Structure-function relationships in the Mineralocorticoid Receptor

Jyotsna B. Pippal and Peter J. Fuller

Steroid Receptor Biology Laboratory, Prince Henry’s Institute of Medical Research
P.O Box 5152, Clayton, VIC, 3168, Australia

Corresponding author:

Peter J. Fuller
Prince Henry’s Institute of Medical Research
PO Box 5152
Clayton 3168
VIC, Australia
Tel: +61-3-9594-4379
Facsimile: +61-3-9594-6125
Email address: peter.fuller@princehenrys.org
Abstract

The signature action of aldosterone in the regulation of electrolyte and fluid balance is well established. However, the role of aldosterone as an important contributor to morbidity and mortality in heart failure has gained a heightened interest in recent years, but the mechanisms of this action are not well understood. Aldosterone is the principal physiological ligand for the mineralocorticoid receptor (MR), a ligand-activated transcription factor, that also binds to the physiological glucocorticoid, cortisol. Both classes of hormones bind with similar affinity to the MR, but the molecular basis of selective and tissue-specific effects of MR ligands are not yet fully documented. The structural and functional determinants of MR function are described and their significance is discussed.
1. Introduction

The principal physiological mineralocorticoid hormone, aldosterone, plays a pivotal role in regulation of fluid and electrolyte balance in the kidney, salivary glands, sweat glands and colon [1, 2]. Classically, aldosterone is synthesized in the adrenal zona glomerulosa [3], however, emerging studies suggest that tissues other than adrenal cortex may also be capable of biosynthesis of aldosterone such as the cardiovascular [4-6] and the central nervous systems [3]. Aldosterone mediates its effects by acting through a ligand-activated transcription factor, the mineralocorticoid receptor (MR/NR3C2) [7]. The MR is a member of the steroid/thyroid hormone receptor superfamily of ligand inducible transcription factors. Other nuclear hormone receptors (NR) in this family include the glucocorticoid (GR/NR3C1) [8], thyroid (TR/NR1A1,NR1A2) [9], retinoic acid (RARs/NR1B1,2,3) [10-12] and vitamin D receptors (NR1I1) [13, 14] as well as numerous orphan receptors for which, in most cases, no ligands are known.

MR is unique amongst the steroid receptors in being a physiologically important receptor for two classes of hormone, the mineralocorticoids, aldosterone and deoxycorticosterone (DOC) and the glucocorticoids, cortisol (in humans) and corticosterone (in rodents). Glucocorticoids also elicit their biological effects through the GR. The initial cloning of the MR revealed that its sequence is highly homologous to that of the GR [7]; the human GR and MR are ~56% identical in the steroid-binding domain. Moreover, steroid binding studies with the MR revealed that cortisol and aldosterone have a similar high affinity for the MR [7, 15].

Polarised epithelial tissues, such as the colon and distal nephron, are considered to be classic targets of aldosterone. MR expression and function also extends to non-epithelial cells such as hippocampal and hypothalamic neurons, cardiomyocytes, the
vasculature, and adipocytes; with studies reporting both physiological and pathophysiological roles of MR at these sites [16]. In recent years, the mechanisms of action of mineralocorticoids and glucocorticoids have been an area of extensive study in the face of the apparent paradox that despite acting through very closely related receptors and a common DNA response element, these hormones exert significantly diverse physiological effects in a tissue-specific manner. Some insights are provided by consideration of the evolution of the corticosteroid receptor. Recent studies have identified an ancestral precursor to the vertebrate GR and MR. This ancestral corticosteroid receptor exhibits MR-like sensitivity to aldosterone and cortisol, indicating that the specificity for cortisol-binding in the GR is evolutionarily derived. The sensitivity of the ancestral receptor to aldosterone, considering that aldosterone evolved in the tetrapods tens of millions of years after the appearance of the ancestral receptor, has been interpreted as reflecting a role for this receptor in responding to DOC [17].

