
 coefs: [16x1 double]
 knotdims: {15x1 cell}
 knotsites: {15x1 cell}
 knotdirs: {15x1 cell}
 parents: [15x1 double]
 trainParams: [1x1 struct]
 MSE: 0.3234
 GCV: 0.4960
 t1: [15x10 double]
 t2: [15x10 double]
 minX: [1x10 double]
 maxX: [1x10 double]
 endSpan: 10

Now we can perform ANOVA decomposition.

aresanova(model, X, Y)

Type: piecewise-cubic
GCV: 0.496
Total number of basis functions: 16
Total effective number of parameters: 38.5
ANOVA decomposition:
Func. STD GCV #basis #params variable(s)
1 4.675 52.925 2 5.0 1
2 2.621 10.342 2 5.0 2
3 1.281 59.738 2 5.0 3
4 2.956 17.665 2 5.0 4
5 1.445 8.879 1 2.5 5
6 3.732 37.938 5 12.5 1 2
7 0.289 0.617 1 2.5 3 5

 15

We can see that the last ANOVA function gives very small contribution and maybe should be

deleted (here this ANOVA function corresponds to one basis function which uses input variables
number 3 and number 5):

Let’s plot pair-wise (for variables x1 and x2) and individual (for variables x3, x4, and x5

contributions of variables.

modelReduced = aresanovareduce(model, [1 2])
aresplot(modelReduced)

for i = 3 : 5
 modelReduced = aresanovareduce(model, i);
 Xtmp = zeros(51,10);
 Xtmp(:,i) = [model.minX(i):((model.maxX(i)-model.minX(i))/50):model.maxX(i)]';
 figure
 plot(Xtmp(:,i), arespredict(modelReduced, Xtmp));
end

Now let’s evaluate predictive performance of this ARES configuration on the data using 5-fold
Cross-Validation.

rand('state',0);
[avgMSE, avgRMSE, avgRRMSE, avgR2] = arescv(X, Y, params, [], 5)

avgMSE = 0.4427
avgRMSE = 0.6543
avgRRMSE = 0.1339
avgR2 = 0.9818

Now let’s try piecewise-linear modelling.

params = aresparams(21, [], false, [], [], 2);
model = aresbuild(X, Y, params)

 16

model =
 coefs: [16x1 double]
 knotdims: {15x1 cell}
 knotsites: {15x1 cell}
 knotdirs: {15x1 cell}
 parents: [15x1 double]
 trainParams: [1x1 struct]
 MSE: 0.3802
 GCV: 0.5830
 minX: [1x10 double]
 maxX: [1x10 double]
 endSpan: 10

rand('state',0);
[avgMSE, avgRMSE, avgRRMSE, avgR2] = arescv(X, Y, params, [], 5)

avgMSE = 0.5254
avgRMSE = 0.7165
avgRRMSE = 0.1469
avgR2 = 0.9783

Finally we output the equation of the piecewise-linear model with all its basis functions.

areseq(model, 5);

BF1 = max(0, x4 -0.66938)
BF2 = max(0, 0.66938 -x4)
BF3 = max(0, x2 -0.57231)
BF4 = max(0, 0.57231 -x2)
BF5 = max(0, x1 -0.23961)
BF6 = max(0, 0.23961 -x1)
BF7 = max(0, x5 -0.036179)
BF8 = max(0, 0.553 -x3)
BF9 = BF3 * max(0, x1 -0.5981)
BF10 = BF3 * max(0, 0.5981 -x1)
BF11 = BF4 * max(0, x1 -0.14539)
BF12 = BF4 * max(0, 0.14539 -x1)
BF13 = max(0, x3 -0.16723)
BF14 = BF7 * max(0, x3 -0.8273)
BF15 = BF5 * max(0, x2 -0.25707)
y = 7.6853 +9.8771*BF1 -10.312*BF2 +15.52*BF3 -6.1597*BF4 +15.121*BF5 -20.444*BF6 +4.9892*BF7

+15.757*BF8 -65.272*BF9 -28.664*BF10 -25.491*BF11 +53.099*BF12 +9.7016*BF13 +18.575*BF14 -18.91*BF15

3.2. Noise-free two-dimensional function

We start by creating training and test data using a two-dimensional noise-free function. The

training data consists of 121 cases distributed in a regular 1111× grid. The test data has 10000 cases
distributed randomly.

clear
[tmpX1,tmpX2] = meshgrid(-1:0.2:1, -1:0.2:1);
X(:,1) = reshape(tmpX1, numel(tmpX1), 1);
X(:,2) = reshape(tmpX2, numel(tmpX2), 1);
clear tmpX1; clear tmpX2;
Y = sin(0.83.*pi.*X(:,1)) .* cos(1.25.*pi.*X(:,2));

Xt = rand([10000,2]);
Yt = sin(0.83.*pi.*Xt(:,1)) .* cos(1.25.*pi.*Xt(:,2));

Such noise-free functions can be approximated very precisely. We define the maximal number

of basis functions to be 121, no penalty for knots, and maximum interaction level equal to 2 (the

 17

number of input variables), leaving all the other parameters to their defaults. The model will be of
piecewise-cubic type as it is the default.

params = aresparams(121, 0, [], [], [], 2);

Now the ARES model is built by calling aresbuild.

model = aresbuild(X, Y, params)

As the model building process ends, we can examine the data structure of the new model. The

model has 44 basis functions including the intercept term.

model =
 coefs: [44x1 double]
 knotdims: {43x1 cell}
 knotsites: {43x1 cell}
 knotdirs: {43x1 cell}
 parents: [43x1 double]
 trainParams: [1x1 struct]
 MSE: 1.6901e-004
 GCV: 4.1734e-004
 t1: [43x2 double]
 t2: [43x2 double]
 minX: [-1 -1]
 maxX: [1 1]
 endSpan: 8

We test the model using test data.

[MSE, RMSE, RRMSE, R2] = arestest(model, Xt, Yt)

MSE = 1.9909e-004
RMSE = 0.0141
RRMSE = 0.0244
R2 = 0.9994

Plot the surface of the model.

aresplot(model);

 18

Let’s try doing the same but instead of piecewise-cubic modelling we will use piecewise-linear.

params = aresparams(100, 0, false, [], [], 2);
model = aresbuild(X, Y, params);
[MSE, RMSE, RRMSE, R2] = arestest(model, Xt, Yt)

MSE = 0.0023
RMSE = 0.0480
RRMSE = 0.0829
R2 = 0.9931

aresplot(model);

 19

4. REFERENCES

1. Friedman J.H. Multivariate Adaptive Regression Splines (with discussion), The Annals of

Statistics, Vol. 19, No. 1, 1991, pp. 1-141
2. Friedman J.H. Fast MARS, Department of Statistics, Stanford University, Tech. Report LCS110,

1993
3. Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: Data mining, inference

and prediction, 2nd edition, Springer, 2009
4. Merkwirth C. and Wichard J. A Matlab toolbox for ensemble modelling, 2003, available at

http://www.j-wichard.de/
5. Milborrow S., Earth: Multivariate Adaptive Regression Spline Models (derived from code by T.

Hastie and R. Tibshriani), 2009, R package available at http://cran.r-
project.org/src/contrib/Descriptions/earth.html

6. Norgaard M. Neural network based system identification toolbox, ver. 2, Tech. Report.
00-E-891, Department of Automation, Technical University of Denmark, 2000

