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Abstract

The whole flow over a solid body covered by a porous layer is presented. The three main models used in the literature to compute
efficiently the fluid flow are given: the reduction of the porous layer to a boundary condition, the coupling of Darcy equation with
Navier-Stokes equations and the Brinkman—Navier—Stokes equations or the penalisation method. Numerical simulations on Cartesian
grids using the latest model give easily accurate solutions of the flow around solid bodies with or without porous layers. Adding appro-
priate porous devices to the solid bodies, an efficient passive control of the two-dimensional incompressible flow is achieved. A strong
regularisation of the flow is observed and a significant reduction of the vortex induced vibrations or the drag coefficient is obtained.

© 2007 Published by Elsevier Ltd.

1. Introduction

The aim of this paper is to control the two-dimensional
incompressible flow around a solid body by adding porous
layers on the surface to change the shear forces in order to
regularise the flow and to reduce the vortex induced vibra-
tions or the drag coefficient. Modelling the physics of three
different solid, porous and fluid media is an important
topic in engineering problems. It needs to describe correctly
the boundary conditions between the three regions and in
some cases to solve the equations corresponding to the flow
inside the fluid and the porous medium [34,7,31]. This is a
priori difficult to handle as the governing equations are dif-
ferent and the coupling at the interface is not straightfor-
ward [27]. A review of the various models developed
these last decades is presented in order to select the most
appropriate model for the high porosity porous medium
and the complex geometries considered in this work.

In the literature several approaches are proposed to
study this problem. If the goal is to solve the fluid flow with
a porous interface, one can avoid to solve the porous flow
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imposing correct porous—fluid boundary conditions [5].
This approach is widely used to study turbulent flows over
permeable walls for instance [20,23]. However some
authors think that it is necessary to compute the flow in
both regions to have a good representation of the porous
flow [21,31,7]. Then a coupling between Stokes or
Navier-Stokes equations and Darcy equations is required
with a right treatment of the interface. In our opinion, it
is easier to solve this problem by a unique model, namely
Brinkman—Navier-Stokes equations or the penalisation
method. This consist in adding a term U/K into the
Navier-Stokes equations where K is a non-dimensional
permeability coefficient representing the medium. This
method can be seen as a fictitious domain method which
is very easy to implement, robust and efficient. It does need
neither to have a mesh fitting the obstacle nor to impose a
boundary condition at the boundary of the solid or an
interface condition between the porous and the fluid media
[1,14,6,35]. Let us note that Brinkman equation is valid
only when the porosity of the porous medium is close to
one.

The main advantages of passive control is that it is
energy free and often easier to implement. Many devices
have been proposed in the literature, let us mention compli-
ant walls like the dolphin skin [38,17], ribelets or bumps
[18,25,3], splitter plates [2], wavy or rough surfaces
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[40,39]. An other possibility is to introduce porous or per-
meable layers [9]. The main effect of a porous interface
between the solid and the fluid is to change the shear forces.
Indeed, the no-slip boundary condition is changed to a
quasi slip Fourier type boundary condition due to the
Darcy flow inside the porous layer and so the rate of vor-
ticity generation is reduced. Therefore the shedding around
a bluff body is modified and the flow behaviour can be
drastically regularised as we shall see below. The efficiency
of this passive control is related to the choice of the perme-
ability of the porous medium, the thickness of the porous
layers and their location. So the setup can be different when
the goal is to reduce the vortex induced vibrations of a riser
pipe or the drag coefficient of a ground vehicle. This work
is only devoted to two-dimensional numerical simulations;
it appears that two-dimensional studies are relevant for
the flow around a riser pipe [4,26] or a square back
Ahmed body [19] as the flow can be a two-dimensional
based flow. In any cases a qualitative effect of the porous
interface can be obtained as many numerical tests are
affordable.

