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RADIAL BASIS FUNCTION EQUALIZATION USING 
COMPETITIVE LEARNING  
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 In this paper the problem of equalization of multiple quadrature amplitude 
modulated signals, using a radial basis function (RBF) neural network, is studied. 
Because the equalizer performance is directly related to the estimations of the RBF 
centres, different competitive learning algorithms for the RBF centres are presented. A 
new competitive algorithm is introduced, the rival penalized competitive learning, 
which rewards the winner and penalises its first rival. Simulations results, performed in 
different conditions, are presented, showing that the performance of the RBF equalizer, 
if trained with this new algorithm is better comparative with other competitive 
algorithms. 

1. INTRODUCTION 

Communication channels introduce different perturbations in signals 
transmission, as example, nonlinear distortions, fading, intersymbol interference 
(ISI), adjacent channel interference and co channel interference. As effect, the 
channels characteristics are variable in amplitude and in phase. The technique of 
eliminating the undesired effects of communication channel is the equalization. 

Traditional approaches to channel equalization are based on the inversion of 
the global channel response. In digital systems the complete channel inversion is 
neither required nor desirable. However, traditional techniques requiring the traffic 
model, are obsolete in the context of modern communications, where a 
mathematical model is not always possible to be drawn. Since transmitted symbols 
belong to a discrete alphabet, symbol demodulation can be recasted as a 
classification problem in the space of the received symbols. Neural networks (NN) 
are promising candidates, not only because they can learn an arbitrarily nonlinear 
input output function from examples, but also due to their adaptability, flexibility 
and speed. The studies performed during the last decade have already established 
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the superiority of neural equalizers comparative to the traditional equalizers, in 
conditions of high nonlinear distortions and rapidly varying signals. 

During the last decade the research interest was focused on signals more 
efficient in transmission from the spectral point of view, as the multiple quadrature 
amplitude modulated (M-QAM) signals. But the M-QAM signals are severely 
affected by the nonlinear distortions, because they have a variable envelope 
modulation. To compensate these unwanted distortions equalizers for complex 
signals are necessary. The complex NN equalizers are straightforward extensions 
from the real counterparts [1], obtained by replacing the relevant parameters with 
complex values. Various neural equalizers have been developed, mostly 
combinations between a conventional linear transversal filter (LTF) and a neural 
network which may be  a multilayer perceptron [1], [2], [3], [4], a radial basis 
function network (RBF) [5], [6], [7], [8], [9], [10], or a recurrent neural network 
[11], [12], [13], [14]. The LTF eliminates the linear distortions, such as ISI, so the 
NN has to compensate the nonlinearities. Many different nonlinear channels 
models have been introduced to simulate real situations, so a unitary comparison 
between all known equalizers is difficult to be done. 

Recently, the RBF network received considerable attention, since the MLP 
network is plagued by long training times and may be trapped in bad local minima. 
The RBF network is able to approximate any arbitrary nonlinear function in the 
complex multi-dimensional space with a reduced calculus complexity comparative 
with other NN.  RBF often provide a faster and more robust solution to the 
equalization problem [1], [7]. In addition, the RBF neural network has a structure 
similar to the optimal Bayesian symbol decision equalizer [6]. Therefore, the RBF 
is an ideal processing structure to implement the optimal Bayesian equalizer.  

Several learning algorithms have been proposed to update the RBF 
parameters. Usually it is used an unsupervised learning algorithm to find the 
centres of the hidden neurons and a supervised learning algorithm for the weights 
of the output neurons. The competitive standard learning algorithm (CSL) [15] 
computes the squared distance between the input vector and the centres, chooses 
the winning centre, the one with the minimum distance, and moves it closer to the 
input vector. The major deficiency of the CSL algorithm is that it needs to know 
the exact number of clusters k, before performing data clustering. Otherwise, it will 
lead to a poor clustering performance. Unfortunately, it is often hard to determine k 
in advance in many practical problems. Another problem is that the classification 
depends on the initials centres values of the RBF, on the type of the chosen 
distance, on the number of classes. The CSL algorithm has also the "dead neurons" 
problem, which means that if a centre is inappropriately chosen, it may never be 
updated, thus it may never represent a class.  

To circumvent the "dead neurons" problem it was proposed an extension of 
the CSL algorithm, named the frequency sensitive competitive learning (FSCL) 
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[15]. The FSCL algorithm reduces the learning rate of the frequent winners, so 
their chance to win, strategy called also "with conscience". Although it can almost 
successfully assign one or more seed points to a cluster without the "dead neurons" 
problem, it also needs knowing the exact number of clusters.  

