
New Client Puzzle Outsourcing Techniques

for DoS Resistance

Brent Waters
Department of Computer Science

Princeton University
bwaters@cs.princeton.edu

Ari Juels
RSA Laboratories

ajuels@rsasecurity.com

John A. Halderman
Department of Computer Science

Princeton University
jhalderm@cs.princeton.edu

Department of Computer Science
Princeton University

Edward W. Felten
Department of Computer Science

Princeton University
felten@cs.princeton.edu

Abstract

We explore new techniques for the use of cryp-
tographic puzzles as a countermeasure to Denial-of-
Service (DoS) attacks.

We propose simple new techniques that permit
the outsourcing of puzzles, meaning their distribu-
tion via a robust external service that we call a bas-
tion. Many servers can rely on puzzles distributed
by a single bastion. We show how a bastion, some-
what surprisingly, need not know which servers rely
on its services. Indeed, in one of our constructions,
a bastion may consist merely of a publicly accessi-
ble random data source, rather than a server. Our
outsourcing techniques help eliminate puzzle distri-
bution as a point of compromise.

Our method has three main advantages over
prior approaches. First, our method is more resistant
to DoS attacks that are aimed at the puzzle mecha-
nism itself, withstanding more than 80% more attack
traffic than previous methods, according to our ex-
periments. Second, our method is cheap enough to
apply at the IP level, though it also works at higher
levels of the protocol stack. Third, our method al-
lows clients to solve puzzles offline, so that users do
not have to sit and wait while their computers solve
puzzles.

We present a prototype implementation of our
approach, and we describe experiments that validate
our performance claims.

1 Introduction

Denial-of-service (DoS) attacks present a
strong and well established threat to the Internet and
e-commerce. One proposed countermeasure requires
clients to commit resources to an interaction by suc-
cessfully solving a computational problem known as
a client puzzle [16, 23] before a server will in turn
provide resources to the client. In this way, an at-
tacker is unable to consume a large portion of the
resources of a targeted server without commanding
and investing considerable resources himself.

1.1 Shortcomings of Existing Solu-
tions

While the deployment of client puzzles in at-
tack scenarios seems promising, we have found that
most proposed systems of this type have two basic
shortcomings.

The first is that the client puzzle mechanism
itself can become the target of a denial-of-service
attack. In most systems either the puzzle cre-
ation or verification operation (or both) require the
server to perform a cryptographic hash computation
[23, 6, 13]. This opens the possibility that the puz-
zle verification mechanism itself will be the target
of a denial of service attack, in which an attacker
floods the server with bogus puzzle solutions which
the server has to process. Thus existing client puzzle
mechanisms merely replace one possible DoS attack
with another one. Although the a DoS attack on
the puzzle mechanism requires more attack resources

1



than before, this is still not an ideal situation. Our
experiments, presented below in Section 4.1 demon-
strate that puzzle verification increases the server’s
processing time per new TCP connection by approx-
imately 80 percent.

A few systems [2] attempt to alleviate this
problem by outsourcing the hash computation to
a designated gateway. This solution, however, just
pushes the same vulnerability to a different target.
Additionally, a gateway in these systems needs to be
aware of each server it might service and thus will
not scale well. Deploying a robust gateway service in
this manner seems infeasible.

The second shortcoming in current solutions is
that clients must, in practice, solve them in on-line
fashion. For example, if a website employs client puz-
zles, then a user who wants to visit the site has to
sit and wait, before accessing the site, while his com-
puter solves a puzzle. Thus puzzles use up not only
computer time, but also users’ time, which is much
more valuable; and many users have little patience
for website delays, so a site that imposes long puzzle
delays will drive away its legitimate users.

The attacker, by contrast, does not have a user
sitting at each computer, so he will not have to waste
human time. Since human time is far more valuable
than computer time, this means that a puzzle that
costs the attacker some fixed price to solve will cost
the legitimate users much more – not a situation the
website’s owner wants to see. (Some sites require
human intervention, by using CAPTCHAs, but that
raises other issues.)

1.2 Our Solution

In this paper we present a new way to use puz-
zles to mitigate denial-of-service attacks. Our solu-
tion has three main attributes:

• The creation of puzzles is outsourced to a secure
entity we call a bastion. An arbitrary number of
servers can use the same bastion, and can safely
share the same set of puzzles, due to the special
cryptographic properties of the puzzles. Once
constructed, the puzzles will be digitally signed
by the bastion so that they can be redistributed
by anyone.

• Verifying a puzzle solution requires very little
work for a server – just a simple table lookup.

• Clients can solve puzzles off-line, so that users
do not have to wait for puzzles to be solved.

• Solving a puzzle gives a client access, for a time
interval, to a “virtual channel” on the server –
that is, to a small slice of the server’s resources –
and the server makes sure that no virtual chan-
nel uses more than its fair share of the server’s
resources.

Previous schemes involve puzzle distribution on
a per-request or per-session basis. Our approach
is more coarse-grained, relying on virtual channels,
which can be used as an abstraction to protect dif-
ferent types of resources. For example, a web server
might limit the number of open TCP connections per
channel or a database server could control the rate
of database queries processed. When at high risk
of DoS attack — or in the midst of an attack — a
host in our system accepts communication only via
a restricted collection of channels.

To contact a host through one of these chan-
nels, a client must provide a valid token. A token
consists of the solution to the client puzzle associ-
ated with a particular channel and time interval. A
client may easily attach tokens to every packet it
transmits. The host can easily enumerate in advance
the set of valid tokens, so the host can verify to-
kens and filter channel traffic very efficiently. The
idea, then, is that an adversary with limited com-
putational resources may successfully attack only a
limited number of channels. The remaining channels
may then support normal communications from be-
nign clients. We note that multiple clients can use
the same channel for communication. The primary
purpose of channels is to use them to segregate ad-
versary requests from user requests.

We justify the use of tokens by the following
observation. In typical DoS attacks an attacker com-
mandeers a cohort of “zombie” machines on the edge
of the network, but generally does not compromise
routers in the middle of the network. Based on this
observation, we consider an attack model that as-
sumes only limited eavesdropping by the adversary.
(This assumption is explored further in Section 5.3.)

As explained above, puzzle-based DoS solu-
tions provide a newly attractive DoS target, namely
the point of distribution of puzzles itself. To ad-
dress this problem, we propose a novel approach
to client-puzzle distribution. We show how to out-
source puzzle distribution to a independent web ser-
vice that offers strong robustness, e.g., a highly dis-
tributed content-serving network or well-protected
core server. We refer to this service as a bastion.
A bastion may serve as a leverage point, reducing
the basic robustness requirements needed to defend

2



a server against DoS.

We present three methods for outsourcing puz-
zle distribution, each with different requirements on
the bastion and defending servers. Our preferred
“D-H” construction, which is based on the Diffie-
Hellman problem, has two important properties that
allow it to avoid the shortcomings of previous client
puzzle systems. The first is that the puzzle solutions
of servers are made from a combination of the public
key of a server and the solution to a puzzle posed by
the bastion. When publishing a puzzle the bastion
need not actually be aware of which servers will be
using that puzzle. Since servers can effectively share
puzzle challenges, only a constant number of puzzles
need to be published for each round, and these can
be distributed and replicated widely. This property,
along with the quick solution checking of tokens, pro-
tects the puzzle distribution mechanism from attack.

