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In many real-life situations, we are interested in the valfia physical quantity that is difficult or impossible
to measure directly. To estimage we find some easier-to-measure quantities. .. , =, which are related

to y by a known relatiory = f(z1,...,x,). Measurements are never 100% accurate; hence, the measured
valuesz; are different fromz;, and the resulting estimaig = f(z1,...,%») is different from the desired
valuey = f(x1,... ,z,). How different can it be?

Traditional engineering approach to error estimation itagaocessing assumes that we know the probabil-
e . def ~ . . .
ities of different measurement errafse; = z; — z;. In many practical situations, we only know the upper
boundA; for this error; hence, after the measurement, the only médion that we have about; is that it

belongs to the intervat; def [Z: — Ai, T; + A;]. Inthis case, it is important to find the rangeof all possible
values ofy = f(z1,...,z») Whenz; € x;. We start the paper with a brief overview of the computationa
complexity of the correspondinigterval computation problems.

Most of the related problems turn out to be, in general, atldéP-hard. In this paper, we show how the
use of quantum computing can speed up some computationisdétainterval and probabilistic uncertainty.
We end the paper with speculations on whether (and how) ‘thgtic” physical devices can compute NP-hard
problems faster than in exponential time.

Most of the paper’s results were first presented at NAFIP&3230].
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1 Introduction: Data Processing — From Computing via Probabilities toln-
tervals

Why data processing?In many real-life situations, we are interested in the value of a phygicahtityy that

is difficult or impossible to measure directly. Examples of such gtiastare the distance to a star and the
amount of oil in a given well. Since we cannot measuyréirectly, a natural idea is to measuyandirectly.
Specifically, we find some easier-to-measure quantities. . , z,, which are related tg by a known relation

y = f(z1,...,zy,); this relation may be a simple functional transformation, or complgerithm (e.g., for the
amount of oil, numerical solution to an inverse problem). Then, taredéy, we first measure the values of the
guantitiesr, . .. , z,, and then we use the resulfs, ... , 7, of these measurements to compute an estifiate
foryasy = f(Z1,... ,%n).

For example, to find the resistané® we measure currertand voltagel’, and then use the known relation
R = V/I to estimate resistance &=V /1.

Computing an estimate fay based on the results of direct measurements is caliéa processing; data
processing is the main reason why computers were invented in the first atatdata processing is still one of
the main uses of computers as number crunching devices.

Comment. In this paper, for simplicity, we consider the case when the relationdsrtw; andy is known exactly;
in some practical situations, we only know an approximate relation betweamndy.
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Why interval computations? From computing via probabilities to intervals. Measurement are never 100%

accurate, so in reality, the actual valugof i-th measured quantity can differ from the measurement r@sult

Because of thesmeasurement errors Ax; def Z; — x4, theresulty = f(z1,... ,%,) of data processing is, in

general, different from the actual valye= f(z:, ... ,z,) of the desired quantity [41].

It is desirable to describe the errdry def y — y of the result of data processing. To do that, we must have
some information about the errors of direct measurements.

What do we know about the errorsz; of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper boufsg on the measurement error. (If no such upper bound is
supplied, this means that no accuracy is guaranteed, and the correspondingringgastrument” is practically
useless.) Thus, once we performed a measurement and got a measuremeint,resiknow that the actual
(unknown) valuez; of the measured quantity belongs to the intesxval= [z;,T;], wherez, = z; — A; and
T, = T; + A

In many practical situations, we not only know the interval\;, A;] of possible values of the measurement
error; we also know the probability of different valués:; within this interval. This knowledge underlies the
traditional engineering approach to estimating the error of indirect meammnt, in which we assume that we
know the probability distributions for measurement errats;.

In practice, we can determine the desired probabilities of different valuéscpfoy comparing the results
of measuring with this instrument with the results of measuringsdrae quantity by a standard (much more
accurate) measuring instrument. Since the standard measuring instrgnneunthh more accurate than the one
use, the difference between these two measurement results is practically etihgahteasurement error; thus,
the empirical distribution of this difference is close to the desinedbability distribution for measurement error.
There are two cases, however, when this determination is not done:

e Firstis the case of cutting-edge measurements, e.g., measurementsaimémtdl science. When a Hubble
telescope detects the light from a distant galaxy, there is no “standamth(imore accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble teleisayeebest we have.

e The second case is the case of measurements on the shop floor. In this casejptepevery sensor can
be thoroughly calibrated, but sensor calibration is so costly — uscadiiing ten times more than the sensor
itself — that manufacturers rarely do it.

