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Abstract—A fault recovery system that is fast and reliable is es- to switch to the protection fiber are chosen [5]. Generally, the
sential to today’s networks, as it can be used to minimize the im- time it takes to detect the failure and switch to the protection
pact of the fault on the operation of the network and the services it fiber is on the order of millisecondsWithin this time frame. the

provides. This paper proposes a methodology for performing au- . . . .
tomatic protection switching (APS) in optical networks with arbi- network can recover from a cable failure without interrupting

trary mesh topologies in order to protect the network from fioer ~ the services transported over the network, e.g., telephone calls,
link failures. All fiber links interconnecting the optical switches are  data transfers, etc. [6].

assumed to be bidirectional. In the scenario considered, the layout  The networks considered in this paper are composed of op-
of the protection fibers and the setup of the protection switches tical links and optical switches. Under normal operation, the

is implemented in nonreal time, during the setup of the network. twork t b f acti destinati
When a fiber link fails, the connections that use that link are au- network supports a numboer or active source—adesunation con-

tomatically restored and their signals are routed to their original Nections, whose paths are determined by the settings of the op-
destination using the protection fibers and protection switches. The tical switches. The discussion applies generally to networks that
protection process prop_osed is_fast, d@stributed,_and autonomous. may carry multiplexed connections on each fiber (e.g., wave-
It restores the network in real time, without relying on a central jayqth division multiplexed networks). In these networks, a typ-
manager or a centralized database. It is also independent of the . [ link ists of ir of unidirecti | Kina fib d
topology and the connection state of the network at the time of the Ica .|n con.s[s S 9 aparo urn |r§c lonal working i .ers an
failure. a pair of unidirectional protection fibers that are terminated by
Index Terms—Optical network, optical switches, protection, fogr protec'tlon switches. When a fiber link is cut, c':onnec'tlons
restoration strategies, survivability, wavelength division multi- Using that link are automatically restored by rerouting their op-
plexing (WDM) networks. tical signals around the fault using the protection fibers and pro-
tection switches.
This paper is divided into two parts. In the first part, a novel
I. INTRODUCTION ; 1 .
o ) . technique is presented, showing how to solve the APS problem
HE MOST prevalent form of communication failures is thg, esh networks. The second part demonstrates how this ap-
| accidental disruption of buried telecommunication Cableﬁroach is implemented in an optical network to provide full pro-
Fiber cuts may result, among other reasons, from constructi@ion capabilities against a fiber link failure.

work (*backhoe fade”), rodent damage, fires, or human error gecion || of this paper describes the general methodology
[1]. Clearly, the need for fast and reliable protection of Servicgg; getermining the interconnection configurations for the
is essential in high capacity optical systems. This paper propo¢section switches. A complete solution of this problem is pre-
a gen_eral methodology for 'performlng link fa|Il.3|rerotect|.0r'1 sented for networks with planar or Eulerian (planar/nonplanar)
in optical networks with arbitrary mesh topologies and bidireggyo|gies, together with algorithmic methods for extending
tional links using automatic protection switching (APS). Thg 15 networks with arbitrary nonplanar topologies. Section
reader should note that switch failures are not discussed in thiSyemonstrates the link failure protection process. The APS
paper as they constitute a different problem with its own set ,Qflstem components and protocol are presented, followed by
solutions. A summary of the approach takenwhen a switch falls expjanation of how the APS process works in the case
can be found in [2] and [3]. For a more extensive analysis, t¢ 5 fiper link failure. Examples of link failure protection in
reader should turn to [4]. networks with planar, nonplanar, and Eulerian topologies are

In networks using APS as their protection mechanism, fallis, qemonstrated. Bounds on the number of simultaneous
ures are circumvented by re-routing signals freorking chan-  ,sgible link failure recoveries are calculated in Section IV,
nelsto protection channelaisingprotection switcheat the ends  ~qnclusions follow in Section V.
of each network link, which are activated immediately when a
fault is detected. Some specific physical properties of the signal
are monitored at all links and threshold values determining when

The networks are modeled by directed graphs (digraphs),
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Il. GENERAL METHODOLOGY
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Fig. 2. Directed cycles in th&'; ; graph.

Fig. 1. Directed cycles in a plane graph.
a vertex) [9]. The resultant embedded graph is callgdbae

This work provides a methodology for protecting any neflraph. Any connected planar graph, embedded in a plane, with
work whose digraph is 2-edge connected (that is, it takes the fevertices ¢ > 3) andm edges, hay’ = 2 + m — n faces
moval of at least twdidirectionaledges to break the graph into[10] (regions defined by the plane graph) wh¢ris denoted as
more than one disconnected component), against the failurEsfer’s number The number of faceg includes(f — 1) inner
any link. The method proposed also protects 1-edge connedi@ees and one outer face (the unbounded region). The protection
networks (networks containirtyyidge§ against any link failure cycles are then a set of facial cycles with special orientations.
except the failure of a bridge. Proposition 2: Every planar grapiz can be decomposed

The protection methodology proposed is based on intercdfto & family of directed cycles where each edge is used ex-
necting the protection fibers to create a family of directed cycleaStly twice (once in each direction), and in each directed cycle
calledprotection cyclesin the following manner [4], [7]. that does not include a bridge an edge is used at most once. In

