
mlq header will be provided by the publisher

Fast Quantum Algorithms for Handling Probabilistic and Inter-
val Uncertainty

Vladik Kreinovich � andLuc Longpr é

Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA

Received 1 December 2003

Key words Data processing, interval computations, quantum computing, partial information about probabili-
ties
MSC (2000) 65G20, 65G30, 65G40, 68Q17, 68Q25

Dedicated to Klaus Weihrauch’s 60th Birthday.

In many real-life situations, we are interested in the valueof a physical quantityy that is difficult or impossible
to measure directly. To estimatey, we find some easier-to-measure quantitiesx1; : : : ; xn which are related
to y by a known relationy = f(x1; : : : ; xn). Measurements are never 100% accurate; hence, the measured
valuesexi are different fromxi, and the resulting estimateey = f(ex1; : : : ; exn) is different from the desired
valuey = f(x1; : : : ; xn). How different can it be?

Traditional engineering approach to error estimation in data processing assumes that we know the probabil-

ities of different measurement errors�xi def= exi � xi. In many practical situations, we only know the upper
bound�i for this error; hence, after the measurement, the only information that we have aboutxi is that it

belongs to the intervalxi def= [exi ��i; exi +�i]. In this case, it is important to find the rangey of all possible
values ofy = f(x1; : : : ; xn) whenxi 2 xi. We start the paper with a brief overview of the computational
complexity of the correspondinginterval computation problems.

Most of the related problems turn out to be, in general, at least NP-hard. In this paper, we show how the
use of quantum computing can speed up some computations related to interval and probabilistic uncertainty.
We end the paper with speculations on whether (and how) “hypothetic” physical devices can compute NP-hard
problems faster than in exponential time.

Most of the paper’s results were first presented at NAFIPS’2003 [30].

Copyright line will be provided by the publisher

1 Introduction: Data Processing – From Computing via Probabilities toIn-
tervals

Why data processing?In many real-life situations, we are interested in the value of a physicalquantityy that
is difficult or impossible to measure directly. Examples of such quantities are the distance to a star and the
amount of oil in a given well. Since we cannot measurey directly, a natural idea is to measurey indirectly.
Specifically, we find some easier-to-measure quantitiesx1; : : : ; xn which are related toy by a known relationy = f(x1; : : : ; xn); this relation may be a simple functional transformation, or complexalgorithm (e.g., for the
amount of oil, numerical solution to an inverse problem). Then, to estimatey, we first measure the values of the
quantitiesx1; : : : ; xn, and then we use the resultsex1; : : : ; exn of these measurements to compute an estimateey
for y asey = f(ex1; : : : ; exn).

For example, to find the resistanceR, we measure currentI and voltageV , and then use the known relationR = V=I to estimate resistance aseR = eV =eI.
Computing an estimate fory based on the results of direct measurements is calleddata processing; data

processing is the main reason why computers were invented in the first place,and data processing is still one of
the main uses of computers as number crunching devices.

Comment. In this paper, for simplicity, we consider the case when the relation betweenxi andy is known exactly;
in some practical situations, we only know an approximate relation betweenxi andy.� Corresponding author: e-mail:vladik@cs.utep.edu, Phone: 915 747 6951, Fax: 915 747 5030

Copyright line will be provided by the publisher



2 V. Kreinovich and L. Longpré: Fast Quantum Algorithms forHandling Probabilistic and Interval Uncertainty

Why interval computations? From computing via probabilities to intervals. Measurement are never 100%
accurate, so in reality, the actual valuexi of i-th measured quantity can differ from the measurement resultexi.
Because of thesemeasurement errors �xi def= exi � xi, the resultey = f(ex1; : : : ; exn) of data processing is, in
general, different from the actual valuey = f(x1; : : : ; xn) of the desired quantityy [41].

It is desirable to describe the error�y def= ey � y of the result of data processing. To do that, we must have
some information about the errors of direct measurements.

What do we know about the errors�xi of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper bound�i on the measurement error. (If no such upper bound is
supplied, this means that no accuracy is guaranteed, and the corresponding “measuring instrument” is practically
useless.) Thus, once we performed a measurement and got a measurement resultexi, we know that the actual
(unknown) valuexi of the measured quantity belongs to the intervalxi = [xi; xi], wherexi = exi � �i andxi = exi +�i.

In many practical situations, we not only know the interval[��i;�i] of possible values of the measurement
error; we also know the probability of different values�xi within this interval. This knowledge underlies the
traditional engineering approach to estimating the error of indirect measurement, in which we assume that we
know the probability distributions for measurement errors�xi.

In practice, we can determine the desired probabilities of different values of�xi by comparing the results
of measuring with this instrument with the results of measuring thesame quantity by a standard (much more
accurate) measuring instrument. Since the standard measuring instrument is much more accurate than the one
use, the difference between these two measurement results is practically equal tothe measurement error; thus,
the empirical distribution of this difference is close to the desired probability distribution for measurement error.
There are two cases, however, when this determination is not done:� First is the case of cutting-edge measurements, e.g., measurements in fundamental science. When a Hubble

telescope detects the light from a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble telescopeis the best we have.� The second case is the case of measurements on the shop floor. In this case, in principle, every sensor can
be thoroughly calibrated, but sensor calibration is so costly – usuallycosting ten times more than the sensor
itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of�xi; the only information we have is the upper
bound on the measurement error.

In this case, after we performed a measurement and got a measurement resultexi, the only information that we
have about the actual valuexi of the measured quantity is that it belongs to the intervalxi = [exi ��i; exi +�i].
In such situations, the only information that we have about the (unknown) actual value ofy = f(x1; : : : ; xn) is
thaty belongs to the rangey = [y; y] = ff(x1; : : : ; xn) jx1 2 x1; : : : ; xn 2 xng of the functionf over the
boxx1� : : :�xn. The process of computing this interval range based on the input intervalsxi is calledinterval
computations; see, e.g., [18, 19, 20, 32].