In both cases, we have no information about the probabilitiesaf the only information we have is the upper
bound on the measurement error.

In this case, after we performed a measurement and got a measurement;tehelonly information that we
have about the actual valug of the measured quantity is that it belongs to the intexyak [z; — A;, 7; + A;].
In such situations, the only information that we have about thkr(own) actual value of = f(z1,... ,z,)is
thaty belongs to the range = [y,7] = {f(z1,... ,z,)|z1 € x1,...,2, € x,} Of the functionf over the
boxx; x ... x x,. The process of computing this interval range based on the inputéaigeryis calledinterval
computations; see, e.g., [18, 19, 20, 32].

Interval computations techniques.Historically the first method for computing the enclosure for theyeais the
method which is sometimes called “straightforward” interval computatidbhs method is based on the fact that
inside the computer, every algorithm consists of elementary opergaoittsmetic operationsnin, max, etc.).
For each elementary operatigiia, b), if we know the intervala andb for a andb, we can compute the exact
rangef(a, b). The corresponding formulas form the so-caliettrval arithmetic. For example,

[Q=6] + [b,E] = [Q+b=a+5]; [Qva] - [Qv—] = [Q—E,E—Q];
[a,a] - [b,b] = [min(a-b,a-b,a-b,a-b), max(a-b,a-b,a-b,a-b).

In straightforward interval computations, we repeat the computatimmsifg the prograny step-by-step, re-
placing each operation with real numbers by the corresponding operatioteofal arithmetic. It is known that,
as a result, we get an enclosiweD y for the desired range.

In some cases, this enclosure is exact. In more complex cases, the enkbrsareess width.
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There exist more sophisticated techniques for producing a narrowerseine|e.g., a centered form method.
However, for each of these techniques, there are cases when we get an excessheidéason for this is that,
as shown in [24, 44], the problem of computing the exact range is krtovibe NP-hard even for polynomial
functionsf(z1, ... ,z,) (actually, even for quadratic functiorf3.

2 Fast Quantum Algorithms for Handling Probabilistic and Interval Uncer-
tainty

As computers become faster, quantum effects must be more and more takemd consideration. According

to Moore’s law, computer speed doubles every 18 months. One of thelimétations to further speedup is
the computer size: every communication is limited by the speed of ¢igb, e.g., a computer of a 1 ft size is
bounded to have a computation speed d-tivhich corresponds to 1 GHz. To make faster computers, we must
thus decrease the size of computer elements. As this size reaches molecular sizst tedke into consideration
guantum effects.

Quantum effects add to noise, but they can also helpQuantum effects, with their inevitably probabilistic
behavior, add to noise. However, it turns out that some quantum effantde used to drastically speed up
computations (in spite of quantum noise).

For example, without using quantum effects, we need — in the worst cadeastV computational steps to
search for a desired element in an unsorted list of 8izeA quantum computing algorithm proposed by Grover
(see, e.g., [12, 13, 36]) can find this element much faster{N) time.

Several other quantum algorithms have been proposed.

What we are planning to do.How can this be of use to interval data processing community? In manigaiph
areas ranging from geosciences to bioinformatics to large-scale simulafioomplex systems, data processing
algorithms require a lot of time to run even with the exact input da&a result, very little is currently done to
analyze the effect of inevitable uncertainty of input data on the resiitata processing.

It is desirable to analyze how different types of uncertainty — probaibilimterval — influence the results of
data processing. In this paper, we discuss how quantum algorithmas@tover's quantum search can be used
to speed up this analysis — and thus, make it possible.

We also explain that there is no need to wait until a full-blown quardamputer appears, with all necessary
guantum bits (“qubits”): even without all necessary qubits, we canggtlisome speedup, a speedup that gets
better and better as we add more qubits to the quantum computer.

Grover’s algorithm for quantum search. We have already mentioned Grover’s algorithm that, given a database
ai,...,any With N entries, a property’ of database entries (i.e., an algorithm that checks whdthisrtrue),
and an allowable error probability, returns, with probability> 1 — 4, either the elementi; that satisfies the
property P or the message that there is no such element in the database.

This algorithm require§’ - v/N steps (= calls tdP), where the facto€ depends o# (the smalled we want,
the largerC we must take).

General comment about quantum algorithms.For our applications, it is important to know that for Grover's
algorithm (and for all the other quantum algorithms that we will déscend use), the entries do not need to
be all physically given, it is sufficient to have a procedure that, giypnoduces:;.

