
USING USER INTERFACE MODELS IN DESIGN

Hallvard Trætteberg1

Dept. of Computer and Information Sciences (IDI), Norwegian University of Science and Tech-
nology (NTNU). Sem Sælands v. 7-9. 7491 Trondheim, Norway.
hal@idi.ntnu.no

Abstract We introduce a framework for classifying user interface design representations, 
and argue that multiple representations are must be used in the design process, and 
that modelling languages must support the transition between them. We present 
languages for modelling domain, task and dialog and show how they provide 
increased support for design, through flexibility and integration. Design patterns 
based on model fragments from these languages are suggested as a design and 
engineering tool.

Keywords: user interface model, task model, dialog model, design pattern

1. INTRODUCTION

With the standardization of UML and its emergence as a de-facto industrial stan-
dard, modelling of systems and software artefacts seems to be accepted in the engi-
neering community. User interface modelling and model-based user interface design
has however, not reached the mainstream software developer [1]. Red Whale’s
MOBILE [2] cover several models but lack integration with software engineering
tools, while database-oriented tools like Genera’s Genova [3] have a more narrow
focus on concrete interaction object selection and layout. It seems that lack of tool sup-
port for going from comprehensive visual model diagrams to executable code may be a
reason for this difference. But very few UML diagramming tools provide full code-
generation support, yet developers are using these tools to draw UML diagrams, e.g.
for communication purposes. The lack of penetration of model-based user interface
design methods may instead be due to pragmatic aspects of UI modelling languages,
e.g. they are difficult to understand, inflexible and impractical to use and lack the
appropriate integration with each other. Although formality in itself is important, it

1. This work is part of a Dr.ing study funded by The Research Council of Norway.



may be that the focus should be language usability  rather than theory, if the goal is
reaching the mainstream. A uniform user interface modeling language  must integrate
sub-languages for domain, task and dialog modelling, be unconstraining  and flexible,
i.e. provide support for expressing design ideas, suggestions and decisions throughout
the design process.

In this paper we will first introduce a framework for classifying design representa-
tion. The framework provides a means for understanding how they are utilized in the
design process, which in turn has implications for language design and usage. We then
briefly present modelling languages for tasks and dialogs and discuss how our under-
standing affected their design. We then turn to how design knowledge can be repre-
sented in the same languages in the form of model-based user interface design
patterns. Finally, we suggest how these modelling languages may be integrated with
UML, to provide better integration with contemporary methods.

2. DESIGN PROCESS AND REPRESENTATIONS

To better understand how design representations are used and the role they play,
we use a model of organizational knowledge creation as a starting point [4]. Accord-
ing to this theory, there must during product development, be a constant conversion of
knowledge between tacit and explicit forms using the four transfer modes shown in
Figure 1. Hence, to better support product development, the process and design repre-
sentations used, must support these transfer modes. By “design representation” we
mean any design relevant knowledge that is externalized in a human-readable
medium, whether textual, graphic or multimedia.

To support socialization, the representation must
support social interaction, for which flexible and
informal representations are best suited. In the pro-
cess of externalization  and further formalization , the
representation needs to shift from informal to formal,
and the medium or language used will need to change.
Throughout the development process there will be a
drift towards increased formality, as the design is
committed to and the need for transfer to “outsiders”
increases [5]. Systems like SILK [6] and the Cocktail
Napkin [7] target this transfer mode. During combination  new knowledge is created by
linking existing explicit knowledge, so the representations must supports analysis and
reasoning. It is this transfer mode that model-based methods typically focus on.
Finally, activities like usability testing and end-user validation requires a process of
internalization.

The need for using and transferring between different design representations,
implies that there exist different classes of representations. We have found it useful to
classify representations along three dimensions, as shown right in Figure 1: 1) the per-
spective, ranging from problem- to solution-oriented, 2) the granularity of the objects
covered and 3) the level of formality. A language or method will usually cover a large
part of this space, while a particular diagram covers a smaller part. E.g. contemporary

Figure 1. Nonaka’s four modes 
of knowledge transfer.