Interval computations techniques.Historically the first method for computing the enclosure for the range is the
method which is sometimes called “straightforward” interval computations. This method is based on the fact that
inside the computer, every algorithm consists of elementary operations(arithmetic operations,min, max, etc.).
For each elementary operationf(a; b), if we know the intervalsa andb for a andb, we can compute the exact
rangef(a;b). The corresponding formulas form the so-calledinterval arithmetic. For example,[a; a] + [b; b] = [a+ b; a+ b]; [a; a]� [b; b] = [a� b; a� b];[a; a] � [b; b] = [min(a � b; a � b; a � b; a � b);max(a � b; a � b; a � b; a � b)]:
In straightforward interval computations, we repeat the computations forming the programf step-by-step, re-
placing each operation with real numbers by the corresponding operation of interval arithmetic. It is known that,
as a result, we get an enclosureY � y for the desired range.

In some cases, this enclosure is exact. In more complex cases, the enclosurehas excess width.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 3

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered form method.
However, for each of these techniques, there are cases when we get an excess width.The reason for this is that,
as shown in [24, 44], the problem of computing the exact range is known to be NP-hard even for polynomial
functionsf(x1; : : : ; xn) (actually, even for quadratic functionsf ).

2 Fast Quantum Algorithms for Handling Probabilistic and Interval Uncer-
tainty

As computers become faster, quantum effects must be more and more taken into consideration.According
to Moore’s law, computer speed doubles every 18 months. One of the mainlimitations to further speedup is
the computer size: every communication is limited by the speed of lightc, so, e.g., a computer of a 1 ft size is
bounded to have a computation speed 1 ft/c – which corresponds to 1 GHz. To make faster computers, we must
thus decrease the size of computer elements. As this size reaches molecular size, wemust take into consideration
quantum effects.

Quantum effects add to noise, but they can also help.Quantum effects, with their inevitably probabilistic
behavior, add to noise. However, it turns out that some quantum effectscan be used to drastically speed up
computations (in spite of quantum noise).

For example, without using quantum effects, we need – in the worst case – atleastN computational steps to
search for a desired element in an unsorted list of sizeN . A quantum computing algorithm proposed by Grover
(see, e.g., [12, 13, 36]) can find this element much faster – inO(pN) time.

Several other quantum algorithms have been proposed.

What we are planning to do.How can this be of use to interval data processing community? In many application
areas ranging from geosciences to bioinformatics to large-scale simulationsof complex systems, data processing
algorithms require a lot of time to run even with the exact input data.As a result, very little is currently done to
analyze the effect of inevitable uncertainty of input data on the results of data processing.

It is desirable to analyze how different types of uncertainty – probabilistic, interval – influence the results of
data processing. In this paper, we discuss how quantum algorithms suchas Grover’s quantum search can be used
to speed up this analysis – and thus, make it possible.

We also explain that there is no need to wait until a full-blown quantumcomputer appears, with all necessary
quantum bits (“qubits”): even without all necessary qubits, we can stillget some speedup, a speedup that gets
better and better as we add more qubits to the quantum computer.

Grover’s algorithm for quantum search. We have already mentioned Grover’s algorithm that, given a databasea1; : : : ; aN with N entries, a propertyP of database entries (i.e., an algorithm that checks whetherP is true),
and an allowable error probability�, returns, with probability� 1 � �, either the elementai that satisfies the
propertyP or the message that there is no such element in the database.

This algorithm requiresC � pN steps (= calls toP ), where the factorC depends on� (the smaller� we want,
the largerC we must take).

General comment about quantum algorithms.For our applications, it is important to know that for Grover’s
algorithm (and for all the other quantum algorithms that we will describe and use), the entriesai do not need to
be all physically given, it is sufficient to have a procedure that, giveni, producesai.

If all the entries are physically given, then this procedure simply consists of fetching thei-th entry from the
database. However, it is quite possible that the entries are given implicitly, e.g.,ai can be given as the value of a
known function ati-th grid point; we have this function given as a program, so, when weneedai, we apply this
function toi-th grid point.

Algorithm for quantum counting. Brassard et al. used the ideas behind Grover’s algorithm to produce a new
quantum algorithm forquantum counting; see, e.g., [3, 36]. Their algorithm, given a databasea1; : : : ; aN withN entries, a propertyP of database entries (i.e., an algorithm that checks whetherP is true), and an allowable
error probability�, returns an approximationet to the total numbert of entriesai that satisfy the propertyP .

This algorithm contains a parameterM that determines how accurate the estimates are. The accuracy of this

estimate is characterized by the inequality
��et� t�� � 2�M � pt+ �2M2 that is true with probability� 1� �.

Copyright line will be provided by the publisher



4 V. Kreinovich and L. Longpré: Fast Quantum Algorithms forHandling Probabilistic and Interval Uncertainty

This algorithm requiresC �M � pN steps (= calls toP ), where the factorC depends on� (the smaller� we
want, the largerC we must take).

In particular, to get the exact valuet, we must attain accuracy
��et� t�� � 1, for which we needM � pt. In

this case, the algorithm requiresO(pt �N) steps.

Quantum algorithms for finding the minimum. Dürr et al. used Grover’s algorithm to produce a new quantum
algorithm forminimization; see, e.g., [4, 36]. Their algorithm applied to the database whose entriesbelong to the
set with a defined order (e.g., are numbers). This algorithm, given a databasea1; : : : ; aN with N entries, and an
allowable error probability�, returns the indexi of the smallest entryai, with probability of error� �.

This algorithm requiresC � pN steps (= calls toP ), where the factorC depends on� (the smaller� we want,
the largerC we must take).

