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1 IntrodutionFor over two deades, �nite model theorists have looked at relational databases as rela-tional strutures. After all, if relational databases were relational strutures, then thelogis of �nite model theory should be helpful in understanding relational databases.This approah seemed justi�ed by the identi�ation of ertain logis (assisted by variousgadgets) with traditional omputational omplexity lasses, e.g., NP with �11 in [F74℄,PTIME with the Least Fixed Point logi (with suessor) of [Mo74℄ and [AhU79℄ in [I86℄and [V82℄, and the various additional identi�ations in [I87℄ and elsewhere. In a ertainsense, the logis of �nite model theory seem to desribe the power of database querysystems fairly well. But there are ompliations.The primordial logi of �nite model theory is First Order logi (FO), the basi logi oflassial model theory. In addition, positive existential FO logi is the logi orrespondingto Strutured Query Language (SQL) | and if you added negation to SQL, the orre-sponding logi is FO itself (see [AbiHV95℄). But there are at least two problems with FOfrom an algorithmi point of view:� There is a lassial problem: FO is unable to express reursion, and (thus) annotexpress popular queries like reahability in graphs.� As [Gu97℄ points out, quanti�ation in FO logi is too easy ompared with exhaus-tive searhes through databases.Notie that the seond problem is not about the power of quanti�ation | database querysystems are usually allowed to searh through an entire database, given time to do so |but that it is done in a single, innouous step that too easily sweeps the omplexitiesunder the rug. It might be helpful to have a logi that aptures the desriptive andomputational omplexity of database queries more preisely.In this artile, we will develop suh a preise logi, and ompare the time omplexityof algorithms in this more preise logi with that of lassial �xedpoint logi.
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1.1 The Notion of GuardsIn this artile, we propose an approah for dealing expliitly with the the seond prob-lem (the omplexity of quanti�ation) and thus impliitly with the �rst (the need forreursion). We will develop a Least Fixed Point (LFP) logi using a system of guardssimilar to those of [Com83℄ and [AnBN96℄. As LFP has reursion built into it, we willbe able to deal expliitly with issues involving reursion. And as the guards provide aplausible restrition on quanti�ation, we will be able to look at issues arising from suhrestritions. In addition, we will follow the approah of [M95a℄ in using Hintikka type se-mantis for games to desribe omputations, and we will �nd that these \Eloise-Abelard"(or \Angel-Demon" or \Assertor-Denier") orrespond to this guarded LFP logi.Here are two motivating images.I. The original motivating image of [AnBN96℄ is that of a universe of many worlds,appropriate for a modal-type logi. From a partiular world, only some other worldsare aessible, and those worlds are the ones that a \guard relation" permits one to goto. The two basi quanti�ations of modal logi, \� = it is neessary that ..." and\� = it is possible that" an be represented as universal and existential quanti�ations,respetively, over the worlds aessible from the urrent world. This motivational imagehas been developed further in the work of [GraW99℄, et.Guards have been used in modal-type logis elsewhere, e.g., in the ommuniation,proess, and game logis. And we are very interested in games in this paper.The onnetion between games and logi goes bak to Peire (see [Hil82℄), but the ideawas popularized by suh works as [Hin72℄ (see [HiS97℄), [Mo72℄ and [A75℄. Suppose thatwe have a two-player game of perfet information, and we want to assert that one or theother player has a winning strategy. We an use the guards to indiate the legal moves,with additional relations to indiate whose turn it is, and, if the game is over, who has won.Then \Player E has a winning strategy" is an assertion that an be expressed in a \gamelogi." \Game logis" were explored for their own sake in [Pa85℄, but also for the sakeof studying validity in [Pl81℄, [He94℄, [BaW98, II.14℄, et. and for the sake of studyingommuniation and proesses in [AbaLW89℄, [Mo91℄, [Mi99℄, et. (see [FHMV95℄).4



In this artile, we will explore a framework for studying many kinds of two-playergames of perfet information. In suh a game, there might be several piees to move, withone player trying to get the piees into one kind of on�guration, and the other trying toprevent the �rst player from winning. (Imagine a game of Chess, in whih White wantsto win, while Blak would be satis�ed with a draw.) Most board games have some kindof bounds on the legal moves, and we will use guard relations to bound the range of legalmoves.As the games may go on inde�nitely, we will be spending muh of our time on �xedpoints. Assertions about who wins in a two-player game in a Modal-type game logi anbe naturally expressed in �xed point logis (see, e.g., [BarM96, IV.12℄). And this leadsus loser to another motivating image.II. Imagine a simple-minded data storage devie, in whih we ould store, say, adigraph. Imagine that hashing is not an issue. There are at least two naive ways oneould store the digraph.� We might store the digraph by putting the names of the verties into registers of thedevie, and assigning, for eah ar, a register with two pointers (one for the soureand one for the sink).� We ould store an edge by having a pointer to the sink's register in the the soure'sregister. This approah would take less spae than the �rst, but would impose anupper bound on the outdegrees of the verties.(There are other options as well.) Then we naively imagine the CPU following pointersas it navigates through the database. The relation onsisting of all these navigationalpointers might be alled the guard relation.Now for a ompliation. One problem with the CPU metaphor is that navigationthrough the digraph requires the digraph's own ars, whih might be distributed unhelp-fully (e.g., if the digraph is not onneted, one ould be ut o� from some of the digraph).In some of the extant guarded quanti�ation literature, there are several relations, and inthis paper we expliitly distinguish relations used for omputations (i.e., guard relations)from database relations (i.e., relations representing the inputted struture). Returning to5



