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Abstract
Bayesian methods are valuable, inter alia, whenever there is a need to extract information from data that are
uncertain or subject to any kind of error or noise (including measurement error and experimental error, as well as
noise or random variation intrinsic to the process of interest). Bayesian methods offer a number of advantages over
more conventional statistical techniques that make them particularly appropriate for complex data. It is therefore
no surprise that Bayesian methods are becomingmore widely used in the fields of genetics, genomics, bioinformatics
and computational systems biology, where making sense of complex noisy data is the norm.This review provides an
introduction to the growing literature in this area, with particular emphasis on recent developments in Bayesian
bioinformatics relevant to computational systems biology.
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INTRODUCTION
Bioinformatics and computational systems biology

are undergoing a Bayesian revolution similar to that

already seen in genetics [1]. The reason is the same—

biology is complex, and data are noisy. Traditional

statistical techniques struggle to cope with complex

non-linear models that are only partially observed.

Due to the fact that the Bayesian statistical paradigm

is fully probabilistic, there is no fundamental

distinction between any of the unknowns in a

statistical model—parameters, hidden variables and

observations are all treated together in a consistent

manner—and it is from this that the power of the

methodology is derived [2]. Provided that you can

write down a statistical model relating the quantities

you are interested in to the data you can observe

(possibly via many unobserved intermediary

variables), then you can (in principle) carry out

Bayesian inference to extract the information in the

data to give fully probabilistic information on all

unobserved model variables. The main limiting

factor in applying Bayesian methods is computa-

tional. For non-trivial problems, analytic approaches

to Bayesian inference are not possible, and their

numerical solution is often challenging due to the

need to solve high-dimensional integration problems

(which in the discrete case translate to combinatorial

summation problems). Advances in the speed of

commodity computing hardware in recent decades

has been parallelled by developments in computa-

tionally intensive algorithms for Bayesian inference.

Arguably the most important advance has been the

development of a range of techniques based on

Markov chain Monte Carlo (MCMC). The ideas

originate from statistical physics [3], but are now

widely used for Bayesian inference [4, 5]. Although

by no means a panacea, carefully crafted MCMC

algorithms executed on fast computers are able to

solve a phenomenal range of problems that would

have been considered completely intractable only

a few years ago.

In the simplest (continuous) setting, we are

interested in making inferences about the parameter

vector � of a probability (density) model pðyj�Þ
giving rise to an observed data vector y. If we treat

the parameters as uncertain, and allocate to them
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a ‘prior’ probability density �ð�Þ, then Bayes

theorem gives the ‘posterior’ density

�ð�jyÞ ¼
�ð�Þpðyj�Þ

pðyÞ
;

where p(y) is the marginal density for y obtained by

integrating over the prior. Since �ð�jyÞ is regarded
as a function of � for fixed (observed) y, we can

re-write this as

�ð�jyÞ / �ð�Þpðyj�Þ;

so that the posterior is proportional to the prior times

the likelihood. Practical complications arise due to

the fact that typically the normalising constant p(y) is
not known, and either pðyj�Þ will not be known

explicitly or marginalisation over some components

of � will be required. Whilst analytically intractable,

these integration problems are typically amenable to

a Monte Carlo or MCMC solution. In the high-

dimensional context, it is often necessary to decom-

pose the full problem according to the underlying

conditional independence structure of the model,

and it is in this context that graphical models [6]

(also known as conditional independence graphs) are

particularly useful. In non-statistical communities,

the term Bayes(ian) network is often used to describe

a discrete graphical model. However, it is

important to note that graphical models can be

used to describe any probabilistic conditional

independence structure, and that many of the

techniques that are often used to ‘learn’ Bayesian

networks are not Bayesian.

The simplest example of a MCMC method is

the Gibbs sampler [7, 8]. Here a Markov chain is

constructed with equilibrium distribution �ð�jyÞ.
Each iteration of the sampler involves cycling

through each component of the p-dimensional

vector � in order and sampling from

�ð�ij��i; yÞ; i ¼ 1, . . . ; p, where ��i denotes the

vector of all components of � except �i. Knowledge
of the conditional independence graph for the model

can simplify the computation of these so-called

full-conditional distributions. In many cases, the full-

conditionals will be straightforward to sample

directly, but in others, a Metropolis–Hastings

method will be required [9, 10]. Here a proposed

new value is simulated from a largely arbitrary

proposal distribution, qð�?
i j�iÞ and accepted with a

probability carefully chosen to preserve the detailed
balance of the chain. Many practical details of the

method are presented in [11, 12].