Socialization Externalization

Internalization Combination



task modelling languages are typically problem-oriented and formal, and suited for
mid- to low-level actions. Workflow languages on the other hand, support a higher
level view of actions. All the nine user interface models listed in [8] can be placed in
the 2 dimensional space spanned by the perspective and granularity axes.

Nonaka’s transfer modes correspond to movements along the formality dimension,
i.e. the top double-arrowed line in Figure 1. There will be similar movements along the
other two dimensions, according to the needs of the development process and the par-
ticipants, and the intended role of the representation. Different roles are summarized in
Table 1.
1. Perspectives: Movements

from solution to problem  is
the “textbook” flow of a
problem solving: first spec-
ify the problem, then solve it
according to the constraints
expressed in the specifica-
tion. The representation
should support looking “for-
ward” towards constructing
one or several solutions.
Moving from solution to problem  is used when analyzing a solution for the pur-
pose of comparing it against a previously formulated specification.

2. Granularity: Moving downwards, details are constructed from a high-level 
description. This is similar to the problem-solution movement, in that it requires 
satisfying the constraints given by a more abstract specification. In the upwards 
movement, the aggregated characteristics are constructed from an analysis of one 
level, and relies on the compositionality  of the language used.

3. Formality: When formalizing a design vague ideas are made less ambiguous and 
more precise. The common tacit understanding of design ideas must be made 
explicit through communication. Making a formal representation less formal may 
seem unnatural, but makes sense in a context where participants are unfamiliar 
with formal notations.

The model-based design approaches usually focus on the movements from left to
right, and top to bottom within the formal “plane”. Movements are just as relevant, e.g.
when using more exploratory and informal approaches. To develop a more industry-
friendly model-based approach, we should design modelling languages with better
support for all movements in the representation space.

Role Objective

Semantic Capture domain knowledge.

Communicative Communicate domain as represented among participants

Constructive Guide and constrain further design

Analytic Interpret and evaluate current representations

Table 1. Roles the design representation plays

Figure 2. Dimensions  of the representation space 
and movements within it.

1) perspective

2) granularity

3) formality
change formality

change detail

problem vs. solution



3. INTEGRATED USER INTERFACE MODELLING

We have developed three languages for domain, task and dialog modelling, with
the goal of making model-based user interface design more developer-friendly. The
domain modelling language, mainly developed by Arne Sølvberg [9], is used in the
context of both task and dialog modelling. The task modelling language is based on the
APM workflow language [10], and is a hybrid of hierarchical task and workflow mod-
elling languages. The dialog modelling language combines interconnected interactors
for expressing information flow and the Statechart language for control and activation.
The three languages will be briefly presented below. Although they all have a formal
basis, the focus will be on expressiveness and flexibility, to illustrate how we believe
they provide better support for the different movements discussed above.

3.1 Domain modelling with RML
Our domain modelling language, the Referent Modelling Language [9], provides

constructs for naming concepts and their extensions (sets), partitioning them, relating
them to each other and defining their attributes, all based on set theory. Figure 3 illus-
trates our notation in an RML model of task modelling concepts, similar to the ontol-
ogy suggested in [8]. The rectangle labeled ‘Task’ defines the TASK concept, which is
related to a set of RESOURCES, through the REQUIREMENT and ACHIEVEMENT relations
(lines). Each TASK requires at least one RESOURCE, expressed by the small black circle.
There are three kinds of resources that a task may require: ACTORS, C ONCEPTS/SETS

(domain data) and TOOLS. The encircled ‘+’ sign indicates that these specializations/
subsets  are disjoint. Each task is related to an ACTOR through the PERFORMANCE rela-
tion, and this relation is a specialization/subset of the REQUIREMENT relation. Tasks are
related through an aggregation relation, indicated by the encircled ‘x’. Each task’s par-
ticipation in the aggregation is the basis for classifying it as either SUPERTASK or
ACTION and either TOPLEVEL or SUBTASK.