Proposition 1: Recovery from a single link failure in any each directed cycle including a bridge, the bridge is used twice
optical network with arbitrary mesh topology and bidirectiondPnce in each direction) in the same directed cycle. (The proof
working and protection fiber links can be achieved using APSf Proposition 2 is presented in the Appendix).
if a family of directed cycles using the protection fibers can be Thus, for planar graphs, the required set of protection cycles
found so that: i) all protection fibers are usexchctly onceand can be obtained by embedding that graph on the plane, iden-
ii) in any directed cycle, a pair of protection fibers are not uséying the faces of the plane graph, and traversing those faces
in both directions unless they belong tbrdge in a certain direction. The following deals with algorithms that

The proof of this proposition will become apparent in Sedeerform these tasks.
tion IlI. Fig. 1 is an example of a (planar) graph with six directed 1) Planarity Testing—Face Traversal (PTFT) Algo-
cycles, and Fig. 2 (representing grafih ) is an example of a fithm: Given a graphG:, a planarity testing algorithm has
(nonplanar) graph with three directed cycles. In both cases, {RePe invoked to determine whether the graph is planar or
cycles cover the graph in the manner prescribed in Propositid@t- Furthermore, if the graph is indeed planar, it has to be
1. By appropriately interconnecting the protection switches fiinbedded in the plane and its faces have to be traced in the
the corresponding network, these cycles would be imp|emen@apropriate directions. It is important to distinguish between
as protection cycles on the corresponding protection fibers. knowing a graph is planar and knowing the plane mapping

Note that what is presented in this paper is a scheme f8f that graph. The latter problem can be quite difficult if the
automatic link protection requiring exactly one protection fipegraph is drawn randomly. For example, the graph presented
for each edge of the network (independent of the netwolk Fig- 3(a) is planar, but its embedding in the plane [Fig.
topology). This is a different approach from the cycle covel(b)] is not obvious. The algorithm should provide sufficient
methodology presented in [8], where a set of cycles that covéitormation for this embedding to be constructed.
all edges was obtained, and that set of cycles was used as pré>iven a graplt, planarity testing algorithms exist [11]-[14]
tection cycles. That approach usually requires more protectiéiat test whether grap¥ is planar. A new algorithm has been
fibers than network edges. The only case where the appro&igyeloped for this work that tests if a graph is planar and, if
presented in [8] requires only one protection fiber per eddfeis, the algorithm embeds the planar graph in the plane and
is the special case of Eulerian networks (that are not typid&kces the faces in the appropriate directions to create a family

topologies) which is also addressed in this work. of cycles with the characteristics defined in Proposition 1. Fig. 4
shows the flowchart of the PTFT algorithm [15]. The PTFT al-
A. Networks with Planar Topologies gorithm developed is a variation of the path addition algorithm

by Gibbons [13], which is itself a variation of the Demoucron,

A graph isplanar, if it can be drawn on the plane in such al\/IaIgrange, and Pertuiset path addition algorithm [11]. It is a

way thatno two edges intersect (have a common point other thcaor}]structive algorithm that starts from a cycle and adds a single

3In the rest of the paper, link failure recovery excludes bridge failures.  edge (SE) or one edge group (EG) atatime. Each time one SE or
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was shown to be true fa-edge connected graphs by a theorem
of Jaeger [18], for graphs with Hamiltonian Paths [19], for
2-connected 3-regular graphs containing no subdivision of the
Petersen graph [20] and for cubic graphs edge colorable with 3
colors [20]. While the cycle double cover conjecture has never
been proven for arbitrary graphs, it was shown in [17] that a
minimum counterexampte must be asnark® Furthermore,
Celmins in [21] showed that the minimum counterexample
to the CDC conjecture must be sirong snarké Finally, it
was further proven that a minimum counterexample to the
cycle double cover conjecture has girth at least seven [17].
Fig. 3. A planar graph with a not so obvious embedding in the plane. Thus, the minimum counterexample to the CDC conjecture
has to be a strong snark of girth at least seven. But, no
EG is added, a face is split in two or more faces. The algorithsmark of girth at least seven is known to exist and it was
terminates if it determines that graghis nonplanar or if the conjectured in [22] that such snarks do not exist (conjectured
number of faceg” equals Euler's number (graph is planar). Byhat every snark has girth at most 6).
adding one or more faces at a time, the graph is automaticallyTwo classes of snarks are shown in Fig. 7. Both examples
embedded in the plane as well. All the edges are bidirectiort@ve girth 5. Obviously, snarks are graphs with unigue topolo-
and in the algorithm both directions of an edge are used in ordges, and it is not anticipated that telecommunication networks
to construct all faces. Thus, after the plane graph is constructedth such topologies will be encountered. So, even if a coun-
the corresponding face tracing is also obtained. terexample to the CDC conjecture does exist, it is highly un-
Fig. 5 shows an example of a planar graph with the corrikely that any of the telecommunication networks encountered
sponding faces found using the algorithm. The algorithm wasgll be counterexamples. A rule in the design of the network can
also exercised for a number of nonplanar graphs and it was afleo be adopted to ensure that this never happens.
to correctly determine that for any given nonplanar graph a planel) An OCDC Heuristic: A new heuristic algorithm has been
embedding cannot be found. Fig. 6 shows an example of a ndeveloped in this work to obtain an orientable cycle double
planar graph (the Petersen graph) for which the algorithm hesver of any given graph [23]. The heuristic algorithm will also

concluded that it is not planar. work for graphs with bridges. Obviously, in these graphs the
. . bridges will be traced twice in a single cycle.
B. Networks with Nonplanar Topologies Fig. 8 shows the flowchart of the orientable cycle double

