

CAA OF SHORT NON-MCQ
ANSWERS

David Callear, Jenny Jerrams-Smith
and Victor Soh

CAA of Short Non-MCQ Answers

Dr. David Callear
Dr. Jenny Jerrams-Smith

Victor Soh

University of Portsmouth
Dept. of Info. Systems
Burnaby Terrace 1.17

1-8 Burnaby Road
Portsmouth

Hants PO1 3AE
United Kingdom

DavidCallear@port.ac.uk

Jenny.Jerrams-Smith@port.ac.uk
Victor.Soh@yahoo.com

Tel: 02392 84 6418
Fax: 02392 84 6402

Abstract

This paper presents a new approach for the computer-assisted assessment (CAA)
of non- multiple choice questions (Non-MCQ) type and short answers given by
students. The technique is developed for the assessment of text contents of free text
answers to questions of factual disciplines.

The Automated Text Marker (ATM) prototype automatically breaks down an expertly
written model answer, to a closed-ended question, into the smallest viable unit of
concepts with their dependencies accounted for by automatically tagging the
resultant concepts and their dependencies with numbers. The same process is
applied to each student’s answer and the resultant concepts and their
dependencies are then pattern-matched with those of the model examiner’s answer.

Two main components of ATM are the syntax and semantics analysers. In a
prototype test, ATM provides for one score for the grammars and the other for the
text contents.
The focus of this paper is on semantic analysis of text contents since the syntactic
analysis of sentences has been generally and successfully automated.

Various examples of sentences of different factual disciplines such as those of
Prolog programming, psychology and biology-related fields are analysed.
Justifications for these analyses of sentences are provided and the corresponding
prototype tests are conducted. The expected results from prototyping using ATM are
obtained, indicating the reliability and feasibility of this new approach for the detailed
assessment of text contents incorporating word order.

Work is currently underway for building a larger and more comprehensive ATM
system for analysing and assessing text components larger than sentences such as
paragraphs and whole text passages. Unlike existing computerised assessment
systems, ATM is not a predictive system, although, like a human assessor, it is not
perfect.

Keywords

Computer-Assisted Assessment, Intelligent and Expert Systems, Natural Language
Processing, Prolog, Syntax, Semantics, Structured Knowledge Representation
Schemes, Clustering and Management of Concept Representations.

Introduction

A new approach for computer-assisted assessment (CAA) of free text answers given
by students is applied to assess the short answer format.

The assessment of students by multiple choice questions (MCQ) has been criticised
for not measuring higher order cognitive skills and thus, not authentic. On the other
hand, it is difficult for an instructor to assess students uniformly in a class of 200
students when pressured for time, under ordinary circumstances. A computerised
assessment system would at least provide a ‘double marking’ and alert the instructor
when there are large discrepancies between the grades he or she has given when
compared to those produced by the computerised systems.

Existing computerised systems (Burstein et al, 1998a; Educational Testing Service,
1998; Burstein et al, 1998b; Dessus et al, 2000; Foltz et al, 1999; Landauer and
Dumais, 1997; Landauer, Foltz and Laham, 1998; Landauer et al, 1997; Latent
Semantic Analysis, 1997; Page, 1966, 1968, 1994) do not assess text contents at
formative level and therefore, are not suitable for the short answer format. Moreover,
they are predictive systems, although some of them assess text contents by
matching weighted keywords only (Burstein et al, 1998b; Latent Semantic Analysis,
1997). These systems are not useful for assessing factual disciplines which call for
explicit, short and concise answers. The word order is not taken into account. A
summary of these various systems is provided in a paper entitled, Approaches to
The Computerised Assessment of Free Text Responses (Whittington and Hunt,
1999).

The authors’ Automated Text Marker (ATM) is developed for assessing text contents
and is particularly suitable for assessing short answers to closed-ended questions of
factual disciplines. An examiner’s model answer is automatically segmented into
smaller concepts with their dependencies accounted for, whenever necessary. The
same process is applied to a student’s answer which is then pattern-matched with
the model answer and assessed. ATM assesses basic grammars and text contents.
The word order is taken into account.

