
THE CARMICHAEL NUMBERS UP TO 1015R.G.E. PinchDepartment of Pure Mathematics and Mathematical Statistics,University of Cambridge30 September 1992Abstract. There are 105212 Carmichael numbers up to 1015: we describe the calcula-tions. The numbers were generated by a back-tracking search for possible prime factorisa-tions, and the computations checked by searching selected ranges of integers directly usinga sieving technique, together with a \large prime variation".0. Introduction.A Carmichael number N is a composite number N with the property that for everyx prime to N we have xN�1 � 1 mod N . It follows that a Carmichael number N mustbe square-free, with at least three prime factors, and that p� 1 j N � 1 for every primep dividing N : conversely, any such N must be a Carmichael number.For background on Carmichael numbers we refer to Ribenboim [24] and [25]. Previoustables of Carmichael numbers were computed by Pomerance, Selfridge and Wagsta�[23], Jaeschke [13], Guillaume [11], Keller [14] and Guthmann [12]. Yorinaga [28] alsoobtained many Carmichael numbers.We have shown that there are 105212 Carmichael numbers up to 1015, all with atmost 9 prime factors. Let C (X) denote the number of Carmichael numbers less thanX; let C (d;X) denote the number with exactly d prime factors. Table 1 gives the valuesof C (X) and C (d;X) for d � 9 and X in powers of 10 up to 1015.We have used the same methods to calculate the smallest Carmichael numbers withd prime factors for d up to 20. The results are given in Table 2.It has recently been shown by Alford, Granville and Pomerance [1] that there arein�nitely many Carmichael numbers: indeed C (X) > X2=7 for su�ciently large X.Their proof is described by Granville [10].1. Some properties of Carmichael numbers.In this section we gather together various elementary properties of Carmichael num-bers. We assume throughout that N is a Carmichael number with exactly d primefactors, say, p1; : : : ; pd in increasing order.1991 Mathematics Subject Classi�cation. Primary 11Y99; Secondary 11A51,11Y11.Typeset by AMS-TEX1



2 R.G.E. PINCHProposition 1. Let N be a Carmichael number less than X.(1) Let r < d and put P = Qri=1 pi. Then pr+1 < (X=P )1=(d�r) and pr+1 is primeto pi � 1 for all i � r.(2) Put P = Qd�1i=1 pi and L = lcmfp1 � 1; : : : ; pd�1 � 1g. Then Ppd � 1 mod Land pd � 1 divides P � 1.(3) Each pi satis�es pi < pN < pX.Proof. Parts (1) and (2) follow at once from the fact that pi�1 divides N�1 for each i.For part (3), consider the largest prime factor pd. From (2), N = Ppd and pd�1 j P�1,so that pd < P . But now p2d < Ppd = N . �Proposition 2. Let P = Qd�2i=1 pi. There are integers 2 � D < P < C such that,putting � = CD � P 2, we have(1) pd�1 = (P � 1)(P +D)� + 1;(2) pd = (P � 1)(P + C)� + 1;(3) P 2 < CD < P 2�pd�2 + 3pd�2 + 1� :Proof. For convenience we put q = pd�1 and r = pd. We have r � 1 j Pq � 1 andq � 1 j Pr � 1; say D = Pq � 1r � 1and C = Pr � 1q � 1 :Since q < r we have D < P < C and since Pq 6= r we have D 6= 1, that is, D � 2.Substituting for r we have P �Pq � 1D + 1�� 1 = C (q � 1)and so CD(q � 1) = P 2q � P + PD �D:Putting � = CD � P 2, we have�(q � 1) = (CD � P 2)(q � 1) = P 2 � P + PD �D = (P � 1)(P +D):So � > 0 and q = (P � 1)(P +D)� + 1;