Glucocorticoid concentrations are 1000 fold higher in plasma compared to aldosterone and thus, in principle would be expected to preferentially occupy the MR. However, in the classic epithelial target tissues, preferential binding of aldosterone by the MR is ensured by 11β hydroxysteroid dehydrogenase type 2 (11βHSD2) [18], which metabolizes cortisol or corticosterone into inactive metabolites that are unable to bind MR and/or GR (Figure 1). Studies in both rodents and humans show that 11βHSD2 activity is essential for preventing mineralocorticoid activity of cortisol in that deficiency or inhibition of this enzyme results in the activation of MRs by glucocorticoids [19, 20]. This in turn causes sodium retention leading to hypertension and renal dysfunction [18]. In tissues such as the heart and selected areas in the central nervous system (CNS), the MR is unprotected by
11βHSD2 so that in these cells cortisol has access to the MR. Cortisol can act as an MR agonist in the kidney and colon, whereas in the heart and certain regions in the CNS, cortisol acts as an MR antagonist. The molecular basis of this ligand-and tissue-specific dichotomy is not yet understood.

Recently, several studies provide evidence that not all biological effects of aldosterone are mediated through the MR by direct control of gene expression. Rapid, non-genomic effects of aldosterone have been shown in a variety of tissues [21]. In some cases, this appears to be the result of a cross-talk with other signalling cascades, such as activation by SRC kinase of the EGF receptor with consequent downstream signalling through the MAP-kinase pathway [22]. Non-genomic actions also involve a number of other different signalling pathways including PKC, PIS-kinase and activation of transporters and pumps including NHE and the Na-K-2Cl-cotransporter [23, 24]. Although it has been postulated that the effects may be mediated by a novel aldosterone receptor, there is no compelling evidence for this, the observed effects appear to be mediated by the classical MR [25].

This review focuses on the recent findings on the structural and functional aspects of the MR.

2. Mineralocorticoid receptor structure

The human NR3C2 gene has been mapped to chromosome 4 in the q31.1 – q31.2 region [26, 27]. The NR3C2 gene spans over approximately 450 kilobases and is composed of 10 exons of which 8 encode the full-length 984 amino acid MR protein [26]. The two 5’untranslated exons, referred to as hMRα and hMRβ, splice to a common translated region; the expression of these mRNA species is therefore controlled by two distinct promoters [28]. In contrast, the rat MR has three
5′ untranslated exons referred to as 1α, 1β and 1γ. The mouse MR shares a similar genomic organization with the rat MR gene [29].

The MR has a similar modular structure to the other members of the nuclear receptor superfamily with four structurally distinct sections or domains; the amino terminal domain (NTD), followed by a central DNA-binding domain (DBD), the hinge region and the C-terminal ligand-binding domain (LBD) [30]. The NTD is encoded by exon 2 and contains activation function-1 (AF-1), a region which mediates ligand-independent interactions of the receptor with other nuclear proteins that initiate target gene transcription. Exons 3 and 4 encode the DBD which contains two zinc fingers that interact with specific hormone response elements in the promoter regions of MR target genes. The last 5 exons encode the LBD which in addition to binding ligand, contains a ligand-dependent activation function-2 (AF-2) [31].

2.1 MR N-terminus

The N-terminal domain is hyper-variable both in size and length being the least conserved domain of all the NRs [32]. The MR has the longest NTD (604 amino acids) among all the steroid receptors; it represents half of the MR protein. This domain is very distinct from the NTDs of other steroid receptors, sharing less than 15% homology with the closely related GR, androgen receptor (AR) and progesterone receptor (PR). The N-terminus is, however, highly conserved among MRs of all mammalian species [33] with ~85% amino acid homology. NRs have a constitutive, ligand-independent transactivation function-1 (AF-1) in the NTD, which is important for interactions with the transcriptional coregulators and for intramolecular interactions with the LBD. However, the interacting surfaces in the MR NTD have not been identified.
Functional mapping studies of the N-terminal AF-1 domain in the hMR identified amino acids 328–382, in the middle of the MR-NTD, as being important for transactivation function [34]. However, a more recent study found that the MR N-terminal region encompasses two distinct ligand-independent activation functions referred to as AF-1a and AF-1b which mapped to amino acids 1-167 and 445-602 respectively [33]. A similar organisation of the NTD was also reported for the rat MR [35]. A central inhibitory region (amino acids 163-437) has also been characterized that robustly reduces AF-1a or AF-1b directed transcriptional activity. The mapping of AF-1a and AF-1b as distinct regions of the protein suggests a cell and/or promoter-selectivity of the MR-NTD transactivation function. Significantly, these three regions of the MR-NTD also display a high degree of amino acid conservation between the mammalian MR sequences and a number of fish species (Oncorhynchus mykiss and Danio rerio) with amino acids 1–170 (AF1a) of the human MR sharing 25% identity; amino acids 244–300, 54% identity, and amino acids 459–566, including AF1b sharing ~ 46% identity with the two fish MR NTDs [36, 37]. Furthermore, a ligand-induced, functional synergism between the AF-1 and AF-2 has been demonstrated in many nuclear receptors, supporting the concept that AF-1 significantly contributes to the ligand-induced transcriptional activity of nuclear receptors. Recently, McEwan et.al, [38] developed the concept that the N-terminus contains significant levels of naturally disordered structure which provides structural flexibility allowing multiple protein-protein interaction with the cellular transcriptional machinery.