The second property is that when a client solves
a puzzle for a particular channel, the solution can be
used at any server. The solution for a particular
channel is combined with the public key of a server
to produce a token solution specialized for that par-
ticular server. The client machine is then able to
compute solutions ahead of time and adapt them on
the fly to whatever server the user becomes interested
in. The user will then experience no extra delay once
he decides to go to a site.

We show our methods to be both theoreti-
cally sound and implementable in practice using ex-
isting Internet protocols with an added client-side
and server-side components. (Our method maintains
compatibility for unmodified clients, but their traffic
does not receive the benefit of DoS-resistance.) We
describe a prototype implementation of our system
that protects the resource of TCP connections, and
is transparent to client and server applications.

1.3 Organization

The paper is organized as follows. We describe
our puzzle construction and distribution methods in
Section 2. In Section 3 we describe how a system
can be built using our D-H puzzle construction and
we discuss some extensions to our scheme in Section
5. We follow by describing our TCP-level implemen-
tation along with experimental results in Section 4.
Then we discuss a few ways in which our basic results
can be extended in Section 5. Finally, in Section 6
we describe related work and conclude in Section 7.

2 Puzzle Construction

In this section we present our main D-H based
puzzle construction scheme that will be the construc-
tion of choice for the rest of the paper. We begin by
enumerating the several goals we would like our puz-
zle construction to meet. Next, we present our D-H
based construction along with an identity-based vari-
ant of it. Finally, we present two other puzzle con-
structions that are not our primary solutions, but are
still interesting to examine.

We emphasize that lack of space forbids our
including formal definitions and security proofs here;
thus what is presented are construction sketches only
and heuristic hardness claims. This is not to discount
the importance of a formal model here. On the con-
trary, formal definitions for puzzle hardness [22, 15]
are only incipient in the literature, and would nat-
urally require extension to the outsourcing scenario
as a prerequisite for security analysis. This is simply
beyond the scope of our investigation here.

Let us introduce some notation. Let fk :
{0, 1}∗ → {0, 1}k be a one-way hash function whose
range consists of k-bit strings. It is convenient to
model f as a random oracle. The value k is a security
parameter; we drop this subscript where appropriate
for visual clarity. A parameter l serves to govern the
hardness of the puzzle constructions we describe.

For a channel c and timeslot τ and defending
server ID, let πID,c,τ denote a published and authen-
ticated puzzle. Let σID,c,τ denote the corresponding
solution (which we assume to be unique).

We let yID denote the public key associated
with a particular defending server ID, while xID de-
notes the corresponding private key; we let y and x
be the respective keys of the bastion. We omit the
subscript ID where context makes it clear.

2.1 Goals for our scheme

Puzzle outsourcing for our purposes introduces
a new set of constraints and requirements.

To begin with, recall that every timeslot and
channel in our solution has only one associated puz-
zle. Hence for any given timeslot the total number
of puzzles is equal to the number of valid channels –
perhaps on the order of thousands, according to the
parameterizations we envision and describe below. In
strict contrast to previous puzzle-based DoS systems,
the defending server in our scheme can afford to in-
vest fairly considerable computational resources in
puzzle construction and solution. Even the compu-

3



tation of a modular exponentiation per puzzle would
be acceptable. We therefore have the flexibility to
introduce puzzle constructions based on public-key
cryptography in our scheme.

At the same time, outsourcing imposes a new
set of goals for puzzle construction. We enumerate
the most important of these here:

1. Unique puzzle solutions: The practicality of
our solution depends on the ability of a defend-
ing server to precompute puzzle solutions prior
to their associated timeslot, and subsequently to
check their correctness via table lookup. As a re-
sult, it is important that puzzles have unique so-
lutions (or a very small number of correct ones).

2. Per-channel puzzle distribution: It is desir-
able for the bastion to be able to compute and
disseminate puzzle information on a per-channel
basis. In other words, the bastion should be able
to publish information for a particular channel
number c that may be used to deduce the corre-
sponding puzzle for any defending server. (Dif-
ferent servers should have different puzzle solu-
tions, though, so that one server’s ability to enu-
merate its own puzzle solutions does not open
other servers up to attack.)
With this property, the bastion need not even
know which defending servers rely on its ser-
vices. This reduces the amount of information
the bastion must compute and publish, as well
as the need for explicit relationships or coordi-
nation between defending servers and bastions.

3. Per-channel puzzle solution: Another desir-
able property that is for the work done by a
client to apply on a per-channel basis, rather
than a per-puzzle basis. In particular, we would
like a client that has solved a puzzle for a partic-
ular channel to be easily able to compute the to-
ken for the same channel number on any server.
As noted above, this does not mean that to-
kens should be identical across servers – only
that there should be considerable overlap in the
brute-force computation need to solve the puz-
zle for a given channel-number across servers. In
particular, it is not desirable for one server to be
able to use its shortcut to compute the tokens
associated with another server, as this would re-
sult in a diffusion of trust across all participating
servers, rather than in the bastion alone.
The per-channel puzzle solution property is use-
ful because it allows a client to begin solving
puzzles before deciding which server to visit.

4. Random-beacon property: It is possible
to achieve a property even stronger than per-
channel puzzle distribution. Ideally, puzzles
might not require explicit calculation and pub-
lication by a bastion. They might instead be
derived from the emissions of a random beacon.

We use the term random beacon to refer to a
data source that is: (1) Unpredictable, i.e., de-
pendent on a fresh source of randomness; (2)
Highly robust, i.e., not subject to manipulation
or disruption; and (3) Easily accessible on the
Internet. A puzzle construction based on a ran-
dom beacon would eliminate the need for an ex-
plicit bastion service. (Apart from the archi-
tectural advantages, this could have the ben-
efit in some circumstances of eliminating any
point of legal liability for reliable puzzle distri-
bution.) Hashes of financial-market data, which
are broadcast from multiple sources, or even of
highly robust Internet news sources would be
candidate random beacons.

Note that not only would the bastion (random
beacon) here not have to know what defending
servers are relying on its services, it wouldn’t
even have to know that its data are being used
to construct puzzles!

5. Identity-based key distribution: When puz-
zles are based on the public key of a defending
server, the public key itself must be distributed
via a robust directory. A desirable alternative
is identity-based distribution, i.e., the ability to
derive the public-key of a particular defending
server from the server name and a master key
that is common to all defending servers. This is
very closely analogous to the well-known primi-
tive of identity-based encryption [10].

6. Forward security: A final desirable property
is forward security. By this we mean that time-
limited passive compromise of a bastion should
not undermine the DoS protection it confers.

2.2 A D-H based construction

We now describe a puzzle construction based
on Diffie-Hellman key agreement [14]. It possesses
all of the properties above except the random-beacon
property, i.e., it has properties 1,2,3,5 and 6.

Let G be a group of (prime) order q. Let g
be a published generator for the group, and l be a
parameter denoting the hardness of puzzles for this
construction. (As we explain below, we require a
strong, generic-group assumption on G.)

