CDMA SIGNATURE SEQUENCES WITH LOW PEAK-TO-AVERAGE-POWER RATIO
VIA ALTERNATING PROJECTION

J.A.Tropg  I.S.Dhillof  R.W.HeathJt.  T. Strohmet

ABSTRACT be much higher than that of binary spreading sequences. If
Several algorithms have been proposed to construct opti-these optimal sequences are to be used in real systems, PAR
mal signature sequences that maximize the sum capacityside constraints should be included in the design problem.
of the uplink in a direct-spread synchronous code-division ~ Several algorithms have been developed for construc-
multiple access (CDMA) system. These algorithms pro- tion of optimal sequences. Viswanath and Anatharam [2]
duce signatures with complex-valued entries that generallyoffer a finite-step algorithm that can construct a limited se-
have a large peak-to-average power ratio (PAR). This pa-lection of optimal CDMA sequences. A number of iterative
per presents an alternating projection algorithm that can de-algorithms, including [5, 6, 7], have been developed that
sign optimal signature sequences that satisfy PAR side con<an construct many more sequences than the finite-step al-
straints. This algorithm converges to a fixed point, and thesegorithm. Unfortunately, these methods cannot accept addi-

fixed points are partially characterized. tional constraints on the signatures.
In this paper, we give a new algorithm for finding op-
1. INTRODUCTION timal signature sequences with constraints on the PAR. We

build on our recently proposed iterative algorithm for con-

Signature sequences that maximize the sum capacity of diregfructing CDMA signature sequences [8]. These algorithms

spread synchronous code-divioson mutiple access (CMDA)are related to a method that used by Chu for solving an in-

systems have been characterized in [1, 2, 3], but the class o¥erse eigenvalue problem [9]. We argue that our algorithm

optimal signatures is so large that we can impose additionalconverges to a fixed point, and we claim that the class of

constraints without losing the optimality. fixed points contains the desired sequences. Proofs of these
One useful property for DS-CDMA signature sequences results will appear elsewhere [10].

to have is a small peak-to-average-power ratio (PAR). The  [OUTLINE?]

PAR of a signal measures how the largest value of the signal

compares with the average power. Signals with large PAR 2. PROBLEM FORMULATION

require higher dynamic range on the analog-to-digital con-

verters and the digital-to-analog converters. They may alsoConsider a direct-spread synchronous CDMA system with

require more linear (and thus higher cost) power amplifiers. N users and a processing gaindfoperating in the pres-

In DS-CDMA systems, the PAR is normally of concern only ence of white noise. Suppose that the average input power

in the downlink (see e.g. [4]), where linear combinations of of then-th user is denoted by,,. We assume that no user

signatures can conspire to have very large PAR values. Thds oversized?2], since the extension to this case is straight-

problem of PAR on the uplink is fundamentally different forward. A mathematical statement of this hypothesis is

because it only involves individual signatures. It has not N

received attention because the uplink typically employs bi- w, < 1 Z w; for n=1,...,N.

nary spreading sequences, which have unit PAR. However, d i=1

the sum-capacity optimal sequences of [1, 2, 3] are gener-

: A signature sequencis a collection{s,,} of N unit-
ally real- or complex-valued. Consequently their PAR may g d {on}

norm vectors inC<. Define the weighted signatures, &
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We usep to denote the desired upper bound on the PAR of

the signatures. Note that< PAR (v) < d. The lower ex-

treme corresponds to a signature whose entries have iden-

tical modulus, while the upper bound is attained only by

(scaled) canonical basis vectors. \
Viswanath and Anatharam have shown that a signature °

sequence achieves the sum capacity of the present system

model if and only if thed positive singular values oX are

identical. A matrix with this property is calledtight frame

Our goal, then, is to construct a weighted signature matrix

X with the following properties. Fig. 1. Intuition behind the alternating projection between

i. The matrix is a tight frameXX* = a/l,. set.” and 2.

ii. Each column has the correct norffit,, ||5 = w,,.
properties (ii) and (iii). LetZ" be the collection of tight
iii. Each column has low PARPAR (z,,) < p. frames—matrices that satisfy property (i). Recall that the

In this paper we present an algorithm that calculates suchdIStance between a poiM and a se®’ is
sequences. In the sequel, we summarize the method and its i .
theoretical behavior. dist(M, &) = Ylgﬁ, 1Y = Mg -

3. STATEMENT OF ALGORITHM Theorem 2 (TDHS [10]) Suppose that alternating projec-
tion generates a sequence of iterafgs;, X;)}. This se-