THE CARMICHAEL NUMBERS UP TO 1015 3similarly r = (P � 1)(P + C)� + 1:Now q � pd�2 + 2 and D < P , sopd�2 + 1 � (P � 1)(P +D)� < 2P 2� ;giving CD � P 2 < P 2� 2pd�2 + 1�whence CD < P 2�pd�2 + 3pd�2 + 1� ;as required. �Corollary. There are only �nitely many Carmichael numbers N = Qdi=1 pi with agiven set of d� 2 prime factors p1; : : : ; pd�2. �Parts (1) and (2) of Proposition 2 are contained in Satz B(e) of Kn�odel [15]. TheCorollary was obtained by Beeger [2] for the case d = 3 and by Duparc [9] in general.Proposition 3. Let P =Qd�2i=1 pi. Then(1) pd�1 < 2P 2;(2) pd < P 3:Proof. We use Proposition 2. Putting � � 1 and D < P in (1) we have pd�1 <(P � 1)(2P ) + 1 < 2P 2. Putting D � 2 and pd�2 � 3 in (3) we have C � 3P 2=4:substituting this in (2) we have pd < P 3, as required. �A slightly stronger form of this result was obtained by Duparc [9].2. Organisation of the search.Assume throughout that N is a Carmichael number less than some pre-assignedbound X and with exactly d prime factors. We obtain all such N as lists of primefactors by a back-tracking search.We produce successive lists of p1; : : : ; pd�2 by looping at each stage over all the primespermitted by Proposition 1(1).At search level d� 2 we put P = Qd�2i=1 pi. If P is small enough then we proceed byusing Proposition 2, looping �rst over all D in the range 2 to P � 1 and then over all Cwith CD satisfying the inequalities of Proposition 2(3). For each such pair (C;D), wetest whether the values of pd�1 and pd obtained from 2(1) and 2(2) are integral and, ifso, prime. Finally we test whether N � 1 is divisible by pd�1 � 1 and pd � 1.



4 R.G.E. PINCHIf the value of P at level d� 2 is large then we loop over all values of pd�1 permittedby Proposition 1(1) and Proposition 3(1). Now put L = lcmfp1 � 1; : : : ; pd�1 � 1g.The innermost loop runs over all primes p with Pp � 1 mod L for which p� 1 dividesP � 1 and which satisfy the bounds of Propositions 1(3) and 3(2). Such p are possiblepd.This innermost loop is speeded up considerably by splitting the range of such p intotwo parts. For small values of p we compute P 0 with PP 0 � 1 mod L and let p run overthe arithmetic progression of numbers congruent to P 0 mod L, starting at the �rst termwhich exceeds pd�1. For each such p we test whether p is prime and p�1 divides P �1.For large values of p we run over small factors f of P � 1. Putting p = (P � 1)=f + 1we then test whether Pp � 1 mod L and p is prime.We note that testing candidates for pi for primality is required at every stage of thecalculation. We found that precomputing a list of prime numbers up to a suitable limitproduced a considerable saving in time.Finally we note that using Proposition 1(3) ensures that, in the range up to 1015, thecandidate pi are all less than 225, so that 32-bit integer arithmetic is always su�cient.3. Checking ranges by sieving.We used a sieving technique to verify that the list of Carmichael numbers producedby the method of Section 2 was complete in certain ranges.Suppose that we wish to list those Carmichael numbers in a range up to X whichare divisible only by primes less than Y . We precompute the list L of primes up toY . We form a table of entries for the integers up to X; for each p in L we add log pinto the table entries corresponding to numbers t with t > p, t � 0 mod p and t � 1mod (p � 1): that is, t � p2 and t � p mod p(p � 1). At the end of this process weoutput any N for which the table entry is equal to logN . Such an N has the propertythat N is square-free, all the prime factors p of N are in L and that N � 1 mod (p�1)for every p dividing N : that is, N is a Carmichael number whose prime factors are allin L.From Proposition 1(3), it is su�cient to take Y = pX to obtain all the Carmichaelnumbers up to X.The time taken to sieve over all the numbers up to X will be bounded byX + Xp�Y � Xp(p� 1)� � X +XXp 1p(p� 1) = O (X);which is an improvement over a direct search for Carmichael numbers1 but still consid-erably slower in practice than the search technique.We therefore consider a \large prime variation". After sieving with Y = X 13 , we usea further technique to deal with those Carmichael numbers which have a prime factor qgreater than X 13 . For each prime q in the range X 13 to X 12 , we consider all numbers Pin the range q < P � X=q which satisfy P � 1 mod (q � 1). For each such P we �rsttest whether �2P �q � 2 mod P . If so, N = Pq is a Fermat pseudo-prime to base 2 and1Testing the condition 2N�1 � 1 mod N for all N up to X would take time O (X logX).