the game metaphor, we have some relations | the guard relations | used for moves,and some relations | the database relations | used at the end of the game to determinewho won. In both metaphors, the guard relations do not represent any part of the inputstruture in itself; they are used for omputations only.In the �rst, modal-type, motivational image, the guard relation is an integral part ofthe struture. This is typial of the usual versions of \guarded quanti�ation." In theseond, database-style, motivational image, the guard relation must merely satisfy ertainutilitarian riteria (onnetivity, perhaps it enables some arithmeti, et.).The logial devie that we will use to desribe this \guarding" is a generalization ofthe \bounded quanti�ation" of lassial reursion theory (see [Ro67℄) and desriptive settheory (see [Mo80℄). Suh restritions on quanti�ation entered �nite model theory withthe \onneted quanti�ation" of [Com83℄, whih investigated the speial preservationproperties of FO sentenes whose guards were atually edge relations of graphs. We believethat an investigation of guarded quanti�ation, looking at various kinds of guards, willenable us to disset the notion of quanti�ation itself. We are separating out the propertiesof quanti�ation over immediate neighbors from \global" quanti�ation (iover the entirestruture), and we hope to �nd whih properties of quanti�ation are preserved.In this paper, we will look at suh a variant of what [AnBN96℄ alled the ThirdFragment: a `guarded' version of FO itself. This notion of \guarded quanti�ation"will be more relaxed than the one urrently most popular in �nite model theory, as themotivation is di�erent. (Thus it might be alled \weakly guarded" quanti�ation.) Andwe will develop a guarded Least Fixed Point logi (a guarded version of the logi \FO +LFP"), in whih some of the work of the quanti�ation is represented by reursions onthe guarded quanti�ations.1.2 Outline of the PaperIn this paper, we will start with a long Setion 2 on how our guarded quanti�ation works,and a desription of guarded LFP logi. We will also look at a tehnial diÆulty thatarises when the guard relation is of arity > 2.In Setion 3, we will reast guarded quanti�ation logi in terms of games, using6



the game-theoreti framework of [M95a℄; this system is a desendent of [Mo72℄ and[HaK84℄, but belongs in the family of games desribed by the Game Theoreti Semantisdeveloped by Hintikka (see [HiS97℄). In suh a game, there are two players, whom wemay romantially all \Eloise" and \Abelard": Eloise is trying to prove that a ertainstatement is TRUE on a given struture, while Abelard is trying to prove that it is FALSE.The rules of a game make up a \game program", and we develop a Datalog-like languageof game programs similar to that of [M95a℄, and we �nd that we an preisely aptureguarded First Order logi (or guarded LFP logi) with these game programs, dependingon whether reursion is permitted.We will ontinue this exploration in Setion 4 by omparing logis with game programs.Thus we get a guarded version of the theorem of [HaK84℄:Theorem 4.2 Guarded FO + positive LFP logi aptures the guarded game logi.In addition, by a oarse measure, there is no hange in expressive power:Theorem 4.3 Assuming an innouous assumption, on �nite strutures, guarded FO +(positive) LFP and unguarded FO + (positive) LFP have the same expressive power.However, we will �nd that using guards inreases time omplexity and, in a mannerthat will prove irritating in [M*℄, spae omplexity as well.2 Guards in LogisIn this setion, we will de�ne the strutures that we will be working on, and the guardedlogis that we will be working with. We will also disuss some of the basi properties ofthese logis on these strutures. We start with a few basi de�nitions, mostly followingthe nomenlature of [Mo74℄; see also [EbF95℄ and [I99℄.De�nition 2.1 A relational database is a tuple D = hD;R1; : : : ; 1; : : :i, where D = jDjis some set (the domain of D, of ardinality kDk), where eah Ri is a relation on D andeah k is a onstant in D.More logial papers all these semanti tuples (relational) elementary strutures. Wewill resort to alling these things strutures when we don't want to think of them as7



databases (in the sense that what they ontain is not so muh information as navigationalguidane for omputation). Notie that we use semiolons to separate the domain from therelations and the relations from the onstants. We will tend to use apital fraktur font (M,D, R, ...) for strutures, apital itali font for sets and relations, and lowerase itali fontfor elements and both apital and lowerase itali font for integers. Let [n℄ = f1; 2; : : : ; ng;let [0℄ = ?.De�nition 2.2 A shema is a tuple � = h(R1; a1); : : : ; 1; : : :i, where eah Ri is asymbol standing for a relation of arity ai, and eah k is a onstant symbol standingfor an element. We say that a database D = hD;RD1 ; : : : ; D1 ; : : :i is of shema � =h(R1; a1); : : : ; 1; : : :i if:� for eah i, RDi � Dai, and� for eah j, Dj 2 D.We say that D is a �-struture.More logial papers all these syntati tuples signatures rather than shemas. Wewill often look at lasses of databases of a ommon shema.Notie that in De�nition 2.1, eah \R" was a relation, while in De�nition 2.2, eah\R" was a symbol for a relation: applied to the database D, \R" is a symbol that anrepresent the relationRD. Usually, we will be sloppy, and not distinguish between symbolsand the objets that they represent.Remark 2.1 In \real life," relational databases are multi-sorted strutures, i.e., theyhave many domains. Thus we would have a database D = hD1; : : : ;R1; : : : ; 1; : : :i, whereeahDh is a domain, eah Ri is a subset of some produt of the domains, and eah onstantj is an element of a domain. The shema would be hanged aordingly. And in \reallife," many databases also have built in funtions. But we will avoid suh omplexitiesin this paper, and merely observe that the de�nitions and theorems an all be generalizedin some natural way. For an introdution to the foundations of database theory, see theartile [Ka91℄, the book [AbiHV95℄, or the tome [U88, 89℄.8