In this paper we introduce a new competitive method to update the RBF 
centres, the rival penalized competitive learning (RPCL) algorithm that performs 
appropriate clustering without knowing the clusters number, by automatically 
driving the extra number of seed points far away from the input data set. The RPCL 
algorithm rewards the winning neuron and penalizes with a de-learning rate the 
second winner, named rival. The algorithm is rather sensitive to the selection of the 
de-learning rate, but it is quite simple and provides a better convergence than the 
classic competitive learning and FSCL algorithms. It also eliminates the "dead 
neurons" problem.  

2. THE EQUALISATION PROBLEM  

The objective of equalization from the NN point of view is the separation of 
the received symbols in the output signal space, whose optimal decision region 
boundaries are generally highly nonlinear. Figure 1 represents a model of the com-
munication system.  

 

Fig. 1 A model of a communication system 

The complex-valued digital sequence x(n) is transmitted through a dispersive 
complex channel of M order. If the input is a 4 QAM signal, its constellation is 
given by the following relation: 
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The communication channel, that introduces linear and nonlinear distortions, 
may be modeled as presented in figure 2. Various models with different linearities 
(L) and nonlinerities (NL) are mentioned in literature. Most of the studies refer to 
the ones mentioned in that follows. 

 

Fig2. The nonlinear channel model  

The linear complex part of the channel is usually a transversal filter with 
finite impulse response, whose output is given by:  

( ) ( )∑
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where ai  are the filter coefficients and M is the order of the filter. 

The model suggested in [5] generates the output signal ( )ny
≈

 according to the 
relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )221.034.0143.087.027.034.0 −−+−++−=
≈

nxjnxjnxjny  (3) 

The nonlinear part of the channel is a very strong one and produces at the output: 

( ) ( ) ( ) ( ) 32 ][05.0][1.0 nynynyny
≈≈≈

++=  (4) 

Another model referred in [6] uses the following equations: 
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The channel output y(n) is corrupted by adding a complex-valued noise w(n), 
usually a white Gaussian noise with a zero mean and a dispersion of σe

2, so the 
received signal is: 

( ) ( ) ( )nwnyno +=  (7) 

We will consider the real and imaginary parts, wR(n) and wI(n) mutually 
independent sequences. Also, the signals x(n) and w(n) are assumed  uncorrelated. 

The task of the equalizer is to reconstruct the transmitted symbols as 

accurately as possible, producing an estimation )(nx
≈

, based on the noisy received 
signal r(n) and the desired delayed signal x(n-d). The equalizer performance is 
evaluated with respect to the signal to noise ratio (SNR): 
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where E is the second moment, σs
2 =1 is the transmitted symbol dispersion and σe

2  
is the noise dispersion. 

The channel output vector is passed through the RBF equalizer, consisting of 
a LTF of m order and a RBF NN, as presented in figure 3. The received signal r(n) 
applied to the RBF network input is the sequence r(n)=[ r(n) r(n-1) ….r(n-m+1)]T. 
Because it involves m terms of the delayed version of the received signal, there are 
NS=4 M+m-1 possible combinations of the channel input sequences, i.e. x(n)=[ x(n) 
x(n-1) …x(n-m-M+2)]T. Correspondingly, the noise-free channel output vector is 
y(n)=[ y(n) y(n-1) …y(n-m+1)]T and it has also NS desired corresponding states.  

From the NN point of view, the equalizer has to classify the received signal in 
one of the four possible classes Pm,d, according to the input delayed signal:  

 ( )U
41

,,
≤≤

=
l

dmdm lPP   
(9) 

or: 
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3. THE COMPLEX RADIAL BASIS FUNCTION NETWORK  

As depicted in figure 3, the RBF network has two layers, the hidden layer 
and the output layer. The RBF input and output are both complex and the 
nonlinearity of hidden neurons is a real function. The real part and the imaginary 
part of the signals are treated separately, in the same manner. The hidden layer is 
composed of an array of computing neurons, each one having a vector parameter ci, 
called centre. Each neuron computes a distance between its centre and the network 
input vector. This distance may be of different types and it is subsequently divided 
by a parameter ρi, called width, which is the spread of the corresponding centre. 
The result is passed through a real, nonlinear activation function ( )ii ρ•φ , : 

 ( ) ( )( ) ( ) ( )( )( ) hi ni ≤≤ρ−−φ=φ 1ncnrncnr i
H

i  (11) 
where r is the complex input vector of nh dimension , ci  is the centres vector of the 
radial basis functions, which is also a complex vector of nh dimension, ρi is the 
centre spread parameter, nh is the number of computing neurons. The operator 
(•)H=((•)T)*, where (•)T  is the transposition operator and (•)* is the complex 
conjugation operator.  

The nonlinear output function is usually the Gaussian function: 

( ) ρ
χ

−
=ρχφ

2

,2 e  (12) 

The number of hidden neurons nh is given by the number of possible states of 
the channel output NS.  