If all the entries are physically given, then this procedure simply atasif fetching thé-th entry from the
database. However, it is quite possible that the entries are givertitlypk.g.,a; can be given as the value of a
known function at-th grid point; we have this function given as a program, so, wheneeagla;, we apply this
function toi-th grid point.

Algorithm for quantum counting. Brassard et al. used the ideas behind Grover’s algorithm to produce a new
guantum algorithm foguantum counting; see, e.g., [3, 36]. Their algorithm, given a database. . , ax with
N entries, a property’ of database entries (i.e., an algorithm that checks whethiertrue), and an allowable
error probabilitys, returns an approximatiarto the total numbet of entriesa; that satisfy the property.

This algorithm contains a parametef that determines how accurate the estimates are. The accuracy of this

Wz

. . . . e 2 . . _pe
estimate is characterized by the mequajlttyL t\ < Mﬂ Vit + e that is true with probability> 1 — 4.
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This algorithm require€’ - M - /N steps (= calls td?), where the facto€’ depends o@ (the smallers we
want, the large€’ we must take).

In particular, to get the exact valdugwe must attain accuracﬁ— t| < 1, for which we needV/ ~ +/t. In
this case, the algorithm requiré§v/¢ - N) steps.

Quantum algorithms for finding the minimum. Dirr et al. used Grover’s algorithm to produce a new quantum
algorithm forminimization; see, e.g., [4, 36]. Their algorithm applied to the database whose dmgtamsy to the
set with a defined order (e.g., are numbers). This algorithm, given aak#ap . . . , ay with NV entries, and an
allowable error probability, returns the index of the smallest entry;, with probability of error< 4.

This algorithm require§’ - v/N steps (= calls td), where the facto€ depends o# (the smalle® we want,
the largerC we must take).

Main idea behind quantum computing of the minimum. The main idea behind the above algorithm can be
illustrated on the example when all the entrigsare integers. The algorithm requires that we know, e.g., a
number) such that all the entries belong to the interival/, M. For every valuen between- M and M, we

can use Grover's algorithm to check whether there is an entfyr whicha; < m.

If such an entry exists, thein, def min(a;) < m; otherwisemn, > m. Thus, for everyn, we can check, in
O(V'N) steps, whethetng < m.

We can therefore apply bisection to narrow down the interval containigdisired until it narrows down to
a single integer.

e We start with an intervglM , M| = [— M, M].

) . . . M+ M
e At each iteration, we pick a midpoint/y = % and check whethen, < M,.

If mg < My, this means thatu, € [M, M,]; otherwiseyng € [My, M]. In both cases, we get a half-size
interval containingn,.

e After log,(2M) iterations, this interval becomes so narrow that it can only contain orgeént- which is
mg.

Thus, inlog, (M) - O(V/N) steps, we can compute the desired minimum.

Quantum algorithm for computing the mean. The above algorithms can be used to compute the average of
several numbers, and, in general, the mean of a given random variable. Teadhslgorithm was proposed by
Grover in [14]; for further developments, see, e.g., [16, 35, 37].

The traditional Monte-Carlo method for computing the mean consisgofng M random values and av-
eraging them. It is a well known fact [41, 45], that the accuracy of this ateth~ 1/v/M, so, to achieve the
given accuracy, we needM = 2 iterations. Another way to compute the average @fiven numbers is to
add them up and divide hy, which requires: steps.

Thus, whem < 72, itis faster to add all the values; otherwise, it is better to use the dé4Gairlo method.

Grover's quantum analog of the Monte-Carlo method attains accuvatyM after M iterations; thus, for a
given accuracy, we only needV/ ~ ¢! steps.

Similarly to the traditional Monte-Carlo methods, this quantum athm can compute multi-dimensional
integrals| ... [ f(x1,... ,4,)dz ... dz,: indeed, if we assume that the vectes, . .. , z,) is uniformly dis-
tributed over the corresponding domain, then this integral is ptap@l to the average value ¢fz1, ... ,z,).
The advantage of this method is that it is faster: namely, it requires bhly ! steps in contrast to the
traditional Monte-Carlo methods that requivé ~ 2 steps.

Quantum algorithms for probabilistic analysis. In the probabilistic case, the problem of describing the in-
fluence of the input uncertainty on the result of data processing takdsltbwing form (see, e.g., [41, 45]).
Given:

e the data processing algorithfifx,, ... ,z,) that transforms any input valuesz,, ... , z, into the result
ofy = f(z1,...,z,) of data processing, and

e the mean values; and standard deviatioms of the inputs,
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compute the standard deviatierof the resulty of data processing.
This standard deviation can be described as a mean (= mathematical expectatimnsqfiargy — 7)2,

wherey def f(@y,...,Zn),y def f(z1,...,z,), and each; is normally distributed with mea#; and standard
deviationo;. The traditional Monte-Carlo algorithm requires1/<? iterations to compute this average; thus, for
accuracy 20%, we need 25 iterations; see, e.g., [43].