The scope of this paper consists of an introduction to ATM, the methodology and
formalism used, as well as analyses of various short answers by the system and
their respective justifications.

ATM Basic Architecture

The basic architecture of ATM is shown in Figure 1. ATM is written in Prolog which is
very good for prototyping. Each part of a Prolog program can be automatically
tested. Prolog is particularly adept at handling words and sentences, by treating
them as lists.

One of the two main components of ATM is the syntax analyser. A simple syntax
analyser is shown in Appendix A. The program source codes shown are quite
readable and explicit. It is used to check the grammar of each input sentence. How
complex is a sentence allowed is thus, constrained by the syntax analyser. An option
for a user to finally submit an answer, irrespective of whether it is grammatically
correct or not or the sentence is excessively convoluted and ambiguous or
otherwise, is provided in the interactive ATM syntax analyser. The grammar can be
augmented to include a wide-coverage, context-free and formalised grammatical
description such as the Generalised Phrase Structure Grammar (GPSG) (Gazdar et
al, 1985; Bennett, 1995). The large scale Alvey Natural Language Tools (ANLT)
(Taylor, 1996-1998) are also built around the GPSG formalism.

 Output

Figure 1. ATM Basic Architecture

The other main component of ATM is the semantics analyser which is the focus of
this paper, since syntactic analysis of sentences has been successfully automated.
In order to model the deep semantic structures of natural language, this semantics
analyser is separately implemented. A context-sensitive grammar would drastically
increase the program complexity and is not sufficient to model the deep semantic
and pragmatic representations of the meanings of sentences, assuming that the
intended meanings reside explicitly in the text.

ATM provides for two separate scores, one for the grammar and one for the text
content. It is up to the examiner or course instructor to assign the weight for each
score when calculating the overall or final score for each student.

Examiner’s
Model

Answer
File

Student File

Syntax

(Grammar)
Analyser

Fundamental
Concepts

Semantics
Analyser

Domain-
dependent
Concepts

Student
Conceptual

Dependency
File

Model
Conceptual

Dependency
File

Comparison
Module

SC
OR
E

C
O
U
N
T
E
R

O
U
T
P
U
T

Analyses of Short and Concise Sentences Using ATM Prototype

Research in natural language processing (NLP) has spanned a period of more than
40 years and the field has never fully matured. The development of the Prolog
programming language is synonymous with the research in NLP. Insights gained
from the NLP research can now be exploited and allowed to move from applications
in toy domains to suitably constrained, realistic and practical applications such as
the CAA of Short Non-MCQ Answers, the Computer-Assisted Language Learning
(CALL) systems, the application of the NLP techniques in information retrieval or
digital libraries, etc.

Various variants of a sentence with a relative level of detail are shown in Figures 2,
3 and

Figure 2. Q: What is an infection? Variant answer A

Figure 3. Q: What is an infection? Variant answer B

Figure 4. Q: What is an infection? Variant answer C

An infection is the invasion and multiplication of microorganisms in body tissue that
produce signs and symptoms as well as an immunologic response.

An infection in body tissue is the invasion and multiplication of microorganisms that
produce signs and symptoms as well as an immunologic response.

The invasion and multiplication of microorganisms in body tissue that produce signs
and symptoms as well as an immunologic response are an infection.

Figure 5. Q: What is an infection? CD Form

4. These variants have identical meanings composed from identical root words in
various combinations. These are the answers to the question What is an infection?
Their conceptual dependency (CD) groups, at the corresponding relative level of
granularity, are shown in Figure 5. For clarity, the CD groups are shown in an output
form and are not in the same way as the data are represented in Prolog within the
program. This is explained in a later section on ‘ATM Structured Representation
Schemes’. Concepts linked by the verb, is, can be placed on either sides of the verb
and are thus, interchangeable as in Figures 2 and 4. In contrast, the concepts on
either sides of, for example because, are not interchangeable. Note that the
maximum score for this example question is fixed at 12 points for twelve concepts
which match.