This paper is organised in two main sections: The solid—
porous—fluid models including the physical description, the
reduction of the porous layer to a boundary condition, the
coupling of Darcy or Brinkman equations with Stokes or
Navier—Stokes equations and the penalisation method.
The numerical simulation and passive flow control includ-
ing the numerical simulation, the passive control setup and
flow regularisation, the control of vortex induced vibra-
tions around a riser pipe section and the control of the drag
coefficient of ground vehicles.

2. The solid—porous—fluid models
2.1. The physical description

In this section the physical properties of a fluid-porous-
solid configuration with a high porosity (& close to 1) med-
ium are described. Indeed, for the passive control a high
porosity material is needed [9]. Modelling such phenomena
needs to understand correctly the flow behaviour in the
porous media, especially in the vicinity of the solid and
fluid boundaries. It is also necessary to model correctly
the fluid flow in the boundary layer close to the porous
interface. In total there are five different regions of the flow
from the solid body to the open flow in the fluid as illus-
trated on Fig. 1 where for the sake of simplicity the velocity
U = (u, v) is assumed to be parallel to the wall (v = 0):

the boundary layer in the porous medium close to the

solid wall,

the homogeneous porous flow with Darcy velocity,

the porous interface region with the fluid,

o the boundary layer in the fluid close to the porous fron-
tier and

e the main fluid flow.

According to [34], the effects of a solid boundary to a
porous medium flow defers from the conventional fluid-
solid boundary layer as the frictional effects are different.
As the convective velocity up is very low, the boundary-
layer growth is significant only over a short length kup/v,
(where k is the intrinsic permeability of the porous medium
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Fig. 1. Velocity profile in the vicinity of the porous layer.
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and v, = pu,/p is the effective kinematic viscosity of the
medium with p, the effective dynamic viscosity and p the
density of the medium) and the boundary layer thickness
is of order k'? for a porosity close to one. This part of
the porous flow is not really significant as there is a Darcy
velocity up in the main region of the porous layer which is
essential for the interface with the fluid flow [37]. This
Darcy velocity is the major ingredient of the passive con-
trol as we shall see in the next section.

The interface between the porous and the fluid regions is
the most complex part of this flow. It was the subject of many
researches and we can find a lot of papers in the literature
(see for instance [28,31] and the references therein). There
are two parts, an interface inside the porous region and a
pseudo boundary layer inside the fluid region. It is shown
in the papers above and in [7] that the porous interface thick-
ness scale is about k'/? and that the velocity evolves from the
Darcy velocity up to the interface velocity u; with a growth of
order k'/2. Therefore, the whole porous layer is divided in
three parts. Two parts are very thin and correspond to the
neighbourhood of the solid wall and the interface with the
fluid. Nevertheless, the main part of this porous layer is an
homogeneous porous flow with a Darcy velocity (Fig. 1).

In the fluid region a boundary layer develops from the
interface velocity u; instead of zero for the conventional
one over a solid wall. This layer in the fluid respects the
Prandtl boundary layer theory and the only difference with
the solid case is the existence of a non zero velocity. It
means that the boundary layer growth is determined by
the velocity ug — u; where u is the upstream uniform veloc-
ity in the fluid. That means that f is proportional to M
where ¢ is the boundary layer thickness, x is the distance
from the origin and v is the kinematic viscosity of the fluid.
Beyond this boundary layer the fluid motion is governed by
the usual Navier-Stokes equations.

To reproduce the above physical behaviour several
approaches are used. When the study focuses only on the
fluid flow, it is possible to solve the Navier—Stokes equa-
tions in the fluid with a convenient boundary condition
that approximates the interface velocity u,. Otherwise, it
is necessary to solve the flow in both the porous and the
fluid regions. To achieve this goal, two models are com-
monly used. The three models are presented in the follow-
ing three sections.

