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Summary

This paper aims at introducing a new class of stochastic frontier models that can take

account for fat tails in the composed error. Quite surprisingly, at least to our knowledge,

all the stochastic frontier models proposed in literature cannot handle situations where the

empirical distribution of the composed error has heavy tails. These situations are instead

very common in applications. In particular, we will propose to model the composed error

with the skew-t distribution. This is equivalent to assume a Student-t distribution for the

measurement error and a half-t distribution for the inefficiency. In this way, we extend

quite naturally, the stochastic frontier model where a normal distribution is assumed for

the symmetric error and a half-normal distribution is assumed for the inefficiency term.
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1 Introduction

Stochastic frontier models, introduced in Meeusen and van den Broeck (1977) and Aigner

et. al. (1977), are useful tools to evaluate the efficiency of economic agents, such as

firms, individuals or countries. The principle underlying the model is that the observed

production of a single unit cannot exceed the unobserved potential production i.e. the

frontier, which is the maximum possible production given input quantities. The difference

between the frontier and the observed production is a measure of inefficiency. Such

difference is modelled by a one-sided random variable. The model is completed adding a

symmetric random variable capturing the mesaurement error of the frontier.

In the commonly adopted formulation a normal distribution is assumed for the sym-

metric error while a half-normal distribution is assumed for the one-sided random variable.

This framework leads to model the composed error by a probability distribution known,

in the statistical literature, as skew-normal distribution, see Azzalini (1985) and Azzalini

and Capitanio (1999). The skew-normal distribution is a family of distributions including

the normal, but with an extra parameter to regulate the skewness. The stochastic frontier

model introduced by Aigner et. al (1977), ALS model in the following, is a skew normal

regression models with negative skewness.

Several other distributions for the inefficiency term, have been proposed, in different

times, in place of the half-normal distribution. For example, Meeusen and van den Broeck

(1977) adopt the exponential distribution, Stevenson (1980) the truncated normal and

Greene (1990) the gamma distribution. A unified approach is proposed in van den Broeck

et al (1994) where the results obtained with different inefficiency distributions are pooled

together by Bayesian model averaging. Finally, a semi-parametric Bayesian approach

is proposed in Griffin and Steel (2002) where a Dirichelet process with gamma mean is
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assumed for the inefficiency distribution.

This paper aims at introducing a new class of stochastic frontier models that can take

account for fat tails in the composed error. Quite surprisingly, all the proposals existing

in literature, at least to our knowledge, cannot handle situations where the empirical

distribution of the composed error has heavy tails which, instead, are very common in ap-

plications. In particular, we will propose to model the composed error with the univariate

skew-t distribution introduced by Branco and Day (2001) and by Azzalini and Capitanio

(2002). This is equivalent to assume a Student-t distribution for the measurement error

and a half-t distribution for the inefficiency. In this way, we extend quite naturally, the

ALS model, which becomes a limit case of our model.

Section 2 describes the new model with particular emphasis on frequentist inference

both for testing the presence of the inefficiency term and for estimating individual tech-

nical efficiencies. In particular it is shown that, in estimating individual efficiencies, the

skew-t model has a completely different approach with respect to the ALS model when we

have observations which are suspected of being outliers. In the ALS model, observations

with a large postive deviation from the estimated frontier lead to estimates of individual

efficiency concentrated in one. Instead, for the skew-t model these observations are not

considered informative for estimating individual efficiency.

In section 3 we apply the model to the well known data set of the American elettrical

companies. This data set has been carefully analyzed, in a frequentist setting, by Ritter

and Simar (1994), who conclude that the data show more evidence for the normal linear

model without inefficiency than for stochastic frontier models. We will show that assuming

a skew-t model for the composed error provides a more reasonable fit than the normal

linear model and that taking account for fat tails increases the evidence for the inefficiency

term. Moreover we will study the behaviour of the estimates of individual efficiencies
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respect to the distance from the estimated frontier both for the ALS model and the

skew-t model.

In section 4 we give a brief discussion for subsequent modelling and research.

2 The model

Let us consider the model

yi = h(xi, β) + εi − zi i = 1, . . . , n (1)

where yi denotes the log of the output variable for firm i (i = 1, . . . , n) and xi is a a vector

of observations for the explanatory variables for firm i. In stochastic frontier models εi

is a symmetric distribution with zero mean while zi is a one-sided positive distribution.

For istance, in the ALS model εi is assumed N (0, σ2
ε ) and zi is assumed half-normal

distributed |N (0, σ2
z )|.

