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Abstract—A fault recovery system that is fast and reliable is es-
sential to today’s networks, as it can be used to minimize the im-
pact of the fault on the operation of the network and the services it
provides. This paper proposes a methodology for performing au-
tomatic protection switching (APS) in optical networks with arbi-
trary mesh topologies in order to protect the network from fiber
link failures. All fiber links interconnecting the optical switches are
assumed to be bidirectional. In the scenario considered, the layout
of the protection fibers and the setup of the protection switches
is implemented in nonreal time, during the setup of the network.
When a fiber link fails, the connections that use that link are au-
tomatically restored and their signals are routed to their original
destination using the protection fibers and protection switches. The
protection process proposed is fast, distributed, and autonomous.
It restores the network in real time, without relying on a central
manager or a centralized database. It is also independent of the
topology and the connection state of the network at the time of the
failure.

Index Terms—Optical network, optical switches, protection,
restoration strategies, survivability, wavelength division multi-
plexing (WDM) networks.

I. INTRODUCTION

T HE MOST prevalent form of communication failures is the
accidental disruption of buried telecommunication cables.

Fiber cuts may result, among other reasons, from construction
work (“backhoe fade”), rodent damage, fires, or human error
[1]. Clearly, the need for fast and reliable protection of services
is essential in high capacity optical systems. This paper proposes
a general methodology for performing link failure1 protection
in optical networks with arbitrary mesh topologies and bidirec-
tional links using automatic protection switching (APS). The
reader should note that switch failures are not discussed in this
paper as they constitute a different problem with its own set of
solutions. A summary of the approach taken when a switch fails
can be found in [2] and [3]. For a more extensive analysis, the
reader should turn to [4].

In networks using APS as their protection mechanism, fail-
ures are circumvented by re-routing signals fromworking chan-
nelstoprotection channels, usingprotection switchesat the ends
of each network link, which are activated immediately when a
fault is detected. Some specific physical properties of the signal
are monitored at all links and threshold values determining when
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1A fiber link failure denotes a failure ofall working and protection fibers
(both directions) on that link.

to switch to the protection fiber are chosen [5]. Generally, the
time it takes to detect the failure and switch to the protection
fiber is on the order of milliseconds.2 Within this time frame, the
network can recover from a cable failure without interrupting
the services transported over the network, e.g., telephone calls,
data transfers, etc. [6].

The networks considered in this paper are composed of op-
tical links and optical switches. Under normal operation, the
network supports a number of active source–destination con-
nections, whose paths are determined by the settings of the op-
tical switches. The discussion applies generally to networks that
may carry multiplexed connections on each fiber (e.g., wave-
length division multiplexed networks). In these networks, a typ-
ical link consists of a pair of unidirectional working fibers and
a pair of unidirectional protection fibers that are terminated by
four protection switches. When a fiber link is cut, connections
using that link are automatically restored by rerouting their op-
tical signals around the fault using the protection fibers and pro-
tection switches.

This paper is divided into two parts. In the first part, a novel
technique is presented, showing how to solve the APS problem
in mesh networks. The second part demonstrates how this ap-
proach is implemented in an optical network to provide full pro-
tection capabilities against a fiber link failure.

Section II of this paper describes the general methodology
for determining the interconnection configurations for the
protection switches. A complete solution of this problem is pre-
sented for networks with planar or Eulerian (planar/nonplanar)
topologies, together with algorithmic methods for extending
it to networks with arbitrary nonplanar topologies. Section
III demonstrates the link failure protection process. The APS
system components and protocol are presented, followed by
an explanation of how the APS process works in the case
of a fiber link failure. Examples of link failure protection in
networks with planar, nonplanar, and Eulerian topologies are
also demonstrated. Bounds on the number of simultaneous
possible link failure recoveries are calculated in Section IV.
Conclusions follow in Section V.

II. GENERAL METHODOLOGY

The networks are modeled by directed graphs (digraphs),
whose vertices represent the network switching nodes and
whose directed edges represent the transmission fibers. All
networks considered have a pair of unidirectional working
fibers (constituting a bidirectional working link) and a pair of
unidirectional protection fibers (constituting a bidirectional
protection link) in each fiber link. For purposes of APS, only
the protection fibers are represented in the digraph.

2In SONET rings, maximum detection and switching time is 50 ms.
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Fig. 1. Directed cycles in a plane graph.

This work provides a methodology for protecting any net-
work whose digraph is 2-edge connected (that is, it takes the re-
moval of at least twobidirectionaledges to break the graph into
more than one disconnected component), against the failure of
any link. The method proposed also protects 1-edge connected
networks (networks containingbridges) against any link failure
except the failure of a bridge.3

The protection methodology proposed is based on intercon-
necting the protection fibers to create a family of directed cycles,
calledprotection cycles, in the following manner [4], [7].