4



We propose a simple solution in which the bas-
tion selects a random integer rc,τ ∈R Zq and a sec-
ond, random integer ac,τ ∈R [rc,τ , (rc,τ + l) mod q].
(Recall that l is the hardness parameter for the puz-
zle.) Let f ′ in this case be a one-way permutation
on Zq, and let gc,τ = gf ′(ac,τ ).

The intuition is as follows. The value gc,τ may
be viewed as an ephemeral Diffie-Hellman public key.
A puzzle solution for defending server ID is the D-
H key that derives from its public key yID and the
ephemeral key gc,τ . Solving a puzzle means solving
the associated D-H problem. To render the problem
tractable via brute force, the bastion specifies a small
range [rc,τ , (rc,τ + l) mod q] of possible seed values
for its ephemeral key. In other words, the bastion
publishes πc,τ = (gc,τ , rc,τ ).

For a client (or attacker) to solve the puzzle
requires brute-force testing of all of the seed val-
ues. In particular, for a given candidate value a′,
the client tests whether gc,τ = gf ′(a′). For a partic-
ular defending server ID, the solution to the puzzle
is σID = yID

f ′(ac,τ ).

A defending server, of course, can use its pri-
vate key xID as a shortcut to the solution of the
puzzle. The defending server can compute σID =
yID

f ′(ac,τ ) = gc,τ
xID . In other words, it essentially

computes a Diffie-Hellman key. Thus, for a defend-
ing server, solution of a puzzle requires essentially
just one modular exponentiation.

On average, puzzle solution by a client (or at-
tacker) requires l/2 modular exponentiations over G.

Because of the need for very precise character-
ization of puzzle hardness, we believe that any con-
crete computational hardness claim would have to
depend on a random-oracle assumption on f ′ and
also a generic-model assumption for the underlying
group G [31]. It is thus important to choose G appro-
priately. (Several common types of algebraic groups
are believed to have the ideal properties associated
with the generic model, e.g., most elliptic curves and
the order-q subgroup G of the multiplicative group
Z∗

p , where p = kq + 1 for small k [31].)

Remark on application of f ′: Applying f ′ in
the computation of ephemeral key gc,τ = gf ′(ac,τ )

is a requirement to break algebraic structure among
seed-to-key mappings. If we chose gc,τ = gac,τ , for
example, then it would be possible to cycle through
candidate seed values by computing grc,τ and repeat-
edly multiplying by g.

2.3 Identity-based public keys

We very briefly and very informally sketch here
a technique for distribution of the public keys {yID}
of defending servers in an identity-based manner. In
other words, we show how yID may derive from a
string representing the identity ID (e.g., a domain
name) and a master private key. A trusted dealer
may distribute individual private keys to servers us-
ing the master key. This technique can be viewed as
a variant of our D-H based construction.

Employing the notation of [10] (with which we
assume familiarity here for the sake of brevity). Let
ê : G × G → G′ be an admissible bilinear mapping
in the sense defined in [10] where G and G′ are two
groups of large prime order q. For G suitably chosen
as a subgroup of the additive group of points of an
elliptic curve E/Fp for prime p, ê may be constructed
using the Weil pairing. Recall that when the system
is correctly parameterized, it is believed that the Bi-
linear (Computational) Diffie-Hellman (BCDH) As-
sumption holds, an essential hardness property for
our proposal here. Roughly stated, given P ∈R G
and points aP, bP, and cP for a, b, c ∈R Zq, it is hard
to compute ê(P, P )abc.

Let x′ be the private key of the trusted dealer,
and let y′ = x′g be an associated public key. Finally,
let d : {0, 1}∗ → G be a one-way function mapping
identifier strings to group elements in G.

In this scheme, the public key of defending
server with identifying string ID is computed sim-
ply as yID = d(ID). The associated private key,
computable by the trusted dealer, is x′yID.

As before, we let ac,τ ∈R [rc,τ , (rc,τ + l) mod q].
The ephemeral key computed by the bastion assumes
the form gc,τ = f ′(ac,τ )g. The bastion publishes
πc,τ = (gc,τ , rc,τ ), just as it does in the D-H puzzle.

The difference for the identity-based variant
lies in the form of the puzzle solution. This is de-
fined here to be σID,c,τ = ê(yID, g)x′f ′(ac,τ ). (This
solution may be hashed for compactness.) Af-
ter solving for ac,τ , a client may compute this as
ê(yID, y′)f ′(ac,τ ). The defending server may use its
knowledge of xID as a shortcut. In particular,
σ

(ID)
c,τ = ê(xID, gc,τ ) = ê(yID, g)x′f ′(ac,τ ).

By analogy with our D-H construction, the
work for brute-force solution here is on average l/2
multiplications over the elliptic-curve based group G.

5



2.4 Other Schemes

In this subsection we discuss two other puz-
zle constructions that are of interest. The first is
a hash-function-inversion puzzle construction. This
construction is worth examining since its basic meth-
ods are closest to previous work on client puzzles.
However, the construction does not meet properties
2,3,4, or 5. The most serious limitation is that it
does not meet property two. Therefore, the bastion
must compute a set of puzzles for each participating
server.

The other construction we present is based
upon time-lock puzzles. The most interesting prop-
erty of this construction is that it meets property 4
in that puzzles challenges can be made from a ran-
dom beacon. However, it does not meet property 3
and the client must compute puzzle solutions that
are particular to the server he is visiting.

2.4.1 Hash-function-inversion puzzle
construction

It is possible to perform outsourcing by means
of partial hash-function inversion problems like those
employed in previous puzzle-based approaches to
DoS, e.g., [2, 23].1 The idea, briefly stated, is as
follows. Let σc,τ be the j-bit secret key for j > l.
A puzzle is computed as f(σc,τ ). To calibrate the
hardness of the problem so as to require 2l−1 hash-
function computations on average, all but l bits of
σc,τ are revealed. Thus, for instance, a puzzle might
take the form πc,τ = (f(σc,τ ), σ′c,τ ), where σ′c,τ con-
sists of all but the first l bits of σc,τ .

To outsource the construction of such puzzles,
we simply let xID be shared between the defend-
ing server and bastion. (The secret xID might be
computed as a function of y and yID via D-H key
agreement.) We let σID,c,τ = f(c, τ, xID). With this
approach, the defending server can quickly compute
the set of solutions to puzzles for a given timeslot τ
without communicating with the bastion.

2.4.2 Time-lock puzzle construction

We now propose a puzzle construction that
has properties 1,2,4, and 6 above. It achieves the
random-beacon property. It has the disadvantage of
no identity-based variant and no per-channel puzzle
solution property. Thus, this solution requires ex-

1Note that a related inversion-based puzzle construction is
employed in [18]. That construction does not in general have
a unique solution for a given puzzle, and therefore cannot be
used conveniently for our purposes, as explained below.

plicit distribution of public keys for defending servers
and a client cannot start solving puzzles prior to de-
termining which server to access.

This construction is a simple adaptation of the
time-lock puzzle scheme proposed by Rivest, Shamir,
and Wagner [29]. A public key yID consists of an n-
bit RSA modulus NID. (See [29] for discussion of
restrictions on the choice of N .)