Respect to the ALS model we assume that zi = |vi| and that the couples εi, vi are

distributed like a bivariate Student-t distribution with zero means, scale parameters σε

and σz, uncorrelated components and shape parameter ν, independently for i = 1, . . . , n.

The density can be written as

f(εi, vi) =
Γ

(

ν+2
2

)

Γ
(

ν
2

)

ν π σεσz

{

1 +
1

ν

[

(

εi

σε

)2

+

(

vi

σz

)2
]}− ν+2

2

i = 1, . . . , n. (2)

The meaning of the variables εi and zi remains the same of standard stochastic frontier

models. In fact εi still represents a symmetric disturbance capturing the measurement

error of the stochastic frontier and zi is still a nonnegative random variable modelling the

level of inefficiency. The novelty here is that εi is marginally distributed like a univariate

Student-t distribution T (0, σε, ν) and zi is marginally distributed like a half Student-t

|T (0, σz, ν)|.
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The sampling distribution of yi has been derived, in a more general context, by Azzalini

and Capitanio (2002). Specifically, if we write

yi = h(xi, β) +
√

σ2
ε + σ2

z

[

σε
√

σ2
ε + σ2

z

U − σz
√

σ2
ε + σ2

z

|U0|
]

, (3)

where (U0, U) is a standard bivariate Student-t distribution with shape parameter ν, then

we can apply proposition 9 of Azzalini and Capitanio (2002). Thus we have that

p(yi;β, σε, σz, ν) = 2 ft(yi;h(xi, β), ω, ν)

×T1

[

α
yi − h(xi, β)

ω

(

ν + 1

ω−2(yi − h(xi, β))2 + ν

)1/2

; ν + 1

]

(4)

where ft(y;h(xi, β), ω, ν) denotes the density function of a Student-t distribution with

mean h(xi, β), scale ω and ν degrees of freedom, ω =
√

σ2
ε + σ2

z , T1(y, ν + 1) denotes the

scalar Student-t distribution with ν + 1 degrees of freedom and α = −σz/σε. Distribu-

tions with density (4) are called skew-t distributions and they generalize the skew-normal

distributions (Azzalini, (1985)) which can be obtained when the shape parameter ν goes

to infinity.

Note that the same mechanism that generates a Student-t distribution from a normal

distribution allow us to generate a skew-t from a skew-normal. In fact Azzalini and

Capitanio (2002) show that a skew-t distribution can be obtained as mixture of skew-

normal variates with scale parameter 1/
√

λ where λ is gamma distributed Γ(ν/2, ν/2).

Thus model (1) can be written also in the following way

yi = h(xi, β) +
1√
λi

(εi − zi) i = 1, . . . , n (5)

where εi ∼ N (0, σ2
ε ), zi = |N (0, σ2

z )| and λi ∼ Γ(ν/2, ν/2). Indeed, the difference εi − zi

in (5), which is the composed error of the ALS model, follows a skew-normal distribution

with location parameter equal to zero, scale parameter equal to
√

σ2
ε + σ2

z and shape

parameter equal to −σz/σε.

6



2.1 Testing the presence of the inefficiency term

The natural use of model (4) is whitout constraining the parameter α to be negative.

In fact, if we let α to vary in (−∞,∞) the statistical model (4) is a regression model

that can account for fat tails and for both positive and negative skewness of the error

distribution. Positive values for α correspond to composed error distributions where a

half-t is added to a Student-t, switching drasticallly the meaning of the model respect

to stochastic frontier models. Anyway considering the model (4) with α ∈ (−∞,∞) can

be helpful for inferential aims also in stochastic frontier models. Specifically, in testing

H0 : α = 0 against H1 : α < 0, i.e. in testing the presence of the ineffieciency term, the

signed version of the likelihood ratio statistic may be used. That is

R = sgn(α̂){2[`(θ̂) − `(θ̂∗)]}1/2 (6)

where θ = (β, ω, α), α̂ and θ̂ denote the maximum likehood estimates of α and θ when α ∈

(−∞,∞) and θ̂∗ denote the maximum likelihood estimate when α = 0. The asymptotic

distribution of R under the null model is standard normal and having observed Robs the

evidence of H0 against H1 is given by P (N (0, 1) < Robs).