Proposition 1: Recovery from a single link failure in any
optical network with arbitrary mesh topology and bidirectional
working and protection fiber links can be achieved using APS,
if a family of directed cycles using the protection fibers can be
found so that: i) all protection fibers are usedexactly once, and
ii) in any directed cycle, a pair of protection fibers are not used
in both directions unless they belong to abridge.

The proof of this proposition will become apparent in Sec-
tion III. Fig. 1 is an example of a (planar) graph with six directed
cycles, and Fig. 2 (representing graph ) is an example of a
(nonplanar) graph with three directed cycles. In both cases, the
cycles cover the graph in the manner prescribed in Proposition
1. By appropriately interconnecting the protection switches in
the corresponding network, these cycles would be implemented
as protection cycles on the corresponding protection fibers.

Note that what is presented in this paper is a scheme for
automatic link protection requiring exactly one protection fiber
for each edge of the network (independent of the network
topology). This is a different approach from the cycle cover
methodology presented in [8], where a set of cycles that covers
all edges was obtained, and that set of cycles was used as pro-
tection cycles. That approach usually requires more protection
fibers than network edges. The only case where the approach
presented in [8] requires only one protection fiber per edge
is the special case of Eulerian networks (that are not typical
topologies) which is also addressed in this work.

A. Networks with Planar Topologies

A graph isplanar, if it can be drawn on the plane in such a
way that no two edges intersect (have a common point other than

3In the rest of the paper, link failure recovery excludes bridge failures.

Fig. 2. Directed cycles in theK graph.

a vertex) [9]. The resultant embedded graph is called aplane
graph. Any connected planar graph, embedded in a plane, with

vertices ( ) and edges, has faces
[10] (regions defined by the plane graph) whereis denoted as
Euler’s number. The number of faces includes inner
faces and one outer face (the unbounded region). The protection
cycles are then a set of facial cycles with special orientations.

Proposition 2: Every planar graph can be decomposed
into a family of directed cycles where each edge is used ex-
actly twice (once in each direction), and in each directed cycle
that does not include a bridge an edge is used at most once. In
each directed cycle including a bridge, the bridge is used twice
(once in each direction) in the same directed cycle. (The proof
of Proposition 2 is presented in the Appendix).

Thus, for planar graphs, the required set of protection cycles
can be obtained by embedding that graph on the plane, iden-
tifying the faces of the plane graph, and traversing those faces
in a certain direction. The following deals with algorithms that
perform these tasks.

1) Planarity Testing—Face Traversal (PTFT) Algo-
rithm: Given a graph , a planarity testing algorithm has
to be invoked to determine whether the graph is planar or
not. Furthermore, if the graph is indeed planar, it has to be
embedded in the plane and its faces have to be traced in the
appropriate directions. It is important to distinguish between
knowing a graph is planar and knowing the plane mapping
for that graph. The latter problem can be quite difficult if the
graph is drawn randomly. For example, the graph presented
in Fig. 3(a) is planar, but its embedding in the plane [Fig.
3(b)] is not obvious. The algorithm should provide sufficient
information for this embedding to be constructed.

Given a graph , planarity testing algorithms exist [11]–[14]
that test whether graph is planar. A new algorithm has been
developed for this work that tests if a graph is planar and, if
it is, the algorithm embeds the planar graph in the plane and
traces the faces in the appropriate directions to create a family
of cycles with the characteristics defined in Proposition 1. Fig. 4
shows the flowchart of the PTFT algorithm [15]. The PTFT al-
gorithm developed is a variation of the path addition algorithm
by Gibbons [13], which is itself a variation of the Demoucron,
Malgrange, and Pertuiset path addition algorithm [11]. It is a
constructive algorithm that starts from a cycle and adds a single
edge (SE) or one edge group (EG) at a time. Each time one SE or
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Fig. 3. A planar graph with a not so obvious embedding in the plane.

EG is added, a face is split in two or more faces. The algorithm
terminates if it determines that graphis nonplanar or if the
number of faces equals Euler’s number (graph is planar). By
adding one or more faces at a time, the graph is automatically
embedded in the plane as well. All the edges are bidirectional
and in the algorithm both directions of an edge are used in order
to construct all faces. Thus, after the plane graph is constructed,
the corresponding face tracing is also obtained.

Fig. 5 shows an example of a planar graph with the corre-
sponding faces found using the algorithm. The algorithm was
also exercised for a number of nonplanar graphs and it was able
to correctly determine that for any given nonplanar graph a plane
embedding cannot be found. Fig. 6 shows an example of a non-
planar graph (the Petersen graph) for which the algorithm has
concluded that it is not planar.

B. Networks with Nonplanar Topologies

In order to find the protection cycles for a graph with a non-
planar topology, acycle double coverof the graph has to be
found. A cycle double cover of a graph is defined as a cycle
decomposition of such that each edge appears in exactly two
cycles [17]. Thus, the set of protection cycles being sought com-
prise cycle double covers with some additional properties con-
cerning their directions. A crucial conjecture concerning this
problem is the following.