Main idea behind quantum computing of the minimum. The main idea behind the above algorithm can be
illustrated on the example when all the entriesai are integers. The algorithm requires that we know, e.g., a
numberM such that all the entries belong to the interval[�M;M ]. For every valuem between�M andM , we
can use Grover’s algorithm to check whether there is an entryai for whichai < m.

If such an entry exists, thenm0 def= min(ai) < m; otherwisem0 � m. Thus, for everym, we can check, inO(pN) steps, whetherm0 < m.
We can therefore apply bisection to narrow down the interval containing the desired until it narrows down to

a single integer.� We start with an interval[M;M ] = [�M;M ].� At each iteration, we pick a midpointM0 = M +M2 , and check whetherm0 < M0.
If m0 < M0, this means thatm0 2 [M;M0]; otherwise,m0 2 [M0;M ]. In both cases, we get a half-size
interval containingm0.� After log2(2M) iterations, this interval becomes so narrow that it can only contain one integer – which ism0.

Thus, inlog2(M) � O(pN) steps, we can compute the desired minimum.

Quantum algorithm for computing the mean. The above algorithms can be used to compute the average of
several numbers, and, in general, the mean of a given random variable. The first such algorithm was proposed by
Grover in [14]; for further developments, see, e.g., [16, 35, 37].

The traditional Monte-Carlo method for computing the mean consists ofpickingM random values and av-
eraging them. It is a well known fact [41, 45], that the accuracy of this method is� 1=pM , so, to achieve the
given accuracy", we needM � "�2 iterations. Another way to compute the average ofn given numbers is to
add them up and divide byn, which requiresn steps.

Thus, whenn < "�2, it is faster to add all the values; otherwise, it is better to use the Monte-Carlo method.
Grover’s quantum analog of the Monte-Carlo method attains accuracy� 1=M afterM iterations; thus, for a

given accuracy", we only needM � "�1 steps.
Similarly to the traditional Monte-Carlo methods, this quantum algorithm can compute multi-dimensional

integrals
R : : : R f(x1; : : : ; xn) dx1 : : : dxn: indeed, if we assume that the vector(x1; : : : ; xn) is uniformly dis-

tributed over the corresponding domain, then this integral is proportional to the average value off(x1; : : : ; xn).
The advantage of this method is that it is faster: namely, it requires onlyM � "�1 steps in contrast to the
traditional Monte-Carlo methods that requireM � "�2 steps.

Quantum algorithms for probabilistic analysis. In the probabilistic case, the problem of describing the in-
fluence of the input uncertainty on the result of data processing takes thefollowing form (see, e.g., [41, 45]).
Given:� the data processing algorithmf(x1; : : : ; xn) that transforms anyn input valuesx1; : : : ; xn into the result

of y = f(x1; : : : ; xn) of data processing, and� the mean valuesexi and standard deviations�i of the inputs,

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 5

compute the standard deviation� of the resulty of data processing.
This standard deviation can be described as a mean (= mathematical expectation) ofthe square(y � ey)2,

wherey def= f(ex1; : : : ; exn), y def= f(x1; : : : ; xn), and eachxi is normally distributed with meanexi and standard
deviation�i. The traditional Monte-Carlo algorithm requires� 1="2 iterations to compute this average; thus, for
accuracy 20%, we need 25 iterations; see, e.g., [43].

The quantum Monte-Carlo algorithm computes this mean with accuracy" in � 1=" iterations (i.e., calls tof );
so, for accuracy 20%, we only need 5 iterations. Since computingf may take a long time, this drastic (5 times)
speed-up may be essential.

Quantum algorithms for interval computations: problem. In interval computations (see, e.g., [18, 19, 32]),
the main objective is as follows. Given:� intervals[xi; xi] of possible values of the inputsx1; : : : ; xn, and� the data processing algorithmf(x1; : : : ; xn) that transforms anyn input valuesx1; : : : ; xn into the result

of y = f(x1; : : : ; xn) of data processing,

compute the exact range[y; y] of possible values ofy.
We can describe each interval in a more traditional form[exi��i; exi+�i], whereexi is the interval’s midpoint,

and�i is its half-width. The resulting range can also be described as[ey��; ey+�], whereey is the result of data
processing (described by the above formula), and� is the desired largest possible differencejey � yj.
Quantum algorithms for interval computations: case of relativelysmall errors. When the input errors are
relatively small, we can linearize the functionf around the midpointsexi. In this case, Cauchy distributions turn
out to be useful, with probability density�(x) � 11 + (x � a)2�2 :
It is known [43] that if we takexi distributed according to Cauchy distribution with a centera = exi and the
width parameter�i, then the differenceey � y between the corresponding quantitiesey = f(ex1; : : : ; exn) andy = f(x1; : : : ; xn) is also Cauchy distributed, with the width parameter equal to the desired value�.

The reason for this fact is as follows. We can expand the difference�y = ey � y = f(ex1; : : : ; exn)� f(ex1 ��1; : : : ; exn ��xn)
in Taylor series in�xi When the measurement errors�xi = exi�xi are small, we can ignore quadratic and higher

order terms in this expansion, and arrive at the expression�y = nPi=1 fi ��xi, wherefi def= @f(x1; : : : ; xn)@xi jxi=exi :
We want to find the maximum and the minimum of this expression when�xi 2 [��i;�i]. The sum

nPi=1 fi ��xi
attains its largest possible value when each ofn terms attains its largest value. For eachi, if fi � 0, then the termfi ��xi is increasing, hence its maximum is attained when�xi takes the largest value�i; then,fi ��xi = fi ��i.
If fi < 0, then the termfi ��xi is decreasing, hence its maximum is attained when�xi takes the smallest value��i; then,fi � �xi = �fi � �i. In both cases, the largest value ofi-th term isjfij � �i, and hence the largest

possible value of�y is
nPi=1 jfij ��i. Similarly, the smallest possible value of�y is� nPi=1 jfij ��i.