THE CARMICHAEL NUMBERS UP TO 1015 5hence a candidate to be a Carmichael number. The number of P tested at this stage isXX 13<q<X 12 Xq(q � 1) = O�X 23�:Let CX denote the number of P which pass on to the second stage. We next factorisesuch P , checking that the primes p dividing P are distinct, less than q and have theproperty that N � 1 mod (p � 1). If so, then N is a Carmichael number with q aslargest prime factor. The time taken to perform the second stage, using trial division, isO�pP=q� = O�X 13� for each value of P coming from a given prime q, so O�CXX 13�in total. Hence the total time taken for the large prime variation is O�X 23 + CXX 13�.Since CX is noticeably smaller than X 23 , the large prime variation gives an improvementovert the estimate in the previous paragraph.4. Comparison with existing tables.Carmichael in his original paper [3] gave four examples with three prime factors andlater [4] a further ten examples with three prime factors and one example with fourprime factors. Swift [26] described a computation of the Carmichael numbers to 109,searching over possible lists of prime factors, and discusses earlier tables. Yorinaga[28] gave examples of Carmichael numbers with up to 15 prime factors. Pomerance,Selfridge and Wagsta� [23] listed the Fermat pseudoprimes base 2 up to 25:109, andselected the Carmichael numbers from this list by testing the prime factors. Jaeschke[13] computed the Carmichael numbers up to 1012 by a search strategy. These results aresummarised by Ribenboim [24,25]. Guillaume [11] computed the Carmichael numbersup to 1012 using a method similar to the \large prime variation". Keller [14] obtainedthe Carmichael numbers up to 1013 by a search strategy and Guthmann [12] used asieving method very similar to that of Section 3 on a vector computer to obtain theCarmichael numbers up to 1014.Our results are consistent with the statistics of the computations described abovewith two exceptions. Jaeschke [13] reports three fewer Carmichael numbers up to 1012.He has stated2 that this discrepancy is due to his computer program having terminatedprematurely when testing numbers very close to the upper bound of the range. Keller[14] reports one less Carmichael number up to 1013. He has stated3 that this was missedby a book-keeping error.We have further checked our tables by extracting the Carmichael numbers from thetables of Fermat pseudoprimes base 2 of Pomerance, Selfridge and Wagsta� [23], andPinch [20]. Morain has checked our tables up to 1012 against those of Guillaume. Ineach case there is no discrepancy.Keller has recently veri�ed the computation up to 1015 by a di�erent method.5. Description of the calculations.We ran the search procedure of Section 2 with upper limits of X = 10n for each valueof n up to 15 independently. As a consequence the list of Carmichael numbers up to2Letter dated 21 January 19923Electronic mail dated 5 May 1992