In the original RSW construction, a random
value a ∈R Zn serves as a basis for the puzzle. The
prescribed task for solution of the puzzle is the com-
putation of a secret value b = a2l

mod n. Here, b
serves essentially as a key to the puzzle. The param-
eter l governs the hardness of the puzzle; in partic-
ular, a solver must perform l modular squarings in
order to compute b and “unlock” the puzzle.

Knowledge of the factorization of n provides a
shortcut to compute the secret b. For large l, com-
putation of e = 2l mod φ(n) and then ae mod n is
much faster than brute-force squaring.

As explained above, the original RSW con-
struction aims at creating a kind of digital time-
capsule, that is, a cryptogram solvable only in the
distant future thanks to advances in computing
power. RSW propose that the puzzle constructor de-
termine how hard the puzzle should be, use the short-
cut in order to create an encryption key associated
with the puzzle, and then erase all data associated
with the shortcut, thereby sealing the time-capsule.

The main goal in the RSW design was to render
the solution process difficult to parallelize, so that the
ability to unlock the puzzle would truly depend upon
raw advances in computing power. This property is
achieved thanks to the sequential nature of the mod-
ular squarings required for the solution. (A puzzle
based on hash-function inversion, for example, would
not achieve this goal, as it could be divided among
many different computing devices.)

We exploit an altogether different property of
the RSW construction (one probably not explicitly
designed by its inventors). We observe that a time-
lock puzzle may be derived very simply from a ran-
dom string (used to derive a) and an RSA modulus.
No explicit computation by the bastion is required to
create a valid time-lock puzzle. This is very different
from the case, for instance, with our D-H solution
above, which requires computation of an ephemeral
D-H key, or from a hash-function-inversion puzzle,
which requires the hashing of a secret value.

Given this observation, the puzzle construction

6



is quite simple. Let rτ be a suitably long random
string emitted by a random beacon in timestep τ
(say, n + k bits in length for security parameter k ≈
128). We let rID,c,τ = fn+k(ID, c, τ, rτ ). We then
compute πID,c,τ = ac,τ = rID,c,τ mod NID.

The solution σID,c,τ to this puzzle is just
(ac,τ )2

l

mod NID. A client (or attacker) must com-
pute this by repeated squarings. The defending
server may compute it quickly using its shortcut.

Note that from a single random value, puzzles
may be computed for an arbitrarily large number of
channels. The security parameter l may be set by a
defending server as desired. For the defending server,
the work to solve a puzzle only requires a modular
reduction (whose size is parameterized by l) and an
RSA exponentiation. For a client (or attacker), solv-
ing the puzzle requires l modular squarings.

3 System Description

In this section we describe how a system using
our puzzle constructions will work in practice and an-
alyze the effectiveness of our scheme. To be concrete
we use the D-H puzzle construction, but without the
identity-based variant. We first describe the system
parameters and operation. Then we give a practi-
cal example where we look at parameter values that
might be used in practice.

In our scheme each server will have n commu-
nication channels. The solutions to channels will be
valid for a time period of length t. Typically, the
period will be coarse grained so that t will be on the
order of several minutes. We use Ti to denote the
i-th time period.

At the beginning of the period Ti the bastion
will publish puzzle challenges that have solutions
which will be valid during Ti+1. The clients solve
the puzzles distributed at the beginning of Ti during
the rest of Ti and use these solutions during Ti+1.
The server will correspondingly populate its token
list for time period Ti+1 during Ti.

For simplicity we will assume that all client ma-
chines have the same processing power to devote to
puzzle solving and we view an attacker is a compro-
mised client machine. We let s denote the average
number of solutions a client can solve during a pe-
riod. The puzzle difficulty (determined by the range
of possible puzzle solutions) will be set low enough
such that every client machine will be guaranteed to
solve at least one puzzle. To guarantee this we need

to have s ≥ 2.2 During each cycle clients will choose
random channels to solve a puzzle for.

When a user indicates to a client that it wants
to contact a specific server, the process is as follows.
The client must first obtain the public key for the
server (for the denial-of-service system). The client
then adapts the solutions it has computed to this
public key. The extra amount of computation to
customize a solution for a particular public key –
and thus server – is just one exponentiation. The
token corresponding to the solution for the partic-
ular server and a given channel will be attached to
requests made by the client.

If the server is not under attack it will just ig-
nore the tokens and operate as a standard server.
Suppose now that an attacker controls A attacker
machines and begins a Denial-of-Service attack. If
the attacker machines are well-coordinated then the
attacker will be able to solve As solutions per time
period on average. If the attacker focuses an attack
on time period Ti+1 by solving puzzles for Ti+1 over
two time periods Ti and Ti+1 then at one point the
attacker can get 2As solutions.

One type of attack that the attacker can do is
request as many resources as possible using its le-
gitimate channels. Under this attack the server will
need to have a policy for how it divides out resources
between channels. For example, if the TCP layer is
being protected, the server might limit the rate of
SYN packets processed per channel. We see that our
channels are the units that resources are allocated
over. Although developing a good resource alloca-
tion policy is important, it is beyond the scope of
this paper.

When the attacker machines are aggressive in
requesting resources they can potentially collect all
the resources allocated to the channels that they have
solutions for. In this case a client that solves for the
same channel as an adversary will not be able to get
any resources using that channel. If an adversary
focuses an attack on one particular time period it
can occupy 2as

n of the channels.

If a client makes a request on a channel that is
not occupied by an adversary and the policy permits
the request the server can process the request imme-
diately. Since the puzzles were solved for in the last
period the user will not experience any delay from the

2In reality some machines will have more processing power
to devote to puzzle solving than others. The choice of param-
eters will need to strike a balance between accommodating
slower legitimate client machines and making the puzzles dif-
ficult enough to defend against attackers.

7



client puzzle system. We emphasize that the policy
of allocating resources to each channel controls the
rate of resources whereas in traditional client puzzle
systems that rate control is related directly to the
hardness of puzzles and thus directly effects the user
latency.

The attacker might decide to attack the puz-
zle defense mechanism itself. If this is the case the
attacker can flood the server with requests. If the
requests have fake token solutions then the overhead
associated with our scheme is that of performing a
memory lookup to check the token’s validity. In con-
trast other schemes require a hash computation at
this step. We emphasize that the computations re-
quired by the server to generate the list of tokens in
our scheme is related to the number of channels that
are created and not the number of requests that an
attacker machine can make. Another flooding attack
is for an adversary to make repeated requests using
a valid token. In this case the overhead associated
with our scheme is that of checking the resources al-
located to a particular channel which again should
be minimal.

We summarize the client and server operations
as follows.

Client

• During period Ti downloads random puzzles
from the bastion service and solves them with
spare computational resources.

• During time period Ti+1 uses the solutions that
were solved during the previous period Ti.

• When a user wishes to make a request from a
certain server the client machine checks to see if
the server has a public key for DoS prevention. If
so the client combines its puzzle solution and the
server’s public key to get a token for a particular
channel on the server. The token is appended to
the request.

• If the client has multiple puzzle solutions for
multiple channels and one is not working on a
particular server, the client may retry the re-
quest using a different token for a different chan-
nel.

Server

• During time period Ti downloads all the puz-
zles for the channels and computes a token list
from them using its private key. The list is used
during the next period Ti+1.

