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ABSTRACT
Several algorithms have been proposed to construct opti-
mal signature sequences that maximize the sum capacity
of the uplink in a direct-spread synchronous code-division
multiple access (CDMA) system. These algorithms pro-
duce signatures with complex-valued entries that generally
have a large peak-to-average power ratio (PAR). This pa-
per presents an alternating projection algorithm that can de-
sign optimal signature sequences that satisfy PAR side con-
straints. This algorithm converges to a fixed point, and these
fixed points are partially characterized.

1. INTRODUCTION

Signature sequences that maximize the sum capacity of direct-
spread synchronous code-divioson mutiple access (CMDA)
systems have been characterized in [1, 2, 3], but the class of
optimal signatures is so large that we can impose additional
constraints without losing the optimality.

One useful property for DS-CDMA signature sequences
to have is a small peak-to-average-power ratio (PAR). The
PAR of a signal measures how the largest value of the signal
compares with the average power. Signals with large PAR
require higher dynamic range on the analog-to-digital con-
verters and the digital-to-analog converters. They may also
require more linear (and thus higher cost) power amplifiers.
In DS-CDMA systems, the PAR is normally of concern only
in the downlink (see e.g. [4]), where linear combinations of
signatures can conspire to have very large PAR values. The
problem of PAR on the uplink is fundamentally different
because it only involves individual signatures. It has not
received attention because the uplink typically employs bi-
nary spreading sequences, which have unit PAR. However,
the sum-capacity optimal sequences of [1, 2, 3] are gener-
ally real- or complex-valued. Consequently their PAR may
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be much higher than that of binary spreading sequences. If
these optimal sequences are to be used in real systems, PAR
side constraints should be included in the design problem.

Several algorithms have been developed for construc-
tion of optimal sequences. Viswanath and Anatharam [2]
offer a finite-step algorithm that can construct a limited se-
lection of optimal CDMA sequences. A number of iterative
algorithms, including [5, 6, 7], have been developed that
can construct many more sequences than the finite-step al-
gorithm. Unfortunately, these methods cannot accept addi-
tional constraints on the signatures.

In this paper, we give a new algorithm for finding op-
timal signature sequences with constraints on the PAR. We
build on our recently proposed iterative algorithm for con-
structing CDMA signature sequences [8]. These algorithms
are related to a method that used by Chu for solving an in-
verse eigenvalue problem [9]. We argue that our algorithm
converges to a fixed point, and we claim that the class of
fixed points contains the desired sequences. Proofs of these
results will appear elsewhere [10].

[OUTLINE?]

2. PROBLEM FORMULATION

Consider a direct-spread synchronous CDMA system with
N users and a processing gain ofd, operating in the pres-
ence of white noise. Suppose that the average input power
of then-th user is denoted bywn. We assume that no user
is oversized[2], since the extension to this case is straight-
forward. A mathematical statement of this hypothesis is

wn ≤
1
d

N∑
j=1

wj for n = 1, . . . , N.

A signature sequenceis a collection{sn} of N unit-
norm vectors inCd. Define the weighted signaturesxn

def=√
wn sn, and form ad×N matrixX whosen-th column is

xn. For purposes of design, we consider the discrete-time
peak-to-average ratio based on the sampled discrete-time
system, which approximates the PAR of the continuous-
time system. The PAR of ad-dimensional signaturev is
defined as

PAR (v) def=
max` |v`|2

d−1
∑

` |v`|2
.



We useρ to denote the desired upper bound on the PAR of
the signatures. Note that1 ≤ PAR (v) ≤ d. The lower ex-
treme corresponds to a signature whose entries have iden-
tical modulus, while the upper bound is attained only by
(scaled) canonical basis vectors.

Viswanath and Anatharam have shown that a signature
sequence achieves the sum capacity of the present system
model if and only if thed positive singular values ofX are
identical. A matrix with this property is called atight frame.
Our goal, then, is to construct a weighted signature matrix
X with the following properties.

i. The matrix is a tight frame:XX ∗ = α Id.

ii. Each column has the correct norm:‖xn‖2
2 = wn.

iii. Each column has low PAR:PAR (xn) ≤ ρ.

In this paper we present an algorithm that calculates such
sequences. In the sequel, we summarize the method and its
theoretical behavior.

3. STATEMENT OF ALGORITHM

Our technique is based on an alternating projection between
Property (i) and Properties (ii)–(iii). The algorithm attempts
to compute a nearby matrix that satisfies Properties (i)–(iii).