The MR NTD also contains four sumoylation or “synergy consensus motifs” at positions K89, K399, K428 and K494 in the human MR. These sites are highly conserved in the MR across the species [28]. Recent studies suggest that these regions might play a role in interactions at multimer response elements [33, 39]. These
different regions of the NTD are responsible for modulating the transcriptional activity of MR in a highly selective manner and are therefore key determinants of mineralocorticoid selectivity. To date the crystal structure of MR NTD has not been determined, a consequence presumably of its naturally disordered structure. The work of McEwan et.al [38] would predict that a crystal structure will only be derived when it is associated with a binding partner.

2.2 MR DNA-binding domain

The centrally located DBD of 66 amino acids has the most highly conserved amino acid sequence among the members of the steroid receptor superfamily. It is characterized by eight conserved cysteine residues that coordinate two zinc atoms to stabilize the ‘zinc-fingers’. Crystallographic studies of the GR-DBD complexed with DNA demonstrate that the DBD folds to adopt a globular conformation consisting of two perpendicular α-helices; residues important for DNA recognition and binding form part of the recognition helix. This domain also contains segments that are involved in receptor homo-and heterodimerization [40]. The steroid receptor subfamily, consisting of the AR, GR, MR and PR, bind to the half-site sequence AGAACA, whereas the estrogen receptor (ER) recognizes the sequence AGGTCA. The DBD of MR is highly homologous with that of GR, sharing ~94% identity across the 66 amino acid DNA binding domain. Accordingly, the glucocorticoid response element (GRE) is considered to also function as a mineralocorticoid response element (MRE) [7]. Putative MRE, that have not already been characterized as GRE’s, have yet to be described.
2.3 MR ligand-binding domain

The MR LBD is a complex and multifunctional domain composed of 251 amino acids, sharing ~55% homology with the AR, PR and GR and ~85% homology across species [41]. The MR LBD crystal structure has recently been determined [42-44]; it exhibits remarkable structural similarity to the crystal structures of GR, AR, PR and ER [42, 45-47]. It consists of 11 \(\alpha \) helices in 3 anti-parallel layers. The helices are numbered 1-12 according to the nomenclature originally used for the human retinoid receptors and the rat TR; the region between helices 1 and 3 is unstructured in the MR, GR, AR and PR. This region, despite lacking a highly structured conformation and having no role in forming the ligand-binding pocket, does have a significant role in ligand-binding sensitivity in GR [48]. Helices 3, 4 and 12 are integral to ligand binding. A glutamic acid residue in helix 12 and a lysine residue in helix 3, together with a hydrophobic pocket on the surface of the LBD composed of residues from helices 3, 4 and 5, are important for protein-protein interactions in that they form the AF-2 region. Although the crystal structure of the un-liganded receptor has not been published, studies with other nuclear receptors suggests that helix 12 will be randomly distributed in the unbound conformation [49]. Ligand-binding induces a compact packing of the helices, allowing helix 12 to adopt a position where it interacts with helices 3, 5 and 11 to form the hydrophobic groove on the surface of the LBD which represents AF-2. This groove interacts with coactivators containing an LxxLL motif [44, 50]. When compared to the other steroid receptors, the MR AF-2 is a powerful activator.

The specific residues within the ligand-binding pocket that interact with ligand have been extensively characterized [44, 50-52]. In addition, the determinants and the nature of the interaction of antagonists with the LBD have also been determined.
However, the antagonist conformation has not been solved. The determinants of specificity and selectivity for the receptors in this highly conserved structure are complex and diverse.