In RML, instances may be (re)classified many times in their lifetime as their char-
acteristics change. This differs from most object-oriented modelling languages like
UML, where the instance-class relation is static. Compared to UML’s class diagrams
RML provides a richer and more flexible visual notation, e.g. attributes may be
grouped in separate boxes and cardinality is visually indicated. RML provides better
support for modelling differing world-views in a single diagram, e.g. by allowing sev-
eral orthogonal specializations for the same concept. Although its philosophical roots

Figure 3.  Generic model of tasks and their performance

Actor

Task

subtask/
toplevel

supertask/
action

Resource

Concept/
sets Tool

requirement

achievement

performance



are distinct from UML’s, most RML constructs have UML correspondences, so RML
most models may be translated to UML for software engineering purposes.

3.2 Task modelling with TaskMODL and RML
Our task modelling language TaskMODL, utilizes and builds on RML in three

ways. First, it is used for modelling the domain, as shown in Figure 4, upper right,
where the model of MESSAGES and MAILBOXES provides a context for the READ EMAIL

task. The second usage is for expressing contextual information, dataflow and pre- and
post-conditions. In Figure 4, the IN mailbox instance is required for performing GET

NEW EMAIL, a set of messages is required for MANAGE EMAIL and each MESSAGE in
MESSAGES provides a context for a MANAGE MESSAGE task. The cardinality  of the
MANAGE EMAIL-MANAGE MESSAGE aggregation corresponds to the size of the set of
messages. This exemplifies the tight coupling between the static domain and dynamic
task model; the static structure constrains what is meaningful action, and is the reason
these should be integrated both theoretically/formally and practically/visually.

TaskMODL’s third usage of RML is for its own definition and notation. In the
RML model in Figure 3, it is expressed that SUPER TASKS contain SUBTASKS. This is a
generic constraint, and in specific task models we express more specific constraints,
e.g. that a GET NEW MESSAGES task will be performed as part of a READ EMAIL task. In
a standard use of meta-models, the READ EMAIL task would be an instance of the TASK

concept, but we have chosen to define it as a specialization of TASK, i.e. at the same
meta-level as the generic task model in Figure 3. This means that TaskMODL models
are really RML models in disguise, and therefore the integration is straight-forward. In
fact, most of RML’s notation is carried over, including cardinality and specialization.

RML lacks features for modelling how a domain evolves over time, so a set of
standard sequence constraints have been added. Repetition is expressed through the

messages

message

1 Read email

User

Email
client

Mailbox

1.1 Get new email

In

1.2 Manage email

messages

Manage message

Transfer
message

Read
message

Forward

Reply

?

React to
message

Figure 4. 
Model of Read email task:
READ EMAIL consists of 
GET NEW EMAIL which 
triggers the MANAGE EMAIL 
task. The latter performs 
MANAGE MESSAGE for each 
new message, through the 
three sequential steps READ, 
TRANSFER and REACT TO 
MESSAGE.

Mailbox

Message

??
In

Out



cardinality of the SUPERTASK-SUBTASK aggregation. Abstraction of human action is
important [14], and this is supported by the dual use of the choice operator (+) inher-
ited from RML. In the example model, the REPLY TO MESSAGE and FORWARD MES-
SAGE are specializations of REACT TO MESSAGE. The meaning of specialization is
inherited from RML: the static constraints of the general task must be met by the spe-
cialized tasks. Several specializations of a task may defined for different conditions,
e.g. classes of input data, user stereotypes and use of different interface designs.

Compared to ConcurTaskTrees [13], TaskMODL provides several advantages.
1. TaskMODL is semantically and visually integrated with a domain modelling lan-

guage. A corresponding integration should be possible with UML, providing a
smoother integration than that suggested between CTT and UML in [15].

2. Specialisation is given a natural interpretation, providing means for managing 
task knowledge.

3. The notation is more flexible: The hybrid tree and containment-based hierarchi-
cal notation, provides better support for a combination of traditional hierarchical 
and dataflow-oriented style. Anonymous tasks can be used when a supertask is 
needed for grouping, but no name is needed for readability, as shown left in Fig-
ure 5, where a complex constraint is expressed using two anonymous tasks.