In order to find the protection cycles for a graph with a norfover heuristic algorithm. This heuristic is based draaktrack
planar topology, aycle double coveof the graph has to be approach that searches the graph in a systematic method in order
found. A Cyc|e double cover of a grar@] is defined as a Cyc|e to obtain a CDC. Every time it has to make a choice for an edge
decomposition of7 such that each edge appears in exacﬂy twie be included in the current cycle, certain constraints have to be
cycles [17]. Thus, the set of protection cycles being sought coffserved. The constraints in choosing an outbound edge ensure
prise cycle double covers with some additional properties coftat an edge will not be chosen that violates the properties of the
cerning their directions. A crucial conjecture concerning thiycle double cover. All edges are used in the cycle decomposi-
problem is the following. tion, each edge is used only in one cycle (always chosen from a

Cycle Double Cover (CDC) Conjecturd:et G be a bridge- set of unused edges), and both directions of an edge are not used
less finite graph_ Then there exists a set of Cyc|£ guch that inone cycle unlessthatedgeisa brldge Furthermore, additional
each edge off is in exactly two of the cycles (i.e., every bridgefrecautions are taken to ensure that bridges attached to cycles
less finite graphd has a cycle double cover). are added to these cycles and cycles that are only comprised of

A cycle double cover is said to be orientable when it is po#2e two directions of a bridge are not allowed [23].
sible to choose a circular orientation for each cycle of the doubleThe backtrack approach enables the heuristic to “reconstruct”
cover in such a way that each edge is taken in opposite diréde current cycle if it reaches a vertex where any choice of an
tions in the two incident cycles of the double cover [17]. A®utbound edge would violate the constraints presented above.
orientable cycle double cover is exactly our goal: a cycle dé&his is done as follows: during the construction of the current
composition such that each edge appears in exactly two cyclegle, the heuristic keeps in a list all vertices where more than
andeach edge is used in opposite directions in the two cycle§ne outbound edge exists that does not violate the constraints.

Therefore, Proposition 2 app”es to all graphs pro\/ided that & the top of the list is the latest vertex where such a condition
orientable cycle double cover exists for arbitrary graphs. Certfacurs. If the heuristic reaches a vertex where any choice of an
classical conjectures in graph theory. suggest that this is the C.a§ﬁ G is a minimum counterexample to the cycle double cover conjecture,
[17]. For example, the face boundaries of the plane embeddifgh ¢ is a bridgeless graph with no double cover which has a minimum
of a planar graph (oriented properly) constitute an orientablember of edges among graphs with these properties.
cycle double cover (OCDC). Note that Fig. 2 is also an examplg’A snark is defined as a cyclically 4-edge-connected cubic graph of
of an orientable cycle double cover of a nonplanar graph. g'réhAatstlrziZt Sf'r‘]’aer‘k V‘i':'c: Shnzsrk;:hgg;t'fh;{'dg :/2:}/ edge, G ee

There are limited cases where the validity of the CD@he unique cubic graph homeomorphic ¢ — ¢) is not edge E:olorable
conjecture has been proven. For example, the CDC conjectufi& 3 colors.
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START | i
| 1
> \ Input Edges {
] STEP 0 : UNuseD EDGES = ALL EDGES :
| + |
! Call simplified Backtrack |
1 Routine to get the first Circuit |
! ASSIGN FACE 1 AND FACE 2 |
Find all Single Edges (SE’s) i NUMBER OF FACES = NF =2 |
for face F; UNUSED EDGES = UE = E - CIRCUIT
| | BuLer’s NUMBER =EN=E-V +2| |
i=i+1l l I
e e e e e e - — 4
Yes Find all possible edge groups
(EG's) using the backtrack
approach
No *
. Ensure that EG’s that cross
Number of SE’s =N a boundary do not end up in
* another face.
b=0 *
Split the faces using these
| unique EG’s.
Y
From among the SE’s,
select SE; with the
least number of faces
to split.
Split the face using
SE;
b=b+1
All unused EG’s
No Yes are placed in the NON PLANAR
Unused Edge list + STEP 0
STOP

Fig. 4. Flowchart of the PTFT algorithm.

Number of faces = 12

Face[0] = {15 16][16 19][19 18][18 14][14 15]
Face[1]= {16 15][15 11]{11 12712 13][13 16]
Face[2] = [5 31{3 7]{7 10][10 9][9 5]
Face[3] =11 15][15 14]{14 9][9 10][10 11]
Face[4] = [20 61{6 41{4 2][2 1][1 20]

Face[5] = [2 41[4 81(8 71{7 31([3 2]

Face[6] = [5 9][9 14]{14 18]{18 17][17 5]
Face[7] =[5 17117 11{1 2][2 313 51

Face[8] = [19 16][16 13][13 6](6 20][20 19]
Face[9] = [12 11][11 10][10 71[7 8](8 12]
Face[10] = [18 19][19 20][20 1][1 17][17 18]
Face[11] = [4 6][6 13][13 12](12 8][8 4]

®19

Fig. 5. Face traversal for the dodecahedron graph.

outbound edge violates the constraints, it takes out of the list hehooses another edge that does not violate the constraints, and
latest vertex with multiple choices of “viable” outbound edgegreates a new cycle from that point on.
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Number of faces found =4