3. **MR ligand-binding specificity**

MR and GR share considerable structural and functional homology (Figure 2), which is exemplified by the ability of glucocorticoids to bind both receptors. The glucocorticoids, cortisol and corticosterone bind to the MR with a similar affinity to aldosterone, yet aldosterone binds to the GR only at very high, non-physiological concentrations. To understand the structural basis of the specificity of aldosterone binding to the MR, Rogerson et al [53] created a series of chimeras between the LBD of the MR and the GR. The studies identified that the binding specificity of aldosterone for the MR is conferred by amino acids 820–844 in the human MR LBD. Of these 25 amino acids, 12 were identified as essential for aldosterone selectivity. This same region was also identified as critical for cortisol-induced transactivation but not for binding. Evidence from the crystal structures of the MR LBD [43, 44, 50] suggests that amino acids 820-844 do not form part of the ligand-binding pocket indicating that aldosterone binding specificity is determined by indirect interactions of these amino acids rather than a direct interaction with the steroid. Studies with the GR, PR and AR [54, 55] involving AR:PR and PR:GR chimeras also point to the critical role of this region in determining the specificity of steroid binding and transactivation. The mechanism by which this region so profoundly influences steroid binding and its functional consequences remains to be fully determined.

Helices 3 and 5 act as a molecular switch, which regulates the specificity and sensitivity of steroid hormone receptors. Mineralocorticoid specificity in MR is
thought to be provided partially by a hydrogen bond between asparagine-770 on helix 3 and the C$_{21}$-OH group of the ligand [56]. Geller et.al [52] identified a point mutation in the human MR, serine at 810 to leucine (S810L) in helix 5, that causes exacerbated hypertension during pregnancy. The mutation results in altered specificity of MR allowing progesterone to function as an MR agonist instead of being an antagonist and for the receptor inactive product of 11β-HSD2, corticosterone to both bind and transactivate the MR [57]. S810L, lies just outside the critical region that confers mineralocorticoid binding-specificity to the MR. In the GR, the equivalent residue at the same position is methionine, which when substituted in the MR still retains the ability of aldosterone to transactivate the mutant, arguing that binding is retained [44]. Studies by Hellal-Levy et al. [58] show that the loop between helix 11 and helix 12 is also important for aldosterone-mediated transcriptional activity of MR. Functional analyses of the MR have revealed the importance of helices 11 and 12 in optimal positioning of helix 12 to form AF-2. Moreover, mutagenesis studies provide evidence that mutations in the loop positioning AF2 can alter transcriptional activity of the MR, even when the mutant MR retains high affinity for both aldosterone and cortisol [58-60].

Ligand-binding specificity is also demonstrated by the MR antagonist, spironolactone, in that it binds to both the MR and the AR, but binds poorly or not at all to the GR. The amino acid region 804-874 in MR is also critical for the binding of spironolactone; the afore-mentioned S810L mutation turns spironolactone into an agonist. However, the antagonistic action of spironolactone on aldosterone-mediated MR transactivation depends critically on amino acid residues Ala-773 and Asn-770.
4. Inter-domain interactions

The major domains of the steroid receptors were originally thought to be ‘modular’ and generally functionally independent. However, studies in several steroid receptors provide clear evidence for a significant ‘cross-talk’ between domains, which can influence the activity of each domain as well as the activity of the receptor as a whole. An interaction between the NTD and the LBD (N/C-interaction) is very well characterized in the AR [61]. It has also been described for the PR [62] and ERα [63] but is absent in the GR [60]. The ligand-dependent AR N/C-interaction contributes to AR dimerization and stabilizes ligand-binding; its importance appears to vary with the gene promoter [64]. The AR N/C-interaction is direct and mediated through interactions between the FxxLF and WxxLF motifs in the N-terminus of the receptor, which upon ligand-binding interact with and occupy a hydrophobic cleft created by helices 3, 4, 5, and 12 [65]. Successful interaction of these two motifs is important for robust transcriptional activity. Recently, it has also been shown that the N/C-interaction is critical for AR–chromatin association in cells [44]. The importance of this interaction is observed in cases of partial and complete androgen insensitivity in which ligand-binding, nuclear localisation and transactivation in vitro are essentially normal but the interaction between the N- and the C-termini is lost. Recently, Schaufele et al. [66] demonstrated that the initial association between the N- and C–terminal regions in the AR is intramolecular but this is rapidly followed by ligand-induced dimerization in the nucleus which is characterized by an intermolecular association between AR. The FxxLF motif interacts with the AF-2 region such that it may serve to modulate the interactions of the LxxLL motif found in steroid receptor co-activators. In the ERα, the N/C-interaction represses receptor
activity in the absence of ligand [63], and enhances co-activator binding in the presence of ligand [67].