• If the system load is low and there is no DoS
attack then the server ignores the tokens and
processes requests as though there were no DoS
prevention system.

• During an attack the server only accepts re-
quests that have valid tokens for solutions. The
request tokens for a particular channel is quickly
checked against the table of valid tokens. The
amount of resources granted will be limited on
a per channel basis.

3.1 An Example

To make our ideas more concrete we present a
practical example of what types of parameters might
be used in our scheme.

The length of a time cycle, t, will typically be
on the order of minutes. Larger values of t will al-
low the server more time to compute more tokens
and thus offer more channels. Since the number of
channels an attacker machine can occupy can be con-
trolled by adjusting the puzzle difficulty, the larger
t is the smaller proportion of channels an adversary
can control. A large value of t has the disadvantage
that a machine booted up will have to wait longer
before it can get a valid solution, however, once it
starts solving puzzles it will solve them for the pro-
ceeding cycle so there will be no delay after the sec-
ond period following bootup. Additionally, if all the
channels that a client has a solution for are occupied
by an adversary then it will need to wait for a full
cycle before it can try new channels.

Using a large number of channels is advanta-
geous in that the more channels there are the smaller
a chance that a legitimate client will solve a puzzle
for the same channel as an adversary. In general
the number of channels a server can offer is limited
by both the memory on the server for storing token
lists and bookkeeping information for the resources
allocated to each channel and the computational re-
sources that a server can devote to populating the
list. In our D-H solution the computational resources
of the server will be the limiting factor. As a rough
estimate a 2.1GHz Pentium processor was measured
to be able to compute a 1024-bit DH key agreement
in 3.7ms [11]. If a server was able to devote 1 minute
or 5 percent of processing power for every cycle then
it could populate tokens for about n = 16, 000 chan-
nels. 3

3If we used the identity-based variant the time to compute
a pairing would be around an order of magnitude more than
the exponentiation so we would have around an order of mag-
nitude less channels. Therefore, the identity-based variant is

8



Using these parameters we now want to figure
out what a client’s chances are solving for a puz-
zle that is not occupied by an adversary. If we set
s = 2 every client will solve at least one puzzle
(since it can search the whole range of possible so-
lutions for one puzzle) and half the clients will solve
at least 2 puzzles. If a attack is made with 50 zom-
bie machines then the attack at its peak will occupy
2 × 50 × 2 = 200 puzzles resulting in it occupying

200
16,000 × 100 = 1.25 percent of the channels. The
chances of a legitimate client not having any solu-
tions for channels not occupied by adversaries is at
most (.5× .0125+ .5× .01252)×100 ∼ .625 percent.

4 Implementation

We have constructed a functioning prototype
implementation of our design as it is described in
section 3. The implementation consists of a suite
of programs that run on the Linux operating system.
They use the GNU MP Bignum library [28] for multi-
ple precision arithmetic and the Netfilter framework
[27] for network packet mangling.

Our system protects against attacks at the
TCP level by regulating the rate at which new TCP
connections may be established. To accomplish this,
each client inserts tokens derived from its puzzle so-
lutions into an option field of the TCP SYN packet
(the first packet sent in the connection establishment
process). Servers check for the presence of a valid to-
ken and use the token to separate connections into
channels for rate limiting. Each channel will only ac-
cept one new connection every n seconds, where n is
set by the server operator. This policy is appropriate
for protecting services that use a constant amount of
resources for the duration of each connection.

The first program in our suite is the bastion,
which creates new sets of puzzles at a regular inter-
val. The number of puzzles in each generation, their
hardness, and the time between new generations are
configured by the bastion operator. Our bastion
writes a set of puzzle files that are distributed by a
normal web server using HTTP. We chose this design
because it can be easily scaled to serve large num-
bers of clients by using multiple web servers or exist-
ing high-availability content distribution schemes. In
each time period, the bastion creates a separate file
for each puzzle, so clients only need to download the
puzzle they have selected to solve, as well as a digest
file containing all the puzzles, so servers only need to
make one HTTP request to retrieve the entire set of

currently not as practical, but might become so in the near
future as processing power increases.

puzzles.

The next program is a packet-tagging appli-
cation that runs on client machines. It runs two
threads: a puzzle solver and a packet rewriter. The
puzzle solver waits for the bastion to post a new puz-
zle generation then randomly selects a puzzle and
computes its solution. The packet rewriter tags out-
going SYN packets with tokens that prove the client
has solved a puzzle.

The client processes packets with the Netfil-
ter ip queue library, which allows it to run entirely
in user space. When the client detects an outgo-
ing SYN packet, it appends a 20-byte option to the
TCP header. The option consists of two tokens com-
puted from puzzle solutions and the server’s public
key, along with the index of each solved puzzle in
the bastion’s puzzle set. We use two tokens – one
solution from each of the previous two generations –
to ensure that the server will accept the connection
even if it has switched to a new generation somewhat
sooner or later than the client. The tokens consist of
the first 48 bits of the puzzle solutions. Their size is
sufficiently large to prevent guessing of tokens during
the time period when each puzzle is valid, yet short
enough to fit in the TCP header.

Finally, we have a pair of applications that run
on each server. They consist of a user space program
that precomputes puzzle solutions and a kernel mod-
ule that filters incoming packets. The server’s user
space program monitors the bastion for a new gen-
eration of puzzles and retrieves the complete set of
puzzles when it is available. Then it precomputes the
solution to each puzzle using the server’s private key.
When a subsequent generation of puzzles is posted
by the bastion, the user space application transfers
the previous set of solutions to the kernel module,
which begins requiring that clients send solutions to
puzzles from this generation.

We implemented server side packet filtering as
a kernel module for speed and robustness. The mod-
ule receives incoming IP packets using a hook into
the Netfilter framework. We receive each packet im-
mediately after the network subsystem has routed
the packet and determined that it is destined for the
local machine, and before the packet reaches higher-
level protocol subsystems like TCP. If a packet is a
SYN, the module begins to filter it by scanning the
header for our option field and extracting the tokens
and their indexes. Each token is validated by com-
paring it to the entry in the table of precomputed
tokens corresponding to the supplied index. If either
token matches, its index becomes the number of the

9



connection’s channel, and the rate limiting mecha-
nism is applied to determine whether the connection
will be accepted. Packets that exceed the rate limit
or have bad tokens are immediately dropped.

4.1 Experiment

As stated before, a potential pitfall of Denial-
of-Service prevention mechanisms is that they them-
selves will become the targets of DoS attacks. In
puzzle-based solutions, if the overhead of checking
puzzle solutions is too great, an attacker can over-
whelm the server with a flood of packets containing
bad solutions. To see how well our implementation
fared against such an attack, we performed tests com-
paring it to two related anti-DoS mechanisms: con-
ventional client hash puzzles and Linux’s syncookies.

In our experiment we measured the load on a
test server that was the target of TCP SYN flood at-
tacks of varying intensity. The server was an 866MHz
Pentium III running Redhat Linux 9.2 (kernel ver-
sion 2.4.20-31.9). It was connected to three attacker
machines via a 100-megabit Ethernet switch. The
attack strength was modulated by employing combi-
nations of attackers with different CPU power. Each
SYN packet was tagged with an invalid puzzle token.