4. The sequence constraints are more flexible than CTT’s binary operators. They 
can be decoupling  from supertasks, which in the left fragment in Figure 5 can be 
used to removed the anonymous tasks altogether. TaskMODL also supports non-
strict constraint trees, as illustrated in the right fragment, which makes express-
ing complex sequence constraints even more practical.

3.3 Dialog modelling with DiaMODL and RML
Our dialog modelling language DiaMODL is based on the interactor abstraction

from [18] for expressing information flow. We avoid basing control and activation on
LOTOS and use Statecharts instead, a trade-off between utilizing previous theoretical
results and making the language more practical. The choice is due to Statecharts’ sim-
plicity and the fact that it is already part of UML.

As previously mentioned, we are interested in supporting movements within the
design representation space introduced in Section 2. The compositionality of interac-
tors directly supports movements along the granularity dimension. Moving between
abstract and concrete interaction is supported by providing an interactor definition for
every standard widgets, as exemplified in Figure 6. The left RML fragment identifies
the information that the interactor at the right can input and output. The interior repre-
sents a suitable widget supporting this interactor signature. If a folder view appears in
a design sketch, we can suggest this interactor as its abstraction. Alternatively, if an

a b c da b c d

Figure 5. Left: order(sequence(a, b), choice(c, d))
Right: sequence(a, b) & order(a, b, choice(c, d))



abstract dialog model is consistent with this fragment, we can use the folder view in
our concrete design, or for explaining our abstract model. We have modelled most
standard widgets as interactors, and are working on ways to mix abstract interactors
and concrete widgets in a GUI builder, to support the abstract-concrete movement in
both directions. Traditionally, interactors have been applied to structured dialogs and
forms, but our inclusion of Statecharts provides support for direct manipulation, in the
way suggested in [20].

In [16], it is suggested that
the structure of interconnected
interactors can be represented by
UML’s objects diagram. With
our use of Statecharts, the con-
trol part could be represented as
well. Our way of mixing interac-
tors/objects with Statecharts is
not directly representable,
though, since UML’s State dia-
grams are local to an object and
the composition of Statecharts in
objects aggregations is unclear.

4. MODEL-BASED DESIGN PATTERNS

Design is about making choices concerning which  sequences of action the user
should be able to perform, which design elements are used and how  they are composed
to support this behavior. The movements presented in Section 2, correspond to such
design choices, e.g. how tasks are mapped to dialog structure, how formal specifica-
tions are derived from design sketches and how dialog structures are decomposed.
Making these choices or movements requires knowledge, and accordingly, our frame-
work can be used for classifying design knowledge. E.g, rules for mapping from
abstract dialog elements to concrete widgets would be placed as shown in Figure 7.

The UID community has a long tradition of formulating design knowledge in prin-
ciples, rules and guidelines, and there exists some attempt to formalize it, e.g. [21]. A
problem is that such knowledge is either very high-level and general or very specific
[23]. For capturing “middle-level” design knowledge, the use of UID patterns  is gain-

Figure 6. Interactor for selecting a leaf element from a 
hierarchy, and corresponding folder view

Hierarchical selection

Leaf

Element

?

Node

Interior

Figure 7. Classifying design knowledge:
Design knowledge for mapping dialog elementes to widgets

perspective

granularity

task

action

process

component

element

application

pane

widget

window



ing interest and momentum. The pattern concept originated in architecture ([22]), and
simply stated, represents a generic, proven and accepted solution to a reoccurring
design problem, in a way that facilitates (re)use in a new design context. We believe
patterns can become a useful design and engineering tool, if we are pragmatic about
philosophical and often almost religious issues concerning pattern discovery and for-
mulation/formats. In our context, design patterns can simply be interpreted as recipes
for how to perform sound movements within our representation space. As such, they
can be used bottom-up as building blocks, top-down for design refinement and to
move between perspectives. In a model-based approach to design, it is natural to use
model fragments, and in our own experience, the abstraction and precision they pro-
vide is very helpful when formulating a pattern [24]. It is crucial that the modelling
languages support combination of several perspectives, and this is part of the motiva-
tion for integrating them. We are currently experimenting with using model fragments
utilizing our three modelling languages in pattern formulations.