2.2 Estimation of firm-level technical efficiencies

In stochastic frontier models the main interst is not on the parameters themselves, but in

the individual technical efficiencies, measured by ri = exp(−zi). Estimates of these quan-

tities are obtained considering the conditional expected values E(ri|yi), see for example

Coelli et al. (1998). In the appendix we prove that for model (1) the conditional density

of zi given yi is

f(zi | yi) =

(

ν
2

)ν/2
Γ

(

ν+2
2

)

f(yi)Γ
(

ν
2

)

π
√

σ2
εσ

2
z

[

1
2

{

ν + (yi−hi)2

σ2
ε +σ2

z
+ σ2

ε +σ2
z

σ2
ε σ2

z

(

z| + (yi − hi)
σ2

z

σ2
ε +σ2

z

)2
}]

ν+2
2

. (7)
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Thus, a point estimation of the individual technical efficiency can be obtained integrat-

ing numerically
∫

e−zif(zi|yi)d zi where in f(zi|yi) we replace the unknown parameters

with the maximum likelihood estimates. A measure of uncertainty of these estimates

is obtained considering the plug-in estimates of the standard deviation of e−zi given yi.

Note that, in this ways, we do not take account of parameter uncertainty, but, from a

frequentist point of view, this seems the standard practice since Jondrow et al. (1982).

Let us observe that adopting the skew-t model in place of the ALS model leads to

a completely different behaviour in estimating individual efficiency of firms with large

positive deviations from the estimated frontier. In fact, if we indicate the frontier h(xi, β)

with hi we have that (see the appendix) for the ALS model

lim
yi−hi→∞

f(zi|yi) =







∞ if zi = 0

0 if zi > 0
(8)

while for the skew-t model

lim
yi−hi→∞

f(zi|yi) = 0 zi ≥ 0. (9)

This means that when yi−hi goes to infinity the conditional distribution of zi in the ALS

model is concentrated in zero while for the skew-t model is improper uniform on [0,∞).

Now let us suppose to have an observation yi which produces an estimated positive

residual yi−h(xi, β̂) very far from the bulk of the other residuals. Thus we should consider

yi as an outlier and, maybe, we should remove it from the data before calculating the

required inference. Now, if we are fitting the data with the ALS model we have, for this

observation, that the plug-in estimate of ri will be near one and the plug-in estimates

of V ar(e−zi |yi) near zero. In fact, by (8) the distribution of e−zi given yi will be very

concentrated near one. Thus we should believe that this observation is very informative

for estimating individual technical efficiency. The situation is completely different with
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the skew-t model. In fact when we have an observation which produces a high estimated

residual, the plug-in estimate of V ar(e−zi |yi) will be very high. This is because the limit

distribution of zi|yi is completely flat. Thus, this observation will not considered very

informative for estimating individual technical efficiency. This means that, when our

primary goal is to estimate individual efficiencies, by adopting the skew-t model we do

not have to worry whether to discard an outlier or not. In fact the model automatically

increases the degree of uncertainty of our conclusions when we are in presence of outliers.

3 Example

We consider the data collected by Christensen and Greene (1976) for 123 electric utility

companies in the US in 1970. The data are given in the appendix to Greene (1990)

and have been used by van den Brock et al (1994) and Tsionas (2002). There are three

production factors labor, capital and fuel with prices pL, pK , and pF and the cost function

which is usually specified is

yi = −β0 − β1 lnQi − β2 ln2 Qi − β3 ln
pKi

pFi

− β4 ln
pLi

pFi

+ εi − vi (10)

where yi = − lnCi/pFi
, Qi is the output and Ci the cost of the ith firm.

3.1 Normal against skew-t model

For this data set, Ritter and Simar (1994) compare, from a likelihood point of view, a

normal regression model with several stochastic frontier models. They conclude that a

normal linear model without inefficiency is enough to explain the data. Thus we firstly

try to understand if a skew-t model lead to a significantly improved explanation of the

data over a standard regression model.
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Maximum likelihood estimates (MLE) and approximated 95% confidence interval are

reported in Tab 1 for the normal linear model, the ALS model and the skew-t regression

model. We observe that the maximum log-likelihood for the normal model is 65.67,

while for the skew-t regression model we have obtained 68.75. Thus the test statistic

D = `(θ̂) − `(θ̂∗), where `(θ̂) and `(θ̂∗) denote the maximized log-likelihood within the

skew-t regression model and the normal regression model, is 6.12. Anyway, comparing the

two models by the test statistic D needs some caution. In fact the normal regression model

occurs on the frontier of the parametric space of the skew-t regression model, specifically

when ν tends to infinity and the ratio σz/σε tends to zero. Therefore, the chi-square

approximation to twice the log-likelihood does not apply in this context. To circumvent

the problem we have opted for a bootstrap approach. Specifically we have generated