Similarity with the Bayesian equalizer imposes that the spread parameter 
ρ=2σe

2 [6] ,where σe
2 is the noise dispersion given by relation:  

 ( ) ( ) 22 ncnr i−=σ Ee  (13) 
The output layer of the network consists of eight neurons (two neurons for each 
class, one for the real part and the other for the imaginary part of each class) with a 
linear function:  

 ( ) ∑
=

φ=
hn

i
iRBF rf

1
iw  (14) 

where wi are the complex weights. 

According to the relation (12), fRBF becomes: 
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Fig3. The RBF neural network  

4. COMPETITIVE LEARNING ALGORITHMS 

4.1 THE COMPETITIVE STANDARD ALGORITHM 

The competitive standard algorithm calculates the distance between the input 
vector and  the RBF centres vector. The distance may be of different types, but 
usually the Euclidian norm is used: 

 ( ) ( ) ( ) ( ) ( ) ( )2
i

2
ii 1mnc1mnr.....ncnrncnr +−−+−++−=− (16)
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The neuron j with a minimum distance is declared winner: 

( ) hni ,1,minarg=j =nc-r(n)  i  (17) 

The winning neuron centre is moved with a fraction η towards the input.  

 ( ) ( ) ( ) ( )[ ]ncnrnc1nc iii −η+=+  (18) 
The learning rate may be constant or descendant with a fraction, for example: 

( ) ( )
hn

nn 11 −η=+η  (19) 

where nh represents the number of neurons 
The weights are randomly initialized, usually at the input vector values. 

Equations (17) and (18) are than applied iteratively until the algorithm converges 
or freezes as the number of iterations reaches a prespecified value, respectively the 
descending learning rate becomes zero or a very small value.  

4.2 THE FREQUENCY SENSITIVE COMPETITIVE ALGORITHM 

The simple classical CSL algorithm has the "dead neurons" problem.  That is, 
if a neuron is initialized far away from the input data set in comparison with other 
neurons, it may never win the competition, so it may never learn, becoming a dead 
neuron. To solve this problem it has been introduced the so called "frequency 
sensitive competitive learning" algorithm or competitive algorithm "with 
conscience". Each centre counts the number of times when it has won the 
competition and reduces its learning rate consequently. If a neuron has won too 
often "it feels guilty" and it pulls itself out of the competition [15]. The FSCL 
algorithm is an extension of CSL, obtained by modifying relation (17 ) according 
to the following one: 

 ( ) ( ) h i ,ni,γj= 1minarg =nc-nr i  (20) 

with the relative winning frequency γi of the centre ci defined as: 

∑
=

=
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i
i

i
i

s
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1

 
(21) 

where si is the number of times when the centre ci  was declared winner in the past. 
So the neurons that have won the competition during the past have a reduced 
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chance to win again, proportional with the frequency term γ. After selecting out the 
winner, FSCL updates the winner with equation (18) in the same way as CSL, and 
meanwhile adjusting the corresponding si with the following relation: 

( ) ( ) 11 +=+ nsns ii  (22) 

FSCL can almost always successfully distribute the nh centres into the input 
data set without the "dead neurons problem".  

4.3 THE RIVAL PENALIZED COMPETITIVE ALGORITHM 

The rival penalized competitive learning algorithm performs appropriate 
clustering without knowing the clusters number. It determines not only the winning 
neuron j but also the second winning neuron r, named rival:  

 ( ) ( ) ji,ni,r= h ≠=1minarg nc-nr i  (23) 

The second winning neuron will move away from the input its centre with a 
ratio β, called the de-learning rate. All the others neurons will not change their 
centres vector. So the learning law can be synthesized in the following relation:  
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If the learning speed η is chosen to be much greater than β, with at least one order 
of magnitude, the RBF network will automatically find the number of signal output 
classes. In other words, suppose that the number of classes is unknown and the 
number of hidden neurons nh is greater than the number of the classes than the RBF 
centres will converge towards the centres of the input signals clusters. The 
penalizing competitive algorithm will move away the rival, in each iteration, 
converging much faster than the above mentioned algorithms. The number of extra 
seed points, respectively the difference between nh and the number of classes will 
be driven away from the data set. If nh is smaller than the number of the classes, 
than the network will oscillate during training, indicating that the number of hidden 
neurons must be increased.  

5. THE LEAST MEAN SQUARE ALGORITHM 

A supervised algorithm may be used to update the output neurons weights, 
for instance, the least mean square algorithm, given by the following relations: 
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 ( ) ( ) ( ) ( )nneα φ+=+ nw1nw ii  (25) 

where α is the learning constant and e(n) represents the complex error, determined 
with the relation: 

 ( ) ( ) ( )rfdnxne RBF−−=  (27) 

This algorithm minimizes the mean square error (MSE): 

 ( )∑
=

=
N

i
i ne

N
MSE

1

21
 (26) 

where N is the number of input sequences. 