An example sentence of Prolog programming is shown in Figure 6. The CD groups
for the answer to the question What is the relation between a fact and a rule? is
given in Figure 7. The last dependency group expresses the fact that the second
concept is the converse of the first. The determiners have disappeared, and a
mainstay of the efficient implementation of this method is a simple analysis initially
which enables non-necessary words to be discarded at the start. Note that the
maximum score for this model answer is fixed at 8 points for eight concepts which
match.

DEPENDENCY GROUP 1

group(1,([infection] � [is] � [invasion])).
group(1,([infection] � [is] � [multiplication])).

group(1,([invasion] � [of] � [microorganism])).
group(1,([multiplication] � [of] � [microorganism])).

DEPENDENCY GROUP 2

group(2,([group(1)] � [in] � [body tissue])).
group(2,([infection] � [in] � [body tissue])).

DEPENDENCY GROUP 3

group(3,([group(1)] � [produce] � [sign])).
group(3,([group(1)] � [produce] � [symptom])).

group(3,([group(1)] � [produce] � [immune response])).

DEPENDENCY GROUP 4
group(4,([group(2)] � [produce] � [sign])).

group(4,([group(2)] � [produce] � [symptom])).
group(4,([group(2)] � [produce] � [immune response])).

Maximum score : 12 points

Figure 6. Q: What is the relation between a fact and a rule?

Model Answer

Figure 7. Q: What is the relation between a fact and a rule? CD Form

ATM Methodology, Canonicality and Practical Simplifications

As shown in the preceding section, each fragment of concept is either totally
independent (a dependency group by itself) or falls under a major dependency
group, and is automatically given a numerical tag (number). Each numbered
dependency group represents the context within which fragments of concept must
be reclustered and segregated. These major dependency groups can be further
related to each other so that successively larger dependency groups are
generated and numbered automatically.

Further prototyping of ATM is done by using a standard set of fundamental concepts
or primitives and domain-dependent concepts, with synonyms and metonyms, where
appropriate, on a thesaurus approach. An example pair of sentences is shown in
Figure 8. For any two (2) sentences having the same meaning, only one (1)
representation is used. These two sentences are reduced to canonical form as
shown in Figure 9, which is again in output form. Note that the maximum score here
is fixed at 2 points for a total of two concepts/dependency groups which match.

A fact in Prolog is a rule with no body, and conversely a rule is a fact with a body.

DEPENDENCY GROUP 1

group(1,([fact] � [is] � [rule])).
group(1,([rule] � [with] � [body])).

group(1,([no] � [describe] � [body])).
group(1,([fact] � [in] � [prolog])).

DEPENDENCY GROUP 2

group(2,([rule] � [is] � [fact])).
group(2,([fact] � [with] � [body])).
group(2,([rule] � [in] � [prolog])).

DEPENDENCY GROUP 3

group(3,([group(1)] � [converse] � [group(2)])).

Maximum score : 8 points

Figure 8. Example pair of sentences

Figure 9. CD form of example pair of sentences

Prolog has a built-in syntax for handling grammar by breaking sentences down into
phrases. A few of the simplifications presently used are:

(a) Definite and indefinite articles, and other ‘unnecessary’ words, are discarded.

(b) Complex sentences are broken down into simple sentences.

(c) Subordinate clauses are converted to simple sentences.

(d) Simple sentences contain one verb, which is a dependency.

(e) Adverbs, adjectives, conjunctions and prepositions represent further
dependencies.

(f) A dependency can be represented as a duad : dependency – concept.

(g) A dependency can be represented as a triad: concept – dependency – concept.

Taxes are increased because of a budget deficit.

Due to shortage of funds, taxes have gone up.

 Synonyms:

have gone up � increase

due to � because

shortage of fund � budget deficit

DEPENDENCY GROUP 1

group(1,([tax] � [is] � [increase])).

DEPENDENCY GROUP 2
group(2,([group(1)] � [because] � [budget deficit])).

Maximum score : 2 points

(h) Each sentence represents a group of dependencies.

