Detection of a β-Lactamase in \textit{Salmonella enterica} Serovar Newport MDR-AmpC

Shelley C. Rankin, Jean M. Whichard, Kevin Joyce, Lynn Stephens, Kathleen O'Shea, Helen Aceto, Donald S. Munro and Charles E. Benson

Updated information and services can be found at: http://jcm.asm.org/content/43/11/5792

\textbf{REFERENCES}

This article cites 21 articles, 17 of which can be accessed free at: http://jcm.asm.org/content/43/11/5792#ref-list-1

\textbf{CONTENT ALERTS}

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Detection of a \(\text{bla}_{\text{SHV}} \) Extended-Spectrum \(\beta \)-Lactamase in *Salmonella enterica* Serovar Newport MDR-AmpC

Shelley C. Rankin, 1* Jean M. Whichard, 2 Kevin Joyce, 2 Lynn Stephens, 1 Kathleen O'Shea, 1 Helen Aceto, 1 Donald S. Munro, 1 and Charles E. Benson 1

Salmonella Reference Center, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett Square, Pennsylvania 19348-1692, 1 and Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 2

Received 28 June 2005/Returned for modification 1 August 2005/Accepted 5 September 2005

Salmonella enterica serovar Newport MDR-AmpC expressing TEM-1b and extended-spectrum \(\beta \)-lactamase SHV-12 was isolated from affected animals during an outbreak of salmonellosis that led to a 3-month closure of one of the largest equine hospitals in the United States.

Salmonella enterica serovar Newport MDR-AmpC is undergoing epidemic spread in animals and humans in the United States (4, 5, 7, 18, 22–24). This strain is characterized by a plasmid-mediated \(\text{ampC} \) gene (\(\text{bla}_{\text{CMY-2}} \)) that encodes resistance to extended-spectrum cephalosporins (3, 5, 22). Serovar Newport MDR-AmpC strains are commonly resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, amoxicillin-clavulanate, cefoxitin, and ceftriaxone and show reduced susceptibility to ceftiraxone (23). Serovar Newport MDR-AmpC was isolated from animals between July 2003 and May 2004 during which time it has now been defined as a protracted outbreak of salmonellosis that subsequently led to a 3-month closure of the George D. Widener Hospital for large animals at the University of Pennsylvania’s New Bolton Center (NBC), one of the largest equine hospitals in the United States.

Salmonella strains that express extended-spectrum \(\beta \)-lactamases (ESBLs) are rare. Coexistence of \(\text{bla}_{\text{CMY}} \) and ESBL mechanisms in the same *Salmonella* strain has been documented infrequently in the United States and has been associated with foreign travel (8). To our knowledge, this is the first report of ESBL genes in an *S. enterica* serovar Newport MDR-AmpC strain.

All *Salmonella* isolates from the NBC clinical microbiology laboratory that were obtained from July 2003 to May 2004 were referred to the *Salmonella* Reference Center, also at NBC, for serotype confirmation and molecular characterization. Antimicrobial susceptibility profiles of *S. enterica* serovar Newport isolates were determined using a Sensititre CMV2ECOF Companion/Equine MIC veterinary plate (Trek Diagnostics, Cleveland, Ohio), and the interpretation of breakpoints was as determined by the manufacturer according to CLSI (formerly NCCLS) guidelines, when available (14–16). Serovar Newport strain SRC0307-213, isolated in July 2003 and identified as the index case, was shown to be resistant to ampicillin, chloramphenicol, tetracycline, cephalexin, ceftriaxone, amoxicillin-clavulanate, gentamicin, and trimethoprim-sulfamethoxazole. Isolates from all of the 60 *S. enterica* serovar Newport cases included in the present report were susceptible to amikacin, imipenem, and enrofloxacin.

Plasmids were transferred by conjugation from *S. enterica* serovar Newport strain SRC0307-213 to a nalidixic acid-resistant *Escherichia coli* recipient strain (ATCC 27662) using nalidixic acid (50 \(\mu \)g/ml) and ampicillin (50 \(\mu \)g/ml) as the selective agents. Isoelectric focusing (IEF) for \(\beta \)-lactamases was performed on all strains at the Centers for Disease Control and Prevention (CDC) using a small-scale freeze-thaw method (12). Detection of \(\text{bla}_{\text{CMY}} \) and \(\text{bla}_{\text{TEM}} \) genes was performed by PCR at NBC as described previously (18). Detection of \(\text{bla}_{\text{SHV}} \) was performed at CDC using a modification of the method described by Rasheed and colleagues (19). Briefly, the \(\text{bla}_{\text{SHV}} \) gene was amplified on a PTC-200 DNA engine (MJResearch, Waltham, MA) in a final volume of 25 \(\mu \)L. A final primer concentration of 0.2 \(\mu \)M was used, and cycling conditions were as follows: 96°C for 5 min, 35 cycles of 96°C for 1 min, 50°C for 1 min, and 72°C for 1 min, and a final extension at 72°C for 10 min.