10000 samples from the estimated normal model yi = h(xi, β̂) + εi with εi ∼ N (0, σ̂)

where β̂ and σ̂ are the MLE. For each sample we have calculated the difference between

the maximum log-likelihood under the skew-t model with ν fixed to the MLE ν̂ = 4.6461

and the maximum log-likelihood under the normal model. The associated bootstrap p-

value for the normal model is 0.014. This indicates low evidence for the normal linear

model respect to the skew-t model. Graphical analysis seem to confirm this. In Fig 1

we report, for the normal, ALS, and skew-t model, the histograms and pp-plots for the

estimated standardized residuals (yi − h(xi, β̂))/ω̂, where ω is equal to σε for the normal

model and to
√

σ2
ε + σ2

z both for the ALS model and the skew-t model. In particular,

looking the pp-plots for the normal model and the skew-t model it is evident that the

latter fits the data better.
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3.2 Testing the inefficiency term

The next goal in analazying the data is to understand if we can drop the inefficiency term

when we take account of heavy tails, thus we test H0 : α = 0 against H1 : α < 0, in model

(4) with α ∈ (−∞,∞) and we use test statistic R. The MLE of α is α̂ = −0.936 and the

maximum log-likelihood associated to the Student-t regression model is 67.56. The test

statistic R = sign(α̂)(`(θ̂)− `(θ̂∗))1/2 is -1.536 and the associated observed p-value is 0.06

indicating low evidence for the absence of the inefficiency term. Note that inference on

the inefficiency term is affected by accounting for heavy tails. Indeed, in comparing the

normal model against the ALS model, we may test H0 : α = 0 against H1 : α < 0, in

model (4) with α ∈ (−∞,∞) and ν = ∞. In this case the test statistic R is equal to -0.94

and the observed p-value is P (N (0, 1) < −0.94) = 0.17. Thus, for the elettric companies

data set, when we allow for thick tails the evidence for the presence of the inefficiency

term increases.

3.3 Estimating individual efficencies

Finally we present our results for the efficiency of firms within the sample. In table 2

we compare the quantities ri = E(e−zi |yi) for the first five firms in the sample both for

the ALS model and the skew-t model. These are the same firms analyzed by van den

Broeck et al. (1994). We see that,with the skew-t model the estimates for ri are generally

bigger than for the ALS model, with the exception of the second firm. More insight

into the beheaviour of the models about efficiency analysis is given in Fig 2. This plots,

for all the firms, the plug-in estimates of ri = E(e−zi |yi) and si where s2
i = V ar(e−zi |yi)

against the estimated residuals yi−h(xi, β̂) both for the ALS model and the skew-t model.

We see that for the ALS model ri is always increasing while si first increases and then

decreases in according to the fact the e−zi given yi should be concentrated in one when
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yi − h(xi, β̂) becomes very large. For the skew-t model we have a different behaviour,

when the residuals becomes larger both ri and si start to increase in according with our

findings that the density of zi given yi is completely flat when yi − h(xi, β̂) becomes very

large.

4 Discussion

In this paper we have introduced a new stochastic frontier model with several attractive

features. First of all, it generalizes the common stochastic frontier model, where a normal

distribution is assumed for the error term and a half-normal distribution is assumed for

the inefficiency term, allowing for fat tails in the composed error distribution. Adopting

this new model we do not have to worry to remove outlier observations before drawing

inference. In fact, if our aim is to estimate individual technical efficieny, the model

automatically increases the uncertainty of our estimates when we have observations lying

above and far from the estimated frontier. We have discussed frequentist inference and

further research will be conducted on estimating the model from a Bayesian point of view.
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Appendix A: density for the individidual inefficiency in the

skew-t model

Let us observe that

f(zi |λi, yi) =
e
− 1

2

λi(σ
2
ε +σ2

z)

σ2
ε σ2

z

„

zi−−σ2
z(yi−hi)

σ2
ε +σ2

z

«2

√

2π σ2
ε σ2

z

λi(σ2
ε +σ2

z)
Φ

(

−
√

λiσz (yi−hi)

σε

√
σ2

ε +σ2
z

)

and that

f(λi|yi) =
f(yi|λi)f(λi)

f(yi)
=

2
√

λie
− 1

2

λi(yi−hi)
2

σ2
z+σ2

ε Φ

(

−
√

λiσz (yi−hi)

σε

√
σ2

ε +σ2
z

)

f(yi)
√

2π(σ2
ε + σ2

z)

(

ν
2

)ν/2
e−λi

ν
2 λ

ν/2−1
i

Γ
(

ν
2

) .