6 R.G.E. PINCH1014 was in e�ect computed twice, that up to 1013 three times and so on. The computerprograms were written in C, using 32-bit integer arithmetic, and run on a Sun 3/60 ora Sparc workstation. As a check, both on the programs and the results, some of theruns, including all those up to 1012, were duplicated using the rather strict Norcroft Ccompiler on an IBM 3084Q mainframe. A total of about 200 hours of CPU time wasrequired. All the results were consistent.The sieving process of Section 3 turned out to be too expensive to run over the wholerange up to 1015. We therefore applied the sieving technique to various sub-ranges.As a preliminary check, we ran the \large prime variation" for Carmichael numbersup to 1012 with a prime factor between 104 and 106, and for Carmichael numbers up to1015 with a prime factor between 105 and 107:5. The lists matched those found by thesearch process: there were 2347 such numbers in the list up to 1012 and 4245 in the listup to 1015. These checks took about 100 hours of CPU time on a Sun 3/60 workstation.In order to check our results against those of [13], we carried out the sieve for therange 1012 � 1010 to 1012 using primes up to 105. The search method had previouslyfound 24 Carmichael numbers in this range, 20 having all prime factors less than 105.The sieve found these 20 as expected, and the run of the large prime variation for thisrange had already found the other four. This check took about 20 hours of CPU timeon a Sparc workstation.The sieving method was run up to 1012 with a set of primes including those up to106 as part of the calculations in Pinch [20].We also used the sieve on a number of randomly chosen intervals of length 106 up to1015. In each case the results were again consistent with the results of the search.6. Statistics.Let C (X) denote the number of Carmichael numbers less than X, and C (d;X)denote the number which have exactly d prime factors. In Table 1 we give C (d;X) andC (X) for values of X up to 1015. No Carmichael number in this range has more than9 prime factors. We have C �1015� = 105212.In Table 2 we give the smallest Carmichael number with d prime factors for d up to20.In Table 3 we tabulate the function k(X), de�ned by Pomerance, Selfridge andWagsta� [23] by C (X) = X exp��k(X) logX log log logXlog logX � ;and the ratios C (10n)=C �10n�1� investigated by Swift [26]. Pomerance, Selfridge andWagsta� [23] proved that lim inf k � 1 and suggested that lim supk might be 2, althoughthey also observed that within the range of their tables k(X) is decreasing. This decreaseis reversed between 1013 and 1014; Swift's ratio, again initially decreasing, also increasesagain before 1015. Pomerance [21,22] gave a heuristic argument suggesting that limk =1. In Table 4 we give the number of Carmichael numbers in each class modulo m form = 5, 7, 11 and 12.In Tables 5 and 6 we give the number of Carmichael numbers divisible by primes pup to 97. In Table 5 we count all Carmichael numbers divisible by p: in Table 6 we