Our mechanism requires processor time to pre-
compute the puzzle solutions for each generation, but
exactly how much time is required depends on the
puzzle parameters set by the bastion. To account for
this, we measured our system in two configurations:
a scenario where the server needed to calculate its
tokens for 10,000 channels over a time period of 20
minutes, and a baseline configuration specially com-
piled to disable any token calculations. (The latter
scenario rejects all TCP connections, so it is only
useful for benchmarking.)

To determine system load, we counted how
many loop iterations per second were performed by
a process set to the lowest scheduling priority, both
when the system was idle and during the attacks. In
most scenarios we took the average load over a three
minute period. However, to account for the uneven
CPU load during token calculation in our solution,
we took the average over the entire 20 minute time
period when tokens were being computed.

To simulate a conventional (non-outsourced)
client puzzle mechanism, we modified our kernel
module to replace the puzzle verification code with
a SHA-1 hash computation on 56-bytes of arbitrary
data. After this computation the module drops the
packet. To test syncookies we performed no filtering

of our own and allowed Linux to send an ACK packet
containing a cookie in response to each SYN.

The results of our experiment are plotted in
Figure 4.1 together with a linear regression for each
series. At almost all rates of attack, our solution
outperformed both the SHA-based puzzles and syn-
cookies, which had nearly equal performance 4.

We found syncookies contributed an average of
1% load for every 541 packets per second. For the
same cost, the SHA-based puzzle mechanism pro-
cessed about 530 packets per second, and our method
processed about 1014 packets per second. However,
precomputing puzzle solutions for our scheme added
a constant load of about 2.5%, regardless of attack
strength. Extrapolating from this data, our scheme
(with precomputing) can withstand approximately
87% more attack packets per second than SHA-based
puzzles before reaching full system load, and 83%
more than syncookies.

5 Extensions

5.1 Flexible number of channels

To this point we have assumed that all servers
will use the same number of channels. In reality we
would like to give some more flexibility to the servers.
Some servers might want to tradeoff more processing
time in order to provide more channels and thus han-
dle more attackers. The primary challenge is to allow
this, but in such a way that our D-H construction
still has the property that a solution can be applied
to any server.

We can do this in the following manner. Sup-
pose that the maximum number of channels that a
server might solve is n and that the bastion publishes
n puzzles as before. We will refer to these as the pri-
mary puzzles. Clients will randomly choose puzzles
to solve from among this group. Now suppose we
want to allow for a server to have n

d solutions for
some d. The bastion can then create n

d new puz-
zles except that instead of giving a range hint for
the solutions it will encrypt these secondary puzzle
solutions with the solutions of the primary puzzles.
For example, if yj denotes the solution to puzzle j in
the secondary set and zi the solution to puzzle i in
the primary set then we would produce d encryption
of yj with the keys zd×j , . . . , zd×(j+1)−1. Using this
technique the solutions for primary channels can ef-

4It may seem curious that the SHA-based puzzles and syn-
cookies follow nearly identical load profiles. The reason is that
the dominant cost of syncookies is also a SHA-1 hash compu-
tation for every packet.

10



..

Figure 1: Graph showing the number of attack packets per second that yield a given system load using
syncookies, traditional hash puzzles, and our approach.

fectively be combined to allow for a server to have a
lower number of channels.

5.2 Challenges in IP-Level Deploy-
ment

Although our implementation applies clients
puzzles at the TCP level, regulating the creation of
new TCP connections, the same method could be ap-
plied at other levels of the protocol stack, including
the IP level. This is not true of previous puzzle-based
approaches: since their puzzle solutions are more ex-
pensive to verify, a server or router could not afford
to perform a puzzle verification for each IP packet.
Our approach, by contrast, would require only a ta-
ble lookup per packet, and so would be feasible at
the IP level.

The biggest challenge we face in deploying our
method at the IP level is where in the IP packet
to put the token (i.e, the puzzle solution). There
aren’t enough unused bits in the IP header, so the
logical way to attach the token is to make it an IP
header option. (This approach is feasible in both

IPv4 and IPv6, but it is a bit more natural in IPv6.)
A header option will be ignored by routers that do
not understand it; but any router or end host will
be able to extract it and check it against the list of
acceptable tokens.

To make this feasible for a high-capacity site,
the extraction and checking of the token would have
to be included in the fast-path mechanism of a router.
Whether this is feasible depends on the details of how
the router is designed. Space does not permit us to
delve deeply into this issue, except to say that it
appears to be possible on some routers but difficult
on others. We leave the construction of a high-speed
IP-level implementation for future work.

5.3 Eavesdropping attacks

As stated in the introduction we use an attack
model where we assume that eavesdropping on the
Internet is difficult for typical DoS attackers. How-
ever, it is still useful to consider what happens if
eavesdropping occurs, in what situations it might oc-
cur, and measures that can be used by a client to
prevent being eavesdropped upon.

11



If an attacker is able to eavesdrop on packets
sent by a client to the server under attack, then he ef-
fectively converts the client into a drone that solves
puzzles for him. This will have two repercussions.
First, the attacker will be able to get another chan-
nel and consume more resources on the system as a
whole. Second, the attacker will occupy the same
channel as the client from which he steals tokens and
that client will likely be shut out of that channel.
Therefore, there is a special incentive for clients not
to have their tokens eavesdropped upon.

Since core routers on the Internet are difficult
to compromise, the the most likely source for eaves-
dropping attacks are on the edge of the Internet such
as a local LAN. If a client suspects that his pack-
ets are being eavesdropped upon, then it could send
them securely to some part of the net that it believes
to be uncorrupted. One way of doing this is to tunnel
packets through IPsec [32]. We do not recommend
for the server itself (or a nearby router) to act as
an endpoint for such a tunnel, as the IPsec protocol
could become a DoS vulnerability itself.

6 Related Work

In the data-security world, the term puzzle com-
monly refers to cryptograms that are solvable with a
moderate level of effort. Most cryptographic systems
rely on intractable computational problems; for ex-
ample, the RSA cryptosystem relies on the (appar-
ently) hard problem of factoring products of large
primes. In constrast puzzles may enhance system
security by raising a non-trivial, but surmountable
barrier to acquisition of some resource. This helps
render a resource freely available while thwarting ef-
forts at unfair or malicious exploitation.

In this paper we consider the use of puzzles as a
countermeasure to DoS attack. Dwork and Naor [16]
were the first to propose the use of puzzles for this
purpose – in particular, for mitigating spam. Briefly
stated, successful delivery of a piece of e-mail in their
scheme requires that the sender attach a valid puzzle
solution. A would-be spammer therefore faces the
deterrent of a large and expensive amount of compu-
tation.

Since computational time costs money (directly
or indirectly), the Dwork and Naor scheme may be
thought of as akin to a micropayment system for
postage. Back [7] independently devised and imple-
mented a similar system known as Hash Cash. Gab-
ber et al. describe an extension of the idea in which
puzzles are used to establish relationships between
corresponding users so as to permit effective isola-

tion of spam.