The quantum Monte-Carlo algorithm computes this mean with accuracy: 1/¢ iterations (i.e., calls tg);
so, for accuracy 20%, we only need 5 iterations. Since comptftimgy take a long time, this drastic (5 times)
speed-up may be essential.

Quantum algorithms for interval computations: problem. In interval computations (see, e.g., [18, 19, 32]),
the main objective is as follows. Given:

e intervals[z;, z;] of possible values of the inputs, . .. , z,, and
e the data processing algorithfifzy, ... ,z,) that transforms any input valuese, . . . , z,, into the result
ofy = f(x1,...,z,) of data processing,

compute the exact randg, y] of possible values af.

We can describe each interval in a more traditional foEm- A;, T; + A;], whereZ; is the interval’s midpoint,
andA,; is its half-width. The resulting range can also be describdgl as\, y + A], wherey is the result of data
processing (described by the above formula), Anid the desired largest possible differenige- y|.

Quantum algorithms for interval computations: case of relatively small errors. When the input errors are
relatively small, we can linearize the functigraround the midpointg;. In this case, Cauchy distributions turn
out to be useful, with probability density

p(x) ~

1+($_a)2'

A2

It is known [43] that if we taker; distributed according to Cauchy distribution with a center z; and the
width parameter\;, then the differenc@ — y between the corresponding quantities= f(z:,... ,z,) and
y = f(x1,...,z,) is also Cauchy distributed, with the width parameter equal to the desifad A.

The reason for this fact is as follows. We can expand the difference

Ay=y—y=f(@1,...,2,) — f(T1 — A1,..., T, — Azy)

in Taylor series imM\z; When the measurement erréXs;; = z; —x; are small, we can ignore quadratic and higher

n 0 ce
order terms in this expansion, and arrive at the expresSipe= > f;-Az;, wheref; def M .
i=1 T |2:=%;

We want to find the maximum and the minimum of this expression whene [—A;, A;]. The sumz fi-Ax;

attains its largest possible value when each tdrms attains its largest value. For eactf f; > 0, then the term

fi-Ax; isincreasing, hence its maximum is attained wher) takes the largest valuk;; then, f; - Az; = f;-A;.

If f; <0, then the terny; - Axi is decreasing, hence its maximum is attained whe takes the smallest value
—A;; then, f; - Ax; = f7 - A;. In both cases, the largest valueieth term is| f;| - Ai, and hence the largest

possible value oAy is Z | fil - A;. Similarly, the smallest possible value Afy is — Z Ifil - As.
It is known that |fn mdependent random variablésare Cauchy dlstrlbuted W|th parametek$, then their

linear Combmatlonz fi-& is also Cauchy distributed, with paramefer= Z |fil-A;. So, the above simulation
i=1
technique indeed Ieads to the desired estimatéfor

The use of Cauchy distribution speeds up computations —#realls to f (that are needed for a deterministic
method) to a constant number of callsft¢that are needed to computewith given accuracy when using Cauchy
distribution technique). For example, to guarantee the standard idemidt20%, we neee: 50 calls to f, which
for n = 10? is 20 times faster than the deterministic method.
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For Cauchy distribution, the standard deviation is infinite, so waactliterally apply the quantum computing
idea that worked in the case of probabilistic analysis. However, if wdyeag functiong(z) (e.g.,arctan) that
reduces the entire real line to an interval, then the expected valu§§f- y)?) —that depends only oA —can
be computed by the quantum Monte-Carlo algorithm; from this valuesamereconstrucA\.

In this case, quantum techniques also speed up computations. Indeed, thenghomte-Carlo algorithm
computesA with accuracye in ~ 1/e iterations (i.e., calls tgf), while the non-quantum Cauchy technique
requires a much larger number ef1/£? iterations. In particular, for accuracy 20%, we get a 5 times speed-up.
Since computing’ may take a long time, this drastic speed-up may be essential.