In this paper, we will want to add relations, funtions and onstants to databases (andorresponding symbols to database shema).De�nition 2.3 Given a �-struture M = hD;R1; : : : ; 1; : : :i, and given a relation S �Ds, all (M; S) = hD;R1; : : : ; S; 1; : : :i an expansion of M by adding the relation S, andsay that it is of the expanded shema (�; (S; s)).The nomenlature for adding a onstant is similar, as is the nomenlature for addinga tuple of relations and onstants.2.1 Guarded Quanti�ationIn this setion, we de�ne guarded quanti�ation, and the orresponding �rst order logi.In this paper, the boolean operators ^, _ and : behave as usual. Our version of\guarded quanti�ation" is as follows.First, we expand the database shema � by adding one or more guard relations, whihare of arity at least 2, and some guard onstants, as follows.De�nition 2.4 A guard shema is a tuple � = h(P1; a01); : : : ; d1; : : :i suh that:� eah Pi is a relation symbol, and eah a0i is a positive integer greater than 1: we alla0i the arity of the relation symbol Pi; and� eah dj is a onstant symbol.A guard struture of guard shema � is a tuple R = hD;PR1 ; : : : ; dR1 ; : : :i, where jRj = Dis the domain of the struture, PRi � Da0i for eah i and dRj 2 D for eah j.Again, we will usually not distinguish between guard relations and guard relationsymbols, between guard onstants and guard onstant symbols.Remark 2.2 Notie that tehnially, there is no di�erene between a database shemaand a guard shema: given a tuple out of ontext, we ould not tell whether it was adatabase shema (i.e., whether it ontained input information about the domain) or a9



guard shema (i.e., whether it ontained omputation guidane for the domain). Similarly,out of ontext, we annot di�erentiate between database and guard strutures. But if wekeep them in ontext, we should be able to avoid onfusion.We put the database and guard shemas together so that we an apply them both tothe same domains.De�nition 2.5 Let � = h(R1; a1); : : : ; 1; : : :i be a database shema, and let � = h(P1; a01);: : : ; d1; : : :i be a guard shema. Denote the joint database-guard shema of � and � as:(�; �) = h(R1; a1); : : : ; (P1; a01); : : : ; 1; : : : ; d1; : : :i:Let D = hD;RM1 ; : : : ; M1 ; : : :i be a �-struture and R = hD;PR1 ; : : : ; dR1 ; : : :i a �-struture,both of a ommon domain jDj = jRj = D. Then the joint database-guard struture ofjoint shema (�; �) is the tuple(D;R) = hD;RM1 ; : : : ; M1 ; : : : ;PR1 ; : : : ; dR1 ; : : :i:We will often just all (D;R) a joint struture.We will tend to denote database strutures by the letter D, guard strutures by theletter R, and joint strutures by the letter M. Notie that we distinguish between thedatabase relations and onstants on the one hand, and the guard relations and onstantson the other. On the other hand, we an onsider (�; �) as an expansion of �, and thus(D;R) as an expansion of D, in the sense of De�nition 2.3.De�nition 2.6 Let D be a set of databases of a ommon database shema, and let R bea set of guard strutures of a ommon guard shema. Then R is a guard system for D if,for eah D 2 D, there exists R 2 R suh that jDj = jRj.We now desribe how guarded quanti�ation works. The guard onstants dR1 ; : : : willprovide us with plaes to begin to look during quanti�ations, while the guard relationsPR1 ; : : : will bound our searh. Here is the ritial idea of guarded quanti�ation.10



De�nition 2.7 Fix a domain D and an integer a � 2. Given an a-ary guard relationP � Da and an (a � 1)-tuple x 2 Da�1, and a y 2 D, we say that x aesses y throughP if P (x; y).De�nition 2.8 We de�ne guarded quanti�ation as follows. If P is a guard relation, andx a tuple of variables and guard onstants, and if z is a tuple of variables (inluding y)then (9y: P (x; y))�(z)is the assertion that there exists y suh that P (x; y) and �(z) are both true. Similarly,(8y: P (x; y))�(z)is the assertion that every y satisfying P (x; y) also satis�es �(z).Think of (9y: P (x; y))�(z; y) as 9y[P (x; y) ^ �(z; y) and think of (8y: P (x; y))�(z; y)as 8y[P (x; y)! �(z; y).The simplest lass of guarded formulas are the guarded FO formulas:De�nition 2.9 The guarded FO formulas, whih we denote by FO?, are onstruted asfollows.1. The atomi formulas:� If x is a variable and  is a database onstant, then x =  is a FO? formula. We willregard equality as both a database and a guard relation.� If x is a tuple of variables, and if R is a database relation symbol, then R(x) is aFO? formula.(The idea is this: in order to ask if a tuple x is listed in R, we must have aessed all ofx, and we do not assume that database onstants are automatially aessible. However,given an aessed value, we an ertainly ask if this is in fat the onstant in question.)2. Conjuntions, disjuntions, and negations are de�ned as usual to get: '^ , '_ ,and :'. 11