Algorithm 1 (Alternating Projection)

INPUT:

• An arbitrary matrixS0

• The number of iterationsJ

OUTPUT:

• A pair of matrices(SJ ,XJ)

PROCEDURE:

1. Letj = 1.

2. FindXj , the matrix nearest toSj−1 in Frobenius norm
that has Property (i).

3. FindSj , the nearest matrix toXj in Frobenius norm
that has Properties (ii) and (iii).

4. Incrementj. Repeat Steps 2–4 untilj > J .

See Figure 1 for the intuition behind the alternating pro-
jection method.

The machinery of point-to-set maps is required to un-
derstand the convergence of this algorithm, so we must refer
the reader to [10] for details. For reference, we shall state
the convergence result. A few definitions are necessary. Let
S be the collection of matrices that satisfy the structural

S

X

Fig. 1. Intuition behind the alternating projection between
setS andX .

properties (ii) and (iii). LetX be the collection of tight
frames—matrices that satisfy property (i). Recall that the
distance between a pointM and a setY is

dist(M,Y ) = inf
Y∈Y

‖Y −M‖F .

Theorem 2 (TDHS [10]) Suppose that alternating projec-
tion generates a sequence of iterates{(Sj ,Xj)}. This se-
quence has at least one accumulation point, i.e. limit of a
convergent subsequence.

• Every accumulation point lies inS ×X .

• Every accumulation point(S ,X ) satisfies∥∥S − X
∥∥

F
= lim

j→∞
‖Sj − Xj‖F .

• Every accumulation point is a generalized fixed point,
viz. ∥∥S − X

∥∥
F

= dist(S ,X ) = dist(X ,S ).

We have been able to provide a partial characterization
of the fixed points of this algorithm. It turns out the set
of fixed points includes every collection ofN vectors that
can be partitioned into tight frames for mutually orthogonal
subspaces ofCd. In particular, every matrix that satisfies
Properties (i)–(iii) is a fixed point. The other fixed points
are spurious solutions that rarely arise in practice.

Proposition 3 (TDHS [10]) Suppose thatS lies in S and
that SS∗S = SΛ, whereΛ is positive and diagonal. Then
S is a (classical) fixed point of Algorithm 1. More pre-
cisely, invoking Algorithm 1 with the initial matrixS will
yieldSj = S for everyj.

The proof of this proposition appears in [10].



Constraint set
for one column

z

Fig. 2. The shaded region contains the vectors with squared
normc that have PAR less thanρ. It equals the intersection
of the sphere of radius

√
c and the cube with sides

√
c ρ/d.

The input vector to the nearness problem isz.

4. IMPLEMENTATION

To implement this algorithm, we must solve two matrix
nearness problems. Step 2 is a standard problem from lin-
ear algebra, whose solution can be expressed in terms of
a singular value decomposition [11]. If we factorSj−1 =
UΣV ∗, thenXj = (TrΣ/d) UV ∗ is a nearest tight frame to
Sj−1. Here,Tr (·) indicates the trace operator.

The nearest matrix toXj that satisfies the norm and
peak-to-average-power criteria cannot be written in closed
form. Fortunately, we can apply the following simple al-
gorithm to each columnxn of the input matrix to obtain
sn, the corresponding column of the output matrixSj . See
Figure 2 for a diagram of the constraint on each column.

Algorithm 4 (Nearest Vector with Low PAR)

INPUT:

• An input vectorz from Cd

• A positive numberc, the squared norm of the solution
vector

• A numberρ from [1, d], which equals the maximum
permissible PAR

OUTPUT:

• A vectors from Cd that solves

min
s
‖s− z‖2 s.t. PAR (s) ≤ ρ and ‖s‖2

2 = c.

PROCEDURE:

1. Scalez to have unit norm; defineδ =
√

c ρ/d; and
initialize k = 0.

2. LetM index(d−k) components ofz with least mag-
nitude. If this set is not uniquely determined, incre-
mentk and repeat Step 2.

3. If zm = 0 for eachm in M , a solution vector is

s =

{ √
c−k δ2

d−k for m ∈ M , and

δ ei arg zm for m /∈ M .

4. Otherwise, let

γ =

√
c− k δ2∑
m∈M |zm|2

.

5. If γ zm > δ for anym in M , incrementk and return
to Step 2.

6. The unique solution vector is

s =
{

γ zm for m ∈ M , and
δ ei arg zm for m /∈ M .