2.2. The reduction of the porous layer to a boundary
condition

The first approach is based on the pioneer work of Bea-
vers and Joseph [5] in a channel with one permeable wall.
Starting from the one-dimensional Darcy law

k Op

1, Ox

Up =

where p stands for the pressure, they postulate that in the
porous interface the flow velocity changes rapidly from up

to the slip velocity at the interface u;. Assuming that the slip
velocity for the free fluid is proportional to the shear rate at
the permeable boundary, they relate the flow velocity to the
interface velocity by the ad hoc boundary condition

ou o
@zm(ul—ul)), v=20

where « is the slip coefficient depending on the characteris-
tics of the porous medium. Then, integrating this equation
in the channel with no-slip boundary condition on the solid
wall, they get the velocity profile and deduce the value of u;
as a function of Op/0x. Let us note that this boundary rela-
tion was verified by laboratory experiments but can not be
used directly for numerical simulations as u; is unknown.
Many authors were inspired by this idea to derive numeri-
cal boundary conditions on permeable walls. For instance,
Hahn et al. [20] rewrite the condition as

Ou o
@ZW(M—MD), U:()

and apply it to compute the turbulent flow in a channel
with two permeable walls. Stating that the slip phenome-
non is essentially due to the shear stress Jones [24] pro-
posed a modification of Beavers and Joseph condition

ov  Ou o
<a+@)—m(u,—ul)), v=20

that can be used in the same way.

Another approach consists in considering that the
exchange through the porous or permeable wall take place
by normal transpiration. That means that the slip velocity
is zero and the normal velocity is prescribed as [30]

ov
A
) ay

These boundary conditions are commonly used as above
[36] or are rewritten as [23]
v=—pp
where f is the porosity coefficient and p’ = p — G(?)x is the
instantaneous fluctuation of the wall pressure with respect
to the mean pressure gradient. An other form of such
boundary conditions is proposed in [15] and a mathemati-
cal analysis of a similar conditions is performed in [22].
In some cases it is necessary to compute the flow inside
the porous domain and so this approach is not satisfactory.
The following sections show how to deal with both fluid
and porous flows.

u=0;

2.3. The coupling of Darcy or Brinkman equations with
Stokes or Navier—Stokes equations

Here we want to model both the flow in the porous layer
and in the fluid region. As the fluid is assumed incompress-
ible, the continuity equation

divU =0
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is imposed in the whole domain. This equation must be
coupled to the right fluid motion equation. In many appli-
cations the Darcy equation

%UJer:O

is used to model the flow inside a porous medium. On the
other hand, according to the flow regime studied, the flow
in the free region can be modelled either by the Stokes
equation

oU—-vAU+Vp=0
for laminar flows or by the Navier—Stokes equation
QU+ (U-VYU—-vAU+Vp=0

for higher flow regimes. This is widely used when the flow
in both media must be computed and seems direct and easy
to handle. However it is necessary to find out the right
treatment of the interface between the two media as a
boundary condition at the interface is needed to solve the
Stokes or Navier-Stokes equations. One choice is to im-
pose directly Darcy equation as a boundary condition for
the fluid domain at the interface. In [21] a detail of the
implementation is given with a finite elements approxima-
tion. A second choice is to use one of the boundary condi-
tions proposed in the previous section. For instance some
authors use the Jones condition [31,16].
Another approach is to use Brinkman equation

%U*ﬂAU+Vp:0

where f is the Brinkman effective viscosity, either to model
the flow in a large porosity region or to represent only the
interface with the fluid that can be always considered as a
region with a porosity close to one [28,29,32]. The main
advantage of this approach is that similar equations are
prescribed on both sides of the interface. A first choice
[28] is to assume that the velocity is continuous and to im-
pose a stress jump at the interface

p (@_> _u(%> _ 7,
: ay porous ay fluid k1/2 l

where 7 is a dimensionless coefficient of order one. This
jump condition is derived in order to connect Darcy equa-
tion to Stokes equation using the Brinkman correction. A
modified version of this condition is given in [7]. A second
choice is to apply the Beavers and Joseph boundary condi-
tion to the Brinkman—Navier—Stokes interface [33].

We have seen in this section how to couple the models
chosen in the fluid and in the porous medium regions. It
is necessary to have a careful treatment of the condition
at the interface between the two and so to have a good rep-
resentation of the interface as in the previous section.