3. For any FO? formula  , and guard relation P , the formulas(9y: P (x0; y)) (x00; y) and (8y: P (x0; y)) (x00; y)are (guarded quanti�ation) FO? formulas (where x0 is a tuple of variables and guardonstants, while x00 is a tuple of variables). Notie that x00 might be an empty tuple, sothat if x0 onsists of guard onstants alone, we would have a nontrivial FO? formula withno free variables; as usual, suh a formula is alled a sentene. In these formulas we saythat y is bound by the quanti�ation: variables unbound by any quanti�ations are free.Remark 2.3 The above system is a relaxation of the guarded logis in the literature. Hereare the major di�erenes:� We distinguish between guard relations and database relations (and those that areboth). We similarly distinguish between guard onstants and database onstants.� In quanti�ations (Qy: P (x; y)) (x0; y), we permit free variables in x0 that do notour in x. This bit of permissiveness permits us to express notions like \the graphis a 4-lique." (In fat, as we shall see, this permissiveness permits a great deal.)� Some guarded quanti�ation logis have, instead of a single atomi formula servingas a guard, a onjuntion of several atomi formulas: e.g.,(Qy: P1(x1; y); : : : ; Pk(xk; y))�(z):(The usual restrition is that the variables of z are all among x1; : : : ;xk; y, and theinterpretation is, if Q = 9, that there is a y satisfying P1(x1; y) ^ � � � ^ Pk(xk; y) ^�(z) | with a similar interpretation if Q = 8. The nie thing about permittingthese onjuntions is that the restrition on the free variables of z no longer ausesirritating number-of-variables problems: e.g., it is now possible to represent \thegraph is a 4-lique.").It is possible to apture queries de�ned by these onjuntive guarded quanti�ationsusing the system of this paper. De�ne,(9y:P1(x1; y); : : : ; Pk(xk; y))�(z)� (9y1:P1(x1; y1)) � � � (9yk:Pk(xk; yk))[y1 = � � � = yk ^ �(z)℄12



and (8y:P1(x1; y); : : : ; Pk(xk; y))�(z)� (8y1:P1(x1; y1)) � � � (8yk:Pk(xk; yk))[y1 = � � � = yk ! �(z)℄We an de�ne satisfation in the usual way: given a joint strutureM of joint shema�, and given a FO? sentene � also of joint shema �, \M j= �" means thatM satis�es �.There is a useful fat (whih we will need) about FO formulas that is also true of FO?formulas: we an push negations down to the atomi level.Proposition 2.1 Every FO? formula � is equivalent to a FO? �̂ whose negations modifyonly atomi subformulas.Idea of proof. This merely involves repeated appliations of De Morgan's Laws::(' _  ) � :' ^ : ;:(' ^  ) � :' _ : ;:(9y: P (x0; y)) � (8y: P (x0; y)): ;:(8y: P (x0; y)) � (9y: P (x0; y)): :�2.2 Guard versus database relationsSometimes we may want to use the database relations themselves as guards. Imagine thatwe are given a graph and some verties in the graph: we may want to quantify over theneighbors of the given verties. There is nothing to prevent us from using some of thedatabase relations as guard relations, as is done in [Com83℄ and [AnBN96℄ and, indeed,most of the literature. When we want to do this, we just list the relation symbol twiein the joint signature (�; �): one in � and one in �. But in this artile, we will permitguard relations that are not database relations, and vie versa, with the proviso:We will take equality to be a guard relation as well as a database relation.13



(Remember: the database ontains the information while the guards guide omputation.)Thus we have two extreme situations to deal with:1. All the guard relations and onstants ould be database relations and onstants.2. No guard relations (other than equality) or onstants would be database relationsor onstants.(And, of ourse, we ould have some guard relations and onstants be database relationsand onstants.) As mentioned Subsetion 1.1, (1) is the usual situation in the literature,while (2) is the usual situation in this paper. As an example of the situation (1), onsiderthe following.Example 2.1 Let G be a onneted graph, with edge relation Edge. Let Edge be the guardrelation as well, and imagine that there is one guard onstant d. Then to determine if Gis a lique, i.e., if G j= 8x8y (x = y _ Edge(x; y)) ;determine the truth value of the FO? sentene(8x: Edge(d; x))(8y: Edge(x; y))(8z: d = z)Edge(z; y):Notie that if G is not onneted, all this says is that d's omponent in G is a lique.We now turn to the situation where there are guard relations that are not databaserelations, and vie versa.We should also note that the guard relations are themselves de�nable using quanti�-ation with guards.Proposition 2.2 Guard relations and onstants are expressible in FO?, as follows.For eah guard relation P , there is a FO? formula �P suh that for all joint struturesM, M j= 8x[P (x) ! �P (x)℄.For eah guard onstant d, there is a FO? formula �d suh that for all joint struturesM, M j= 8x(x = d ! �d(x)℄. 14