The Dwork-Naor and Back systems permit pre-
computation of puzzles, namely the solution of puz-
zles at a time arbitrarily antedating the sending of
the e-mail they are associated with. This achieves
the goal of imposing a computational cost on the
sending of spam. It is problematic, however, for de-
fense again the common form of DoS in which an
attacker seeks to disable a server by overwhelming
its resources during some restricted period of time.
This DoS attack, often referred to as a flooding at-
tack, is a common real-world DoS problem. It is our
main focus in this paper.

Juels and Brainard [23] addressed the prob-
lem of puzzle precomputation permitting flooding
with an idea called “client puzzles”; these are puz-
zles based on session-specific parameters, that can
be applied to interactive protocols like TCP and
SSL. Aura, Nikander, and Leiwo [6] propose variants
aimed specifically at DoS attacks against authentica-
tion protocols. Dean and Stubblefield [13] focus on
the application of client puzzles to SSL (or TLS), and
investigate the thorny deployment issues it poses.
Wang and Reiter [36] also consider puzzle deploy-
ment for DoS protection in authentication. They de-
vise a system in which clients bid for resources by
solving puzzles of appropriate difficulty.

More recently, researchers have proposed a few
variants on basic puzzle constructions. Abadi et al.
[1] describe a new puzzle construction aiming at a
levelling effect among computational platforms (i.e.,
at permitting more equal resource allocation among
fast and slow machines). The puzzles they propose
rely primarily on the resource of high speed memory,
which tends to be more equally distributed among
computing platforms than raw computational power.
Dwork et al. [15] propose some improved construc-
tions in follow-up work. Finally, CAPTCHAs [35]
are a kind of puzzle that depend upon human work,
rather than machine computation, for their solution.
All of these puzzle variants may be adapted to our
proposal in this paper.

A scheme that we draw on directly for one of
our proposed puzzle constructions is the time-lock
puzzle construction of Rivest, Shamir, and Wagner
[29]. The goal of RSW was to create a kind of time
capsule for data. In particular, they wished to con-
struct a cryptogram that would be solvable only at a
distant future date – say, in the year 2025. To do so,
they proposed use of Moore’s Law to estimate future
computing power. They show how to craft a puzzle
whose solution relies strictly on sequential computa-

12



tion and therefore on raw advances in computational
speed, rather than on parallelization.

We do not in fact draw on the functional char-
acteristics designed by RSW for their scheme. In-
stead, we draw on an incidental algebraic property.
An RSW puzzle has the unusual characteristic of be-
ing implicitly derivable from an entirely random bit-
string and a public key. We explain our use of this
features in section 2.4.2.

We omit discussion here of many cryptographic
and other uses of puzzles apart from combatting DoS,
e.g., [17, 20, 22, 26].

6.1 Approaches to IP-layer DoS

Puzzles represent only one approach to DoS
mitigation, and they have previously seen use mainly
at the application or session-establishment level,
rather than at lower protocol levels. A goal of our
proposal is to provide techniques efficient enough to
be deployed to help low protocol layers, such as TCP
or even IP. We discuss some of the existing techniques
for IP-layer protection here.

One of the best known approaches to address-
ing IP-layer attacks is referred to as traceback. This
involves the supplementation of packet data to per-
mit tracing of the origins of an attack [3, 9, 12, 30,
33]. Pushback [25] and Path Identification (Pi) [37]
are related IP-level approaches to DoS. They facili-
tate gathering of forensic data, but suffer from the
drawback that that they require modifications to the
routing infrastructure. Anomaly detection [8, 21] is
another actively researched approach to IP-level DoS
that involves classification and suppression of suspi-
cious network traffic.

A very practical approach to attacks against
certain protocols (and used in real-world systems to
protect the TCP SYN protocol) is known as a syn-
cookie. In order to validate the claimed IP address
of a client, a server transmits a (cryptographically
computed) cookie to the address. The client must
transmit this cookie to the server in order to have
its service request completed. Thus, while not aimed
at IP-layer DoS, syncookies exploit low-level network
services to achieve their protection.

An important emerging thread of research on
DoS that underlies our work involves redirection of
potentially hostile traffic to robust loci capable of
withstanding attack and providing filtering services,
as in Stone [34], Andersen [4], and Keromytis et al.
[24]. Recently Adkins, Lakshminarayanan, Perrig,
and Stoica [2] show how to combine this approach

with puzzles; among other ideas, they advocate lever-
aging the (proposed) Internet Indirection Infrastruc-
ture (i3) in such a way that a challenge puzzle is
issued for each connection request. Our proposal
is similar in flavor, but more lightweight and con-
sequently coarser in nature. A key difference is that
we advocate outsourcing from the defending server
only the process of puzzle distribution, rather than
broad management of incoming traffic.

In this respect, our proposal is similar to that
of Anderson, Roscoe, and Wetherall [5]. They pro-
pose that a client use a token in order to validate a
path to a server; this token serves as a packet-level
nonce employable for purposes of filtering by “verifi-
cation points.” A token in the ARW approach serves
essentially the same function as a puzzle solution in
our own. The security model is similar as well: An-
derson et al. assume that adversaries do not eaves-
drop extensively on network links. A key difference is
the way in which tokens are distributed. ARW pro-
pose incremental deployment of an infrastructure of
“Request-to-Send” (RTS) servers (and do not detail
the critical policy question of how transmitters are
authorized to obtain tokens from RTS servers). Bas-
tions in our proposal are analogous to RTS servers.
Indeed, our proposal may be viewed as a more prac-
tical alternative to RTS servers: Bastions dispose of
the need both for an infrastructure of actively inter-
communicating servers and for explicit policies about
token distribution.

Gligor [19] also considers the problem of the
overhead of conventional client puzzle schemes and
proposes an outsourcing scheme. However, his
scheme relies on a third party that is positioned to
verify the source IP address of the requester. We do
not suppose the existence of such a party.

6.2 Our work

Most previous puzzle-based approaches to DoS
(as well as other ideas like syncookies) have sought
to defend against application-layer attacks. As such,
they operate under the assumption that a defending
server can dispense puzzles effectively even in the
course of a DoS attack. What is assumed to be in
jeopardy is the ability to provide resource-intensive
services such as SSL connections.

As mentioned, though, most real-world DoS at-
tacks to date have occurred at the IP or TCP layers.
With this in mind, our proposal aims to provide DoS
protection efficient enough to be applicable down to
the lowest protocol layers, and even in the face of
attacks that obstruct all effective outbound commu-

13



nication. Thus we cannot take for granted the ability
of the defending server to dispense puzzles.

For this reason we adopt the approach of out-
sourcing the process of puzzle distribution to a robust
external service. Viewed another way, our goal is to
enable a defending server to leverage the strong ro-
bustness of a bastion. We wish to accomplish this in
a lightweight manner. In our solution, the bastion
only assumes responsibility for distributing puzzles
rather than performing any services or other con-
tent distribution on behalf of defending servers. This
is important in rendering our solution practical and
flexible. (In practice, a bastion might be furnished by
a highly distributed and robust content server such
as Akamai, or a core Internet service like DNS. If the
bastion timestamps and digitally signs puzzles, then
puzzles may in principle be redistributed from any
point on the Internet.)

Unlike most previous solutions applicable at
the IP layer (e.g. traceback), ours does not require
routing-infrastructure changes. Instead like most
puzzle-based solutions, our solution requires special
software deployment on clients.