Face[0] =[10 8][8 6][6 1]{1 5][S 10}
Face[1] =3 4]{4 5](5 11[1 6]{6 8]{8 3]
Face[2] = [3 8][8 10]{10 7][7 2][2 3]
Face[3] =[3 2]{2 71{7 10][10 5][5 4](4 3]

Unused Edges = [1 2][2 11[7 91[9 41{9 61[9 7]
{69114 9]

GRAPH IS NON-PLANAR

cycle double covers for planar graphs. This is true since the
heuristic does not limit itself to nonplanar graphs but is appli-
cable to all types of graphs. Fig. 10 shows a plot of the number
of cycles found using the orientable cycle double cover heuristic
compared to the number of faces of the plane embedding for
various planar networks.As expected, the number of cycles
for planar graphs found using this heuristic was less than or
equal to Euler's number (number of faces) which is the max-
imum number of cycles possible. The number of cycles found
using the OCDC heuristic, however, was comparable to Euler’s
number, i.e., the cycles obtained were relatively small in size.
Note that the heuristic outpuédementary cycleBy peeling off
cycles that pass through a vertex more than once from the cycles
Fig.7. Two classes of snarks: (a) Blanusa snark (girth = 5), (b) Szekeres’ snfkcycle setC'. This is an attempt to obtain as large a number of
(girth = 5). protection cycles as possible, so as to increase the number of

_ . simultaneous failures that can be protected (as is later shown in
A final step also ensures that if cycles have already been CE&sction V).

ated that do not enable the algorithm to obtain a cycle doubléryg gj;¢ of the protection cycles is also important in regards
cover of the graph, the heuristic eliminates these cycles and f£-,o quality of the optical signal that traverses them. As
peats the procedure finding other cycles that can be a part of the, above, the algorithms try to obtain elementary cycles
_cycle_double cover of the graph. To do this, the heur_istic tries 0 order to keep the size of the cycles small. However, there
identify the last vertex where the problem occurs, i.e., the Ias} ;|4 exist cycles that are relatively large. Obviously, the

vertex where a choice of an outbound edge cannot be found, lfetion cycles should be engineered in such a way that the
then eliminates one of the previous cycles that uses this verfex, | signal reaches the other side of the protection cycle in

and repeats the procedure to obtain new cycles. This is identigal atisfactory condition. Nevertheless, if the protection cycle

to the backtrack approach explained above, but in this case the, g extremely large, this cannot always be achieved. We

heuristic backtracks to previous cycles and not edges. ThisWay, ¢\yrrently in the process of trying to aleviate this problem
the heuristic can go through all possible combinations of Cydﬁﬁlizing two distinct approaches. The first approach tries

with the characteristics presented in Proposition 1, until it findsg |imit the size of the protection cycles by adding an extra
family of cycles that constitutes an orientable cycle double covey \«traint in the OCDC heuristic and the second approach

The backtrack approach used in this work is exponential {faq 1o “breakup” the network in smaller subnetworks before

the worst case since it may require searching of all possible $applies the OCDC/PTFT heuristic (thus ensuring that the
lutions in a systematic manner. However, on the average it pSFbtection cycles cannot exceed a certain size).
forms much better by pruning the decision tree when it ascer-

tains that_tra_versmg that tre.e in gspecmc directionis no_t aIIoweéi_ Networks with Eulerian Topologies
because it violates constraints imposed on the protection cycles. ] ) _
For the telecommunication networks considered in this work, In the mesh networks considered, all working and protection

with only a few hundred switching nodes, the running time dfo€r links are bidirectional. Therefore, by modeling the network

the algorithm was found to be negligible [23]. In addition, sinc@ith only the protection fibers accounted for) as a digrdph

this algorithm will be implemented off-line, during the desigr‘?aCh vertex of the digraph will have the same indegree and out-

of the network, its computational time will not affect the protecdegree {d(v) = od(v) ¥ v ¢ V(D)] and the degree of each

tion process. vertex will be even. Since for any two verticesina bidirec-
First, the heuristic was tested for networks having nonplani@nal walk exists between them, the digraph is also strongly

topologies. Fig. 9 shows the. 6fcage network and_its Or.iemableThese networks were obtained by deleting a number of edges from the cor-
cycle double cover. The heuristic was also able to find orientabégponding nonplanar networks.
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START

Initialize

K EX

A
Choose start node randomly
start node = prev. node =
current node
! a2 ]
Choose outbound edge gacktrack tt(; node .
. . emove subsequen
according to constraints edges from CCCE list
No
prev node = current node
current node = next node Pop stack
selected edge placed in a
list
Yes
this is the Node g node = prev. node
at which blocking
occurs *
i=0
Formed cycle - delete
from unused edge list
Remove
cycle(i)
No
Number of cycles
already found

Fig. 8. Flowchart of the OCDC heuristic.

connected. Thus, all networks considered can be modeledgasph does not guarantee that for an edge (which is not a bridge)
strongly connected Eulerian digraphs. both directions are not included in a single cycle.