It is known that ifn independent random variables�i are Cauchy distributed with parameters�i, then their

linear combination
nPi=1 fi ��i is also Cauchy distributed, with parameter� = nPi=1 jfij��i. So, the above simulation

technique indeed leads to the desired estimate for�.
The use of Cauchy distribution speeds up computations – fromn calls tof (that are needed for a deterministic

method) to a constant number of calls tof (that are needed to compute� with given accuracy when using Cauchy
distribution technique). For example, to guarantee the standard deviation of 20%, we need� 50 calls tof , which
for n = 103 is 20 times faster than the deterministic method.

Copyright line will be provided by the publisher



6 V. Kreinovich and L. Longpré: Fast Quantum Algorithms forHandling Probabilistic and Interval Uncertainty

For Cauchy distribution, the standard deviation is infinite, so we cannot literally apply the quantum computing
idea that worked in the case of probabilistic analysis. However, if we apply a functiong(x) (e.g.,arctan) that
reduces the entire real line to an interval, then the expected value ofg �(ey � y)2� – that depends only on� – can
be computed by the quantum Monte-Carlo algorithm; from this value, wecan reconstruct�.

In this case, quantum techniques also speed up computations. Indeed, the quantum Monte-Carlo algorithm
computes� with accuracy" in � 1=" iterations (i.e., calls tof ), while the non-quantum Cauchy technique
requires a much larger number of� 1="2 iterations. In particular, for accuracy 20%, we get a 5 times speed-up.
Since computingf may take a long time, this drastic speed-up may be essential.

Quantum algorithms for interval computations: general case.Known results about the computational com-
plexity of interval computations (see, e.g., [24]) state that in the general case, when the input errors are not
necessarily small and the functionf may be complex, this problem is NP-hard. This, crudely speaking, means
that in the worst case, we cannot find the exact range fory faster than by using some version of exhaustive search
of all appropriate grid points. The problem is not in exactness: it isalso known that the problem of computing
the range with a given approximation accuracy" is also NP-hard.

How can we actually compute this range? We can find, e.g.,y with a given accuracy� as follows. The functionf is continuous; hence, for a given", there exists an� such that the� �-difference inxi leads to� " change iny. Thus, within a given accuracy", it is sufficient to consider a grid with step�, and take the smallest of all the
values off on this grid asy.

If the linear size of the domain isD, then, in this grid, we haveD=� values for each of the variables, hence,
the total of(D=�)n points.

In non-quantum computations, to compute the minimum, we need to check every point from this grid, so
we must useN = (D=�)n calls tof . The quantum algorithm for computing minimum enables us to use onlypN = (D=�)n=2 calls.

Thus, quantum algorithms can double the dimension of the problem for which we are able to compute the
desired uncertainty.

Quantum algorithms for the case when we have several different types of uncertainty. How can we extend
the above results to the case when we have several different types of uncertainty? In this section, we present
preliminary results about the case when we have both probabilistic andinterval uncertainty.

When we haven measurement resultsx1; : : : ; xn, traditional statistical approach usually starts with comput-

ing their population averageE = x1 + : : :+ xnn and their population varianceV = (x1 �E)2 + : : :+ (xn �E)2n
(or, equivalently, the population standard deviation� = pV ); see, e.g., [41]. If we know the exact values ofxi,
then these formulas require linear computation timeO(n).

As we have mentioned, in many practical situations, we only have intervalsxi = [xi; xi] of possible values ofxi. As a result, the sets of possible values ofE andV are also intervals.
The functionE is monotonic in eachxi, so the range[E;E] for E can be easily computed:E = x1 + : : :+ xnn ; E = x1 + : : :+ xnn :

In [5, 6], we have shown that the problem of computing the range[V ; V ] is, in general, NP-hard (even when we
are interested in computing this range with a given accuracy); we have alsodescribed a quadratic-timeO(n2)
algorithmA for computingV and a a quadratic-time algorithmA that computesV for all the cases in which, for
some integerC, no more thanC “narrowed” intervals[exi ��i=n; exi +�i=n] can have a common intersection.

Let us first show that by using Monte-Carlo simulations, we can computeV with given accuracy in timeO(n � log2(n))� O(n2); to be more precise, we need timeO(n � log2(n)) time to sort2n values and thenO(n)
steps to complete the computations.

Indeed, the algorithmA from [5, 6] is as follows:� First, we sort all2n valuesxi, xi into a sequencex(1) � x(2) � : : : � x(2n).
Copyright line will be provided by the publisher



mlq header will be provided by the publisher 7� Second, we computeE andE and select all zones[x(k); x(k+1)] that intersect with[E;E].� For each of the selected small zones[x(k); x(k+1)], we compute the ratiork = Sk=Nk, whereSk def= Xi:xi�x(k+1) xi + Xj:xj�x(k) xj ;
andNk is the total number of suchis andjs. If rk 2 [x(k); x(k+1)], then we computeV 0k as1n �0@ Xi:xi�x(k+1)(xi � rk)2 + Xj:xj�x(k)(xj � rk)21A :
If Nk = 0, we takeV 0k def= 0.� Finally, we return the smallest of the valuesV 0k asV .

For eachk, the valuerk is a mean, so, by using Monte-Carlo methods, we can compute it in time that does not
depend onn at all; similarly, we can computeV 0k in constant time. The only remaining step is to compute the
smallest of� 2n valuesV 0k ; this requiresO(n) steps.