Proof. De�ne �P (x; y) � (9z: P (x; z))(y = z)whih is a FO? formula. For any guard onstant d,�(x) � (9y: y = d)(y = x)is a FO? formula. �Let's look at some examples.Example 2.2 The suessor relation an be used as a guard. Let D be a set of databasesof a ommon shema �. We have a guard shema onsisting of a binary relation suand a onstant 0. If D 2 D, then a guard struture of shema � = hsu; 0i will be astruture R = hjDj; suR; 0Ri suh that:1. For eah x 2 jDj, there exists at most one y suh that (D;R) j= su(x; y): for allbut one x, suh a y exists. Let s be a partial funtion suh that for eah x 2 jDj,s(x) is the unique y suh that D j= su(x; y) | if s(x) exists.2. For eah x 2 jDj, there exists an n suh that n iterations of s from 0 produes x, i.e.,sn(0) = x. Thus the only x 2 jDj suh that s(x) does not exist is the su-maximumelement of D.For example, suppose that D is a set of strutures whose domains are the sets [n℄,n = 1; 2; 3; : : :.� One guard system for a built in suessor would be the set of struturesh[n℄; sun; 1i;for eah positive integer n, where sun(x; y) � x + 1 = y for all x < n.� Another guard system, for a suessor \independent of" the given struture, mightbe the set of strutures h[n℄; sun;� ; �(1)i;for eah positive integer n and permutation � : [n℄ ! [n℄, where sun;� (x; y) ��(x) + 1 = �(y) for all x, �(x) < n. 15



Expanding on Example 2.2, the representation of PTIME in [Mo83℄ | see [M89℄ |as the `reursive' queries over strutures hf0; : : : ; n � 1g;R; su; pred; 0i, R a relationenoding the struture, might be regarded as an example using suessor and predeessoras guard relations (and 0 as the guard onstant | if we use =0 rather than =). But thereare other examples as well.Example 2.3 Consider a database whose domain is of 2m elements. We ould take anm-hyperube as a symmetri guard relation, with one of the verties as a guard onstant.This sort of thing works for databases of very speial sizes. How about:Example 2.4 Fix a natural integer n = m1m2 � � �mk, and suppose that D was a databaseof n elements.. We ould apply a direted toroidal k-dimensional grid as the guard relationas follows. Eah element of jDj might be identi�ed with a tuple (�1; : : : ; �k) 2 Nk , where�j < mj for eah j 2 [k℄ and N = f0; 1; 2; 3; : : :g. The guard relation would allowquanti�ations from a vertex (�1; : : : ; �k) to a vertex (�1; : : : ; �k) i� for some i, j 6=i =) �j = �j, while �i + 1 �= �i mod mi. As a guard onstant, we use the vertex(0; : : : ; 0).The following is a hestnut: see [Mo83℄.Example 2.5 The guard relation might be a binary tree, where eah vertex v has at mosttwo suessors (whih might be idential) l(v) and r(v), and quanti�ation from v meansheking l(v) and r(v) only. Thus we get two guard relations left and right, being thegraphs of the funtions l and r respetively. The guard onstant would be the root of thetree.This last example leads us to the speial ase: suppose that the guard relation is afuntion. Returning to the motivation of a omputer with tuples stored in registers andguards represented by pointers, this ertainly makes sense: a register an store only somany pointers. So we ould imagine a olletion of pointer funtions f1; : : : suh thatgiven x, fi(x) gives you the ith pointer on x's register.16



2.3 Least �xed point logi with guardsWe will work mostly with guarded versions of the LFP logis of [Mo74℄ and [AhU79℄.These are extensions of FO logi, but here we use guarded quanti�ation. We onstrutguarded positive LFP Logi (whih we denote FO? + pos LFP) and unguarded positiveLFP Logi (whih we denote FO + pos LFP) as follows.An operative system of formulas is a sequene ' = '0; : : : ; '� of seond order formulas'i(xi;1; : : : ; xi;ri; S0; : : : ; S�); i = 0; : : : ; �;where, for eah j, Sj ranges over rj-ary relation variables. (We permit 0-ary relationvariables, i.e., variables ranging over TRUE and FALSE.)Now suppose that eah of these formulas 'i is monotone, i.e., on any joint strutureM, if Sj � Tj for eah j, then for any x from M, and any i,M j= 'i(x; S0; : : : ; S�)! 'i(x; T0; : : : ; T�):Then we an arry out a reursion (as desribed in [Mo74℄ and [Mo83℄) as follows. TheLeast Fixed Point of the system ' is onstruted by setting '0i = ? for eah i, and then,for eah n, we de�ne(2.1) 'n+1i (x) � 'i(x; 'n0 ; : : : ; 'n�);and it follows from an indution on n that(2.2) ? = '0i � '1i � '2i � � � � ;so that on a �nite struture M, there exists an n suh that for all j, M j= 'nj = 'n+1j .Then if '1i = Sn 'ni for eah i, the tuple ('10 ; : : : ; '1� ) is the `Least Fixed Point' of thesystem '. If all the 'i are L-expressible for some logi L, we say that '10 is (L + posLFP)-expressible.(We will tend to use S0; : : : ; S� or T0; : : : ; T� as relation-valued reursion variables, oras relations, depending on the ontext. We will also use the notation '� = ('�0 ; : : : ; '��).)Inidentally, this is why we are stiking to �nite strutures throughout most of thispaper: in in�nite strutures, these reursions an ontinue for trans�nitely many iter-ations. We will use this number-of-iterations measure as a time omplexity measure.17