BIOINFORMATICS
Biological sequence analysis
One of the first areas to benefit from the application

of Bayesian approaches was biological sequence

analysis. Here it had already been recognised that

working with probabilistic models was extremely

useful [13]. Whilst for some simple hidden Markov

models (HMMs) it is possible to estimate parameters

using conventional statistical techniques (such as

maximum likelihood via the EM algorithm) [14, 15],

there are many interesting problems where a

conventional approach would be inconvenient or

unsatisfactory in terms of the information provided

by the analysis; see [16] for a good introduction to

the use of Bayesian methods in this area. Good

examples of this include simultaneous multiple

sequence alignment [17, 18], motif discovery and

transcription factor binding site prediction [19, 20]

and protein secondary structure prediction [21].

One of the key benefits of the Bayesian approach

is that it allows proper propagation of uncertainty

across different levels of modelling. So whilst a

traditional approach to phylogeny estimation would

use a pre-calculated multiple alignment, uncertainty

in the alignment will not propagate through to

uncertainty in the phylogeny. In fact, the converse is

also true: models for alignment depend implicitly on

an assumed phylogeny, so uncertainty in phylogeny

induces alignment uncertainty. Using a Bayesian

approach, simultaneous estimation is possible [22].

Even in the relatively simple context of HMM-based

ab initio DNA sequence segmentation, the Bayesian

approach enables the convenient inclusion of prior

information, and provides much richer information

about the model parameters [23]. Furthermore, since

uncertainty about model structure is treated

consistently with parameter uncertainty in the

Bayesian context, variable dimension algorithms

such as reversible jump MCMC (RJMCMC) [24]

can be used to estimate the number of segments and

the order of the base dependence along with all

other aspects of the model [25]. Liu and Logvinenko

[26] provide a detailed review of Bayesian methods

in sequence analysis.

Microarray data analysis
The analysis of gene microarray data [27] is another

area where Bayesian methods have proven to offer

many advantages over more conventional

approaches [28, 29]. Although amenable to simple

statistical analyses such as ANOVA, microarray data
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analysis is often broken down into a collection of

distinct steps that fail to correctly propagate uncer-

tainty. For example, a typical analysis may begin with

some kind of normalisation process that produces

‘corrected’ expression levels. These normalised data

will then be subject to a secondary statistical analysis

(such as identification of differentially expressed

genes) that ignores any uncertainty in the normal-

isation processes. Often, then the differentially

expressed genes will be used for a further analysis

that ignores the uncertainty in the identification

procedure. Using Bayesian techniques it is possible to

develop integrated models for the analysis of

unnormalised cDNA microarray data that correctly

propagate uncertainty across the various levels of

analysis [30, 31]. Detailed modelling combined with

a carefully designed experiment can allow coherent

estimation of absolute transcript concentrations

from cDNA array data [32, 33]. It is also much

more convenient to pool information across multiple

experiments and studies using a Bayesian approach

[34]. For Affymetrix GeneChip data, developing

probabilistic models of the hybridisation process

down at the probe level again allows extraction of

information likely to be missed using simpler

stepwise approaches [35, 36]. Bayesian methods

also offer advantages when clustering of expression

profiles is felt to be relevant [37–39]. In fact, the

initial task of segmentation and raw intensity

estimation can also benefit from a Bayesian approach

[40]. Further modelling approaches and applications

are discussed in [41–46]. Some recent developments

in the field are described in [29], which also covers

some proteomic applications.

Protein informatics
There are many applications of Bayesian techniques

to problems in protein informatics. Down at the

structure level, Bayesian techniques for site matching

and alignment have been shown to be particularly

valuable [47–49]. A Bayesian method for predicting

protein–protein interactions from genomic data is

given in [50]. Mass spectrometry data are widely used

for understanding the peptide/protein composition

of a sample, but these data are subject to many

sources of variation, making Bayesian approaches to

data analysis highly desirable. Some methods for

processing ‘raw’ spectra are discussed in [51, 52] in

the volume [29]. Bayesian methods can also be useful

in the context of mass spectrometry clustering and

classification [53, 54], as well as protein identification

[55, 56].