Cycle Double Cover (CDC) Conjecture:Let be a bridge-
less finite graph. Then there exists a set of cycles insuch that
each edge of is in exactly two of the cycles (i.e., every bridge-
less finite graph has a cycle double cover).

A cycle double cover is said to be orientable when it is pos-
sible to choose a circular orientation for each cycle of the double
cover in such a way that each edge is taken in opposite direc-
tions in the two incident cycles of the double cover [17]. An
orientable cycle double cover is exactly our goal: a cycle de-
composition such that each edge appears in exactly two cycles,
andeach edge is used in opposite directions in the two cycles.

Therefore, Proposition 2 applies to all graphs provided that an
orientable cycle double cover exists for arbitrary graphs. Certain
classical conjectures in graph theory suggest that this is the case
[17]. For example, the face boundaries of the plane embedding
of a planar graph (oriented properly) constitute an orientable
cycle double cover (OCDC). Note that Fig. 2 is also an example
of an orientable cycle double cover of a nonplanar graph.

There are limited cases where the validity of the CDC
conjecture has been proven. For example, the CDC conjecture

was shown to be true for-edge connected graphs by a theorem
of Jaeger [18], for graphs with Hamiltonian Paths [19], for
2-connected 3-regular graphs containing no subdivision of the
Petersen graph [20] and for cubic graphs edge colorable with 3
colors [20]. While the cycle double cover conjecture has never
been proven for arbitrary graphs, it was shown in [17] that a
minimum counterexample4 must be asnark.5 Furthermore,
Celmins in [21] showed that the minimum counterexample
to the CDC conjecture must be astrong snark.6 Finally, it
was further proven that a minimum counterexample to the
cycle double cover conjecture has girth at least seven [17].
Thus, the minimum counterexample to the CDC conjecture
has to be a strong snark of girth at least seven. But, no
snark of girth at least seven is known to exist and it was
conjectured in [22] that such snarks do not exist (conjectured
that every snark has girth at most 6).

Two classes of snarks are shown in Fig. 7. Both examples
have girth 5. Obviously, snarks are graphs with unique topolo-
gies, and it is not anticipated that telecommunication networks
with such topologies will be encountered. So, even if a coun-
terexample to the CDC conjecture does exist, it is highly un-
likely that any of the telecommunication networks encountered
will be counterexamples. A rule in the design of the network can
also be adopted to ensure that this never happens.

1) An OCDC Heuristic: A new heuristic algorithm has been
developed in this work to obtain an orientable cycle double
cover of any given graph [23]. The heuristic algorithm will also
work for graphs with bridges. Obviously, in these graphs the
bridges will be traced twice in a single cycle.

Fig. 8 shows the flowchart of the orientable cycle double
cover heuristic algorithm. This heuristic is based on abacktrack
approach that searches the graph in a systematic method in order
to obtain a CDC. Every time it has to make a choice for an edge
to be included in the current cycle, certain constraints have to be
observed. The constraints in choosing an outbound edge ensure
that an edge will not be chosen that violates the properties of the
cycle double cover. All edges are used in the cycle decomposi-
tion, each edge is used only in one cycle (always chosen from a
set of unused edges), and both directions of an edge are not used
in one cycle unless that edge is a bridge. Furthermore, additional
precautions are taken to ensure that bridges attached to cycles
are added to these cycles and cycles that are only comprised of
the two directions of a bridge are not allowed [23].

The backtrack approach enables the heuristic to “reconstruct”
the current cycle if it reaches a vertex where any choice of an
outbound edge would violate the constraints presented above.
This is done as follows: during the construction of the current
cycle, the heuristic keeps in a list all vertices where more than
one outbound edge exists that does not violate the constraints.
On the top of the list is the latest vertex where such a condition
occurs. If the heuristic reaches a vertex where any choice of an

4If G is a minimum counterexample to the cycle double cover conjecture,
thenG is a bridgeless graph with no double cover which has a minimum
number of edges among graphs with these properties.

5A snark is defined as a cyclically 4-edge-connected cubic graph of
girth at least five, which has chromatic index four.

6 A strong snark is a snarkG such that for every edgee, G � e

(the unique cubic graph homeomorphic toG� e) is not edge colorable
with 3 colors.



ELLINAS et al.: PROTECTION CYCLES IN MESH WDM NETWORKS 1927

Fig. 4. Flowchart of the PTFT algorithm.

Fig. 5. Face traversal for the dodecahedron graph.

outbound edge violates the constraints, it takes out of the list the
latest vertex with multiple choices of “viable” outbound edges,

it chooses another edge that does not violate the constraints, and
creates a new cycle from that point on.
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Fig. 6. Planarity testing for the Petersen graph.

Fig. 7. Two classes of snarks: (a) Blanusa snark (girth = 5), (b) Szekeres’ snark
(girth = 5).