2.4. The penalisation method

As we have seen in the previous section, it is possible to
set similar equations in both regions taking Brinkman

model in the porous medium. This is valid only when the
porosity @ of the porous medium is close to one. Starting
from the Forchheiner—Navier-Stokes equations:

po,U + p(U - V)U + Vp = —%(DU+/](DAU

where p is the density of the fluid, we have shown in [9] that
we get the Brinkman—Navier—Stokes or penalised Navier—
Stokes equations that are valid in the fluid, the porous
and the solid regions

1 U
a . ——A —_— =
U+ (U-V)U e U+—+Vp=0

where K = 2 is the non-dimensional coefficient of perme-
ability of the medium, Re =% is the Reynolds number
based on the mean velocity U and the height of the domain
H. These equations can be specified also in the solid region
as shown in [1,14]. In the fluid region the permeability coef-
ficient goes to infinity, the penalisation term vanishes and
we recover the non-dimensional Navier-Stokes equations.
In the solid region the permeability coefficient goes to zero
and it is then equivalent to solve Darcy equation [1]. For
numerical applications we set respectively K = 10'® and
K=10"% in the two regions. When the thickness of the
porous layer between the fluid and the solid goes to zero,
it is shown in [14] that it is equivalent to solve Navier—
Stokes equations in the fluid with a Robin boundary con-
dition instead of the usual no-slip one. That gives a math-
ematical relevance of the Beavers and Joseph type
boundary conditions seen above.

In the literature the same Brinkman—Navier—Stokes
equations can be found with ;% or =—“— instead of ¢
where Da is the non-dimensional Darcy number. In any
cases there is a penalisation term with a non-dimensional
coefficient, in the present work the coefficient K is taken
in the range 107> < K < 10. A parametric study has shown
(see [9]) that an optimal value of this parameter for the pas-
sive control is K = 10~! as we shall see in the following sec-
tions. When the fluid is water and U, H are of order one,
this value corresponds to a porous medium of intrinsic per-
meability k of order 10~ in addition to a porosity close to
one. In [6,35] the authors use the penalisation term ;5 with
K’ in the range 107/ <K' <10* to represent a porous
medium made of textiles composite materials. That means,
as the two permeability coefficients are related to each
other by K’ = vK, that the porous media considered have
similar characteristics.

The main advantage of this formulation is that it is nec-
essary to impose neither a boundary condition nor a cou-
pling procedure at the interface between the fluid and the
porous regions. Moreover, it is not necessary to fit the
interface with the mesh. This method can be seen also as
an immersed boundary or a fictitious domain method. It
is possible to compute the flow around a body with or with-
out porous parts embedded on a Cartesian grid. The only
task to fulfil is to define the coefficient K on the points
where the unknowns are defined. When such a point is
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inside the fluid, the porous or the solid regions, the value of
K is set respectively to 10'®, 107! and 10~®. Then the same
equations are solved in the three media.

3. Numerical simulation and passive flow control
3.1. Numerical simulation

Using the penalisation method, we have to solve in the
time interval (0, T)

1 .
6,U+(U-V)U—R—6AU+%+V19:0 inQ;=Qx(0,7)

divU=0 in Q7
U(x,0) =Up(x) inQ
U=G onlyx(0,T)

1 _
O'(U,p)l’l +§(Un) (U_ Ure/') = G(Uref,pref) on I’} X (O’T)

where Q is the whole computational domain including the
solid and porous regions, Uy(x) is the initial datum, G is the
Dirichlet boundary condition (for instance G = (1, 0) at the
entrance section of an open domain) imposed on the part
I’y of the boundary 02, ¢ is the stress tensor, » is the unit
normal vector pointing outside of the domain, (U,s, prer) 18
a reference flow and with the notation a =a" —a . The
last boundary condition is imposed on the artificial fron-
tiers I'; in order to convey the solution without any reflec-
tions (see [8] for more details) and avoids the use of buffer
zones.