6. SIMULATION RESULTS  

There were generated 4-QAM signals, using an uniform distribution, 
independently the real part from the imaginary part. Simulations were done using 
the channel model introduced in reference [6] and presented in section 2. A white 
noise w(n) was generated and added to y(n). The number of the hidden neurons, 
respectively of the desired centres, was chosen equal to NS, the number of possible 
states of y(n). For M=1, m=1  it results 64 hidden neurons. For the RBF output 
layer there were used 8 neurons, one for the real part and another for the imaginary 
part of each of the four possible states of the 4-QAM signal. The centres spread 
was chosen 0.28. There were applied N=7000 input signal sequences x(n), 
x(n)=[x(n) x(n-1) x(n-2)] to train the RBF centres, in different conditions of noise, 
with all the three algorithms mentioned in section 4, CSL, FSCL and the new 
RPCL algorithm. The RBF centres were randomly initialized, around (5, 5j) as it 
can be seen in figures 4, 5 and 6. The delearning rate was chosen of a order of 
magnitude smaller than the learning rate, otherwise in these difficult conditions of 
nonlinearity and noise it may generate oscillations. The best results were obtained 
for the following learning constants: η=0.05, β=0.0001 and α=0.01. Figures 4 , 5 
and 6 represent the output channel states y(n), the corrupted received signal r(n), 
the initial and final positions of the RBF centres in the case of a SNR=13dB 
(σ2=0.05) after 100 training iterations using CSL, FSCL and RPCL algorithms. 

The CSL algorithm failed to find the desired centres. Both other algorithms, 
FSCL and RPCL, succeed to orientate the RBF centres to the desired free of noise 
output channel states. In addition, the RPCL algorithm had driven away the extra 
number of seed points. As one can observe the RPCL algorithm could find closer 
positions of RBF centres to the desired output channel states than the FSCL 
algorithm, so its convergence is better. 



11 RADIAL BASIS FUNCTION EQUALIZATION USING COMPETITIVE LEARNING 11 

 

 

Fig.4 The output channel states y(n), the corrupted received signal r(n), the initial and final positions 
of the RBF centres in case of a SNR=13dB, after 100 training iterations, using CSL 

 

Fig.5 The output channel states y(n), the corrupted received signal r(n), the initial and final positions 
of the RBF centres in case of a SNR=13dB, after 100 training iterations, using FSCL 
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Fig.6 The output channel states y(n), the corrupted received signal r(n), the initial and final positions 
of the RBF centres in case of a SNR=13dB, after 100 training iterations, using RPCL 

The RBF equalizer, using the FSCL and the RPCL algorithms, was tested in 
different conditions of noise, for different orders of the LTF and delays. 

Figure 7 represents the MSE equalizer evolution , for the FSCL respectively 
RPCL algorithms, during 5000 epochs for a SNR=13dB and m=1. 

 

Fig.7 The comparative evolution of the MSE during 5000 epochs a for SNR =13 dB, m=1 (solid line -
FSCL algorithm; dotted line - RPCL algorithm) 

Figure 8 depicts the MSE evolution, using the new RPCL algorithm, during 
3000 epochs for different signal to noise ratios (SNR=10dB and SNR=5 dB) and 
order m (m=1 and m=2) of the LTF and a delay of d=1. This performance is similar 
to the MLP NN equalizers, in conditions of a lower computational cost. 
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Fig.8 The evolution of MSE during 3000 epochs (solid line - m=1, SNR=5Db; dashed line - m=1, 
SNR=5dB; dotted line - m=1, SNR=10dB; dashed-dot line - m=2, SNR=10dB) 

To represent the decision regions of the RBF complex equalizer, the complex 
output space was divided using a sampling step of δ=0.02 Figure 9 represents the 
output signals space partition, which has strong nonlinear decisions boundaries.  

 

Fig.9 The output signals space partition 

CONCLUSIONS 

The main drawback of the neural network equalizers is the computational 
complexity and the extensive training. The proposed competitive algorithm, 
namely RPCL, while training the centres of the RBF network, rewards the winner 
and penalizes its closest rival. It is rather simple, generates strong nonlinear regions 
of decision in the signal space, yet having a better and faster convergence. In 
comparison with  the clasic CSL algorithm, it doesn’t have the "dead neurons" 
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problem. If compared with the FSCL algorithm, it has a better and faster 
convergence. So the RPCL algorithm is adequate to the adaptive equalization of 
fast varying signals corrupted with strong linear and nonlinear distortions. Because 
of its structure, similar to the Bayesian equalizer, the performance of the RBF 
equalizer is superior to the LTF and MLP equalizers. The MSE performance of the 
RPCL equalizer is similar to others RBF equalizers reported in literature, if tested 
in the same conditions. In order to improve the equalizers performances the order 
of the LTF filter coupled with the RBF neural network should be increased or the 
feedback should be introduced. 
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