COMPUTATIONAL SYSTEMS
BIOLOGY
The analysis of microarray data is also central to

much research in computational systems biology,

although here the emphasis is slightly different.

A major concern of computational systems biology

is the development of dynamic predictive models

of biological (especially genetic and biochemical)

processes [57]. The first stage in this process is the

identification of interacting partners (used in a loose

sense). One approach to identifying gene–gene

interactions is to attempt to use observed correlations

in gene microarray data to infer networks of

interaction.

Network inference
A variety of different approaches to network

inference are possible, and many widely used

techniques are fundamentally Bayesian in nature.

Again, it is worth emphasising the apparent confu-

sion between discrete Bayesian networks and more

general Bayesian methods. The term ‘Bayes net’ is

generally used in non-statistical communities to refer

to discrete probabilistic graphical models, irrespective

of whether the techniques used to analyse them are

Bayesian. Despite some suggestions to the contrary

in the literature, there is no need to discretise

continuous data in order to learn a Bayesian

network—only to learn a discrete Bayes net. As

mentioned above, graphical models can be estimated

without using Bayesian methods, but there are

advantages in doing so. This is particularly true

when the number of observations is small compared

to the number of variables, which is typically the case

in the context of microarray data analysis.

An early, influential paper on Bayesian networks

for expression data was [58]; also see [59] for a more

recent perspective. An approach based on manipula-

tion experiments for inferring directed networks is

described in [60]. An efficient method for inferring

undirected Gaussian graphical models is described in

[61]. More recently, a detailed comparison of various

methods for static network inference has been

carried out in [62]. Such methods do not have to

be based on microarray data. Typically, using more

quantitative data on a (small) system of interest will

lead to more reliable conclusions. Single-cell flow
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cytometry data is potentially useful in this context,

and a strategy for using it for inferring network

structure is described in [63]. It should be pointed

out, however, that most of these papers are not

especially Bayesian in their approach. More Bayesian

approaches to the problem of inferring sparse

undirected (Gaussian) graphical models are described

in [64] and [65], based on earlier work for graphical

Gaussian model selection [66], and these are likely to

provide more robust inferences in high-dimensional

settings, particularly since most methods are able to

provide marginal posterior probabilities for the

presence of individual network edges.

Time-course expression data provide some infor-

mation about system dynamics, and therefore

dynamic network models provide a useful starting

point for top-down systems biology modelling.

Dynamic Bayesian networks (DBNs) have been

widely used in this context; see [67, 68] for details.

For dynamic networks based on linear Gaussian

models, a fast ‘Bayesian-inspired’ algorithm has

recently been proposed [69]. As for static networks,

fully Bayesian approaches to this problem are likely

to offer significant advantages, and are currently the

subject of ongoing research.

Using Bayesian inference for integrating multiple

sources of data offers great potential, but currently

remains largely unexplored; see [70–72] for initial

attempts and perspectives.

Quantitative network models
As has already been stated, a key aim of systems

biology is to develop quantitative, dynamic models

of biological processes of interest. One approach to

this problem is to extend the top-down network

models so that they provide some quantitative

information regarding dynamics [73]. However,

this approach has some shortcomings due to the

fact that the elements of the model do not link

directly to physical parameters of interest. There is

therefore great interest in a different approach, based

on using data to parameterise bottom-up mechanistic

models of biological processes. Obviously, non-

Bayesian approaches to this problem are possible

[74–76], but are limited in terms of the information

they can provide. Even in the context of determi-

nistic models of biochemical networks based on

ordinary differential equations (ODEs), there is

considerable utility in using a Bayesian approach in

order to properly address issues of noise modelling

and parameter uncertainty [77, 78]. It is also possible

to improve parameter estimation using proper prior

modelling of parameter uncertainty [79].

A nice application of Bayesian modelling

in the context of quantitative modelling is the

Characterizing Loss Of Cell Cycle Synchrony

(CLOCCS) model [80] for loss of synchrony in

yeast populations. A simple application of this model

is in the alignment of data sets collected under

different conditions. However, this model can also

be combined with population level data (such as

gene expression array data) in order to recover

information about single-cell dynamics from the

population averaged data. This detailed modelling of

both the process of interest and its relationship with

the experimental data is a powerful technique in this

context, and similar strategies are likely to lead to

many other examples of extracting better informa-

tion from high-throughput data.