If quantum computing is available, then we can compute the minimum inO(pn) steps; thus, we only needO(pn) steps after sorting.
Similarly, the algorithmA is as follows:� First, we sort all2n endpoints of the narrowed intervalsexi ��i=n andexi +�i=n into a sequencex(1) �x(2) � : : : � x(2n). This enables us to divide the real line into2n + 1 zones[x(k); x(k+1)], where we

denotedx(0) def= �1 andx(2n+1) def= +1.� Second, we computeE andE and select all zones[x(k); x(k+1)] that intersect with[E;E].� For each of remaining zones[x(k); x(k+1)], for eachi from 1 ton, we pick the following value ofxi:� if x(k+1) < exi ��i=n, then we pickxi = xi;� if x(k) > exi +�i=n, then we pickxi = xi;� for all otheri, we consider both possible valuesxi = xi andxi = xi.
As a result, we get one or several sequences ofxi. For each of these sequences, we check whether the averageE of the selected valuesx1; : : : ; xn is indeed within the corresponding zone, and if it is, we compute the
population varianceV by using the definition ofV .� Finally, we return the largest of the computed population variances asV .

It is shown that we end up with� 2C � 2n = O(n) population variances.
Here also, computingE andV can be done in constant time, and selecting the largest ofO(n) variances

requires linear timeO(n) for non-quantum computations andO(pn) time for quantum computing.

Can quantum computers still be useful when there are not yet enough qubits? In view of the great potential
for computation speedup, engineers and physicists are actively working onthe design of actual quantum com-
puters. There already exist working prototypes: e.g., a several mile long communication system, with simple
quantum computers used for encoding and decoding, is at government disposal. Microsoft and IBM actively
work on designing quantum computers. However, at present, these computers can only solve trivial instances of
the above problems, instances that have already been efficiently solved by non-quantum computers. The main
reason why quantum computers are not currently used to solve more complex problems is that the existing quan-
tum computers have only a few qubits, while known quantum algorithms require a lot of qubits. For example,
Grover’s algorithm requires a register withq = log(n) qubits for a search in a database ofn elements.

Copyright line will be provided by the publisher



8 V. Kreinovich and L. Longpré: Fast Quantum Algorithms forHandling Probabilistic and Interval Uncertainty

Of course, while we only have 2 or 3 or 4 qubits, we cannot do much. However, due to the active research and
development in quantum computer hardware, we will (hopefully) have computers with larger number of qubits
reasonably soon.

A natural question is: while we are still waiting for the qubit register size that is necessary to implement
the existing quantum computing algorithms (and thus, to achieve the theoretically possible speedup), can we
somehow utilize the registers of smaller size to achieve a partial speed up?

In this section, we start answering this question by showing the following: for quantum search, even when
we do not have enough qubits, we can still get a partial speedup; for details, see [29]. The fact that we do get a
partial speedup for quantum search makes us hope that even when we do not haveall the qubits, we can still get
a partial speedup for other quantum computing algorithms as well.

Let us assume that we are interested in searching in an unsorted database ofn elements, and that instead of
all log(N) qubits that are necessary for Grover’s algorithm, we only have, say 90% or 50% of them. To be more
precise, we only have a register consisting ofr = � � log(N) qubits, where0 < � < 1. How can we use this
register to speed up the search?

Grover’s algorithm enables us to use a register withr qubits to search in a database ofM = 2r elements in
timeC �pM . For our available register,r = � � log(N), henceM = 2r = N�, so we can use Grover’s algorithm
with this qubit register to search in a database of sizeN� in timeC � pM = C �N�=2.

To search in the original database of sizeN , we can do the following:� divide this original database intoN1�� pieces of sizeN�; and then� consequently apply Grover’s algorithm with a given qubit register tolook for the desired element in each
piece.

Searching each piece requiresC �N�=2 steps, so the sequential search in allN1�� pieces requires timeN1�� �(C �N�=2) = C �N1��=2. Since� > 0, we get a speedup.
When� tends to 0, the computation time tends toC �N , i.e., to the time of non-quantum search; when� tends

to 1, the computation time tends toC �N1=2, i.e., to the time of quantum search.

3 Does “NP-Hard” Really Mean “Intractable”?

Introduction. Most of the computational problems related to interval computations are, in general, NP-hard.
Most computer scientists believe that NP-hard problem are really computationally intractable. This belief is well
justified for traditional computers, but there are non-traditional physical and engineering ideas that may make
NP-hard problem easily solvable. Let us briefly overview these ideas.

Within Newtonian physics, NP-hardness does seem to mean “intractable”.The standard definitions of the
notions of NP-hardness are based on the abstract models of computation suchas Turing machines or RAM
machines. Real-life computers are often much more complex than these simplified models. A natural question
is: can the additional features present in the real-life computers speed up computations?

Most existing computers are based on the processes well described by the traditional Newtonian physics.
For such computers, researchers have tried several different schemes, but they have not been able to come up
with schemes that solve NP-hard problem is guaranteed reasonable time. Moreover, it turns out that whatever
computation speed we can achieve by using these features, we can achieve approximately the same computation
speed by using simplified computers as well.

This empirical observation was later theoretically justified: specifically, ithas been proven that is we only
use processes from Newtonian physics, then we do not add any extra computational ability to the computational
devices; for exact formulations and proofs, see, e.g., Gandy [8, 9].

The only feature of real-life computations that is not present in the standard (simplified) models from theoret-
ical computer science israndomness, i.e., the ability to inputtruly random data and use them in computations.
This ability has, however, been well analyzed in theoretical computer science. In the language of theory of com-
putation, the outside source of data is called an oracle. As early as 1981, Bennetet al. have shown [2] that if we
allow a random sequence as an oracle, and correspondingly reformulate the definitions of the classes P and NP,
then we can prove that the correspondingly reformulated classes are different [2]. In other words, if we allow

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 9

randomness but restrict ourselves to processes based on Newtonian physics, then NP-hard problems cannot be
solved in feasible (polynomial) time, i.e., NP-hard problems are really intractable.