THE CARMICHAEL NUMBERS UP TO 1015 7count only those which p is the smallest prime factor. The largest prime factor of aCarmichael number up to 1015 is 21792241, dividing949803513811921 = 17 � 31 � 191 � 433 � 21792241;and the largest prime to occur as the smallest prime factor of a Carmichael number inthis range is 72931, dividing651693055693681 = 72931 � 87517 � 102103:It is well-known that the probability, PR(N), say, of an odd composite N passingthe Rabin test for a random base modulo N is at most 14 : it is easy to show that thisbound is achieved if and only if N is a Carmichael number with exactly three primefactors, all � 3 mod 4: call this class C3. McDonnell [18] showed that if PR(N) � 1164for N � 11 then N 2 C3, or else one of 3N +1, 8N +1 is a square. (Damg�ard, Landrockand Pomerance [5,6] prove a similar result for PR(N) > 18 .) Numbers in C3 are alsothose for which Davenport's \maximal 2-part" re�nement [7] gives no strengthening ofthe Rabin test. There are 487 C3-numbers up to 1015 and 868 up to 1016, the �rst being8911 = 7 � 19 � 67.Lidl, M�uller and Oswald [16,17,19] characterize a strong Fibonacci pseudoprime as aCarmichael number N = Q pi with one of the following properties: either (Type I) aneven number of the pi are � 3 mod 4 with 2(pi + 1) j N � 1 for the pi � 3 mod 4 andpi + 1 j N � 1 for the pi � 1 mod 4; or (Type II) there is an odd number of pi, all � 3mod 4, and 2(pi + 1) j N � pi for all pi. (A strong Fibonacci pseudoprime is termeda strong (�1)-Dickson pseudoprime in [19].) They were not able to exhibit any suchnumbers. We found just one Type I strong Fibonacci pseudoprime up to 1015, namely443372888629441 = 17 � 31 � 41 � 43 � 89 � 97 � 167 � 331;and none of Type II. This also answers the question of Di Porto and Filipponi [8].Williams [27] asked whether there are any Carmichael numbers N with an odd num-ber of prime divisors and the additional property that for p j N , p+ 1 j N + 1. Thereare no such Carmichael numbers up to 1015.Finally we note that C (274859381237761) = 65019 gives the smallest value of X forwhich C (X) > X 13 .7. Acknowledgements.The author is grateful to D. Guillaume, W. Keller, F. Morain and W. M�uller forhelpful discussions and for providing preprints and details of unpublished work. Thanksare also due to Prof. S.S. Wagsta� jr for providing a �le containing the tables describedin [23] and to the referee of the �rst version of this paper for valuable comments.References1. W.R. Alford, A. Granville and C. Pomerance, There are in�nitely many Carmichael numbers,Preprint 3 April 1992.2. N.G.W.H. Beeger, On composite numbers n for which an�1 � 1 mod n for every a prime to n,Scripta Math. 16 (1950), 133{135.
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THE CARMICHAEL NUMBERS UP TO 1015 9dX 3 4 5 6 7 8 9 total3 1 0 0 0 0 0 0 14 7 0 0 0 0 0 0 75 12 4 0 0 0 0 0 166 23 19 1 0 0 0 0 437 47 55 3 0 0 0 0 1058 84 144 27 0 0 0 0 2559 172 314 146 14 0 0 0 64610 335 619 492 99 2 0 0 154711 590 1179 1336 459 41 0 0 360512 1000 2102 3156 1714 262 7 0 824113 1858 3639 7082 5270 1340 89 1 1927914 3284 6042 14938 14401 5359 655 27 4470615 6083 9938 29282 36907 19210 3622 170 105212Table 1. The number of Carmichael numbers with d prime fac-tors up to 1015



10 R.G.E. PINCHd Nfactors3 5613.11.174 410417.11.13.415 8252655. 7.17.19.736 3211971855.19.23.29.37.1377 53948268017.13.17.23.31.67.738 2322506196017.11.13.17.31.37.73.1639 97463477721617.11.13.17.19.31.37.41.64110 143669783129544111.13.19.29.31.37.41.43.71.12711 609778173989967855. 7.17.19.23.37.53.73.79.89.23312 715685770040313744111.13.17.19.29.37.41.43.61.97.109.12713 179156281066258576752111.13.17.19.31.37.43.71.73.97.109.113.12714 876749699362348213776017.13.17.19.23.31.37.41.61.67.89.163.193.24115 655313092675200603148176111.13.17.19.29.31.41.43.61.71.73.109.113.127.18116 159023123104317837695169840117.19.23.29.31.37.41.43.61.67.71.73.79. 97.113.19917 3523786921171888954731064224113.17.19.23.29.31.37.41.43.61.67.71.73. 97.113.127.21118 3280942684035956499117717275424113.17.19.23.29.31.37.41.43.61.67.71.73. 97.127.199.281.39719 281086456263536842600526814261600113.17.19.23.29.31.37.41.43.61.67.71.73.109.113.127.151.281.35320 34940751534228743505060320471958720111.13.17.19.29.31.37.41.43.61.71.73.97.101.109.113.151.181.193.641
Table 2. The smallest Carmichael numbers with d prime factors,3 � d � 20



THE CARMICHAEL NUMBERS UP TO 1015 11n k (10n) C (10n)=C �10n�1�3 2:933194 2:19547 7:0005 2:07632 2:2866 1:97946 2:6887 1:93388 2:4418 1:90495 2:4299 1:87989 2:53310 1:86870 2:39611 1:86421 2:33012 1:86377 2:28613 1:86240 2:33914 1:86293 2:31915 1:86301 2:353