Our technique is based on an alternating projection betweerguence has at least one accumulation point, i.e. limit of a
Property (i) and Properties (ii)—(iii). The algorithm attempts convergent subsequence.
to compute a nearby matrix that satisfies Properties (i)—(iii).
e Every accumulation point lies ¥ x 2.
Algorithm 1 (Alternating Projection)

e Every accumulation poir(tS, X) satisfies
INPUT:

e An arbitrary matrixS, IS —X||p = jli_{go 1S5 = Xillg -

e The number of iterationg
e Every accumulation point is a generalized fixed point,

OuTPUT: Viz
e A pair of matriceg S, X;) o _ _
IS - XHF = dist(S, Z7) = dist(X, .¥7).
PROCEDURE
1. Letj = 1. We have been able to provide a partial characterization

of the fixed points of this algorithm. It turns out the set
of fixed points includes every collection af vectors that
can be partitioned into tight frames for mutually orthogonal
3. FindS;, the nearest matrix t; in Frobenius norm ~ Subspaces of. In particular, every matrix that satisfies

that has Properties (ii) and (iii). Properties (i)—(iii) is a fixed point. The other fixed points
are spurious solutions that rarely arise in practice.

2. FindX;, the matrix nearestt6;_, in Frobenius norm
that has Property (i).

4. Incrementj. Repeat Steps 2—4 unfil> J.

See Figure 1 for the intuition behind the alternating pro- Proposition 3 (TDHS [10]) Suppose thas lies in.#” and
jection method. that SS*S = SA, whereA is positive and diagonal. Then
The machinery of point-to-set maps is required to un- S is @ (classical) fixed point of Algorithm 1. More pre-
derstand the convergence of this algorithm, so we must refercisely, invoking Algorithm 1 with the initial matrig will
the reader to [10] for details. For reference, we shall stateYield S; = S for every;.
the convergence result. A few definitions are necessary. Let
- be the collection of matrices that satisfy the structural The proof of this proposition appears in [10].



3. If z,,, = 0 for eachm in .#, a solution vector is

o ./.C;%;f form € .#, and
J e argsm form ¢ 4.

Constraint set 4. Otherwise, let

for one column c_ ko2
Y=\ =3
Zme//{ |Zm|

5. If y z,, > ¢ for anym in ., increment: and return
Fig. 2. The shaded region contains the vectors with squared to Step 2.
norme that have PAR less thagn It equals the intersection
of the sphere of radiug/c and the cube with sideg/c p/d.
The input vector to the nearness problenz.is { ~ Zm form € .#, and
S =

6. The unique solution vector is

Jel arezm form ¢ 4.
4. IMPLEMENTATION Whenp = 1, the output of the algorithm is a unimodular
vector whose entries have the same phase as the correspond-
ing entries ofz. On the other hand, when= d, the output
yector equale. Let us prove that the algorithm is correct.
Proof. We must solve the optimization problem

To implement this algorithm, we must solve two matrix
nearness problems. Step 2 is a standard problem from lin
ear algebra, whose solution can be expressed in terms o
a singular value decomposition [11]. If we facthy_; =
UXV* thenX; = (Tr X /d) UV* is a nearest tight frame to
S;—1. Here,Tr (-) indicates the trace operator.

The nearest matrix tX; that satisfies the norm and | ot s begin with some major simplifications. First, rewrite

peak-to-average-power criteria cannot be written in closedy,e paR constraint by enforcing the norm requirement and
form. Fortunately, we can apply the following simple al-  o4rranging to obtain the equivalent condition
gorithm to each columme,, of the input matrix to obtain

sp, the corresponding column of the output matsix See max |s,,| < v/cp/d.
Figure 2 for a diagram of the constraint on each column. m

min||s — z||> subjectto PAR(s) < pand|s|>=c.
S

In the rest of the argument, the symlakill abbreviate the

Algorithm 4 (Nearest Vector with Low PAR) quantity W The PAR constraint becomes,.| <

INPUT: foreachm =1,...,d.
. p Now expand the objective function and enforce the norm
* Aninputvectorz from C constraint again to obtain

e A positive number, the squared norm of the solution ] 9
vector min {c —2Re (s, z) + ||z|\2} :

e A numberp from [1,d], which equals the maximum Observe that it is necessary and sufficient to minimize the
permissible PAR second term. It follows that the optimizer does not depend

on the scale of the input vecter So take|z||, = 1 without

loss of generality.

e A vectors from C? that solves Next observe that the PAR constraint and the norm con-

straint do not depend on the phases of the components in

s. Therefore, the components of an optinsainust have

the same phases as the components of the input vector

OUTPUT:

min|js — z[, st PAR(s) <pand]|s|3=c.