Figure 8 shows a pattern for browsing aggregation hierarchies and selecting an ele-
ment. The interactor signature can be seen as a specification, and its composition a
suggested solution to a design problem. A layout is suggested for configuring them in
window panes. This particular pattern concerns two movements, decomposition of dia-
log and mapping from abstract to concrete design. We have formulated patterns for
selecting concrete dialog elements from abstract interactors, based on mapping like the
one shown in Figure 6, and for mapping from tasks to dialogs, e.g. the Managing

Problem: The user needs to browse the ele-
ments of a hierarchy and select one.

Principle: Provide separate connected panes
for specialised viewers.

Context: Many application contains aggre-
gated data, which the user must browse
through. and the user often wants to invoke a
function taking one of the parts as input
parameter.

Forces: 1) Freedom for the application to
visualise the set of containers, parts and indi-
vidual items in specific ways. 2) Freedom for
the user to resize each viewer.

Solution: Split a window into three panes, one for the
viewing a set of containers, one for viewing a set of
parts, and one for viewing individual parts.The former
two must provide item selection. The selection of a con-
tainer should determine the content of the parts pane,
and the selected part should determine the content of
the part pane.

Rationale: The desire to act on information often
comes when seeing it. Hence, it makes sense to be able to use presented information as input.

Figure 8. The Browsing a container design pattern for browsing aggregations

Browse aggregation

Container

1.1 Select
element

1.2 Select
elementParts container.

parts

1.3 View
element

Part

?

1.1

1.2

1.3



Favorites pattern found at [25]. The latter kind is in our experience the most difficult to
“find”.

Use of formal model (fragments) in design patterns is controversial, partly because
of the non-engineering pattern tradition, and partly because formal user interface mod-
els are rarely used. The theory of knowledge creation presented in Section 2 suggests
that a patterns format should use both formal and informal representations, the former
for precision and the latter for supporting recognition and application. In our experi-
ence, the most immediate effect of using formal model fragments in patterns is mental,
e.g. enhancing the understanding of design and increasing the consciousness of
(abstract) design knowledge. What tools and techniques are needed for more practical
results, remains to be seen.

5. CONCLUSION AND FURTHER WORK

The use of formal methods and languages in user interface design, has always been
a source of debate, mirroring the discussion on systems development approaches.
UML is criticized for both being too informal and too formal, depending on the con-
text. Most however, agree that an integrated language is important and UML’s prag-
matic line of compromise wrt. different modelling traditions may be fruitful also in the
community’s work towards a uniform user interface modeling language.

We have argued that there is a use for both formal models and informal design rep-
resentation methods in user interface development. The role of informal representa-
tions is to support creativity, involvement and dialog, among both developers and end-
users. Formal representations allows detaching the representation from the meaning-
giving context, and supports reflection, analysis and transition to executable represen-
tations. More effort should be put into understanding:

• how (design representation) language is used throughout the design process

• the need for integration of modelling languages across perspectives

• how design knowledge can be integrated into a model-based approach to user
interface design

6. REFERENCES

 [1] Myers, B., Hudson, S.E., Pausch, R. Past, Present and Future of User Interface Software 
Tools. ACM Transactions on Computer-Human Interaction, 7, 2000, p. 3-28.

 [2] Puerta, A.R., Cheng, E., Ou, T., Min, J. MOBILE: user-centered interface building. In 
Proceeding of the Conference on Human factors in computing systems, p. 426-433, 1999.