Table 3. The functions k (10n) and C (10n)=C �10n�1�



12 R.G.E. PINCHm c 25:109 1011 1012 1013 1014 10155 0 203 312 627 1330 2773 58141 1652 2785 6575 15755 37467 901672 82 154 327 702 1484 30483 102 172 344 725 1463 30594 124 182 368 767 1519 31247 0 401 634 1334 2774 5891 126911 1096 1885 4613 11447 28001 691312 105 186 432 967 2109 45993 152 232 496 1055 2178 47074 129 211 450 985 2122 45925 138 222 454 1033 2224 47776 142 235 462 1018 2181 471511 0 335 547 1324 3006 7032 165631 640 1131 2770 6786 16548 408912 139 217 473 1068 2361 53383 142 220 457 1045 2348 53194 104 187 442 1026 2317 52615 152 243 466 1066 2370 53166 116 198 440 1061 2400 53847 122 195 458 1023 2223 51658 129 222 475 1107 2450 54499 131 218 465 1042 2285 517910 153 227 471 1049 2372 534712 1 2071 3462 7969 18761 43760 1034283 0 0 1 2 2 55 20 32 64 124 228 4487 47 75 147 289 547 10279 25 36 60 103 165 29411 0 0 0 0 4 10

Table 4. The number of Carmichael numbers congruent to cmodulo m for m = 5; 7; 11; 12



THE CARMICHAEL NUMBERS UP TO 1015 13p 25:109 1011 1012 1013 1014 10153 25 36 61 105 167 2995 203 312 627 1330 2773 58147 401 634 1334 2774 5891 1269111 335 547 1324 3006 7032 1656313 483 807 1784 3998 9045 2075817 293 489 1182 2817 6640 1601919 372 608 1355 3345 7797 1863823 113 207 507 1282 3135 771629 194 336 832 2094 5158 1272131 335 571 1320 3086 7270 1738237 320 535 1270 2926 6826 1622041 227 390 1001 2418 5896 1434443 184 296 772 1920 4663 1159447 53 80 199 492 1223 287353 92 160 351 813 2041 514359 26 41 92 262 644 161161 269 453 1075 2542 6047 1442967 110 178 407 1063 2540 630671 104 194 521 1320 3351 854673 198 348 849 2145 4925 1192979 64 107 247 686 1728 431883 14 24 56 137 340 83889 68 131 320 788 1951 498197 123 193 495 1277 3123 7594Table 5. The number of times a prime p � 97 occurs in a Car-michael number



14 R.G.E. PINCHp 25:109 1011 1012 1013 1014 10153 25 36 61 105 167 2995 202 309 624 1325 2765 57977 364 579 1218 2557 5461 1187411 263 428 1071 2509 5979 1439713 237 431 1058 2462 5699 1351417 117 206 496 1318 3244 811419 152 244 532 1401 3358 814123 37 78 207 535 1360 331729 55 103 284 729 1822 465931 101 168 390 876 2116 515337 60 95 219 551 1401 341841 35 68 171 414 1092 273643 35 65 168 403 943 230847 14 16 36 81 195 45953 19 30 55 147 363 97359 2 4 11 43 100 27261 34 58 148 364 851 197867 8 18 50 123 317 81571 15 25 66 161 389 97973 14 28 68 175 406 101579 4 10 17 66 175 46783 1 1 4 8 39 7989 10 16 23 55 148 40997 10 20 50 106 261 606Table 6. The number of times a prime p � 97 occurs as the leastprime factor of a Carmichael numberUniversity of Cambridge, Department of Pure Mathematics and Mathematical Statis-tics, 16 Mill Lane, Cambridge CB2 1SB, U.K.E-mail address: RGEP @ PHX.CAM.AC.UK