Quantum algorithms for interval computations: general case.Known results about the computational com-
plexity of interval computations (see, e.g., [24]) state that in theegdrtase, when the input errors are not
necessarily small and the functignmay be complex, this problem is NP-hard. This, crudely speaking, means
that in the worst case, we cannot find the exact rangg faster than by using some version of exhaustive search
of all appropriate grid points. The problem is not in exactness: atis known that the problem of computing
the range with a given approximation accuradyg also NP-hard.

How can we actually compute this range? We can find, g \gith a given accuracy as follows. The function
f is continuous; hence, for a giventhere exists ad such that the< §-difference inz; leads to< e change in
y. Thus, within a given accuraey it is sufficient to consider a grid with stejy and take the smallest of all the
values off on this grid ag.

If the linear size of the domain B, then, in this grid, we hav® /4 values for each of the variables, hence,
the total of(D/d)™ points.

In non-quantum computations, to compute the minimum, we need to cleck goint from this grid, so
we must useV = (D/§)™ calls to f. The quantum algorithm for computing minimum enables us to use only
VN = (D/§)"/? calls.

Thus, quantum algorithms can double the dimension of the problemtich we are able to compute the
desired uncertainty.

Quantum algorithms for the case when we have several different typed ancertainty. How can we extend
the above results to the case when we have several different types ofaimgértin this section, we present
preliminary results about the case when we have both probabilistimésrdal uncertainty.

When we haves measurementresults, .. . , x,, traditional statistical approach usually starts with comput-

ing their population average = SR ) and their population variance

v

(or, equivalently, the population standard deviatior: v/V'); see, e.g., [41]. If we know the exact valuesif
then these formulas require linear computation tith@).

As we have mentioned, in many practical situations, we only have Bty = [z;, Z;] of possible values of
x;. As a result, the sets of possible valuegbédndV are also intervals.

The functionE is monotonic in each;, so the rangéE, E| for E can be easily computed:

E:£1+'”+£n' Ezfl+...+5n
= n ’ n '

In [5, 6], we have shown that the problem of computing the rghgé’] is, in general, NP-hard (even when we
are interested in computing this range with a given accuracy); we havelesswibed a quadratic-tim@(n?)
algorithm A for computingV” and a a quadratic-time algorithgh that compute$” for all the cases in which, for
some intege€’, no more tharC' “narrowed” intervaldz; — A;/n,T; + A;/n] can have a common intersection.

Let us first show that by using Monte-Carlo simulations, we can computgth given accuracy in time
O(n -log,(n)) < O(n?); to be more precise, we need tirt&n - log,(n)) time to sort2n values and the(n)
steps to complete the computations.

Indeed, the algorithral from [5, 6] is as follows:

e First, we sort alkn valuesz;, 7; into a sequence ) < z(y) < ... < T(zy)-
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» Second, we computE andE and select all zongs:(;,, 7(,+1)] that intersect witE, E].

e For each of the selected small zorieg,), z(;+1)], we compute the ratie, = Sy /Ny, where

Sk d:ef Z z; + Z zj,

B, 2T (gt1) Jimj <a (k)

andNy is the total number of sucts andjs. If ry, € [z(r), 2(x41)], then we comput&) as

%' d>ooo@i-rm)+ ), @-m)

G2, 2T (j41) Ji®j <a (k)

) def

If N =0, we takel} =
¢ Finally, we return the smallest of the valugsasV .

For eachk, the valuery is a mean, so, by using Monte-Carlo methods, we can compute it in taeldles not
depend om at all; similarly, we can computg), in constant time. The only remaining step is to compute the
smallest of< 2n valuesV/; this require)(n) steps.

If guantum computing is available, then we can compute the minimu@(igin) steps; thus, we only need
O(+/n) steps after sorting.

Similarly, the algorithmA is as follows:

e First, we sort aln endpoints of the narrowed intervals — A; /n andz; + A;/ninto a sequence(;) <
T2y < ... < T(2,. This enables us to divide the real line ite + 1 zones[z ), ¥ (;41)], where we

denotedr o) RN andz(z,41) e 4 .

e Second, we computE andE and select all zongs (i), z(x+1)] that intersect withE, E].
e For each of remaining zonés;, 7 (x-1)], for eachi from 1 ton, we pick the following value of;:

o if (41) <7 — Ay/n, then we picke; = Z;;
o if x4y > z; + A;/n, then we picke; = z;;
¢ for all otheri, we consider both possible values= z; andz; = z;.

As aresult, we get one or several sequencas.dfor each of these sequences, we check whether the average
FE of the selected values, . .. , z,, is indeed within the corresponding zone, and if it is, we compute the
population varianc®” by using the definition of’.

e Finally, we return the largest of the computed population variancés as

It is shown that we end up witk 2¢ - 2n = O(n) population variances.
Here also, computingZ and V' can be done in constant time, and selecting the largeét(ef variances
requires linear tim& (n) for non-quantum computations add+/n) time for quantum computing.