A ligand dependent N/C-interaction in MR was first demonstrated by Rogerson et al.[60]. Interestingly, despite mineralocorticoids and glucocorticoids being the physiological ligands for MR, the interaction was observed in response to aldosterone but only very weakly in the presence of cortisol. Infact, the aldosterone-mediated interaction is antagonized by cortisol. Further, studies also demonstrated that the N/C-interaction in MR was specific for the N-terminus in that the substitution of the GR or AR N-terminus did not result in an interaction with the MR LBD. The N/C-interaction of the MR is also repressed by the antagonists, spironolactone and eplerenone. The mechanism of the MR N/C-interaction differs from that of the AR in that MR N-terminus does not contain the FxxLF motif. The lack of interaction between the AR NTD and the MR LBD, further highlights the fundamental differences in the structural determinants of the N/C-interaction between the AR and the MR.

Based on evidence from recent studies, the difference in the abilities of aldosterone and cortisol to induce the N/C-interaction is potentially of enormous significance. Firstly, the interaction may be the underlying mechanism that explains the tissue-specific effects of MR bound by cortisol. Secondly, it also identifies a subtle conformational difference in the aldosterone and cortisol bound MR. However, the physiological significance of the N/C-interaction in MR is yet to be determined.

5. Coregulators of MR

The transcriptional activity of nuclear receptors is a function of their coregulator requirement and, or corepressor displacement [68]. The MR contains two defined regions that interact with coactivators and mediate activation of transcription: AF-1 in
the NTD and AF-2 in the LBD. The relative contribution of each is dependent on both the cell type and promoter context [69]. The tissue-specific effects of cortisol/corticosterone at the MR are likely due to differential interaction with coregulators, perhaps through the N/C-interaction. A large number of coregulators have been identified (for example; p160 family, CBP/p300, pCAF, SWI/SNF) that interact with both ligand-bound NRs, and also with other transcription factors [70-72]. Members of the p160 family of coactivators, steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, interact with the MR [59] as does peroxisome proliferator gamma coactivator-1 alpha (PGC-1α) [73]. The interaction of these coactivators is mainly through the AF-2 in the MR LBD. The crystal structure of the LBD of the steroid receptors, including the MR reveals that the C-terminal helix adopts a specific conformation in the agonist bound state, which includes an activation surface (AF-2), to which the LxxLL motif can bind [74]. The p160 coactivators and PGC-1α interact with the MR, through one or more of these LxxLL motifs. When Hultman et al.[59] and Li et al.[44] examined the interaction of a large number of LxxLL motif’s from known NR coactivators, with the MR LBD, the interaction was largely restricted to those from SRC-1 and PGC-1α. This suggests that the conformation of the MR AF-2 region is subtly different from that of the other NR. It can also be inferred from these studies that, as with the AR, other motif’s may be important in mediating the interaction of coactivators with the MR LBD, clearly there is a need to identify MR-specific interacting molecules rather than focusing on the known NR coactivators as these previous studies have done.

Pascual-Le Tallec et al. [33] have reported that the elongation factor, ELL, is a highly selective coregulator of the MR which directly interacts with the NTD of the hMR and exerts AF1-b dependent coactivation. ELL behaves as a selective transcriptional
regulator of MR in that, it represses GR transactivation and has no effect on the transcriptional activities of both the AR and the PR. ELL enhances both aldosterone and cortisol-mediated MR transactivation. A coactivator complex that interacts with the MR AF-1 region was purified from HeLa cells, and found to contain CREB binding protein (CBP) and RNA helicase A (RHA) [75]. Importantly, this complex interacts with the receptor via RHA in the presence of aldosterone but not cortisol. Given that the RHA complex interacts with the MR NTD but in a ligand-dependent manner, the N/C-interaction may mediate or modulate this interaction. Such discrimination is likely to be significant in non-classical tissues. With the exception of this RHA complex, coactivators whose interaction with the MR depends on the nature of the ligand have yet to be identified.