A final step also ensures that if cycles have already been cre-
ated that do not enable the algorithm to obtain a cycle double
cover of the graph, the heuristic eliminates these cycles and re-
peats the procedure finding other cycles that can be a part of the
cycle double cover of the graph. To do this, the heuristic tries to
identify the last vertex where the problem occurs, i.e., the last
vertex where a choice of an outbound edge cannot be found. It
then eliminates one of the previous cycles that uses this vertex
and repeats the procedure to obtain new cycles. This is identical
to the backtrack approach explained above, but in this case the
heuristic backtracks to previous cycles and not edges. This way,
the heuristic can go through all possible combinations of cycles
with the characteristics presented in Proposition 1, until it finds a
family of cycles that constitutes an orientable cycle double cover.

The backtrack approach used in this work is exponential in
the worst case since it may require searching of all possible so-
lutions in a systematic manner. However, on the average it per-
forms much better by pruning the decision tree when it ascer-
tains that traversing that tree in a specific direction is not allowed
because it violates constraints imposed on the protection cycles.
For the telecommunication networks considered in this work,
with only a few hundred switching nodes, the running time of
the algorithm was found to be negligible [23]. In addition, since
this algorithm will be implemented off-line, during the design
of the network, its computational time will not affect the protec-
tion process.

First, the heuristic was tested for networks having nonplanar
topologies. Fig. 9 shows the 6-cage network and its orientable
cycle double cover. The heuristic was also able to find orientable

cycle double covers for planar graphs. This is true since the
heuristic does not limit itself to nonplanar graphs but is appli-
cable to all types of graphs. Fig. 10 shows a plot of the number
of cycles found using the orientable cycle double cover heuristic
compared to the number of faces of the plane embedding for
various planar networks.7 As expected, the number of cycles
for planar graphs found using this heuristic was less than or
equal to Euler’s number (number of faces) which is the max-
imum number of cycles possible. The number of cycles found
using the OCDC heuristic, however, was comparable to Euler’s
number, i.e., the cycles obtained were relatively small in size.
Note that the heuristic outputselementary cyclesby peeling off
cycles that pass through a vertex more than once from the cycles
in cycle set . This is an attempt to obtain as large a number of
protection cycles as possible, so as to increase the number of
simultaneous failures that can be protected (as is later shown in
Section IV).

The size of the protection cycles is also important in regards
to the quality of the optical signal that traverses them. As
stated above, the algorithms try to obtain elementary cycles
in order to keep the size of the cycles small. However, there
could exist cycles that are relatively large. Obviously, the
protection cycles should be engineered in such a way that the
optical signal reaches the other side of the protection cycle in
a satisfactory condition. Nevertheless, if the protection cycle
size is extremely large, this cannot always be achieved. We
are currently in the process of trying to aleviate this problem
utilizing two distinct approaches. The first approach tries
to limit the size of the protection cycles by adding an extra
constraint in the OCDC heuristic and the second approach
tries to “breakup” the network in smaller subnetworks before
it applies the OCDC/PTFT heuristic (thus ensuring that the
protection cycles cannot exceed a certain size).

C. Networks with Eulerian Topologies

In the mesh networks considered, all working and protection
fiber links are bidirectional. Therefore, by modeling the network
(with only the protection fibers accounted for) as a digraph,
each vertex of the digraph will have the same indegree and out-
degree [ ] and the degree of each
vertex will be even. Since for any two vertices ina bidirec-
tional walk exists between them, the digraph is also strongly

7These networks were obtained by deleting a number of edges from the cor-
responding nonplanar networks.
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Fig. 8. Flowchart of the OCDC heuristic.

connected. Thus, all networks considered can be modeled as
strongly connected Eulerian digraphs.

A cycle decomposition for any Eulerian digraph can al-
ways be obtained [10]. Furthermore, simple algorithms exist on
how to perform a cycle decomposition8 of an Eulerian digraph.
However, the family of cycles found will not correspond to the
family of protection cycles with the characteristics as defined in
Proposition 1, since a cycle decompositionof an Eulerian di-

8A cycle decompositionS of a digraphD is defined as a set of pairwise
arc-disjoint cycles ofD such that every arca 2 A(D) belongs to precisely one
element ofS [10].

graph does not guarantee that for an edge (which is not a bridge)
both directions are not included in a single cycle.

The directed graph (which represents a model of the orig-
inal network) is transformed into an undirected graphby re-
placing both directions of a bidirectional edge with an undi-
rected edge. If the resulting graph is Eulerian (denoted as
graph ), its cycle decomposition can be used to provide a
family of protection cycles. This is true because graphdoes
not have any multiple edges interconnecting two vertices. Thus,
a cycle decomposition of Eulerian graph will not contain
an edge in the same cycle twice. When the cycle decomposition
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Fig. 9. Orientable cycle double cover of the 6-cage network.