7 Conclusion

We have examined the problem of defending a
server against Denial-of-Service attacks using a new
technique of client puzzles. We observe that since
puzzle distribution itself can be subject to attack,
any viable system must have a robust method of puz-
zle distribution. We developed a new model for puz-
zle distribution using a robust service that we call
a bastion. The bastion distributes puzzles and solu-
tions to the puzzles allow clients access to communi-
cation channels. Within this model we develop dif-
ferent cryptographic techniques for puzzle disperse-
ment. Our primary method, the D-H puzzle con-
struction has the advantages that the bastion does
not need to be aware of the server’s using the sys-
tem and that solutions to puzzles can be computed
off-line resulting in minimal user delay. Finally, we
implemented a prototype of our system that works on
today’s Internet and experimentally demonstrated
the advantages of our solution.

References

[1] M. Abadi, M. Burrows, M. Manasse, and
T. Wobber. Moderately hard, memory-bound
functions. In NDSS ’03, pages 107–121. Inter-
net Society, 2003.

[2] D. Adkins, K. Lakshminarayanan, A. Perrig,

and I. Stoica. Taming IP packet flooding at-
tacks. In HotNets-II. ACM Press, 2003.

[3] M. Adler. Tradeoffs in probabilistic packet
marking for IP traceback. In STOC ’02, pages
407–418. ACM Press, 2002.

[4] D. G. Andersen. Mayday: Distributed filtering
for Internet services. In USENIX Symposium
on Internet Technologies and Systems (USITS),
2003.

[5] T. Anderson, T. Roscoe, and D. Wetherall. Pre-
venting Internet denial-of-service with capabili-
ties. In HotNets-II. ACM Press, 2003.

[6] T. Aura, P. Nikander, and J. Leiwo. DoS-
resistant authentication with client puzzles. In
8th International Workshop on Security Proto-
cols, pages 170–181. Springer-Verlag, 2000.

[7] A. Back. Hashcash - a denial-of-service coun-
termeasure, 2002. Original system devel-
oped in 1997. Manuscript. Referenced 2004 at
http://www.hashcash.org/hashcash.pdf.

[8] P. Barford, J. Kline, D. Plonka, and A. Ron. A
signal analysis of network traffic anomalies. In
Internet Measurement Workshop, 2002.

[9] S. Bellovin, M. Leech, and T. Taylor. ICMP
traceback messages, 2003. Internet Draft.

[10] D. Boneh and M. Franklin. Identity based en-
cryption from the Weil pairing. SIAM J. of
Computing, 32(3):586–615, 2003.

[11] Wei Dai. Crypto 5.1 benchmarks. Web
site at http://www.eskimo.com/ wei-
dai/benchmarks.html.

[12] D. Dean, M. Franklin, and A. Stubblefield. An
algebraic approach to IP traceback. Information
and System Security, 5(2):99–137, 2002.

[13] D. Dean and A. Stubblefield. Using client puz-
zles to protect TLS. In 10th USENIX Security
Symposium, pages 1–8, 2001.

[14] W. Diffie and M.E. Hellman. New directions in
cryptography. IEEE Transactions on Informa-
tion Theory, 22:644–654, 1976.

[15] C. Dwork, A. Goldberg, and M. Naor. On
memory-bound functions for fighting spam. In
D. Boneh, editor, CRYPTO ’03, pages 426–444.
Springer-Verlag, 2003.

14



[16] C. Dwork and M. Naor. Pricing via processing
or combatting junk mail. In Ernest F. Brickell,
editor, CRYPTO ’92, pages 139–147. Springer-
Verlag, 1992.

[17] M.K. Franklin and D. Malkhi. Auditable meter-
ing with lightweight security. In R. Hirschfeld,
editor, Financial Cryptography ’97, pages 151–
160. Springer-Verlag, 1997.

[18] E. Gabber, M. Jakobsson, Y. Matias, and
A. Mayer. Curbing junk e-mail via secure clas-
sification. In R. Hirschfeld, editor, Financial
Cryptography ’98. Springer-Verlag, 1998.

[19] Virgil D. Gligor. Guaranteeing access in spite of
service-flooding attacks. In Security Protocols
Workshop, 2003.

[20] D. Goldschlag and S. Stubblebine. Publicly ver-
ifiable lotteries: Applications of delaying func-
tions. In R. Hirschfeld, editor, Financial Cryp-
tography ’98. Springer-Verlag, 1998.

[21] A. Hussain, J. Heidemann, and C. Papdopolous.
A framework for classifying denial-of-service at-
tacks. In ACM SIGCOMM, 2003.

[22] M. Jakobsson and A. Juels. Proofs of work and
bread pudding protocols. In Communications
and Multimedia Security, pages 258–272. Kluwer
Academic, 1999.

[23] A. Juels and J. Brainard. Client puzzles: A
cryptographic countermeasure against connec-
tion depletion attacks. In Proceedings of the
1999 ISOC Network and Distributed System Se-
curity Symposium, pages 151–165, 1999.

[24] A. D. Keromytis, V. Misra, and D. Rubenstein.
SOS: Secure overlay services. In ACM SIG-
COMM, pages 61–72. ACM Press, 2002.

[25] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioanni-
dis, V. Paxons, and S. Shenker. Controlling high
bandwidth aggregates in the network. ACM
Computer Communication Review, 32(3):62–73,
2002.

[26] R. Merkle. Secure communications over inse-
cure channels. Communications of the ACM,
21(8):294–299, April 1978.

[27] The Netfilter/Iptables Project. Web site at
http://www.netfilter.org.

[28] The GNU MP Project. Web site at
http://www.gnu.org/software/gmp/gmp.html.

[29] R.L. Rivest, A. Shamir, and D. Wagner. Time-
lock puzzles and timed-release crypto. Technical
Report MIT/LCS/TR-684, MIT, 1996.

[30] S Savage, D. Wetherall, A. Karlin, and T. An-
derson. Practical network support for IP trace-
back. In ACM SIGCOMM 2000, pages 295–306,
2000.

[31] C.-P. Schnorr and M. Jakobsson. Security of
discrete log cryptosystems in the random ora-
cle and generic model. In The Mathematics of
Public-Key Cryptography. The Fields Institute,
1999.

[32] IP Security Protocol Charter. Web site
at http://www.ietf.org/html.charters/ipsec-
charter.html.

[33] D. X. Song and A. Perrig. Advanced and au-
thenticated marking schemes for IP traceback.
In IEEE INFOCOM, pages 878–886, 2001.

[34] R. Stone. CenterTrack: An IP overlay network
for tracking DoS floods. In USENIX Security
’00, 2000.

[35] L. von Ahn, M. Blum, N.J. Hopper, and J. Lang-
ford. CAPTCHA: Using hard AI problems for
security. In E. Biham, editor, Eurocrypt ’03,
pages 294–311. Springer-Verlag, 2003.

[36] X. Wang and M. K. Reiter. Defending against
denial-of-service attacks with puzzle auctions.
In IEEE Symposium on Security and Privacy,
pages 78–92, 2003.

[37] A. Yaar, A. Perrig, and D. Song. Pi: A
path identification mechanism to defend against
DDoS attacks. In IEEE Symposium on Security
and Privacy, pages 93–109, 2003.

15