What if we use non-traditional physical and engineering ideas in computer design?Since we seem not to be
able to avoid the unrealistic exponential time with traditional, Newtonian-physics-based computers, a question
naturally appears: what if in the future, we will findnon-Newtonian processes; will then NP-hard problems still
be intractable? This question was first formulated by G. Kreisel [26].

Traditional computers use discrete-oriented deterministic processes in normal space and time. In reality, phys-
ical processes are (1) continuous, (2) non-deterministic (as described byquantum mechanics), and (3) they occur
in non-traditional (curved) space-time. So, to describe how using additional physical processes will help in
computations, we must consider how these three factors (adding non-determinism and taking curvature into con-
sideration) change our computational abilities.

Non-Newtonian processes of first type: Use of physical fields.In physical terms, computational devices (Tur-
ing machines, computers, etc.) can be described as follows: at some initial moment of timet0, we set up the
initial state of the device; we set up the design of the computational device in such a way the dynamics of this
device follows the desired pattern, and then, at some moment of timet, we extract the result of the computations
from the state of the computational device at this momentt.

Traditional computational devices consist of discrete cells, and the dynamics describes how the states of these
cells change with time. According to modern physics, the world contains not only discrete objects and processes,
it also contains continuous processes. Crudely speaking, according to modern physics, the world consists of
particles and fields. (Crudely speaking, because, according to quantum mechanics,every particle can also be
viewed as a field, and every field can also be viewed as an infinite collection of particles – e.g., an electromagnetic
field is a collection of photons.) What can we achieve if we use such continuous processes (fields) in computation?

The state of a field at a given moment of timet0 is characterized by the valuesf(~x; t0) of this field at different
points~x. Setting up an initial state is usually possible: if someone providesus with a computable functionf(~x; t0)
and a given accuracy" > 0, then we are usually able to implement a stateef(~x; t0) that is"-close tof(~x; t0),
i.e., e.g., for whichj ef(~x; t0) � f(~x; t0)j � ". The dynamics of a physical fieldf(~x; t) is usually described by a
partial differential equation (PDE). So, the crucial question is: if the original statef(~x; t0) is computable, and if
it changes according to a physical PDE, will the resulting statef(~x; t) still be computable?

For many physical PDEs, the valuef(~x; t) of the field f in a future moment of timet can be expressed
by an explicit integral formula in which the integral right-hand side depends on the current state of this fieldf(~x; 0). The corresponding integral operator is usually computable, in the sense that if the original statef(~x; t0)
is computable, then the resulting statef(~x; t) is computable as well; relevant theorems are proved, e.g., in Pour-El
et al. [40].

For some physical PDEs, however,f(~x; t) can be described as an integral depending both on value of the
function f(~x; t0) and on the values of its spatial derivatives. So, if we start with a function f(~x; t0) that is
computable, but whose (spatial) derivatives are not computable, we may end up with a non-computable valuef(~x; t). This was shown by Pour-Elet al. in [39] (see also Beeson [1], Ch. 15, and Pour-Elet al. [40]). This
result generalizes a theorem proved by Aberth in 1971 and rediscovered in Pour-El et al. [38].

This result is very interesting and encouraging, but this result does not necessarily mean that we have found a
way to compute a function that is not computable on a normal computer (andhopefully, that we can solve some
NP-hard problems in reasonable time). Indeed, to be able to do that, we would need to find a way to implement
the initial conditions with a non-computable derivative and it is not clear how we can do that; for a detailed
discussion, see, e.g., [27, 46].

In other words, it is not clear whether the use of continuous physical processes can help in solving NP-hard
problems. A more definite possibility of solving NP-hard problem fast comes from the other two aspects of
physical processes: non-deterministic processes and processes in non-traditional (curved) space-time.

Non-Newtonian processes of second type: Quantum processes (adding non-determinism). We have already
mentioned that quantum computers can solve several useful problems – likefactoring integers – faster than non-
quantum ones; see, e.g., [36]. It may be possible to use them for solving NP-hard problems. Several such
“hypothetic” schemes – using quantum field theory – have been proposed by Freedman, Kitaev, etc.

We propose to use one more phenomenon: namely, some potentially observable dependencies between physi-
cal quantities become not only non-smooth but even discontinuous; these cases have been summarized in a recent

Copyright line will be provided by the publisher



10 V. Kreinovich and L. Longpré: Fast Quantum Algorithms for Handling Probabilistic and Interval Uncertainty

monograph [11]. From the computational viewpoint, this seems to open the doors to the possibility of checking
whether a given real number is equal to 0 or not, something that the haltingproblem explicitly prohibits us from
doing for normal (non-quantum) computing. We are therefore planning to investigate the possibility of using this
new opportunity in actual computing. Our preliminary results are presented in [15].

Non-Newtonian processes of third type: Using curved space-time for computations. If we allow heavily
curved space (e.g., semi-closed black holes, we can get the results faster if we stay in the area where the curvature
is strong and time goes slower, and let the computations be done outside (see, e.g., Morgensteinet al. [23, 34]);
then, we will even be able to compute NP-hard problems in polynomial time.

A similar speed-up can be obtained if we assume that our space-time is hyperbolic [17, 23, 34].
Previously described non-Newtonian processes relate to well-recognized physics, but there are other physical

theories that describe possible but not universally accepted physics. Namely, several physical theories have led
to the appearance of closed timelike curves, the possibility to go back in time. Suffice it to say that one of the
main ideas which helped R. Feynman to develop a modern version of quantum electrodynamics was the idea of
positrons as electrons going back in time [7]. Until the late 1980s, these possibilities were largely dismissed by
mainstream physics as mathematical artifacts which cannot lead to actual going back intime. Only when Kip
Thorne, the world’s leading astrophysicist, published several paperson acausal solutions inPhysical Reviews, the
topic became more mainstream.