Whenρ = 1, the output of the algorithm is a unimodular
vector whose entries have the same phase as the correspond-
ing entries ofz. On the other hand, whenρ = d, the output
vector equalsz. Let us prove that the algorithm is correct.

Proof. We must solve the optimization problem

min
s
‖s− z‖2

2 subject to PAR (s) ≤ ρ and ‖s‖2
2 = c.

Let us begin with some major simplifications. First, rewrite
the PAR constraint by enforcing the norm requirement and
rearranging to obtain the equivalent condition

max
m

|sm| ≤
√

c ρ/d.

In the rest of the argument, the symbolδ will abbreviate the
quantity

√
c ρ/d. The PAR constraint becomes|sm| ≤ δ

for eachm = 1, . . . , d.
Now expand the objective function and enforce the norm

constraint again to obtain

min
s

[
c− 2 Re 〈s,z〉+ ‖z‖2

2

]
.

Observe that it is necessary and sufficient to minimize the
second term. It follows that the optimizer does not depend
on the scale of the input vectorz. So take‖z‖2 = 1 without
loss of generality.

Next observe that the PAR constraint and the norm con-
straint do not depend on the phases of the components in
s. Therefore, the components of an optimals must have
the same phases as the components of the input vectorz.
In consequence, we may assume that boths andz are non-
negative real vectors.

We have reached a much more straightforward optimiza-
tion problem. Given a vectorz with unit norm and non-
negative entries, we must solve

max
s

〈s,z〉 subject to 〈s, s〉 = c and0 ≤ sm ≤ δ,



Observe that every point of the feasible set is a regular point.
Therefore, Karush-Kuhn-Tucker theory will furnish neces-
sary conditions on an optimizer [12].

We form the Lagrangian function

L(s, λ,µ,ν) = −〈s,z〉+ 1
2 λ (〈s, s〉 − c)
− 〈s,µ〉+ 〈s− δ 1,ν〉 .

The Lagrange multipliersµ andν are non-negative because
they correspond to the lower and upper bounds ons. Mean-
while, the multiplierλ is unrestricted because it is associ-
ated with the equality constraint.

The first-order KKT necessary condition on a regular
local maximums? is that

0 = (∇s L)(s?, λ?,µ?,ν?)
= −z + λ? s? − µ? + ν?,

(1)

whereµ?
m > 0 only if s?

m = 0 andν?
m > 0 only if s?

m = δ.
Notice that one ofµ?

m or ν?
m must be zero because they

correspond to mutually exclusive constraints. The second-
order KKT necessary condition on a regular local maximum
is that

0 ≤ yT (∇2
s L)(s?, λ?,µ?,ν?)y

= λ? yT y

for every vectory in the subspace of first-order feasible
variations. This subspace is non-trivial, soλ? ≥ 0.

Solve Equation (1) to obtain

λ?s? = z + µ? − ν?.

Wheneverµ?
m > 0, boths?

m = 0 andν?
m = 0. This com-

bination is impossible becausezm ≥ 0. Therefore, we may
eliminateµ? to reach

λ? s? = z − ν?.

The casesλ? = 0 andλ? > 0 require separate considera-
tion.

If λ? = 0, it is clear thatν? = z. Sinceν?
m > 0

only if s?
m = δ, we must haves?

m = δ wheneverzm > 0.
Suppose thatk components ofs? equalδ. The remaining
(d− k) components are not uniquely determined by the op-
timization problem. From the many solutions, we choose
one such that

s?
m =

√
c− k δ2

d− k
for m wherezm = 0.

This formula ensures thats? has the correct norm and that
none of its entries exceedsδ.

Whenλ? > 0, the solution has the form

s? = [γ z]δ,

whereγ is positive and the operator[·]δ truncates toδ com-
ponents of its argument that exceedδ. It is clear that the
largest components ofz are all truncated at the same time.
We only need to determinewhichcomponents these are.

To that end, observe thatγ 7→ ‖[γ z]δ‖2 is a strictly
increasing function on[0, δ/zmin], wherezmin is the least
positive component ofz. For at most one value ofγ, there-
fore, does the vector[γ z]δ have norm

√
c. If this norm

value were not attained, thenλ? would equal zero. Letk be
the number of entries ofs? that equalδ, and suppose that
M indexes the remaining(d− k) components. Then

c = ‖s?‖2
2 = k δ2 + γ2

∑
m∈M

|zm|2.