ATM Structured Representation Schemes

The paradigm used in the ATM prototype enables the separation of knowledge
representation into a fundamental level, and a domain-dependent level making
use of case frames. The Prolog equivalents of these case frames are structures or
structure predicates as follow :

Examples of fundamental concepts:

word, bird, college, orange, ‘David’, generalisation, noun, etc.

Examples of domain-dependent concepts:

verb(give(NUMBER, DONOR, RECIPIENT, OBJECT)).
verb(see(NUMBER, VARIABLE1, _, Etc.)).
adjective(arduous(NUMBER, TASK).
adverb(surprisingly(NUMBER,adjective(NUMBER, ADJECTIVE))).
conjunction(while(NUMBER ,VARIABLE1, VARIABLE2)).
preposition(in(NUMBER,pointer_or_dependency_group(NUMBER),
 ‘body tissue’, Etc.)).

Note that verbs, adjectives, adverbs, prepositions, conjunctions, etc. are structure-
building words as opposed to simple nouns. The Sharing and reuse of a
representation are accomplished by automatically tagging each case frame with a
number as shown in the above examples. The variables (arguments) of case frames
(predicates) can be pointers to other case frames. The underscore, “_”, refers to an
anonymous variable in Prolog. During run-time, these variables of case frames are
bound or instantiated through unification with the domain text corpora.

ATM structured knowledge representation schemes are powerful in terms of their
expressiveness and granularity for the purpose of modelling a natural language.

Discussion

Recent research (Coniam, 1995; Willis,1992; COLLINS COBUILD, 1992) suggests
that a lexicon of the most common 2,500 words of English accounts for 80% of all
English text. COBUILD research (COLLINS COBUILD, 1992) has established that
the most frequent 1500 and 700 words of English account for 76% and 70%
respectively of all English text, and this is implementable in the larger and more
comprehensive ATM system. The number of operation words to be implemented is
estimated at less than 100. These operation words include prepositions,
conjunctions, pronouns, common verbs, etc. but exclude nouns and uncommon
verbs.

In order for the larger ATM system to work, highly convoluted sentences, which
would be difficult even for a human assessor to unambiguously figure out the long-
distance dependencies, would not accepted by the interactive ATM syntax analyser.
Theoretically, a sentence can consist of, for example, 5000 words, but this will not
be acceptable by academic standards.

The ATM system provides for a considerable enhancement in assessment as
opposed to a keyword assessment. When combined with some techniques of the
existing computerised assessment of free text systems, formidable systems are
conceivable.

Conclusions

Feasibility studies indicate that the ATM prototype provides for an effective
conceptual pattern matching of student’s answers with those of model examiner’s
answers.

Text passages are automatically broken down into their smallest viable unit of
concepts. Basic concepts and their dependencies are reclustered and implemented
as case frames with numerical tags to identify from which context these concepts
arise, and can thus be grouped together.

Successively larger concepts or dependency groups are derived through systematic
replacement of the variables of appropriate case frames with pointers to other
dependency groups or case frames.

This project provides the basis for solving the words-on-a-page problem, and the
methodology has been shown to be promising through prototype tests.

Appendix A

Example of a Prolog Syntax Analyser

start:-write('Enter one complete sentence:'), nl, nl,
 getsent(Sentence),
 test(Sentence).

test(Sentence):-phrase(sentence, Sentence), write('Sentence is correct.'), nl.
test(_):-write('Sentence is incorrect.'), nl.

/* Basic Sentence */

sentence -->noun_phrase(N), verb_prep_phrase(N), fullstop.

/* Noun phrases. Accept phrases joined by a conjunction */

noun_phrase(plural) --> noun_group(_), conjunction(and), noun_group(_), !.
noun_phrase(N)-->noun_group(N).

/* Nouns grouped with other words. Accepts determiners and adjectives and
 distinguishes between nouns, proper nouns and pronouns */

noun_group(N)-->determiner(N), noun_adj_group(N), !.
noun_group(plural)-->noun_adj_group(plural), !.
noun_group(N)-->adjective, propernoun(N), !.
noun_group(N)-->propernoun(N), !.
noun_group(N)-->pronoun(N).