Fig. 10. Number of cycles found for various planar networks using the OCDC/PTFT heuristics.

of the Eulerian graph is found, each cycle in is traced
twice (once in each direction) to account for the bidirectional
edges in digraph (corresponding to the bidirectional protec-
tion fibers in the original network). These double-traced cycles
will satisfy the requirements for the protection cycles defined in
this paper.

An algorithm was implemented that transforms digraphto
graph , tests to determine whether graphis Eulerian, and if
it is indeed Eulerian, the algorithm determines an Eulerian cir-
cuit ( ) and a cycle decomposition (set of cycles) for the
Eulerian graph [24]. The algorithm used in this work, ob-
tains an Eulerian circuit of graph and traverses that ,
peeling offone cycle after another by deleting certain seg-
ments of such that the remainder of forms an Eulerian
circuit for graph [25].

Fig. 11 shows an example of the algorithm for the -cage
graph. The algorithm recognizes that the graph is Eulerian, it
finds one of the possible Eulerian circuits, and using that,
it performs a cycle decomposition of the graph. This cycle de-
composition results in a set of 4 cycles. These cycles are conse-
quently double-traced to account for the bidirectional edges in
the original digraph. Since this graph is nonplanar, the OCDC

heuristic was also applied to get a second (different) set of pro-
tection cycles. Using the OCDC heuristic, 9 cycles were ob-
tained. Obviously, the OCDC heuristic will be preferred (for this
example), since it allows for more cycles and thus for a possi-
bility of more simultaneous link failure restorations. Note that
for a planar network that is also Eulerian, the PTFT algorithm is
always preferred since it will result in the maximum number of
protection cycles possible (equal to the number of faces in the
plane embedding).

III. APS PROCESSIMPLEMENTATION

A. APS System Components

1) Protection Fibers: Each link consists of a pair of uni-
directional working fibers (in opposite directions) and a pair
of unidirectional protection fibers (in opposite directions). The
protection fibers are the ones responsible for carrying the sig-
nals around a fault once a failure occurs.

2) Protection Switches:The protection switches used to
perform the APS functions are switches. These switches
can be optomechanical switches or some other type (such
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Fig. 11. Cycle decomposition of (Eulerian)f4; 5g-cage graph.

as lithium niobate (LiNbO) based electrooptic switches,
acoustooptic, thermooptic, magneto-optic, etc.).

Each bidirectional fiber link has four of these switches asso-
ciated with it as shown in Fig. 12. A protection switch
has a working fiber input and output port and a protection fiber
input and output port.

During normal operation, the switches are connected as fol-
lows: working input port is connected to working output port,
and protection input port is connected to protection output port.
The ports of different protection switches are interconnected in
a way that creates the family of protection cycles described in
Section II. These are calculated during the initialization of the
network. Fig. 13 shows the interconnection of the protection
switches in a seven-node planar network. It corresponds to the
five faces of the corresponding plane graph that constitute the
set of protection cycles.

B. APS Protocol

Several APS switching commands are issued either automat-
ically or manually as a response to various initiation criteria.
These commands modify the settings of each protection switch
in order to achieve signal restoration after a fiber link failure.9

APS Switching Commands:
Clear (C): This command clears the , , and

commands and allows the switch to revert back to its
default state.

Lockout of Protection (LP):This command prevents
switching from any working to protection fiber.

Automatic Switch to Protection (ASP):This command
automatically switches from working to protection fiber unless
an command was previously issued. For a protection switch
this means switching from working input port to protection
output port and from protection input port to working output
port.

Automatic Switch to Working (ASW):This command au-
tomatically switches from protection to working fiber.

9These commands are similar to the APS switching commands used in
point-to-point and self-healing ring (SHR) SONET systems [26], [27].

Fig. 12. Protection switch settings before and after a link failure.

Manual Switch to Protection (MSP):This command man-
ually switches from working to protection fiber.

Manual Switch to Working (MSW):This command man-
ually switches from protection to working fiber.

Fig. 14 shows the state diagram for the proposed protection
switching process. The protection switch can be in one of six
states (default, lockout, engaged, LOS(W) timing, signal on pro-
tection fiber (SPF) timing, or LOS(PF) timing). Initially, the
protection switch is in the default (enabled) state. If a loss of
signal (LOS) is detected at the working fiber for a sustained pe-
riod of time (longer than a preset timer), the controller issues
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Fig. 13. Protection switch settings in a seven-node planar network.

command and the protection switch engages. The switch
will return to its default state when it receives an (for
revertive systems), (for nonrevertive systems), orClear
command. Similarly, if an optical signal is now detected at the
protection fiber (SPF) for a sustained period of time (longer than
a preset timer), the protection switch will enter a lockout state
and remain there until there is no longer optical power on the
protection fiber or aClear command is issued. Optical power
on a protection fiber means that the protection switching mech-
anism has engaged at another location in the network, so this
switch should not engage until the other failure has been re-
stored. When there is no longer an optical signal on the pro-
tection fiber (for a time longer than a preset timer), this means
that the failure was either restored or the protection fiber itself
has failed. In either case, the protection switch reverts to its de-
fault state. Finally, an MSP command will force the protection
switch to engage, provided it is not used in another protection
process. This command is used to test the protection switching
mechanism, up to and including the final switch.