The evolution equations are discretized in time by a sec-
ond-order Gear scheme with an implicit treatment of the
linear terms and an explicit treatment of convection term.
The primitive unknowns velocity—pressure are set on stag-
gered grids as illustrated in Fig. (2).

The spatial approximation is performed using second-
order centred finite differences for the linear terms and a
third-order upwind scheme for the convection term ([12]).
The location of the unknowns enforce the divergence-free
equation which is discretized on the pressure points. The
whole problem is solved using a multigrid method and on
each grid the solution is obtained by means of a cell by cell
Gauss—Seidel iterative procedure. As an example,the set of
grids varies from the coarsest 25 X 10 uniform grid to the
finest 3200 x 1280 uniform grid to compute the flow

Yij+d

Ui-1 Pij Uiy Lg

Fig. 2. A staggered cell.

around a pipe. The choice of uniform grids is necessary
to maintain the accuracy of the finite differences schemes.

3.2. Passive control setup and flow regularisation

The aim of this work is to control the flow around a
solid body using porous layers on convenient parts of the
surface. That means that according to the problem we want
to reduce the vortex generation,the vortex induced vibra-
tions (VIV) or the drag forces. These three phenomena
are characterised by the enstrophy Z,the root mean-square
of the lift coefficient Ci,,s and the drag coefficient Cp
defined by

1 ) /1/T 2Fp
Z== [ |oPdx Cims=1/= [ Cd; Cp=—F>
2/Q| | . T) " P pULH

where o is the vorticity, U, is the upstream flow. The
forces are computed thanks to the penalisation method by

u
FD:/ —dx; Fp =
bodyK

and the lift coefficient Cy is defined as Cp replacing Fpp by
F1. The computation of Fp and Fy by integration on the
body volume is equivalent to the usual computation inte-
grating the pressure and shear forces on the body surface
[13]. The Cp.ms is directly linked to the regularity of the
flow and gives a relevant measure of the VIV.

The first numerical test concerns the flow around a rect-
angular body of size L =0.2 in the stream-wise direction
and H=0.16 in the normal direction. This body is
immersed in a computational domain Q =(0,5) x (0,2).
The real Reynolds number based on the height of the body
is Rey = 300. The boundary conditions are U = (1,0) at the
entrance section 'y on the left and free boundary condi-
tions on the rest of the boundary I';. The passive control
is achieved adding a porous layer on the top and on the
bottom sides of the rectangle.

We first perform a parametric study on the value of the
permeability coefficient K and on the thickness of the por-
ous layer / [9]. The two main criteria for this study are the
decrease of Z and Cp,,s. When the value of K is too large
(K > 1) the flow in the porous medium is close to the fluid
flow and the control is not efficient; conversely when K is
too small (K < 1073) the porous medium behaves almost
like a solid body. The optimal value is obtained for
K=10"". For the thickness of the layer it appears that if
the thickness is too low (h/H < 5%) the darcy flow cannot
be established inside the porous layer and the control
is thus inefficient. In all the simulations we shall take
h{H = 10%.

In Fig. 3 we see that the controlled flow is much more
regular than the uncontrolled one. Indeed, adding the por-
ous layers we recover the Karman street and the solution is
really periodic as shown by the phase portrait. To recover
such a regular solution without the porous layers,it is nec-
essary to decrease the Reynolds number from Rez = 300 to

v
—dx
body K
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Fig. 3. Comparison of vorticity fields and phase portraits at monitoring point (4.0625, 0.75) for Rey = 300 without (top) and with (middle) control in an
open domain. The figures at the bottom concern an uncontrolled flow at Rey = 250.

Table 1
Mean value of Z and asymptotic value of Cy,,, for various Reynolds
numbers

Rep =300 Rep = 3000 Re g = 30,000
V4 Cers z Cers zZ Cers
With control 107 0.094 410 0.221 821 0.344

Without control 115 0.096 487 0.263 1012 0.375

Rey = 250. The regularisation obtained with this passive
control is more impressive for higher Reynolds numbers
as shown in Table 1 as the decrease of Z and Cpns
becomes larger. This is due to the fact that Darcy flow
on both sides of the rectangle stabilises the vortex
shedding.