A cycle decompositiors for any Eulerian digraph can al- The directed grap® (which represents a model of the orig-
ways be obtained [10]. Furthermore, simple algorithms exist amal network) is transformed into an undirected gr@phy re-
how to perform a cycle decompositfoof an Eulerian digraph. placing both directions of a bidirectional edge with an undi-
However, the family of cycles found will not correspond to theected edge. If the resulting gragh is Eulerian (denoted as
family of protection cycles with the characteristics as defined graphGg), its cycle decompositiol§ can be used to provide a
Proposition 1, since a cycle decompositi®of an Eulerian di- family of protection cycles. This is true because gréhhdoes

s _, _ _ _ _not have any multiple edges interconnecting two vertices. Thus,

A cycle decompositior' of a digraphD is defined as a set of pairwise L. . . .
arc-disjoint cycles oD such that every are € A(D) belongs to precisely one acycle d_ecompos't'OS of Eu'?”an grapht7 will not contain .
element ofS [10]. an edge in the same cycle twice. When the cycle decomposition
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Number of Cycles =7

Cycle[0] = [1 14][14 13][13 12][12 11]{11 10][10 1]
Cycle[1] = [8 717 2](2 31(3 12][12 13][13 8]
Cycie[2] = [4 3][3 21[2 1][1 101[10 9]{9 4]

Cycle[3] = [9 8][8 13][13 14][14 5][5 4]{4 9]
Cycle[4] = [9 10][10 11]{11 6][6 717 8]{8 9]
Cycle[5] = [3 414 5](5 6}[6 11111 12][12 3]
Cycle[6] = [7 61[6 51[5 14]1{14 11{1 2}(2 7]

Fig. 9. Orientable cycle double cover of the 6-cage network.

O Faces
® CDC

A @ Faces and CDC
are equal
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15

Number of cycles
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es o5

| | | | | | | { -
] I | I | I I | -

Arpanet, NSF, National, K5, K6, Petersen, Dodecahedron Icosahedron

Type of Planar Networks

Fig. 10. Number of cycles found for various planar networks using the OCDC/PTFT heuristics.

S of the Eulerian graplé7 ¢ is found, each cycle i¥ is traced heuristic was also applied to get a second (different) set of pro-
twice (once in each direction) to account for the bidirectionébction cycles. Using the OCDC heuristic, 9 cycles were ob-
edges in digraptD (corresponding to the bidirectional protectained. Obviously, the OCDC heuristic will be preferred (for this
tion fibers in the original network). These double-traced cyclexample), since it allows for more cycles and thus for a possi-
will satisfy the requirements for the protection cycles defined inility of more simultaneous link failure restorations. Note that
this paper. for a planar network that is also Eulerian, the PTFT algorithm is
An algorithm was implemented that transforms digrdpto  always preferred since it will result in the maximum number of
graphG, tests to determine whether gra@tis Eulerian, and if protection cycles possible (equal to the number of faces in the
it is indeed Eulerian, the algorithm determines an Eulerian cjptane embedding).
cuit (EC) and a cycle decomposition (set of cyclgsfor the
Eulerian graph?g [24]. The algorithm used in this work, ob-
tains an Eulerian circuit of grapfiz and traverses tha C, lll. APS PROCESSIMPLEMENTATION
eeling offone cycleC after another by deleting certain seg-
&entsgofEC suc% that the remainder a‘i)l‘/C formsgan EuIeriangA' APS System Components
circuit for graphGg — C [25]. 1) Protection Fibers: Each link consists of a pair of uni-
Fig. 11 shows an example of the algorithm for {de5}-cage directional working fibers (in opposite directions) and a pair
graph. The algorithm recognizes that the graph is Eulerianoit unidirectional protection fibers (in opposite directions). The
finds one of the possible Eulerian circuits, and using #i&t, protection fibers are the ones responsible for carrying the sig-
it performs a cycle decomposition of the graph. This cycle deals around a fault once a failure occurs.
composition results in a set of 4 cycles. These cycles are conse2) Protection SwitchesThe protection switches used to
guently double-traced to account for the bidirectional edgesperform the APS functions atex 2 switches. These switches
the original digraph. Since this graph is nonplanar, the OCDs&an be optomechanical switches or some other type (such
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This is an Eulerian graph.

The sequence of the Eulerian Circuit is

[1234567891011121184158 19
21361731671810131512179145
191116141]

The cycle decomposition of this graph is :

cycle#1[1234567891011121]

cycle#2[ 18 19213617316718]

cycle#3[ 14 16 14]

15121

cycle#4[11 121791411

Fig. 11. Cycle decomposition of (Euleriafy, 5}-cage graph.

as lithium niobate (LINb@) based electrooptic switches, Before Link Failure
acoustooptic, thermooptic, magneto-optic, etc.).

Each bidirectional fiber link has four of these switches asst
ciated with it as shown in Fig. 12. & x 2 protection switch
has a working fiber input and output port and a protection fibe
input and output port.

During normal operation, the switches are connected as fc
lows: working input port is connected to working output port
and protection input port is connected to protection output po
The ports of different protection switches are interconnected
a way that creates the family of protection cycles described

[

Section II. These are calculated during the initialization of th After Link failare
network. Fig. 13 shows the interconnection of the protectio T _/Jﬂ- s
switches in a seven-node planar network. It corresponds to t .ttt oo T
five faces of the corresponding plane graph that constitute tl ! | A "IF' PN 11— ",F' ‘
set of protection cycles. Lo 4
. . |

B. APS Protocol a2 dh, P

Several APS switching commands are issued either autom| A J‘* -t N

- —

ically or manually as a response to various initiation criterie

These commands modify the settings of each protection swit

in order to achieve signal restoration after a fiber link failure.
APS Switching Commands:

Clear (C): This command clears thé& P, ASP, and
MSP commands and allows the switch to revert back to it
default state.

Lockout of Protection (LP):This command prevents
switching from any working to protection fiber.