Recall thatγ is positive. Therefore, is impossible thatk δ2 >
c. Whenk δ2 = c, it follows thatzm = 0 for eachm in M .
Otherwise,zm must be non-zero for somem in M . Then
the value ofγ must be

γ =

√
c− k δ2∑
m∈M |zm|2

.

�

5. NUMERICAL EXPERIMENTS

Let us demonstrate that alternating projection can indeed
produce tight frames whose columns have specified PAR
and specified norm. The experiments all begin with the ini-
tial 3× 6 matrix

24 .0748 + .3609i .0392 + .4558i .5648 + .3635i
.5861 − .0570i −.2029 + .8024i −.5240 + .4759i

−.7112 + .1076i −.2622 − .1921i −.1662 + .1416i

−.2567 + .4463i .7064 + .6193i .1586 + .6825i
−.1806 − .1015i −.1946 − .1889i .5080 + .0226i

.0202 + .8316i .0393 − .2060i .2819 + .4135i

35.

The respective PAR values of its columns are 1.5521, 2.0551,
1.5034, 2.0760, 2.6475 and 1.4730.

Unimodular tight frames are probably the most inter-
esting example of frames with low PAR. Every entry of a
unimodular frame has an identical modulus, and so the PAR
of each column equals one. Let us apply the algorithm to
calculate a unit-norm, unimodular tight frame.

24 .1345 + .5615i .1672 + .5526i .4439 + .3692i
.5410 − .2017i −.0303 + .5766i −.5115 + .2679i

−.5768 + .0252i −.2777 − .5062i −.2303 + .5294i

−.3358 + .4696i .4737 + .3300i .0944 + .5696i
−.5432 − .1956i −.3689 − .4442i .5747 + .0554i

.1258 + .5635i −.0088 − .5773i .4132 + .4033i

35.

Indeed, each of the columns has unit PAR, and the singular
values of the matrix are identical to eight decimal places.



The calculation required 78 iterations lasting 0.1902 sec-
onds.

Alternating projection can also compute tight frames whose
columns have unit PAR but do not have unit norm. For ex-
ample, if we request the column norms 0.75, 0.75, 1, 1, 1.25
and 1.25, the algorithm yields

24 .3054 + .3070i .1445 + .4082i .3583 + .4527i
.4295 − .0549i .1235 + .4150i −.5597 + .1418i

−.4228 − .0936i −.0484 − .4303i .0200 + .5770i

−.4264 + .3893i .4252 + .5831i .3622 + .6242i
−.5393 − .2060i −.4425 − .5701i .7165 − .0863i

.2585 + .5162i −.2894 − .6611i .1291 + .7101i

35.

One can check that the column norms, PAR and singular
values all satisfy the design requirements to eight or more
decimal places. The computation took 84 iterations over
0.1973 seconds.

Less stringent constraints on the PAR pose even less
trouble. For example, we might like to construct a tight
frame whose PAR is bounded by two and whose columns
have norms 0.75, 0.75, 1, 1, 1.25 and 1.25. Here it is.

24 .0617 + .1320i .0184 + .2764i .4299 + .3593i
.4256 − .1031i −.0558 + .5938i −.5920 + .4974i

−.5912 + .0025i −.1304 − .3363i −.0807 + .2857i

−.1382 + .2511i .6847 + .7436i .2933 + .6939i
−.4306 − .2650i −.2095 − .3072i .7317 + .0928i

.0852 + .8093i −.3504 − .5289i .2918 + .6048i

35.

The computer worked for 0.0886 seconds, during which it
performed 49 iterations. As usual, the singular values match
to eight decimal places. It is interesting to observe that
the frame exceeds the design specifications. The respec-
tive PAR values of its columns are 1.8640, 1.8971, 1.7939,
1.9867, 1.9618 and 1.0897.

6. CONCLUSIONS AND FURTHER WORK

We have proposed a method for constructing optimal CDMA
signature sequences that satisfy a constraint on the peak-to-
average power ratio. The algorithm is based on an alter-
nating projection between a spectral constraint and the PAR
constraint.

The flexibility of the alternating projection approach sug-
gests that it may be able to address other constraints. This
is indeed the case. For example, a straightforward mod-
ification of this algorithm can construct sequences whose
Fourier transform is nearly unimodular, which is the frequency-
domain analog of low peak-to-average power ratio. It would
also be interesting to develop a method for synchronous
CDMA systems operating in the presence of colored noise.
For some other applications, see the paper [10].
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