Then we have

f(zi | yi) =

∫

f(zi |λi, yi)f(λi|yi)dλi

=

(

ν
2

)ν/2

f(yi)Γ
(

ν
2

)

π
√

σ2
ε σ

2
z

∫ ∞

0
λ

ν+2
2

−1

i e

−λi
2

"

ν+
(yi−hi)

2

σ2
ε +σ2

z
+

σ2
ε +σ2

z

σ2
ε σ2

z

„

zi+(yi−hi)
σ2

z

σ2
ε +σ2

z

«2
#

dλi

=

(

ν
2

)ν/2
Γ

(

ν+2
2

)

f(yi)Γ
(

ν
2

)

π
√

σ2
ε σ

2
z

[

1
2

{

ν + (yi−hi)2

σ2
ε +σ2

z
+ σ2

ε +σ2
z

σ2
ε σ2

z

(

zi + (yi − hi)
σ2

z

σ2
ε +σ2

z

)2
}]

ν+2
2

.
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Appendix B: limiting behaviour for the individual ineffi-

ciency

1) ALS model

Let us consider the following notation A = 1
2

σ2
zσ2

ε

σ2
z+σ2

ε
, B = σ2

ε

σ2
ε +σ2

z
, C = σz

σε

1√
σ2

ε +σ2
z

, and

observe that − 1
2C2 = −AB2. We have

lim
yi−hi→∞

f(zi|yi) = lim
yi−hi→∞

e−A(zi+B(yi−hi))2

Φ(−C(yi − hi))
= lim

yi−hi→∞
−2e−A(zi+B(yi−hi))2AB(zi + B(yi − hi))

−Ce−
1
2
C2(yi−hi)2

Thus if zi = 0 we have

lim
yi−hi→∞

f(zi|yi) = lim
yi−hi→∞

2
AB2

C
(yi − hi) = ∞

while if zi > 0 we have

lim
yi−hi→∞

f(zi|yi) = lim
yi−hi→∞

e−A(zi+B(yi−hi)2+ 1
2
C2(yi−hi)2) = 0

2) skew-t model

lim
yi−hi→∞

f(zi|yi) = lim
yi−hi→∞

[

1 + 1
ν

(

yi−hi√
σ2

ε +σ2
z

)2
]

ν+1
2

[

ν + (yi−hi)2

σ2
ε +σ2

z
+ σ2

ε +σ2
z

σ2
ε σ2

z

(

zi + (yi − hi)
σ2

z

σ2
ε +σ2

z

)2
]

ν+2
2

= 0 ∀z ≥ 0
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normal linear model ALS model skew-t model

mle 95% confidence interval mle 95% confidence interval mle 95% interval.

β0 -7.2047 (-7.8512 -6.5582) -7.4071 ( -8.0389 -6.7752) -7.8208 (-8.4419 -7.1997)

β1 0.3860 (0.3126 0.4595) 0.4081 ( 0.3316 0.4846) 0.4549 (0.3871 0.5228)

β2 0.0316 (0.0264 0.0368) 0.0306 ( 0.0254 0.0357) 0.0278 (0.0231 0.0325)

β3 0.2462 (0.1178 0.3746) 0.2439 ( 0.1186 0.3692) 0.2952 (0.1724 0.4181)

β4 0.0792 (-0.0390 0.1974) 0.0592 ( -0.0606 0.1790) 0.0344 ( -0.0725 0.1412)

σz —- —- 0.1558 (0.0853 0.2844) 0.0900 (0.0302 0.2682 )

σε 0.1419 (0.1252,0.1608) 0.1069 (0.0703 0.1627) 0.0949 (0.0669 0.1347)

ν —- —- —- — 4.6461 (1.912 11.2441)

log lik 65.67 66.14 68.75

Table 1: Estimates, 95% confidence intervals and maximum loglikelihood values

ALS model skew-t model

r1 0.7325 0.7749

r2 0.9650 0.9408

r3 0.9145 0.9432

r4 0.8980 0.9252

r5 0.9510 0.9524

Table 2: Efficiencies for the first five firms
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Figure 1: Residuals analysis
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Figure 2: Eefficiencies respect to the estimated residuals
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