Automatic Switch to Protection (ASPJthis command Manual Switch to Protection (MSP)This command man-
automatically switches from working to protection fiber unles§a”y switches from working to protection fiber.
anLP command was previously issued. For a protection switch ~1anual Switch to Working (MSW)This command man-
this means switching from working input port to protectior@la”y switches from protection to working fiber.
output port and from protection input port to working output £jg 14 shows the state diagram for the proposed protection
port. _ _ _ _ switching process. The protection switch can be in one of six

Automatic Switch to Working (ASW)this command au- giates (default, lockout, engaged, LOS(W) timing, signal on pro-
tomatically switches from protection to working fiber. tection fiber (SPF) timing, or LOS(PF) timing). Initially, the

protection switch is in the default (enabled) state. If a loss of

9These commands are similar to the APS switching commands useds_iirgnaI (Ijos) is detected at the WOI’ij’lg fiber for a SUStain_ed pe-
point-to-point and self-healing ring (SHR) SONET systems [26], [27]. riod of time (longer than a preset timer), the controller issues

—— Working fiber

O Optical Switch

- — - Protection fiber
H 2x2 protection switch

Fig. 12. Protection switch settings before and after a link failure.
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means routing the signals from the switching node at one side
i g h 6 - §-+ ———————— g - "Q_] of the failed fiber link to the switching node at the other side of
A S *’@ED] qz/n;@ ———————— “§3\$ | the failed fiber link using redundant protection fibers. Note that
b Tl the APS process will restore the connections that use the failed
Lo L P link in both directions.
T2 b ~o As soon as the fiber link fails, the failure is detected in the
! E‘?_jg_“ ~ _@EEIJ E‘\f{j@_; 77777777 - ! switching nodes on both sides of the failed link. The protec-
! Q R = O/ = e Q ! tion switches then switch from working fiber to protection fiber
s - ﬁt.] EF.§ Y v and vice versa. The protection switches associated with the rest
T - T of the links in the same switching node do not engage and re-
Lo — ¥ &D main at their original (default) position. Fig. 12 demonstrates
! f ﬁj/i S\'ﬂ‘ g?h ; the settings of the protection switches in two switching nodes
T Q - T Q | before and after a link failure. By switching the signals from the
L *-g _____ g ~~~~~~~~ *-& AAAAA working fiber to the protection fiber, the failed fiber link is auto-

matically bypassed. When the signals come out of the switching
node at one side of the failed link, they are switched onto a pro-
tection path (part of a protection cycle), which circumvents the
commandASP and the protection switch engages. The switdigiled link and reaches the other side of the failed link using the
will return to its default state when it receives a$W (for protection fibers. Once at the other side of the failed fiber link,
revertive systems)i/ SW (for nonrevertive systems), @lear they switch from the protection fiber to the working fit?er_, and
command. Similarly, if an optical signal is now detected at tHg!low the same path as before the failure occurred. Itis impor-
protection fiber (SPF) for a sustained period of time (longer th@nt to emphasize that since the signals eventually switch back
a preset timer), the protection switch will enter a lockout staf@ the working fiber, the optical switches do not change their
and remain there until there is no longer optical power on ti§&ttings because of the failure. N o
protection fiber or &Clear command is issued. Optical power Proof of Proposition 1 is thus trivial. Each bidirectional
on a protection fiber means that the protection switching mecorking link is associated with two protection cycles. Taking
anism has engaged at another location in the network, so AR direction only, the working link is associated with a single
switch should not engage until the other failure has been fotection cycle. When the link fails, the protection cycle
stored. When there is no longer an optical signal on the prassociated with that link willwayscarry the signal (using the
tection fiber (for a time longer than a preset timer), this meaRéotection f|_bers) to the ot.her side pf the link and thus restore
that the failure was either restored or the protection fiber itsdfte connection by bypassing the failure.
has failed. In either case, the protection switch reverts to its deJf the length of the protection cycles is large, one or more
fault state. Finally, an MSP command will force the protectioftultiwavelength optical amplifiers may be needed at appro-
switch to engage, provided it is not used in another protectiffiate locations in the protection cycles to provide optical signal
process. This command is used to test the protection switchgPlification. When there are no network faults, the protection
mechanism, up to and including the final switch. switches are in their default positions, creating cIo;ed paths on
If only one direction of the fiber is cut, a signaling mechath'e'protectlon cycles. In the absence of an optical S|gnal,'the am-
nism is required to carry the APS messages between the ridiers on these paths will produce a noise output due in large
work nodes. The signaling messages can share the same pRgELt0 Spontaneous emission (ASE noisehis ASE noise can
ical links as the transport network, or they can use a completéijculate in the closed loop, reaching significant levels, and ulti-
different (physically diverse) network. The former case is muchately .Ieadlng to .amphfler oscillation and saturation [29]. After.
simpler and less expensive, but signaling can be compromise@fRtection switching is engaged because of a failure, there will
the case of a failure in the transport network. The latter methdif & transition period (time for the ASE noise to exit the net-
even though more expensive, is more robust, since signaling{¥2rk as well as time for the amplifier gains at the signal wave-
formation is guaranteed to flow in the network even in the evel@gth to stabilize) during which the ASE noise will interfere
of a failure. and adversely affect the information signal. A number of dif-
For optically amplified links, a separate supervisory chann@r?nt solutions havg been proposed to eliminate these amplifi-
using a dedicated wavelength (in-band or out-of-band WDRR!ion loops. These includeggingalgorithms based on Euler
channel) is being standardized by the ITU [28]. A separaf¢twork designdilation of the cross-connect switchesyo-
signaling wavelength carrying a low (in the Mb/s range) pridednetwork design, and the installation oircuit breakers
rate signal and using an appropriate protocol can be used48], [30]- ) )
this scheme as well to provide communication between thel) Examples of the Protection ProcesBig. 15 shows a