If only one direction of the fiber is cut, a signaling mecha-
nism is required to carry the APS messages between the net-
work nodes. The signaling messages can share the same phys-
ical links as the transport network, or they can use a completely
different (physically diverse) network. The former case is much
simpler and less expensive, but signaling can be compromised in
the case of a failure in the transport network. The latter method,
even though more expensive, is more robust, since signaling in-
formation is guaranteed to flow in the network even in the event
of a failure.

For optically amplified links, a separate supervisory channel
using a dedicated wavelength (in-band or out-of-band WDM
channel) is being standardized by the ITU [28]. A separate
signaling wavelength carrying a low (in the Mb/s range) bit
rate signal and using an appropriate protocol can be used in
this scheme as well to provide communication between the
switching nodes.

C. APS Process

The objective of the APS process is to protect the connections
passing through the failed fiber link once a failure occurs. That

means routing the signals from the switching node at one side
of the failed fiber link to the switching node at the other side of
the failed fiber link using redundant protection fibers. Note that
the APS process will restore the connections that use the failed
link in both directions.

As soon as the fiber link fails, the failure is detected in the
switching nodes on both sides of the failed link. The protec-
tion switches then switch from working fiber to protection fiber
and vice versa. The protection switches associated with the rest
of the links in the same switching node do not engage and re-
main at their original (default) position. Fig. 12 demonstrates
the settings of the protection switches in two switching nodes
before and after a link failure. By switching the signals from the
working fiber to the protection fiber, the failed fiber link is auto-
matically bypassed. When the signals come out of the switching
node at one side of the failed link, they are switched onto a pro-
tection path (part of a protection cycle), which circumvents the
failed link and reaches the other side of the failed link using the
protection fibers. Once at the other side of the failed fiber link,
they switch from the protection fiber to the working fiber, and
follow the same path as before the failure occurred. It is impor-
tant to emphasize that since the signals eventually switch back
to the working fiber, the optical switches do not change their
settings because of the failure.

Proof of Proposition 1 is thus trivial. Each bidirectional
working link is associated with two protection cycles. Taking
one direction only, the working link is associated with a single
protection cycle. When the link fails, the protection cycle
associated with that link willalwayscarry the signal (using the
protection fibers) to the other side of the link and thus restore
the connection by bypassing the failure.

If the length of the protection cycles is large, one or more
multiwavelength optical amplifiers may be needed at appro-
priate locations in the protection cycles to provide optical signal
amplification. When there are no network faults, the protection
switches are in their default positions, creating closed paths on
the protection cycles. In the absence of an optical signal, the am-
plifiers on these paths will produce a noise output due in large
part to spontaneous emission (ASE noise).10 This ASE noise can
circulate in the closed loop, reaching significant levels, and ulti-
mately leading to amplifier oscillation and saturation [29]. After
protection switching is engaged because of a failure, there will
be a transition period (time for the ASE noise to exit the net-
work as well as time for the amplifier gains at the signal wave-
length to stabilize) during which the ASE noise will interfere
and adversely affect the information signal. A number of dif-
ferent solutions have been proposed to eliminate these amplifi-
cation loops. These includefroggingalgorithms based on Euler
network design,dilation of the cross-connect switches,two-
sidednetwork design, and the installation ofcircuit breakers
[29], [30].

1) Examples of the Protection Process:Fig. 15 shows a
seven-node planar network with a bidirectional connection
from to . The protection ports at different protection
switches are interconnected in such a way (see Fig. 13) that

10When there is an optical signal present in the protection fibers, no loops
exist because the optical signal enters and leaves the cycle at different points.
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Fig. 14. State diagram of the protection switching process.

Fig. 15. Restoration of a bidirectional connection in a seven-node planar network after a link failure.

the protection fibers associated with them form a family of
directed cycles as defined previously in Section II. Assuming a
link failure occurs, the protection switches on both sides of the
failed link switch from working to protection and vice versa.
The path followed by the signals is shown by a solid dark line
up to the failed link. The signals then switch to the protection
fiber and follow the dotted dark line until they reach the other
side of the failed link. There, they switch back to the working
fiber and follow the same path as before the link failure.

Since a family of directed cycles is found using the protec-
tion fibers, if two (or more) link failures occur, with all links on
distinct protection cycles, all unidirectional connections passing
through these links can be protected.

A network based on the (nonplanar) graph is shown in
Fig. 16. Based on a set of protection cycles, the appropriate con-
nections for the protection fibers and switches are indicated. The

figure shows failure recovery for (unidirectional) connections
– and – after two link failures for the corresponding

network.