3.3. Control of vortex induced vibrations around a riser pipe
section

In the vicinity of bluff bodies,the shedding of vortices
can induce unsteady forces of small amplitude with excita-
tion close to a structural resonant frequency that provoke
structural failures. Therefore, the study and the control
of vortex shedding has a crucial importance in engineering
applications like offshore oil industry. In this case, the VIV

can affect the risers. As the environmental conditions are
given and can not be changed,the only way to reduce the
VIV is to use an efficient control technique adapted to
the riser framework. In the present section, we consider a
two-dimensional,unsteady and incompressible flow around
a fixed circular cylinder of diameter D = 0.16 immersed in
an open computational domain Q = (0, 5) x (0, 12) with
U=(1,0) at the entrance section. This cylinder corre-
sponds to a section of a three-dimensional riser pipe. Such
a study with an appropriate choice of the Reynolds num-
ber,can give significant informations on the real flow
behaviour even if a responding body should be closer to
the reality. A parametric study is performed to choose

Fig. 4. The cylinder with a uniform porous sheath.
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Fig. 5. Horizontal velocity histories at monitoring point (4.0625, 0.75) at
Rep = 2400.

the best K and /4 values of a uniform porous sheath added
around the pipe (Fig. 4). The tests, for a real Reynolds
number Rep = 2400 based on the diameter of the cylin-
der,show again that an efficient control is obtained for
K=10"" and A =0.02. In addition,it is shown that for
such a Reynolds number,the grid convergence is achieved
with an uniform grid of 1600 x 640 cells. Therefore the
results of this section are presented on that grid for the
above Reynolds number and on the grid 3200 x 1280 for
higher Reynolds numbers [10].

The addition of the porous sheath has a tremendous
effect on the flow in the vicinity and in the far wake of
the pipe. This can be illustrated comparing the velocity sig-
nals obtained at monitoring points located behind the cyl-
inder. As an example,these signals are shown in Fig. 5 at a
monitoring point located in the far wake 15 diameters
downstream and one diameter above the symmetry axis.
In the uncontrolled case, there are some interactions
between the vortices in the wake giving a perturbed signal
whereas in the controlled case a pure Karman street is
observed yielding a periodic signal with a lower mean
value.

A test at a higher Reynolds number Rep = 24,000 is
even more impressive as the chaotic flow in the wake is reg-
ularised towards almost a Karman street (see Fig. 6). In the
first case there are many interactions between the vortices
that create more complex dipole or tripole structures
advected in all the directions. With the porous sheath,
the shear forces are strongly decreased and the quasi slip
boundary condition at the porous layer surface induces a
much more regular shedding.

This is confirmed by plotting the enstrophy history in
both cases as on Fig. 7. The time function corresponding
to the uncontrolled case presents huge variations in the
amplitude whereas the function corresponding to the con-
trolled case is almost constant because there is no vortex
interactions. Moreover we see in Table 2 that there is a tre-

Fig. 6. Vorticity field without (top) and with (bottom) control for the
same time at Rep = 24,000.

2000 . ‘ ; T

---- with control 1
— without control

1500 [—

N 1000
500 [~ B
0 ! ! !
0 5 10 15 20
time
Fig. 7. Enstrophy histories at Rep = 24,000.
Table 2
Mean value of Z and asymptotic value of Cy ;.
Rep Grid Simulation Enstrophy ClLims
2400 1600 x 640 With control 190 0.125
without control 428 0.274
24000 3200 x 1280 With control 291 0.081
without control 810 0.293

mendous change of the mean value. The regularisation of
the flow can be directly read on the values of the Cp
which is divided by a factor 3.6. This means that the VIV
are drastically reduced,therefore the life time of the riser
pipe is significantly increased. Finally it appears that the
control is more efficient when the Reynolds number
increases as can be seen for the two Reynolds numbers con-
sidered (see Table 2).
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Fig. 8. Computational domain including Ahmed body without or with a
rear window.