Reasonable solutions with causal anomalies were discovered in many physical theories. For example, in
general relativity, the curved space-time generated by a sufficiently massive cylinder that rotates sufficiently fast
contains a closed timelike curve (causal anomaly). In string theory, a theory that describes elementary particles
as non-point objects (“strings”), seemingly interactions between such particles sometime lead to the possibility to
influence the past (i.e., to a causal anomaly). It was also shown that modern cosmological theories, in which the
current cosmological expansion is preceded by a short period of exponentially fast growth (“inflation”), also lead
to the possibility of a causal anomaly. An interested interested can find thedetailed description of these causal
anomalies, e.g., in book [42] and in the papers referenced in this book.

The main obstacle to accepting acausal phenomena used to be paradoxes associated with time travel. These
paradoxes can be illustrated on a commonsense example of a “father paradox”: a time traveler can go to the past
and kill his father before he himself was conceived, thus creating a paradox. The accepted solution to the acausal
paradoxes can also be illustrated on the “father paradox” example: since the time traveler was born, this means
that some unexpected event prevented him from killing his father. Maybea policeman stopped him, maybe his
gun malfunctioned. Even if the time traveler takes care of all such probablyevents, there are always events with
small probability – like a meteor falling on the traveler’s head – which cannot all be avoided. Thus, all we will
achieve if we try to implement a paradox is that some event with a very lowprobability will occur.

There are several ways to use acausal processes in computing. The trivial way is to let a computer run a long
program for whatever it takes and then send the results back in time. A less trivial way of saving time is similar
to quantum “computing without computing” – speeding up without actually using time machines. This method
was originally proposed in [22]; see also [21, 31, 33]. This method is related to the above solution to the father
paradox. Indeed, to solve, e.g., a propositional satisfiability problem withn variables, we generaten random bits
and check whether they satisfy a given formula; if not, we launch a time machine that is set up to implement a
low-probability event (with some probabilityp0 � 1). Nature has two choices: either it generatesn variables
which satisfy the given formula (probability of this is2�n), or the time machine is used which leads to an event
with a probabilityp0. If 2�n � p0, then statistically, the first event is much more probable, and so, the solution
to the satisfiability problem will actually be generated without the actualuse of a time machine.

(On the other hand, maybe the other outcome is that the universe will just unravel and all existence will cease: : : )
Yet another possibility: Gell-Mann’s approach to complex systems.In several papers and in his book [10],
a Nobelist physicist M. Gell-Mann suggests that our difficulties in describing the dynamics of complex systems
can be resolved if we assume that the true physical equations actually explicitly contain Kolmogorov complex-
ity of the described system. In [25], we show that a natural physical approach indeed leads to new equations
which are equivalent to an explicit incorporation of Kolmogorov complexity. Since Kolmogorov complexity is
not computable (see, e.g., [28]), the possibility described by Gell-Mann’s hypothesis can be used to speed up
computations.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 11

Acknowledgements This work was supported in part by NASA under cooperative agreement NCC5-209, by the Future
Aerospace Science and Technology Program (FAST) Center forStructural Integrity of Aerospace Systems, effort sponsored
by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant F49620-00-1-0365, by NSF
grants EAR-0112968 and EAR-0225670, by the Army Research Laboratories grant DATM-05-02-C-0046, and by IEEE/ACM
SC2001 and SC2002 Minority Serving Institutions Participation Grants.

This work was partly supported by a travel grant from the conference organizers.
The authors are thankful to all the participants of the CCA’2003 conference for valuable discussions, and to the anonymous

referees for valuable suggestions.

References

[1] Beeson M. J. (1985). “Foundations of constructive mathematics”, Springer-Verlag, N.Y.
[2] Bennet G. G., Gill J. (1981). “Relative to a random oracleA, PA 6=NPA 6=co-NPA with probability 1”, SIAM Journal

of Computer Science, vol. 10, 96–113.
[3] Brassard G., Hoyer P., Tapp A. (1998). Quantum counting.In: Proc. 25th ICALP, Lecture Notes in Computer Science,

Vol. 1443, Springer, Berlin, 820–831.
[4] Dürr C., Hoyer P. (1996). “A quantum algorithm for finding the minimum”; LANLarXiv:quant-ph/9607014
[5] Ferson S., Ginzburg L., Kreinovich V., Longpré L., and Aviles M. (2002), “Computing Variance for Interval Data is

NP-Hard”,ACM SIGACT News, vol. 33, 108–118.
[6] Ferson S., Ginzburg L., Kreinovich V., and Lopez J. (2002), “Absolute Bounds on the Mean of Sum, Product, etc.: A

Probabilistic Extension of Interval Arithmetic”,Extended Abstracts of the 2002 SIAM Workshop on Validated Comput-
ing, Toronto, Canada, May 23–25, 70–72.

[7] Feynman R. P. (1949). “The theory of positrons”,Physical Review, vol. 76, 749–759.
[8] Gandy, R. (1980). “Church’s thesis and principles for mechanisms”, In: J. Barwise, H. J. Keisler, and K. Kunen,The

Kleene Symposium, North Holland, Amsterdam, 123–148.
[9] Gandy, R. (1988). “The confluence of ideas in 1936”, In: R.Herken (ed.)The universal Turing machine: a half-century

survey, Kammerer & Unverzagt, Hamburg.
[10] Gell-Mann M. (1994). “The Quark and the Jaguar”, Freeman, N.Y.
[11] Grib A. A., Rodriguez W. .A. Jr. (1999). “Nonlocality inquantum physics”, Plenum, N.Y.
[12] Grover L. (1996). A fast quantum mechanical algorithm for database search,Proc. 28th ACM Symp. on Theory of

Computing, 212–219.
[13] Grover L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack,Phys. Rev. Lett., vol. 79, 325–