Can quantum computers still be useful when there are not yet enough quts? In view of the great potential
for computation speedup, engineers and physicists are actively workitigeaesign of actual quantum com-
puters. There already exist working prototypes: e.g., a several onilg ¢ommunication system, with simple
guantum computers used for encoding and decoding, is at governmentadispisrosoft and IBM actively
work on designing quantum computers. However, at present, these amaipan only solve trivial instances of
the above problems, instances that have already been efficiently solved {opyantum computers. The main
reason why quantum computers are not currently used to solve more copnpldems is that the existing quan-
tum computers have only a few qubits, while known quantum algmstrequire a lot of qubits. For example,
Grover's algorithm requires a register wigh= log(n) qubits for a search in a databasencélements.
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8 V. Kreinovich and L. Longpré: Fast Quantum Algorithms Fendling Probabilistic and Interval Uncertainty

Of course, while we only have 2 or 3 or 4 qubits, we cannot do much.edewdue to the active research and
development in quantum computer hardware, we will (hopefully) havepeens with larger number of qubits
reasonably soon.

A natural question is: while we are still waiting for the qubit r&gr size that is necessary to implement
the existing quantum computing algorithms (and thus, to achievehoretically possible speedup), can we
somehow utilize the registers of smaller size to achieve a partial sp&ed up

In this section, we start answering this question by showing tHewWalig: for quantum search, even when
we do not have enough qubits, we can still get a partial speedup; folsdsieé [29]. The fact that we do get a
partial speedup for guantum search makes us hope that even when we do rait tre/qubits, we can still get
a partial speedup for other quantum computing algorithms as well.

Let us assume that we are interested in searching in an unsorted databaslemmnts, and that instead of
all log(N) qubits that are necessary for Grover's algorithm, we only have, say 9@4P6 of them. To be more
precise, we only have a register consisting-of « - log(N) qubits, where) < « < 1. How can we use this
register to speed up the search?

Grover’s algorithm enables us to use a register witfubits to search in a databaseMf = 2" elements in
time C'-v/M. For our available register,= a-log(N), henceM = 2" = N*, so we can use Grover's algorithm
with this qubit register to search in a database of &ein timeC' - VM = C - N*/2,

To search in the original database of si¥ewe can do the following:

o divide this original database inf§'~ pieces of sizeéV“; and then

e consequently apply Grover’s algorithm with a given qubit registdotik for the desired element in each
piece.

Searching each piece requi@s N*/? steps, so the sequential search inall-* pieces requires tima/'—2 .
(C-Ne/?y=C-N'-*/2, Sincea > 0, we get a speedup.

Whena tends to 0, the computation time tend€tolV, i.e., to the time of non-quantum search; whetends
to 1, the computation time tends - N'/2, i.e., to the time of quantum search.

3 Does “NP-Hard” Really Mean “Intractable”?

Introduction. Most of the computational problems related to interval computations mugeneral, NP-hard.
Most computer scientists believe that NP-hard problem are really compnedyi intractable. This belief is well
justified for traditional computers, but there are non-traditionalgital and engineering ideas that may make
NP-hard problem easily solvable. Let us briefly overview these ideas.

Within Newtonian physics, NP-hardness does seem to mean “intractableThe standard definitions of the
notions of NP-hardness are based on the abstract models of computatioasstiohing machines or RAM
machines. Real-life computers are often much more complex than thesdisinplodels. A natural question
is: can the additional features present in the real-life computers speed ypEtions?

Most existing computers are based on the processes well described badhmial Newtonian physics.
For such computers, researchers have tried several different schemes yhudtkenot been able to come up
with schemes that solve NP-hard problem is guaranteed reasonable time. Btoietwns out that whatever
computation speed we can achieve by using these features, we can achievenagietgxhe same computation
speed by using simplified computers as well.

This empirical observation was later theoretically justified: specificalljag been proven that is we only
use processes from Newtonian physics, then we do not add any extrateional ability to the computational
devices; for exact formulations and proofs, see, e.g., Gandy [8, 9].