D. Scalability Issues

When a network node is added to the network topology, the
main consideration is the effect of this addition to the character-
istics of the topology (i.e., if it was planar, does it still remain
planar, and so on). There are three cases of interest here. In the
first case, a node is added to a planar topology, and the re-
sulting graph is also planar (with topology). The addition of
the node (with its corresponding edges) disturbs only one of the
faces of topology . The maximum number of affected nodes
is the number of nodes on that face. Thus, only the protection
switches in the nodes lying at the boundary of the affected face
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Fig. 16. Restoration of two unidirectional connections in theK network after two link failures.

will have to change their interconnections to account for the new
faces created. All other network nodes will be unaffected by the
node addition as far as survivability is concerned. The maximum
number of affected nodes in a graph will be equal to the max-
imum face degree .11

If the addition of a node to a planar topology results in
a nonplanar topology , the protection cycles will not corre-
spond to the faces of the plane graph anymore, but they will
have to be recalculated using the OCDC heuristic developed in
this work. Similarly, in the third case when a nonplanar topology

scales to a nonplanar topology, the protection cycles will
again have to be recalculated.

IV. M ULTIPLE LINK FAILURES

A. Bounds for Planar Topologies

As illustrated in Section II-A, planar graphs can be decom-
posed into directed cycles by first embedding the planar graph
in a plane. The number of such cycles equals the number of faces

in a plane graph ( ). It is trivial to show
that for a planar graph this is the maximum number of directed
cycles that can be found with the properties described in Propo-
sition 1. Assuming bidirectional connections, every time a link
fail, it usesat mosttwo protection cycles. If the link that failed
corresponds to a bridge, then only one protection cycle is used.
Otherwise, a link failure will affect the two protection cycles
that use that link. If another link in these two protection cycles
fails, recovery from both failures is not possible. Therefore, the
maximum number of link failure recoveries possible is

(1)

11The degree of a faced(F ) is the number of edges bounding the faceF and
d (F ) = maxfd(F )g 8F 2 G.

In the worst-case scenario ( ), only one fault can be re-
stored. As an example, in the dodecahedron network with 12
faces shown in Fig. 5, this approach can protect all the bidirec-
tional connections passing through at most 6 simultaneous link
failures.

The above formula is valid only when every connection in the
network is bidirectional. If every connection in the network is
unidirectional, then the maximum number of link failure recov-
eries possible is

(2)

Clearly, the best scenario occurs when all the inner faces have
a common adjacent face, namely the outer face. unidi-
rectional connections can then be simultaneously restored if the
failures occur at the edges that are common to both the
inner and outer faces. Again, in the worst case (only two directed
cycles found), only one fault can be restored.

B. Bounds for Nonplanar Topologies

For nonplanar graphs with anprotection cycle decomposi-
tion, the following conjectures provide a bound on the number
of cycles , and thus a bound on the number of possible link
failures that can be simultaneously restored.

The short cycle double cover (SCDC) conjecture [31] states
that every 2-edge connected simple graphof order has a
CDC with fewer than cycles (holds for all maximal and Hamil-
tonian planar graphs). Thus, the maximum number of link fail-
ures that can be simultaneously restored for bidirectional con-
nections is

(3)
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For practical purposes, however, the maximum number of link
failures that can be simultaneously restored forbidirectional con-
nectionsequals ,where isthenumberofprotectioncycles
found using the OCDC heuristic. For example, in the 6-cage net-
work (Fig. 9) with 7 protection cycles found, this approach can
protect all the bidirectional connections passing through at most
3 simultaneous link failures. This is true since a link failure only
affects the two protection cycles that use that link.

Similarly, for unidirectional connections, the maximum
number of link failures that can be simultaneously restored is

(4)

This is true since both the order of a graph () and the number
of cycles in the OCDC are integers and thus the maximum value
of (according to the SCDC conjecture) is .

Again, for practical purposes, the maximum number of link
failures that can be simultaneously restored for unidirectional
connections equals . For example, in the 6-cage network,
this approach can protect all the unidirectional connections
passing through at most 6 simultaneous link failures.

For specific graphs, i.e., cubic graphs, the upper bound shown
in (3) becomes even more tight. Bondy in [32] conjectured that
if is a 2-connected simple cubic graph ofvertices ( ),
then admits a CDC consisting ofat most cycles. This
conjecture is sharp. The Petersen graph, for example, cannot be
covered with fewer than 5 cycles. This was confirmed by the
OCDC heuristic explained in this work.

C. Bounds for Eulerian Topologies

The maximum number of cycles partitioning the edge set of
an Eulerian graph embedded in the plane is equal to the max-
imum number of cycles of an Eulerian partition without cross-
ings and is equal to the number of faces [33]. Thus, planar
Eulerian graphs are not considered here as they will give results
identical to Section IV-A. Only bounds for nonplanar Eulerian
graphs are considered.