\(\beta \)-Lactamase genes were sequenced using standard methods. Briefly, total genomic DNA was extracted from SRC0307-213 and *E. coli* transconjugants using a Wizard genomic DNA purification kit (Promega Corp., Madison, WI). \(\beta \)-Lactamase genes were amplified with Promega 2× PCR master mix using primers shown in Table 1. PCR amplicons were cleaned up using a QiaQuick PCR purification kit (QIAGEN, Valencia, CA). Clean amplicons were used to obtain 2× DNA sequence coverage in both directions using a CEQ2000 capillary sequencer (Beckman Coulter, Fullerton, CA), and sequence alignments were performed using SeqManII version 5.06 (DNASTar Inc., Madison, WI).

Salmonella enterica serovar Newport SRC0307-213 was phenotypically negative for ESBL production by double-disk diffusion testing with ceftazidime and ceftazidime-clavulanate and also cefotaxime and cefotaxime-clavulanate (BD BBL Sensi-Disc; Becton Dickinson, Franklin Lakes, NJ) but was positive for \(\text{bla}_{\text{CMY}} \), \(\text{bla}_{\text{TEM}} \), and \(\text{bla}_{\text{SHV}} \) genes by PCR. It has been noted previously that the presence of an ESBL can be masked by the expression of an AmpC-like enzyme, such as \(\text{bla}_{\text{CMY}} \) (1, 2, 11). IEF showed enzymes with pIs of ≥8.4, 8.0, and 5.4, consistent with the CMY, SHV, and TEM enzymes, respectively. Two *E. coli* transconju-
positive and negative for the bla_TEM gene by PCR. IEF of the transconjugants showed that only two beta-lactamase genes, encoding enzymes with pIs of 5.4 and 8.0, had transferred, and this was consistent with the fact that the plasmid-mediated ampC gene in serovar Newport strains has previously been shown to be difficult to transfer by conjugation (6). DNA sequencing of S. enterica serovar Newport strain SRC0307-213 showed that it contained a bla_TEM-2 gene. E. coli transconjugant EC0307-213-2 was positive for bla_TEM-1b and the extended-spectrum beta-lactamase gene bla_SHV-12.

ESBL-producing salmonellae are rare in the United States, and this is the first report of an ESBL-producing S. enterica serovar Newport MDR-AmpC strain from animals. bla_TEM-1b has frequently been found in Enterobacteriaceae, including Salmonella (10), and the bla_SHV-12 gene, first described for E. coli and Klebsiella pneumoniae from Switzerland in 1997, is now becoming increasingly common in Salmonella serotypes from Europe and the United Kingdom but has not yet been described for S. enterica serovar Newport (9, 13, 17, 20, 21). Isoelectric focusing of beta-lactamases characterized so far from human S. enterica serovar Newport MDR-AmpC strains submitted to the National Antimicrobial Resistance Monitoring System indicate that many express a putative TEM enzyme, but none show enzymes in the range expected for SHV beta-lactamases (data not shown). The identification of ESBL genes in S. enterica serovar Newport MDR-AmpC has considerable implications for veterinary and public health. Carriage of multiple beta-lactamase genes is disconcerting because certain combinations of genes could effectively limit all beta-lactam therapeutic options.

Funding for the studies conducted at New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, was provided by grants from the Pennsylvania Department of Agriculture.

Table 1. Oligonucleotide primers used to amplify genes for sequencing

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer</th>
<th>Sequence</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bla_CMY</td>
<td>CMY-F</td>
<td>5′-CACACGGTAATTTAGAAAA-3′</td>
<td>1,384</td>
</tr>
<tr>
<td></td>
<td>CMY-R</td>
<td>5′-GAAATGGACCGATGGTT-3′</td>
<td>1,384</td>
</tr>
<tr>
<td>bla_AISV</td>
<td>SHV-F</td>
<td>5′-GGTATTCTATATTGTCGTCCTT-3′</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>SHV-R</td>
<td>5′-TAGTTAGCCACCTGCTGTA-3′</td>
<td>1,233</td>
</tr>
<tr>
<td>bla_TEM</td>
<td>TEM-F</td>
<td>5′-GGGACCTTTCGGAGAAT-3′</td>
<td>1,127</td>
</tr>
<tr>
<td></td>
<td>TEM-R</td>
<td>5′-ACGCTAGTGGAACCGAAT-3′</td>
<td>1,127</td>
</tr>
</tbody>
</table>

cally acquired ceftriaxone-resistant Salmonella infections associated with AmpC beta-lactamases. JAMA 284:3151–3156.