3.4. Control of the drag coefficient of ground vehicles

In this section we want to control the flow around a
ground vehicle. This is a very important feature as the goal
is to reduce the oil consumption and then the atmospheric
pollution. Although it is not yet spread enough,the passive
control is very well adapted to car industry as it does not
need extra energy. Here the car is represented by a two-
dimensional cut of the well-known Ahmed body and
numerical tests are performed for geometries with or with-
out a rear window (see Fig. 8).

Porous devices are included inside the geometry to
change the shear forces in order to reduce the drag forces.
Indeed, in the car industry the most important aerody-
namic parameter is the drag coefficient Cp. A large number
of simulations,with different porous layer locations,were
performed to verify how far this passive control technique
can contribute to the drag reduction [11]. In the follow-
ing,only the most significant results are presented starting
with the square back geometry. This case corresponds
more to a truck for which the flow in the vicinity of the
body is mainly two-dimensional. The non-dimensional
length and height of the Ahmed body are respectively
L=3625 and H=1. The computational domain is
Q=(0,12)x (0, 5) with the body located at the distance
d =1 from the road and the numerical simulations are per-
formed at real Reynolds number Re; = 30,000 on a uni-
form Cartesian grid of 1536 x640 cells to have a
significant number of points in the porous layers of width
h =0.1. The boundary conditions are of two types,on the
entrance section and on the road the constant flow
U=(1,0) is imposed and on the two other frontiers the
non reflecting boundary condition is used. In Fig. 9 are
shown the two porous devices that give the most interesting
results. In the following,the uncontrolled case will be
referred as case 0 and the two controlled cases as case |
and case 2.

Table 3
The value and the location of the minimum pressure in the close wake of
the square back Ahmed body on top of a road at Re; = 30,000

Pin value in the wake Pin location

Case 0 ~1.636 (10.11, 1.53)
Case 1 ~0.678 (10.22, 1.39)
Case 2 ~0.540 (10.89, 1.34)

The results are presented in Fig. 10 where the static pres-
sure coefficient (C, =2(p — po)/(p\U|2) with po the inlet
static pressure) isolines are plotted. We see that the pres-
sure gradient in the immediate wake is much lower with
the passive control as seen in Table 3. This is mainly due
to the fact that in the porous layers there is a low speed
(less than 10% of the incoming flow velocity) laminar flow
that is expelled at the back in the near wake inducing a
weak horizontal jet. The shear forces between the body
and the fluid are modified and the horizontal jet at the back
decreases the velocity and increases the negative mean pres-
sure significantly (see Table 3). Consequently the drag at
the back (down drag) is drastically reduced as shown in
Table 4. In case 1 the porous layer on top of the body
increases the flow rate in the upper part of the domain
and thus decreases the flow rate under the car. So the mean
velocity under the car is lower and the acrodynamic power
dissipated by the floor of the car is slightly decreased [19]
and so the drag of the front part of the body (up drag).
In case 2 with porous layers on both sides of the body,the
flow rate is the same than in the uncontrolled case. Besides
the detached flow is larger at the bottom side of the body,-
the pressure forces are increased with the resistance to the
flow and the up drag is also increased. Consequently,the
reduction of the drag coefficient in the second case is
weaker despite the very strong reduction at the back. In
summary Z and Cy s are reduced from 23% to 35% add-
ing porous layers (case 2 is better than case 1) and Cp is
decreased by more than 30% (case 1 is better than case 2).