Fig. 13. Protection switch settings in a seven-node planar network.

switching nodes. seven-node planar network with a bidirectional connection
from S to D. The protection ports at different protection
C. APS Process switches are interconnected in such a way (see Fig. 13) that

Th? objective of the APS processis to prote.ct the connectionsoyhen there is an optical signal present in the protection fibers, no loops
passing through the failed fiber link once a failure occurs. Thatist because the optical signal enters and leaves the cycle at different points.
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Timer Expires
(ASP)

PS ENGAGED
STATE

PS DEFAULT
STATE
ASW/MSW/Clear

Fig. 14. State diagram of the protection switching process.
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Fig. 15. Restoration of a bidirectional connection in a seven-node planar network after a link failure.

the protection fibers associated with them form a family dfgure shows failure recovery for (unidirectional) connections
directed cycles as defined previously in Section Il. Assuming®l—-D1 andS2-D2 after two link failures for the corresponding
link failure occurs, the protection switches on both sides of th#€; 3 network.
failed link switch from working to protection and vice versa.
The path fo!lowgd by the s_ignals is shown by a solid dark I_inB_ Scalability Issues
up to the failed link. The signals then switch to the protection
fiber and follow the dotted dark line until they reach the other When a network node is added to the network topology, the
side of the failed link. There, they switch back to the workinghain consideration is the effect of this addition to the character-
fiber and follow the same path as before the link failure. istics of the topology (i.e., if it was planar, does it still remain
Since a family of directed cycles is found using the prote@anar, and so on). There are three cases of interest here. In the
tion fibers, if two (or more) link failures occur, with all links onfirst case, a node is added to a planar topoldgyand the re-
distinct protection cycles, all unidirectional connections passiisglting graph is also planar (with topolo@¥). The addition of
through these links can be protected. the node (with its corresponding edges) disturbs only one of the
A network based on the (nonplandt) ;s graph is shown in faces of topologyli. The maximum number of affected nodes
Fig. 16. Based on a set of protection cycles, the appropriate cathe number of nodes on that face. Thus, only the protection
nections for the protection fibers and switches are indicated. Téwitches in the nodes lying at the boundary of the affected face
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Fig. 16. Restoration of two unidirectional connections in fig; network after two link failures.

will have to change their interconnections to account for the newlIn the worst-case scenarig & 2), only one fault can be re-
faces created. All other network nodes will be unaffected by tistored. As an example, in the dodecahedron network with 12
node addition as far as survivability is concerned. The maximuiaces shown in Fig. 5, this approach can protect all the bidirec-
number of affected nodes in a graph will be equal to the mattenal connections passing through at most 6 simultaneous link
imum face degre€,, ()1 failures.
If the addition of a node to a planar topolo@y results in The above formula is valid only when every connection in the
a nonplanar topolog¥{s, the protection cycles will not corre- network is bidirectional. If every connection in the network is
spond to the faces of the plane graph anymore, but they wilidirectional, then the maximum number of link failure recov-
have to be recalculated using the OCDC heuristic developederies possible is
this work. Similarly, in the third case when a nonplanar topology
T scales to a nonplanar topolog@y, the protection cycles will Ph.=f—1 2
again have to be recalculated.
Clearly, the best scenario occurs when all the inner faces have
IV. MULTIPLE LINK FAILURES a common adjacent face, namely the outer f4¢e- 1) unidi-
rectional connections can then be simultaneously restored if the
failures occur at théf — 1) edges that are common to both the

As illustrated in Section II-A, planar graphs can be decomyner and outer faces. Again, in the worst case (only two directed
posed into directed cycles by first embedding the planar grali’%les found), only one fault can be restored.
in a plane. The number of such cycles equals the number of faces ’

finaplane graphf{ = ¢ = m + 2 — n). It is trivial to show .
that folroa plagar%rﬁph this is the maxi?num number of directeBd Bounds for Nonplanar Topologies
cycles that can be found with the properties described in PropoFor nonplanar graphs with ahprotection cycle decomposi-
sition 1. Assuming bidirectional connections, every time a linkon, the following conjectures provide a bound on the number
fail, it usesat mosttwo protection cycles. If the link that failed Of cyclesS, and thus a bound on the number of possible link
corresponds to a bridge, then only one protection cycle is usé&ilures that can be simultaneously restored.