328.
[14] Grover L. (1998). A framework for fast quantum mechanical algorithms,Phys. Rev. Lett., vol. 80, 4329–4332.
[15] Harary F., Kreinovich V., Longpré L. (2001). “A new graph characteristic and its application to numerical computabil-

ity”, Information Processing Letters, vol. 77, 277–282.
[16] Heinrich S. (2002). Quantum summation with an application to integration,J. Complexity, vol. 18(1), 1–50.
[17] Herrmann F., Margenstern M. (2003). “A universal cellular automaton in the hyperbolic plane”,Theoretical Computer

Science, vol. 296, No. 2, 327–364.
[18] Jaulin L., Keiffer M., Didrit O., and Walter E. (2001), “Applied Interval Analysis”, Springer-Verlag, Berlin.
[19] Kearfott R. B. (1996), “Rigorous Global Search: Continuous Problems”, Kluwer, Dordrecht.
[20] Kearfott R. B. and Kreinovich V., eds. (1996), “Applications of Interval Computations” (Pardalos. P. M., Hearn, D.,

“Applied Optimization”, Vol. 3), Kluwer, Dordrecht.
[21] Koshelev M. (1998). “Maximum entropy and acausal processes: astrophysical applications and challenges”, In: G. J.

Erickson et al. (eds.),Maximum Entropy and Bayesian Methods, Kluwer, Dordrecht, 253–262.
[22] Kosheleva O. M., Kreinovich V. (1981). “What can physics give to constructive mathematics”, In:Mathematical Logic

and Mathematical Linguistics, Kalinin, Russia, 117–128 (in Russian).
[23] Kreinovich V. (1989). “On the possibility of using physical processes when solving hard problems”, Leningrad Center

for New Information Technology “Informatika”, Technical Report, Leningrad (in Russian).
[24] Kreinovich V., Lakeyev A., Rohn J., and Kahl P. (1997), “Computational Complexity and Feasibility of Data Processing

and Interval Computations” (Pardalos. P. M., Hearn, D., “Applied Optimization”, Vol. 10), Kluwer, Dordrecht.
[25] Kreinovich V., Longpré L. (1998). “Why Kolmogorov Complexity in Physical Equations”,Int’l J. of Theor. Physics,

vol. 37, 2791–2801.
[26] Kreisel G. (1974). “A notion of mechanistic theory”,Synthese, vol. 29, 11–26.
[27] Kreisel G. (1982). “A review of [38] and [39]”,Journal of Symbolic Logic, vol. 47, 900–902.
[28] Li M., Vitányi, P. M. B. (1997). “An Introduction to Kolmogorov Complexity and its Applications”, Springer-Verlag,

N.Y.
[29] Longpré L., Kreinovich V. (2003). “Can Quantum Computers Be Useful When There Are Not Yet Enough Qubits?”,

Bull. European Association for Theoretical Computer Science (EATCS), vol. 79, 164–169.

Copyright line will be provided by the publisher



12 V. Kreinovich and L. Longpré: Fast Quantum Algorithms for Handling Probabilistic and Interval Uncertainty

[30] Martinez M., Longpré L., Kreinovich V., Starks S. A., Nguyen H. T. (2003). “Fast Quantum Algorithms for Handling
Probabilistic, Interval, and Fuzzy Uncertainty”,Proceedings of the 22nd International Conference of the North American
Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July 24–26, 2003.

[31] Maslov S. Yu. (1987). “Theory Of Deductive Systems And Its Applications”, MIT Press, Cambridge, MA.
[32] Moore R. E. (1979), “Methods and Applications of Interval Analysis”, SIAM, Philadelphia.
[33] Moravec H. (1991). “Time travel and computing”, Carnegie-Mellon Univ., CS Dept. Preprint.
[34] Morgenstein D., Kreinovich V. (1995). “Which algorithms are feasible and which are not depends on the geometry of

space-time”,Geombinatorics, vol. 4, No. 3, 80–97.
[35] Nayak A., Wu, F. (1999). The quantum query complexity ofapproximating the median and related statistics,Proc. Symp.

on Theory of Computing STOC’99, 384–393.
[36] Nielsen M. A., Chuang I. L. (2000).Quantum computation and quantum information, Cambridge University Press,

Cambridge, U.K.
[37] Novak E. (2001). Quantum Complexity of integration,J. Complexity, vol. 17, 2–16.
[38] Pour-El M. B., Richards I. (1979). “A computable ordinary differential equation which possesses no computable solu-

tions”, Annals of Mathematical Logic, vol. 17, pp. 61–90.
[39] Pour-El M. B., Richards I. (1981). “The wave equation with computable initial data such that its unique solution is not

computable”,Advances in Mathematics, vol. 39, pp. 215–139.
[40] Pour-El M. B., Richards I. (1989). “Computability in analysis and physics”, Springer-Verlag, N.Y.
[41] Rabinovich S. (1993), “Measurement Errors: Theory andPractice”, American Institute of Physics, New York.
[42] Thorne K. S. (1994). “From black holes to time warps”, W.W. Norton, N.Y.
[43] Trejo R., Kreinovich V. (2001). Error Estimations for Indirect Measurements: Randomized vs. Deterministic Algo-

rithms. In: S. Rajasekaran et al. (eds.),Handbook on Randomized Computing, 673–729.
[44] Vavasis S. A. (1991), “Nonlinear Optimization: Complexity Issues”, Oxford University Press, N.Y.
[45] Wadsworth H. M. Jr., ed. (1990). “Handbook of statistical methods for engineers and scientists”, McGraw-Hill Publish-

ing Co., N.Y.
[46] Weihrauch, K., Zhong, N. (2002). “Is wave propagation computable or can wave computers beat the Turing machine?”,

Proceedings of the London Mathematical Society, vol. 85, 312–332.

Copyright line will be provided by the publisher