(More mahine-oriented time-omplexity issues in guarded quanti�ation are disussed in[GraW99℄.)De�nition 2.10 Suppose that we have an operative system ', a joint struture M, andthat M j= 'ni (x)^:'n�1i (x). Then n is the stage of x, denoted jxjM'i;' (if ' is understood,write jxjM'i; ifM is understood, write jxj'i;'; if both ' andM are understood, write jxj'i).If :'1i (x), write jxji =1.By Formula 2.2, m < n =) ('mi (x)! 'ni (x)) for all x.De�nition 2.11 Suppose that we have an operative system ', and letM be a joint stru-ture. Then k'kM = supx;i fjxj'i: x fromM & i 2 f0; 1; : : : ; �ggis the losure ordinalof ' in M.(Closure ordinals on in�nite strutures are disussed in [Mo74℄, [Bar77℄, and [M90a℄.)We an get the formulas 'i(x; S0; : : : ; S�) to be monotone by requiring that they beSj-positive for eah j. Given S, the S-positive formulas are onstruted by the followingreursion:1. If S does not our in �, then � is S-positive.2. If � and � are S-positive, then so are �^�, �_�, (9y: P (x; y))�, and (8x: P (x; y))�,where P is a guard relation.In essene, ' is S-positive if there are no negations \in front of" any ourrene of S in'. It is straightforward to prove (see [Mo74℄) that if 'i is Sj-positive for eah j, theneah 'i is monotone in eah relational argument, so we an �nd least �xed points of thesystem '0; : : : ; '�.We will all an operative system ' of formulas, eah being Sj-positive for eah j, a\positive operative system."Let's onstrut a system of formulas for graph reahability:REACH(x; y) � \there is a path along edges from x to y":18



In this example, the guard strutures are omplete digraphs, i.e., for any x, y, there is aP -ar from x to y.Example 2.6 Imagine that Edge is the edge relation we want to get REACH for, whileP is the (omplete) binary guard relation. One operative system of formulas, with guardedquanti�ation, for generating graph reahability as a least �xed point, is the following:'0(x; y; S0; S1) � x = y _ S1(x; y; y)'1(x; y; z; S0; S1) � [Edge(x; z) ^ S0(z; y)℄ _ (9w: P (z;w))S1(x; y; w):Here, REACH = '10 . Notie that k'0; '1kM is quadrati in kMk.Notie that if the quanti�ation had been unguarded, i.e., if '1(x; y; z; S0; S1) �[Edge(x; z)^S0(z; y)℄_9wS1(x; y; w), the e�et would have been the same. The least �xedpoint logi FO + pos LFP of [Mo74℄ and [AhU79℄ uses stritly unguarded quanti�ation,but is otherwise developed the same way as FO?+ LFP..Notie that in the above example, we did not use any guard onstants. However, sinea quanti�ation in a sentene requires something for the �rst k arguments of the ((k+1)-ary) guard relation in the outmost quanti�ation, sentenes require guard onstants.If P is merely strongly onneted | i.e., for any x, y, one an go along P -ars from xto y| the algorithm would require that in the seond line, we would need to searh for anappropriate w by traversing an indeterminate number of P -ars. A single quanti�ation(9w: P (�;w)) would not be suÆient. We will look at this situation later.De�nition 2.12 Fix a database shema � and a guard shema �.The logi FO?+ pos LFP on (�; �) de�nes the set of queries '10 , for '0 being from apositive operative system ' = '0; : : : '� of formulas with guarded quanti�ations, whoseguard onstants and relations are from � and whose database onstants and relations are�. The logi FO + pos LFP on � [ � de�nes the set of queries '10 , for '0 being from apositive operative system ' = '0; : : : '� of formulas with unguarded quanti�ations, whoseonstants and relations are from � [ �. 19



We have de�ned the logis this way beause we will prove that on �nite strutures,given a uniformly onneted guard system, FO?+ pos LFP on (�; �) has the same expres-sive power as FO + pos LFP on � [ �.The logi FO? + pos LFP onsists of the \Least Fixed Points" when L is the set offormulas in FO? that are S-positive for eah seond order variable S. Notie that FO? +pos LFP is the least logi ontaining FO? and losed under disjuntion and onjuntion,guarded quanti�ations, and LFP indutions. The logi FO? + LFP is the least logiontaining FO? and losed under boolean operations, guarded quanti�ations, and LFPindutions: unlike FO? + pos LFP, FO? + LFP is expliitly losed under negations. Itwill turn out in Subsetion 4.3 that on �nite strutures, all FO? + pos LFP expressiblequeries are FO? + LFP expressible; in Subsetion 4.4, we will see that this is not true forin�nite strutures.2.4 Distane in Guard RelationsThere is one pathology that we enountered in Example 2.1 whih we will have to dealwith: suppose that from the guard onstants, one annot reah all verties of the database.Fix a guard struture R of domain D. Without loss of generality, suppose that thereis one guard relation P , besides equality. Let d = d1; : : : be the guard onstants, letD0 = fd1; : : :g, let Dm+1 = fy: 9x1; : : : (P (x1; : : : ; y) ^ Vh xh 2 Dm)g for eah integerm � 0, and let D1 = SmDm.De�nition 2.13 A guard struture of domain D is of radius m if it satis�es Dm�1 6=D = Dm; it is onneted if D = D1. A guard system is of radius m if m is the supremumof the radii of its strutures, and it is onneted if all of its strutures are onneted.Notie that on a �nite database, a guard struture is onneted i� it is of �nite radius.This is a perfetly natural notion. Unfortunately, this is not quite the notion we willneed. In this setion, we will present the uglier notion that we will need, and show thatthe natural notion above is insuÆient. First, here is the uglier notion.
20