Otherwise, a link failure will affect the two protection cycles The short cycle double cover (SCDC) conjecture [31] states
that use that link. If another link in these two protection cyclei§at every 2-edge connected simple gr&plof ordern has a
fails, recovery from both failures is not possible. Therefore, tHeDC with fewer tham cycles (holds for all maximal and Hamil-

A. Bounds for Planar Topologies

maximum number of link failure recoveries possible is tonian planar graphs). Thus, the maximum number of link fail-
f ures that can be simultaneously restored for bidirectional con-
b . .
max — \‘gJ (1) nections Is

1IThe degree of a fac#( F') is the number of edges bounding the fd¢and NP = n—1 (3)
dmox(F) = max{d(F;)} VF; € G. max 2 )
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For practical purposes, however, the maximum number of limkstored (bidirectional or unidirectional connections) is
failures that can be simultaneously restored for bidirectional con- n—1
nectionsequalsS/2|, whereS isthe number of protection cycles Eopox = { 5 J . (5)
found using the OCDC heuristic. For example, in the 6-cage net-
work (Fig. 9) with 7 protection cycles found, this approach can
protect all the bidirectional connections passing through at most V.. CONCLUSION

3 simultaneous link failures. This is true since a link failure only Thi q | methodol f formi
affects the two protection cycles that use that link. IS paper proposed a general methodology for performing

Similarly, for unidirectional connections, the maximurﬁAPS fOT link fa||ur_e§ n ppt|ca! networ_ks with arbitrary mesh
. topologies and bidirectional links. It introduced the concept

number of link failures that can be simultaneously restored is . : _

of protection cyclesand developed algorithms to obtain these
cycles in networks with planar, nonplanar, and Eulerian
(planar/nonplanar) topologies. A complete solution was pre-

o ) sented for planar and Eulerian networks. The method was
Thisis true since both the order of a graph&nd the number 554 extended to nonplanar networks, and an orientable cycle

of cyclesinthe OCDC are integers and thus the maximum valygyje cover heuristic was developed that obtained the required
of 5 (according to the SCDC conjectureyis- 1. _ family of protection cycles. Bounds on the number of possible
Again, for practical purposes, the maximum number of linkjnytaneous link failure recoveries showed that, depending
failures that can be simultaneously restored for unidirectiongh the position of the failures, a large number of simultaneous
connections equal$ — 1. For example, in the 6-cage networkyasiorations may be possible.
this gpproach can protect 'aII the unidirgctional connectionsthe paper also demonstrated the implementation of the APS
passing through at most 6 simultaneous link failures. technique by showing that the protection switches located at the
~ Forspecific graphs, i.e., cubic graphs, the upper bound shogiiys of the network links could be interconnected according
in (3) becomes even more tight. Bondy in [32] conjectured thg§ the identified protection cycles to ensure protection from a
if & is a 2-connected simple cubic graphvotertices ¢ > 6),  |ink failure in a comprehensive, conflict free system. This was
thenG; admits a CDC consisting @t most(1/2)n cycles. This  achieved by rerouting signals from working to protection chan-

conjecture is sharp. The Petersen graph, for example, cannohBg; ysing the protection switches, which were activated imme-
covered with fewer than 5 cycles. This was confirmed by th@aiely after a fault was detected.

NP: =n-—2. 4)

max

OCDC heuristic explained in this work. The protection process is independent of the source—destina-
tion connections currently onthe network andis transparenttothe
C. Bounds for Eulerian Topologies rest of the network. Only the network nodes that are attached to

The maximum number of ¢ L tr}e ends of the failed link engage their protection mechanisms as
ycles partitioning the edge set 0 . .

. . . aresponsetothe link failure. Therefore, the faultrecovery system
an Eulerian graph embedded in the plane is equal to the max-." " .
imum number of cycles of an Eulerian partition without cross? distributed, autonomous, and network state independent.
ings and is equal to the number of faces [33]. Thus, planar
Eulerian graphs are not considered here as they will give results
identical to Section IV-A. Only bounds for nonplanar Eulerian The Proof of Proposition 2 is embodied in the three claims
graphs are considered. that follow.

Eulerian topologies can be decomposed into a family of cy- Claim 1: Every plane grapld that isk-edge connectedk(
cles, such that each cycle does not have any common edges with) with n vertices ¢ > 3) andm bidirectional edges, can be
the other cycles. To account for the original digraplwith its decomposed into a family of directed cycles where each edge is
pairs of directed edges, each cycle in the cycle decompositiomised exactly twice (once in each direction), and in each directed
double-traced. Thus, the maximum number of multiple failure&scle an edge is used at most once.
that can be simultaneously restored is equal to the number of Proof: A plane graphG which is k-edge connected:(>
cycles in the cycle decomposition. A different number of cycle®) with n vertices ¢ > 3) andm bidirectional edges consists
can be obtained for different Eulerian circuits. of f faces. For each inner face, a facial directed cycle can be

The problem of finding all the Eulerian circuits of an arbiformed using all the edges bounding that face in their counter-
trary Eulerian graph is related to the more general optimizatietockwise direction. Since for plane graphs each inner face has
problem known as the Chinese postman problem (CPP) [34] tinly one edge in common with an adjacent inner face, and for
find the shortest closed walk such that each edge is traversefi@th faces directed facial cycles are formed, then their common
least once), which was shown to be NP-complete [35]. In Sesdge is used twice. By creating both facial directed cycles in
tion 1I-C, a singleEC and cycle decomposition are found for ahe counterclockwise direction, however, it is ensured that their
given Eulerian grapli7 £, and no attempt is made to find all thecommon edge is used once in each direction. Thus, all “inner
possibleEC’s and corresponding cycle decompositions. edges” (edges that are part of inner faces only) are used exactly

However, an upper bound can be obtained from Hajos’ cotwice (both directions) while ensuring that each cycle uses an
jecture which states that a simple Eulerian graph of ondeas a edge in only one direction. For the outer face, a facial directed
cycle decomposition into at moftn —1)/2| cycles [31]. Thus, cycle can be formed using all the outer edges in their clock-
the maximum number of link failures that can be simultaneouslyise direction. This way, all “outer edges” (edges that are part

APPENDIX
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