To date, most studies have focussed on renal and/or cardiovascular tissues for identifying MR interacting coactivators [33]. Obradovic et al. [76] screened a brain cDNA library to identify molecules interacting with the MR AF-1 region. A series of molecules homologous to the DAXX, FLASH and FAF-1 genes, which are associated with apoptosis, that were able to modulate the transcriptional activity of the MR, were identified. FAF-1 was MR specific, the others interacted with both the GR and MR. Further studies seeking MR N-terminus interacting proteins, identified the protein inhibitor of activated signal transducer and activator of transcription (PIAS) family of proteins (PIAS1, PIASxβ) and Ubc9 as MR coregulators. Both PIAS1 and PIASxβ behave as small ubiquitin-related modifier-3 (SUMO-E3) ligases able to sumoylate MR both in vitro and in vivo [24, 67]; PIAS1 is a MR-specific corepressor which interacts with the NTD. Interestingly, repression of transcriptional activity of MR mediated by PIAS1 is both dependent and independent of the MR’s sumoylation status [77]. The SUMO-E2 activating enzyme, Ubc9, interacts with the MR
NTD/DBD (1-670 amino acids) to potentiate aldosterone-dependent MR transactivation [78].

Overall, in contrast to other steroid receptors, the identification of MR coregulators and an understanding of structural determinants, within the MR, of these interactions, remains relatively limited.

6. Transactivation

The classical mechanism for the hormone-mediated MR signalling pathway is through regulation of transcription. As with all nuclear receptors, the activated receptor binds to response elements which act as enhancers in \textit{cis} to influence the promoter activity of the target gene. To date, a very limited number of MR-induced genes and response elements which act at a primary transcriptional level, have been identified. Genes identified as being regulated by aldosterone and fully characterized have primarily been expressed in epithelial tissues [79]. They are also generally also regulated by activation of the GR such that the response elements identified are GRE’s. So far there are no reports of identification of unique “MRE’s”. Unique MRE’s are likely to be found in genes that are expressed in tissues which show a distinct MR \textit{versus} GR response, which are generally non-epithelial tissues.

7. Transrepression

Transrepression represents a spectrum of functional molecular interactions that may occur either via DNA-binding or through interference with other transcription factors via protein-protein interactions, independent of DNA-binding by the receptor [80]. This is best described for the GR, where mutual transrepression of nuclear factor κB (NFκB) or activator protein-1 (AP-1) signalling is fundamental to the anti-
inflammatory response[81]. In contrast to the GR, the MR does not interact with the AP-1 complex [82]. Although, in vitro studies have described MR interactions with NFκB [83] this has not been confirmed in vivo and indeed, at least in the cardiovascular system, the MR is thought to be pro-inflammatory [79]. However, this does not rule out interactions with other yet to be determined transcription factors where mutual transrepression may occur.

8. Conclusions

Although not generally as advanced as for the other steroid receptors, an understanding of structure-function relationships in the MR, is now emerging. Clinical studies such as the ‘Randomised Aldactone Evaluation Study’ (RALES) and the ‘Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study’ (EPHESUS) trials [84] in which MR antagonist therapy in patients with cardiac failure resulted in marked decreases in morbidity and mortality have given a major impetus to research on the MR. Similarly, recent studies have also identified a role for the MR in the pathophysiology of neurological disorders [85, 86]. The expanding knowledge of the structural basis of the molecular mechanisms of mineralocorticoid action may therefore provide a foundation for the development of novel therapeutic strategies. A key imperative is to define mechanisms by which tissue and ligand specificity of agonism and antagonism at the MR may be achieved. The differences observed at both functional and structural level between the interactions of aldosterone and cortisol with the MR demonstrates the considerable plasticity present within the MR signal transduction pathway.
Acknowledgements

We thank Ms. Sue Panckridge for her help in the preparation of this manuscript and Dr. Morag Young for critically reading the manuscript. JBP is supported by a Fred Boylan and Bill Burke Fellowship from Prince Henry’s Institute of Medical Research and PJF is supported by a Senior Principal Research Fellowship from the National Health and Medical Research Council of Australia.

References

Figure Legends

Figure 1: Schematic representation of protective mechanism of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) in epithelial versus non-epithelial cells: In the epithelial cells 11β-HSD2 prevents mineralocorticoid receptor (MR) from binding to cortisol by converting it to cortisone. In the non-epithelial cells 11β-HSD2 protection for MR is absent.

Figure 2: Schematic representation of the human mineralocorticoid receptor (MR) and the human glucocorticoid receptor (GR) with the percentage of amino acid identity between each domain; the figure has been adapted from reference 7.
Figure 1
166x59mm (600 x 600 DPI)
Figure 2
113x37mm (600 x 600 DPI)