De�nition 2.14 Fix a guard struture R. Fix an integer p > 1. Suppose that for eahy 2 jRj, if y is not itself a guard onstant, then there exists a sequene x0, x1, ..., xn ofp-tuples from jRj suh that the following is true (if xi = xi;1; : : : ; xi;p for eah i):� The tuple x0 onsists of guard onstants.� For eah i 2 [n℄ and j 2 [p� 1℄, xi;j is either a guard onstant or is equal to xi�1;j0for some j 0.� For eah i 2 [n℄, there is a guard relation P and a tuple x0 from xi;1; : : : ; xi;p�1 suhthat P (x0; xi;p).� The sequene of tuples ends with xn;p = y.If this is true, all R p-uniformly onneted. If R is a lass of p-uniformly onneted(guard) strutures for some one integer p, all R uniformly onneted.De�nition 2.14 is the notion that we will use in this paper.Remark 2.4 We ould have de�ned p-uniform onnetedness slightly di�erently, e.g., asfollows. Suppose that for eah y 2 jRj, if y is not itself a guard onstant, then there existsa sequene x0;x1; : : : ;xn of tuples from jRj, suh that the following is true:� For eah i, xi is a tuple xi;1; : : : ; xi;qi, where qi � p.� For eah i and eah j 2 [qi℄, xi;j either ours in xi�1, or an be aessed from guardonstants and elements of xi�1 via a guard relation.� The element y ours in xn.If these three onditions hold for all y 2 jRj, all R p-uniformly* onneted. It is nothard to prove that if there are � guard onstants, then any p-uniformly onneted guardstruture is p-uniformly* onneted, and that any p-uniformly* onneted struture is(2p+ �)-uniformly onneted. And we would get a notion of \uniform* onnetivity" thatwould oinide with uniform onnetivity. 21



The rest of this subsetion is devoted to the di�erene between onneted and uni-formly onneted guard systems. First the good news: these notions oinide when allthe guard relations are binary.Theorem 2.1 Let � be a guard shema whose relations are all binary. Then all onneted�-strutures are 2-uniformly onneted.Proof. Fix a onneted guard struture R, with binary guard relations P1; : : :. As inDe�nition 2.13, let D0 be the set of guard onstants, and for eah m, letDm+1 = (y 2 jRj � [i�mDm: 9x x 2 Dm ^_i Pi(x; y)!) :As R is onneted, if y 2 jRj, there exists x0; x1; : : : ; xn suh that:� The vertex x0 is a guard onstant.� For eah i < n, xi 2 Di, xi+1 2 Di+1, and there exists ji suh that Pji(xi; xi+1).� The sequene ends with xn = y.Thus R is 2-uniformly onneted. �This means that in most of the examples one would play with, the nie De�nition 2.13would suÆe. However, when dealing with messier models, we may want ternary (orworse) guard relations. This brings us to the bad news: if there are guard relations ofarity > 2 in a guard shema �, then some onneted �-guard systems are onneted butnot uniformly onneted.Theorem 2.2 For any p, there exists a guard struture with a 3-ary guard relation anda guard onstant that is onneted but not p-uniformly onneted.Proof. We will prove this by indution on p. We start with a variant of De�nition 2.14De�nition 2.15 Let R be a guard struture and let y 2 jRj. A sequene x0;x1; : : : ;xnaesses y if (letting qi = length(xi) for eah i):22



� For eah i, xi = xi;1; : : : ; xi;qi is a tuple from jRj..� For eah i and j, if j 2 [qi � 1℄, then xi;j = xi�1;k for some k 2 [qi�1℄. (Here,[0℄ = ?.)� For eah i, there exists a tuple x0 of guard onstants and elements from xi;1; : : : ; xi;qi�1suh that for some guard relation P , R j= P (x0; xi;qi).� The sequene ends with xn;qn = y.In addition, y is aessed within q variables if there is a sequene x0;x1; : : : ;xn aessingy in whih maxi qi � q.If p = minfq: \y is aessed within q variables"g;say that aessing y requires p variables.Observe that if y an be aessed within q(y) variables for eah y, and p = maxy2R q(y),then R is p-uniformly onneted.We now onstrut the strutures that will have verties requiring many variables toaess. Fix p. Let Tp = hTp; Arp; xpi be the omplete binary tree of root xp, verties Tp,ar relation Arp, and height p. Let Lp be the leaves in Tp, and eah vertex in Tp � Lphas preisely two suessors. Following Example 2.5, label the two suessors of a vertext 2 Tp � Lp by lt and rt: onsider these the left and right suessors of t (but notie thatlt and rt are not distinguishable in the language of Tp). Extend Tp by adding a vertexd 62 Tp, and let Pp = f(lt; rt; t): t 2 Tp � Lpg [ f(d; d; t): t 2 Lpg;and let Rp = hTp [ fdg;Pp; di. Note that xp 2 jRpj, but xp is not the guard onstant d.Figure 1 displays R1.
23
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Figure 1To prove the Theorem, it suÆes to prove the following Claim by indution on p.Claim 2.1 In Rp, aessing xp requires p + 2 variables.The basis of the indution is: p = 1. Here, if x = x1,R1 = hfx; lx; rx; dg; f(d; d; lx); (d; d; rx); (lx; rx; x)g; di:To aess x, one uses the tuple (lx; rx; x), so aessing x requires at least 3 variables. But3 variables are suÆient: to aess x via (d; d; lx), (d; d; rx), (lx; rx; x), the sequene (lx),(lx; rx), (lx; rx; x) satis�es De�nition 2.15.We proeed by indution on p. Suppose that aessing xp inRp requires p+2 variables.We laim that aessing xp+1 in Rp+1 requires p + 3 variables.First, we laim that p+3 variables are neessary to aess xp+1 in Rp+1. Suppose thatx0; : : : ;xn witnesses the aessing of xp+1 as in De�nition 2.15. Then x = xp+1 is the lastentry of xn, while lx and rx are other entries in xn (for otherwise, we annot aess x).Thus lx and rx our in xn�1.Now, observe that Rp+1 onsists of two opies of Rp, disjoint exept that they shared, with lx and rx as the roots of the two opies of Rp, and with the additional vertex24