There is increasing evidence that stochasticity

plays an important role in intracellular processes [81],

and there is therefore a great deal of interest in

developing stochastic kinetic models of biological

processes [82–85]. Furthermore, experimental

technology is improving rapidly, so that

(semi-)quantitative high-resolution single-cell data

of the type that is most informative for the building

of stochastic models is now realistically attainable

[86]. Typically, data is generated via fluorescence

microscopy, then processed to extract gene expres-

sion time series [87]. Although fully Bayesian

approaches to this image-analysis step are likely to

be extremely useful, such techniques do not yet seem

to have been described in the literature. Stochastic

kinetic models are particularly difficult to estimate

using non-Bayesian methods. A valiant attempt is

described in [88], but the applicability of the

methods described is limited due to the extent to

which non-Bayesian methods can cope with hidden

data. In particular, the parsimony assumptions that

are typically required have the effect of downward-

biasing of parameter estimates. However, whilst a

fully Bayesian approach to inference for discrete

stochastic models is possible [85, 89], it is compu-

tationally problematic for models of realistic size and

complexity. Also see [90] for a related approach.

It turns out to be possible to instead work with a

continuous (approximate) formulation of stochastic

kinetics, known as the ‘chemical Langevin equation’

[91, 85]. This model seems to be quite adequate for

inferential purposes, and is advantageous due to the

fact that inference for this diffusion approximation is
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more computationally amenable than for the discrete

formulation. A basic inferential algorithm for this

model is described in [92]. A better algorithm for

models of this type, based on ideas of sequential

Monte Carlo [93], is developed in [94], and applied

to a general and flexible class of stochastic kinetic

models in [95]. Finally, an efficient non-sequential

MCMC algorithm for stochastic kinetic models is

described in [96]. A recent review of fitting models

to data by Jaqaman and Danuser [97] includes

references to both the Bayesian and non-Bayesian

literature.

There is another area of statistical methodology

that has obvious applications to systems biology

modelling: Bayesian analysis of computer code

outputs (BACCO) [98]. Here, a complex (but

typically, deterministic) computer simulation model

is treated as a ‘black-box’ from a statistical perspec-

tive, and the relationships between model inputs,

outputs and experimental data are studied in

a non-parametric way, often utilising Gaussian

processes [99]. Although these techniques do not

yet seem to have been applied to systems biology

modelling problems, they have been applied to

challenging problems in other application areas

[100, 101], so it seems inevitable that as systems

biology models become larger and more complex,

and BACCO techniques become more sophisticated

(better suited to high-dimensional inputs and out-

puts, and intrinsic stochasticity in the computer

models), that applications of BACCO methods to

problems in computational systems biology will

become common-place.

DISCUSSION
It is impossible in an article of this nature to give

a fully comprehensive review of all Bayesian work

in bioinformatics. Here the focus has been on work

which clearly demonstrates the advantages of the

Bayesian approach, and that which is most directly

relevant to the new science of computational systems

biology. Of course, this latter area is still an emerging

field, and it is not yet clear which (if any) of the

methods and techniques described here will stand

the test of time. The main drawback of fully

Bayesian methods are the computational demands

associated with their computer implementation.

This has so far limited their application to certain

challenging problems in the bioinformatics arena

(such as whole-genome annotation). The Bayesian

framework provides a coherent mathematical solu-

tion to the problem, but not always an efficient

computational algorithm for practical implementa-

tion. Even in difficult scenarios, however, probabil-

istic statistical models (such as Hidden Markov

Models) are becoming the accepted framework for

analysis [13], and used in conjunction with point

estimation methods (such as the EM algorithm) for

parameter fitting. However, experience from closely

related disciplines suggests that fully Bayesian

approaches will turn out to provide the most

satisfactory solutions to the complex statistical

inference problems which lie at the heart of

computational systems biology. Improvements in

computing hardware, the widespread availability

of parallel computer clusters and the development

of computational Bayesian algorithms that are able

to exploit them [102] mean that there is likely

to be an increasing tendency to push for fully

Bayesian solutions to the challenging inferential

problems in this area, in order to maximise the

information that can be extracted from expensive

experimental data.
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