 [3] www.genera.no
 [4] Nonaka, I., Takeushi, H. A theory of the firm’s knowledge-creation dynamics. In “The 

dynamic firm. The role of technology, strategy, organization and regions”. Chandler jr, 
A.D, Hagstrøm, P., Søvell, Ø. (eds). Oxford University Press, 1998.

 [5] Jones, S., Sapsford, J. The role of informal representations in early design. In Markopou-
los, P., Johnson, P. (eds.): Proceedings of DSV-IS‘98, Springer-Verlag/Wien. 1998.

 [6] Landay, J.A., Myers, B.A. Interactive Sketching for the Early Stages of User Interface 



Design. In Proceedings for CHI’95, v.1 p.43-50, 1995.
 [7] Gross, M.D., Yi-Luen Do, E. Ambiguous Intentions: A Paper-Like Interface for Creative 

Design. In Proceedings of UIST’96, p.183-192, 1996.
 [8] Vanderdonckt, J.M., Puerta, A.R., Introduction to Computer-Aided Design of User Inter-

faces. Preface of Vanderdonckt,  J., Puerta, A.R. (eds.), Proceedings of CADUI’99, Klu-
wer Academic Publishers, Dordrecht, October 1999.

 [9] Sølvberg, A. Data and what they refer to. P.P.Chen et al.(eds.): Conceptual Modeling, 
pp.211-226, Lecture Notes in Computer Science, Springer Verlag, 1999.

 [10] Carlsen, S., Action Port Model: A Mixed Paradigm Conceptual Workflow Modeling Lan-
guage. Proceedings of CoopIS - Cooperative Information Systems ’98

 [11] Trætteberg, H. Modelling work: Workflow and Task Modelling. In Proceedings of 
CADUI’99, Kluwer Academic Publishers, Dordrecht, October 1999.

 [12] Van Welie, M., Van der Veer, G.C., Eliëns, A.:An Ontology for Task World Models. In: 
Markopoulos, P., Johnson, P. (eds.): Proceedings of DSV-IS‘98, Springer-Verlag/Wien 
(1998) 57-70

 [13] Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for 
Specifying Task Models. Proceedings of Interact ’97, Chapman & Hall (1997) 362-369.

 [14] Malone, T.W., et. al. Tools for inventing organizations: Toward a handbook of organiza-
tional processes. Management Science 45(3), pp. 425-443, March 1999.

 [15] Nunes, N.J. Object Modeling for User-Centered Development and User Interface Design: 
The Wisdom Approach. PhD thesis from Universidade da Madeira, April 2001.

 [16] Markopoulos, P., Marijnissen, P. UML as a representation for Interaction Design. Pre-
sented at OZCHI 2000.

 [17] Duke, D., Faconti, G., Harrison, M., Paternó, F. Unifying views of interactors. In Proceed-
ings of the workshop on Advanced visual interfaces, June 1 - 4, 1994, pp. 143-152.

 [18] Markopoulos, P. A compositional model for the formal specification of user interface soft-
ware. PhD thesis at Department of Computer Science, Queen Mary and Westfield College, 
University of London. 1997.

 [19] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer 
Programming 8, 1987.

 [20] Trætteberg, H. Modelling Direct Manipulation with Referent and Statecharts. In Marko-
poulos, P., Johnson, P. (eds.): Proceedings of DSV-IS‘98, Springer-Verlag/Wien. 1998.

 [21] Vanderdonckt, J.M., Bodart, F. Encapsulating Knowledge for Intelligent Automatic Inter-
action Objects Selection. In Proceedings of INTERCHI'93, p.424-429, 1993.

 [22] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,& Angel, S. 
A Pattern Language. Oxford University Press, 1977.

 [23] van Welie, M., van der Veer, G.C., Eliëns, A. Patterns as Tools for UI Design. Interna-
tional Workshop on Tools for Working with Guidelines, pp. 313-324. Biarritz, October 
2000.

 [24] van Welie, M., Trætteberg, H. Interaction patterns in user interfaces. PLoP’2000.
 [25] http://bscw.gmd.de/pub/english.cgi/0/17771476