PROCEDURE In consequence, we may assume that zadind z are non-
1. Scalez to have unit norm; definé = \/cp/d; and negative real vectors. _ o
initialize k = 0. We have reached a much more straightforward optimiza-

tion problem. Given a vectog with unit norm and non-
2. Let.# index(d—k) components of with least mag- negative entries, we must solve
nitude. If this set is not uniquely determined, incre-
mentk and repeat Step 2. max (s,z) subjectto (s,s) =cand0 < s, <4,



Observe that every point of the feasible setis a regular point.wherey is positive and the operatdf; truncates té com-
Therefore, Karush-Kuhn-Tucker theory will furnish neces- ponents of its argument that exce&d It is clear that the
sary conditions on an optimizer [12]. largest components af are all truncated at the same time.

We form the Lagrangian function We only need to determinghichcomponents these are.

To that end, observe that — ||[y z]s||, is a strictly
increasing function of0, 6/ zmin|, Wherez,;, is the least
positive component of. For at most one value of, there-
fore, does the vectopy z]s; have normy/c. If this norm

L(s, A\ p,v) = —(s,2) + 3 A ((s,5) — ¢)
—(s,mu)+{(s—01,v).

The Lagrange multipliers andv are non-negative because
they correspond to the lower and upper bounds.odean-
while, the multiplier is unrestricted because it is associ-

value were not attained, thevi would equal zero. Let be
the number of entries of* that equaly, and suppose that
. indexes the remainin@! — k) components. Then

ated with the equality constraint.
The first-order KKT necessary condition on a regular
local maximums* is that
0= (Vs L)(s*, \", u*, ")
—Z—F/\*S*—[J*—FV*,

2 2
c=ls*ll; = k6% +7 Y |zml”
meH

Recall thaty is positive. Therefore, isimpossible thia? >
c. Whenk 62 = ¢, it follows thatz,, = 0 for eachm in .Z.
Otherwise,z,,, must be non-zero for some in .#. Then
the value ofy must be

c— ko2
T= o
Yme.u l7ml”

5. NUMERICAL EXPERIMENTS

@)

wherepr, > 0onlyif s7, = 0 andv}, > 0onlyif s, = 4.
Notice that one ofu, or v}, must be zero because they
correspond to mutually exclusive constraints. The second-
order KKT necessary condition on a regular local maximum
is that

0<y" (VZL)(s",\*,u*,v")y
_ )\* yTy

for every vectory in the subspace of first-order feasible Let us demonstrate that alternating projection can indeed
variations. This subspace is non-trivial, 50> 0. produce tight frames whose columns have specified PAR
Solve Equation (1) to obtain and specified norm. The experiments all begin with the ini-

tial 3 x 6 matrix
Ns*=z+pu" —v*.

. 0748 4+ .36091  .0392 + .45581  .5648 + .3635i
* * — * —

Wheneveru;, > 0, boths?, = 0 andv;, = 0. This com- 5861 — 05701 —.2020 + .8024i —.5240 + .4759i

bination is impossible becausg, > 0. Therefore, we may —.7112 +.10761 —.2622 —.1921i —.1662 + .1416i

eliminatep* to reach — 2567+ .4463i  .7064+.6193i  .1586 -+ .6825i

—.1806 — .1015i —.1946 — .1889i  .5080 -+ .0226i

Ns* =z —v". .0202 + .8316i  .0393 — .2060i  .2819 + .4135i

The cases\* = 0 and\* > 0 require separate considera- The respective PAR values of its columns are 1.5521, 2.0551,
tion. 1.5034, 2.0760, 2.6475 and 1.4730.

If \* = 0, it is clear thatv* = z. Sincev), > 0 Unimodular tight frames are probably the most inter-
only if s¥, = 4, we must have, = J wheneverz,, > 0. esting example of frames with low PAR. Every entry of a
Suppose thak components o* equald. The remaining  unimodular frame has an identical modulus, and so the PAR
(d — k) components are not uniquely determined by the op- of each column equals one. Let us apply the algorithm to
timization problem. From the many solutions, we choose calculate a unit-norm, unimodular tight frame.
one such that

57 1345 + 56151 1672+ .55261  .4439 + .3692i
x _ €T _ 5410 — 20171 —.0303 4 .57661 —.5115 + .2679i
Sm =N\ Ik for m wherez, = 0. —.5768 4+ .02521 —.2777 — 50621 —.2303 + .5294i

. —.3358 4+ .46961  .4737 + .3300i .0944 + .5696i
This forr_nula ensures that* has the correct norm and that _ 5432 — 19561 —.3689 — 44420 .57AT 4 .0554i
none of its entries exceeds 1258 + .56351 —.0088 — .5773i .4132 + .4033i

When\* > 0, the solution has the form . .
Indeed, each of the columns has unit PAR, and the singular

s* = [y z]s, values of the matrix are identical to eight decimal places.



The calculation required 78 iterations lasting 0.1902 sec-

onds.
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