The only feature of real-life computations that is not present in tedstrd (simplified) models from theoret-
ical computer science iandomness, i.e., the ability to inputruly random data and use them in computations.
This ability has, however, been well analyzed in theoretical computer sciende lartguage of theory of com-
putation, the outside source of data is called an oracle. As early as 1983etBeal. have shown [2] that if we
allow a random sequence as an oracle, and correspondingly reformulate tligodefiof the classes P and NP,
then we can prove that the correspondingly reformulated classes are diffgfrein other words, if we allow
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randomness but restrict ourselves to processes based on Newtonian pimggiddP-hard problems cannot be
solved in feasible (polynomial) time, i.e., NP-hard problems are reafiactable.

What if we use non-traditional physical and engineering ideas in comgter design? Since we seem not to be
able to avoid the unrealistic exponential time with traditionalywdmian-physics-based computers, a question
naturally appears: what if in the future, we will fimn-Newtonian processes; will then NP-hard problems still
be intractable? This question was first formulated by G. Kreisel [26].

Traditional computers use discrete-oriented deterministic processemrahspace and time. In reality, phys-
ical processes are (1) continuous, (2) non-deterministic (as descritipcabyum mechanics), and (3) they occur
in non-traditional (curved) space-time. So, to describe how usingiadditphysical processes will help in
computations, we must consider how these three factors (adding nemaildsm and taking curvature into con-
sideration) change our computational abilities.

Non-Newtonian processes of first type: Use of physical field& physical terms, computational devices (Tur-
ing machines, computers, etc.) can be described as follows: at some initimhof timet,, we set up the
initial state of the device; we set up the design of the computationatele such a way the dynamics of this
device follows the desired pattern, and then, at some moment of tweextract the result of the computations
from the state of the computational device at this monment

Traditional computational devices consist of discrete cells, and the dgaaescribes how the states of these
cells change with time. According to modern physics, the world contaihemly discrete objects and processes,
it also contains continuous processes. Crudely speaking, according wrmuolalysics, the world consists of
particles and fields. (Crudely speaking, because, according to quantum mechaeaigsparticle can also be
viewed as a field, and every field can also be viewed as an infinite collectionticlg®s e.g., an electromagnetic
field is a collection of photons.) What can we achieve if we use such cantimrocesses (fields) in computation?

The state of a field at a given moment of timeés characterized by the valug$z, ¢,) of this field at different
pointsZ. Setting up an initial state is usually possible: if someone providesth a computable functiofZ, o)

and a given accuracy > 0, then we are usually able to implement a stﬁ({é’, to) that ise-close tof (%, to),
i.e., e.g., for which f(Z, to) — f(Z,t0)| < e. The dynamics of a physical fielf(Z, t) is usually described by a
partial differential equation (PDE). So, the crucial question is: if thegial statef (%, o) is computable, and if
it changes according to a physical PDE, will the resulting sféi&¢) still be computable?

For many physical PDEs, the valyg#,t) of the field f in a future moment of time can be expressed
by an explicit integral formula in which the integral right-handesidepends on the current state of this field
f(#,0). The corresponding integral operator is usually computable, in treegbat if the original staté(z, ¢o)
is computable, then the resulting stgi{e, ¢) is computable as well; relevant theorems are proved, e.g., in Pour-El
et al. [40].

For some physical PDEs, howevél,Z,t) can be described as an integral depending both on value of the
function f(%,ty) and on the values of its spatial derivatives. So, if we start with a fancf{z, ¢y) that is
computable, but whose (spatial) derivatives are not computable, we maypenithua non-computable value
f(&,t). This was shown by Pour-E al. in [39] (see also Beeson [1], Ch. 15, and PoueBEdl. [40]). This
result generalizes a theorem proved by Aberth in 1971 and rediscovered ifePaiwa- [38].

This result is very interesting and encouraging, but this result doasauessarily mean that we have found a
way to compute a function that is not computable on a nhormal computeh@efully, that we can solve some
NP-hard problems in reasonable time). Indeed, to be able to do that, wd meed to find a way to implement
the initial conditions with a non-computable derivative and it i$ dear how we can do that; for a detailed
discussion, see, e.g., [27, 46].

In other words, it is not clear whether the use of continuous physicalgsses can help in solving NP-hard
problems. A more definite possibility of solving NP-hard probleastfcomes from the other two aspects of
physical processes: non-deterministic processes and processes in ritonab@urved) space-time.

Non-Newtonian processes of second type: Quantum processes (adding fd&terminism). We have already
mentioned that quantum computers can solve several useful problemdacli&gng integers — faster than non-
guantum ones; see, e.g., [36]. It may be possible to use them fongdii-hard problems. Several such
“hypothetic” schemes — using quantum field theory — have been proposeddgriran, Kitaev, etc.