/* Deals with nouns grouped with up to two adjectives */

noun_adj_group(N)-->adjective,adjective,noun(N), !.
noun_adj_group(N)-->adjective,noun(N), !.
noun_adj_group(N)-->noun(N).

/* Take care of prepositional phrases */

verb_prep_phrase(N)-->verb_phrase(N), prepositional_phrase,
 prepositional_phrase, prepositional_phrase, !.
verb_prep_phrase(N)-->verb_phrase(N), prepositional_phrase,
prepositional_phrase, !.
verb_prep_phrase(N)-->verb_phrase(N), prepositional_phrase, !.
verb_prep_phrase(N)-->verb_phrase(N).

/* Verb phrases. Deal with verbs grouped with up to two
 noun phrases, eg. He gave (her)(the book). */

verb_phrase(N)-->verb_group(N), noun_phrase(_), noun_phrase(_), !.
verb_phrase(N)-->verb_group(N), noun_phrase(_), !.
verb_phrase(N)-->verb_group(N).

/* These cater for up to two participles, eg. He is going. He is sitting reading. */

verb_group(N)-->verb(N), participle, participle, !.
verb_group(N)-->verb(N), participle, !.
verb_group(N)-->verb(N).

/* Prepositional phrases. Deals with up to two prepositions,
 eg. He goes to bed. He goes in to dinner. */

prepositional_phrase-->preposition, preposition, noun_phrase(_), !.
prepositional_phrase -->preposition, noun_phrase(_).
/* General vocabulary */

determiner(singular)-->[the]. determiner(singular)-->[their]. determiner(singular)--
>[a].
determiner(singular)-->[her].

determiner(plural)-->[the]. determiner(plural)-->[their]. determiner(plural)--
>[some].

conjunction --> [and]. fullstop -->[.].

/* Some vocabulary */

propernoun(singular)--->[barbara]. propernoun(singular) --> [david].

pronoun(plural) --> [they]. pronoun(singular) --> [he]. pronoun(singular) --> [she].

verb(singular) -->[is]. verb(singular) -->[goes]. verb(plural) -->[are]. verb(plural) --
>[go].

participle --> [sitting]. participle --> [going]. participle --> [reading].

preposition --> [in]. preposition --> [at]. preposition --> [on]. preposition -->
[to].

adjective --> [useful].

noun(singular) --> [student]. noun(singular) --> [pupil]. noun(singular) -->
[book].
noun(singular) --> [paper]. noun(singular) --> [journal]. noun(singular) -->
[library].
noun(singular) --> [table]. noun(singular) --> [chair]. noun(singular) --> [bed].
noun(singular) --> [dinner].
noun(plural) --> [dinner]. noun(plural) --> [beds]. noun(plural) --> [pupils].
noun(plural) --> [students]. noun(plural) --> [books]. noun(plural) -->
[papers].
noun(plural) --> [chairs]. noun(plural) --> [journals]. noun(plural) --> [tables].
noun(plural) --> [libraries].

/* Input rules */

getsent([W|Ws]):-get0(C), readword(C,W,C1), restsent(W,C1,Ws).
restsent(W,_,[]):-lastword(W), !.
restsent(W,C,[W1|Ws]):-readword(C,W1,C1), restsent(W1,C1,Ws).
readword(C,W,C1):-single_character(C), !, name(W,[C]), get0(C1).
readword(C,W,C2):-in_word(C,NewC), !, get0(C1),
 restword(C1,Cs,C2), name(W,[NewC|Cs]).
readword(C,W,C2):-get0(C1), readword(C1,W,C2).
restword(C,[NewC|Cs],C2):-in_word(C,NewC), !, get0(C1), restword(C1,Cs,C2).
restword(C,[],C).
single_character(44). single_character(59). single_character(58).
single_character(63).
single_character(33). single_character(46).
in_word(C,C):-C>96,C<123. in_word(C,C):-C>47,C<58.
in_word(39,39). in_word(45,45).

in_word(C,L):-C>64, C<91, L is C+32.
lastword('.'). lastword('!'). lastword('?').