Eulerian topologies can be decomposed into a family of cy-
cles, such that each cycle does not have any common edges with
the other cycles. To account for the original digraphwith its
pairs of directed edges, each cycle in the cycle decomposition is
double-traced. Thus, the maximum number of multiple failures
that can be simultaneously restored is equal to the number of
cycles in the cycle decomposition. A different number of cycles
can be obtained for different Eulerian circuits.

The problem of finding all the Eulerian circuits of an arbi-
trary Eulerian graph is related to the more general optimization
problem known as the Chinese postman problem (CPP) [34] (to
find the shortest closed walk such that each edge is traversed at
least once), which was shown to be NP-complete [35]. In Sec-
tion II-C, a single and cycle decomposition are found for a
given Eulerian graph , and no attempt is made to find all the
possible ’s and corresponding cycle decompositions.

However, an upper bound can be obtained from Hajos’ con-
jecture which states that a simple Eulerian graph of orderhas a
cycle decomposition into at most cycles [31]. Thus,
the maximum number of link failures that can be simultaneously

restored (bidirectional or unidirectional connections) is

(5)

V. CONCLUSION

This paper proposed a general methodology for performing
APS for link failures in optical networks with arbitrary mesh
topologies and bidirectional links. It introduced the concept
of protection cyclesand developed algorithms to obtain these
cycles in networks with planar, nonplanar, and Eulerian
(planar/nonplanar) topologies. A complete solution was pre-
sented for planar and Eulerian networks. The method was
also extended to nonplanar networks, and an orientable cycle
double cover heuristic was developed that obtained the required
family of protection cycles. Bounds on the number of possible
simultaneous link failure recoveries showed that, depending
on the position of the failures, a large number of simultaneous
restorations may be possible.

The paper also demonstrated the implementation of the APS
technique by showing that the protection switches located at the
ends of the network links could be interconnected according
to the identified protection cycles to ensure protection from a
link failure in a comprehensive, conflict free system. This was
achieved by rerouting signals from working to protection chan-
nels, using the protection switches, which were activated imme-
diately after a fault was detected.

The protection process is independent of the source–destina-
tionconnectionscurrentlyon thenetworkand is transparent to the
rest of the network. Only the network nodes that are attached to
the ends of the failed link engage their protection mechanisms as
a response to the link failure. Therefore, the fault recovery system
is distributed, autonomous, and network state independent.

APPENDIX

The Proof of Proposition 2 is embodied in the three claims
that follow.

Claim 1: Every plane graph that is -edge connected, (
2) with vertices ( 3) and bidirectional edges, can be

decomposed into a family of directed cycles where each edge is
used exactly twice (once in each direction), and in each directed
cycle an edge is used at most once.

Proof: A plane graph which is -edge connected (
2) with vertices ( 3) and bidirectional edges consists
of faces. For each inner face, a facial directed cycle can be
formed using all the edges bounding that face in their counter-
clockwise direction. Since for plane graphs each inner face has
only one edge in common with an adjacent inner face, and for
both faces directed facial cycles are formed, then their common
edge is used twice. By creating both facial directed cycles in
the counterclockwise direction, however, it is ensured that their
common edge is used once in each direction. Thus, all “inner
edges” (edges that are part of inner faces only) are used exactly
twice (both directions) while ensuring that each cycle uses an
edge in only one direction. For the outer face, a facial directed
cycle can be formed using all the outer edges in their clock-
wise direction. This way, all “outer edges” (edges that are part
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of inner faces and the outer face) are also traversed twice (both
directions): once when the inner facial directed cycles are cre-
ated (in one direction), and once when the outer facial directed
cycle is formed (in the other direction).

Claim 2: Every plane graph which is 1-edge connected,
with vertices and bidirectional links, can be decomposed
into a family of directed cycles where each edge is used exactly
twice (once in each direction), and in each directed cycle which
does not include a bridge an edge is used at most once. In each
directed cycle including a bridge, the edge defined as a bridge is
used twice (once in each direction) in the same directed cycle.

Proof: The proof for the second claim follows directly
from the proof for Claim 1. The only difference here is the exis-
tence of bridges that lie in inner faces or the outer (unbounded)
face. For inner faces that have bridges lying in their bounded re-
gion, the counterclockwise inner facial cycles will include these
edges. If the outer face has bridges lying in its unbounded re-
gion, its clockwise outer facial cycle will also include these
edges. All bridges will be traversed twice (both directions) in
the inner (counter-clockwise) or outer (clockwise) facial cycles.

Claim 3: Every planar graph which is 1-edge connected,
with vertices and bidirectional links, can be decomposed
into a family of directed cycles with the characteristics defined
in Claim 2.

Proof: A graph is planar if it has an embedding in the
plane. Since the validity of Claim 3 has already been proven
for plane graphs, then by the definition given above, it is true
for planar graphs.
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