We propose to use one more phenomenon: namely, some potentialyable dependencies between physi-
cal quantities become not only non-smooth but even discontinuasge ttases have been summarized in a recent
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monograph [11]. From the computational viewpoint, this seems #m ¢ipe doors to the possibility of checking
whether a given real number is equal to 0 or not, something that the hattitgem explicitly prohibits us from
doing for normal (non-quantum) computing. We are therefore plantainvestigate the possibility of using this
new opportunity in actual computing. Our preliminary results areqoresd in [15].

Non-Newtonian processes of third type: Using curved space-time for compations. If we allow heavily
curved space (e.g., semi-closed black holes, we can get the results fastetaf ivetke area where the curvature
is strong and time goes slower, and let the computations be dond®(gsie, e.g., Morgenstethal. [23, 34]);
then, we will even be able to compute NP-hard problems in polynomia.ti

A similar speed-up can be obtained if we assume that our space-time is blp§tia, 23, 34].

Previously described non-Newtonian processes relate to well-recognigsitgtbut there are other physical
theories that describe possible but not universally accepted physics. Wamatral physical theories have led
to the appearance of closed timelike curves, the possibility to go badaké Suffice it to say that one of the
main ideas which helped R. Feynman to develop a modern version of quargcimodi/namics was the idea of
positrons as electrons going back in time [7]. Until the late 198G=sd possibilities were largely dismissed by
mainstream physics as mathematical artifacts which cannot lead to actual going biac. ironly when Kip
Thorne, the world’s leading astrophysicist, published several papesausal solutions iphysical Reviews, the
topic became more mainstream.

Reasonable solutions with causal anomalies were discovered in many phlsigcaés. For example, in
general relativity, the curved space-time generated by a sufficiently magtiivees that rotates sufficiently fast
contains a closed timelike curve (causal anomaly). In string theory, aythieat describes elementary particles
as non-point objects (“strings”), seemingly interactions between sudilparsometime lead to the possibility to
influence the past (i.e., to a causal anomaly). It was also shown that modenological theories, in which the
current cosmological expansion is preceded by a short period of expalhefast growth (“inflation”), also lead
to the possibility of a causal anomaly. An interested interested can findietiaded description of these causal
anomalies, e.g., in book [42] and in the papers referenced in this book.

The main obstacle to accepting acausal phenomena used to be paradoxes assobitited twitvel. These
paradoxes can be illustrated on a commonsense example of a “father paradm€ taveler can go to the past
and kill his father before he himself was conceived, thus creating a paratiexactepted solution to the acausal
paradoxes can also be illustrated on the “father paradox” example: sincenth&diveler was born, this means
that some unexpected event prevented him from killing his father. May@iceman stopped him, maybe his
gun malfunctioned. Even if the time traveler takes care of all such prolesieliyts, there are always events with
small probability — like a meteor falling on the traveler's head — whichnoamll be avoided. Thus, all we will
achieve if we try to implement a paradox is that some event with a veryptoWwability will occur.

There are several ways to use acausal processes in computing. The trivial wdgtia computer run a long
program for whatever it takes and then send the results back in time. Aildaswray of saving time is similar
to quantum “computing without computing” — speeding up without attualing time machines. This method
was originally proposed in [22]; see also [21, 31, 33]. This metlsagliated to the above solution to the father
paradox. Indeed, to solve, e.g., a propositional satisfiability pralwithn variables, we generaterandom bits
and check whether they satisfy a given formula; if not, we launch a time mac¢hat is set up to implement a
low-probability event (with some probabilifyy < 1). Nature has two choices: either it generategariables
which satisfy the given formula (probability of this2s™), or the time machine is used which leads to an event
with a probabilityp,. If 27 > pg, then statistically, the first event is much more probable, and sopth&on
to the satisfiability problem will actually be generated without the aatgalof a time machine.

(On the other hand, maybe the other outcome is that the universestilipravel and all existence will cease

)

Yet another possibility: Gell-Mann’s approach to complex systemsln several papers and in his book [10],
a Nobelist physicist M. Gell-Mann suggests that our difficulties ircdbsg the dynamics of complex systems
can be resolved if we assume that the true physical equations actuallgityxpldntain Kolmogorov complex-
ity of the described system. In [25], we show that a natural physicaloagprindeed leads to new equations
which are equivalent to an explicit incorporation of Kolmogorov comitye Since Kolmogorov complexity is
not computable (see, e.g., [28]), the possibility described by Galvé hypothesis can be used to speed up
computations.
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