/* END */

References

Bennett, P. (1995) A Course in Generalised Phrase Structure Grammar London:
UCL Press.

Burstein, J., Kukich, K., Wolff, S., Lu, Chi. and Chodorow, M. (1998a) Computer
Analysis of Essays. NCME Symposium on Automated Scoring. USA.

Burstein, J., Kukich, K., Wolff, S., Lu, Chi., Chodorow, M., Braden-Harder, L. and
Harris, Mary Dee. (1998b) Automated Scoring Using a Hybrid Feature Identification
Technique. Proceedings of the 36th Annual Meeting of the Association of
Computational Linguistics. Montreal, Canada.

Coniam, D. J. (1995) Partial Parsing : Software for Marking Linguistic Boundaries in
English Text. Ph.D. Thesis, School of Linguistics, University of Birmingham.
Birmingham, UK: University of Birmingham.

Dessus, P., Lemaire, B. and Vernier, A. (2000) Free Text Assessment in a Virtual
Campus. Proceedings of the 3rd International Conference on Human System
Learning. Paris: Europia, pp. 61-75.

Educational Testing Service (ETS) (1998), Electronic Rater (e-rater)
< http://www.ets.org/research/erater.html/ >.

Foltz, P.W., Laham, D. and Landauer, T.K. (1999) Automated Essay Scoring :
Applications to Educational Technology. Proceedings of ED-MEDIA ’99 Conference,
AACE, Charlottesville, USA.

Gazdar, G., E. Klein, G. Pullum and I. Sag (1985) Generalised Phrase Structure
Grammar. Oxford: Blackwell.

Landauer, T.K. and Dumais, S.T. (1997) A Solution to Plato’s Problem : The Latent
Semantic Analysis Theory of Acquisition, Induction and Representation of
Knowledge. Psychological Review, vol. 104, pp. 211-240.

Landauer, T.K., Foltz, P.W. and Laham, D. (1998) Introduction to Latent Semantic
Analysis Discourse Processes, vol. 25, pp. 259-284.

Landauer, T.K., Laham, D., Rehder, B and Schreiner, M.E. (1997) How Well Can
Passage Meaning be Derived Without Using Word Order? A Comparison of Latent
Semantic Analysis and Humans. Proceedings of the 19th Annual Conference of the
Cognitive Science Society.

Latent Semantic Analysis (LSA). (1997) Intelligent Essay Assessor (IEA)
<http://lsa.colorado.edu/ >.

Page, E.B. (1994) New Computer Grading of Student Prose : Using Modern
Concepts and Software. Journal of Experimental Education, vol. 62, no. 2, pp. 127-
142.

Page, E.B. (1966) The Imminence of Grading Essays by Computer. Phi Delta
Kappan, vol.47 (Jan), pp. 238-243.

Page, E.B. (1968) The Use of the Computer in Analysing Student Essays.
International Review of Education, vol. 4, pp. 210-224.

Taylor, et al. (1996-1998) Alvey Natural Language Tools (ANLT)
<http://info.ox.ac.uk/ctitext/resguide/resources/a145.html >.

Whittington, D. and Hunt, H. (1999) Approaches to The Computerised Assessment
of Free Text Responses Proceedings of the 3rd. International Conference on
Computer Assisted Assessment. Loughborough, UK.

Willis, D. (1992) The Lexical Syllabus COLLINS COBUILD. UK: Collins.

	David Callear, Jenny Jerrams-Smith
	and Victor Soh �CAA of Short Non-MCQ Answers
	
	Burnaby Terrace 1.17

	Abstract
	Keywords
	Introduction
	Analyses of Short and Concise Sentences Using ATM Prototype
	ATM Methodology, Canonicality and Practical Simplifications
	ATM Structured Representation Schemes
	Examples of fundamental concepts:
	Examples of domain-dependent concepts:
	Discussion
	Conclusions
	Appendix A
	Example of a Prolog Syntax Analyser