The second geometry studied is an Ahmed body with an
o« = 25° rear window (see Fig. 8). For that geometry the
flow is not two-dimensional any more, there are strong lon-
gitudinal vortical structures on both sides of the rear win-
dow that interact with the vortices coming from the
shedding at the angle with the roof. However, it is also
interesting to see how the shedding is modified by the pas-
sive control on the symmetric plane. Of course, a two-
dimensional simulation cannot give a quantitative measure
of the control of the global flow but it permits to get for
instance a trend of the evolution of the pressure gradient

Fig. 9. Porous devices for cases 1 (left) and 2 (right) for a square back Ahmed body.
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Table 4

Asymptotic value of Cy s and mean values of the enstrophy and the drag coefficient for the square back Ahmed body on top of a road at Re; = 30,000

ClLims Enstrophy Up drag Down drag Drag coefficient
Case 0 0.517 827 0.173 0.343 0.526
Case 1 0.396 (—23%) 592 (—28%) 0.156 0.166 0.332 (—37%)
Case 2 0.381 (—26%) 541 (—35%) 0.213 0.139 0.362 (—31%)

Fig. 10. Static pressure coefficient isolines for the flow around the square back Ahmed body on top of a road at Re; = 30,000. Cases 0 (left) and 2 (right).

Fig. 11. Porous devices for cases 1 (left) and 2 (right) for an Ahmed body with a rear window.

of the back. With the rear window,the porous devices must
stop at the end of the roof and so the effect of the weak hor-

Table 5
The value and the location of the minimum pressure in the close wake of
Ahmed body with a rear window on top of a road at Re; = 30,000

izontal jet, on top of the back, is not beneficial as it
increases the size of the recirculation zone on the rear
window. It is then necessary to add a porous device on
the bottom. But, as we have seen above, the effect on the
front is not good,so we modify the porous device to dimin-
ish the lower detached zone. The location of the passive
control layers are presented,for two different porous

Cp,., value in the wake P,.;, location devices, in Fig. 11.

Case 0 —0.813 (9.92,1.36) As Table 5 shows, due to the increase of the recircula-
Case 1 —1.021 (10.06, 1.36) tion zone on the rear window, the minimum of the pressure
Case 2 —0.543 (10.13, 1.50) in the wake P,,;, for case 1 is lower than for the uncon-
Table 6
Asymptotic values of Cy.,s and mean values of the enstrophy and the drag coefficient for Ahmed body with a rear window on top of a road at
Re; = 30,000

ClLims Enstrophy Up drag Down drag Drag coefficient
Case 0 0.817 726 0.099 0.176 0.282
Case 1 0.600 (—27%) 605 (—17%) 0.100 0.190 0.300 (+6%)
Case 2 0.801 (—2%) 670 (—8%) 0.093 0.124 0.224 (—21%)

Fig. 12. Mean pressure isolines for the flow around Ahmed body with a rear window on top of a road at Re; = 30,000. Cases 0 (left) and 2 (right).
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trolled case. Thus the drag coefficient is higher as shown in
Table 6. Nevertheless,we observe once again that the por-
ous layer has regularised the whole flow as Z and Cp
are well decreased. To get an improvement of the drag con-
trol procedure a porous layer is needed at the bottom. The
same effect of the weak horizontal jet as for the square back
body is observed at the bottom part in the back. The gra-
dient of pressure is much lower (see Fig. 12) and thus the
drag coefficient (Table 6) is decreased as well, as the mini-
mum pressure is increased (Table 5). In this case, the main
improvement on the drag reduction comes from the down
drag, related to the square part of the body. Let us note
that if this case is quite efficient for drag reduction,it has
no significant regularising effect.

4. Conclusions

A unique model called the penalisation method is used
to simulate the flow inside fluid and porous regions around
obstacles. This method is very easy to implement and does
not require either a specific treatment of the interface or a
body fitting. It is used successfully to introduce a new pas-
sive control strategy,which consists in implementing a por-
ous layer between a bluff-body and a fluid, in order to
change the boundary layer characteristics.This passive con-
trol method yields a drastic regularisation of the flow,espe-
cially for high Reynolds numbers. Adding a porous ring
around a riser pipe section, the vortex induced vibrations
can be devided by more than three. Moreover, with a good
choice of the location of the porous layers, the drag coeffi-
cient of the square back Ahmed body can be decreased up
to 40%.

On the Ahmed body with a rear window,the results are
less significant and a mixed strategy coupling active and
passive techniques could be beneficial.
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