x = xp+1 on top (look at Figure 2 below). Denote the (left) opy ontaining lx by lRp, andthe (right) opy ontaining rx by rRp. Thus eah tuple xm, m < n, onsists of elementsfrom jlRpj and elements from jrRpj. Let xlm be the tuple from xm of elements from jlRpj,and let xrm be the tuple from xm of elements from jrRpj.
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Figure 2Note that without loss of generality, we an assume that if xlm has entries, andm0 > m,then xlm0 also has entries. Otherwise, we ould delete all entries of jlRpj from eah xlm00 ,m00 < m0, and we would still have a sequene of tuples aessing x. Thus there is an mlsuh that xlm has entries i� m � ml; similarly, there is an mr suh that xrm has entries i�m � mr.By the Indution Hypothesis, as lx is aessed by the sequene aessing x, there existsml � ml suh that the tuple xlml has at least p+2 entries. Similarly, there exists mr � mrsuh that the tuple xrmr has at least p + 2 entries. Without loss of generality, supposethat ml � mr: then ml � mr, so xmr has at least one from lRp. Then xmr must have at25



least (p+ 2) + 1 = p+ 3 entries.Thus aessing x in Rp+1 requires at least p+ 3 variables.We onlude by laiming that p+ 3 variables suÆe.Let x0; : : : ;xml be a sequene of tuples of jlRpj aessing lx (with p+2 variables), andlet y0; : : : ;ymr be a sequene of tuples of jrRpj aessing rx (again, with p+ 2 variables).Letting \^" mean onatenation of tuples, the sequenex0; : : : ;xml ; (lx)^y0; : : : ; (lx)^ymr ; (lx; rx; x)aesses x within p+ 3 variables. �In Subsetion 3.4, we will see that uniform onnetivity is what we want. We onludewith a de�nition we will need later.De�nition 2.16 Fix an integer p > 0 and a guard relation R. Given y 2 jRj, the p-uniform norm of y is the least n suh that there is a sequene of n p-tuples satisfyingDe�nition 2.14 for aessing y. The p-uniform radius is the maximum p-uniform normof any element of R.3 Game ProgramsIn order to simplify proofs, we will use a variant of the pebble game alulus of [M95a℄,whih is a sort of generalized Datalog. In this setion, we will desribe the games andthen look at the onnetion between the games on the one hand and FO? and FO? + posLFP on the other.In this setion, we will be using Peirean (as in Charles Sanders Peire) games of thesort desribed in [HiS97℄: given a struture M and a property P, one player is assertingthatM satis�es property P and the other is denying it. In this Setion, we will look thesePeirean games and their onnetions to guarded least �xed point logi.3.1 Playing the GameThe game is played between two players | all them Eloise and Abelard | on a board(a joint struture M), where the piees are an assortment of pebbles. The idea is that26



Eloise is trying to prove that M has a ertain property (e.g., it is a onneted graph, ora linear partial order, or some suh), in the fae of Abelard's hallenges.At any moment, the game is in a partiular state s (representing some kind of asser-tion), with pebbles on a tuple of verties x. Eloise laims that the notion assoiated withthe state s is true of M at the tuple x, while Abelard laims that it is false. For eahstate s, there is a rule whih determines how many pebbles are on the board (possiblyzero) and what is to be done: if someone is to move, the rule determines whose turn itis, how that player may move, or if someone is to win, the rule determines the riteria forvitory. The olletion of these �nitely many rules is the game program.Game programming is a variant of Datalog programming (see a theoretial text like[AbiHV95℄ or [U88, 89℄ for a desription of Datalog). A game program is a olletion ofrules (s;x) :� � � �where x is a tuple of variables (for positions of the pebbles) and `...' desribes what is tobe done if the game is in state s. The rules are `juntive', `quantitative', or `terminal'.As in Datalog, we will say that the term on the left hand side of ` :� ' is the head of therule while the expression on the right hand side of ` :� ' is the body. And we will use abookkeeping onvention from Datalog: when the game moves from state to state, withina rule, the values follow the variables; but when the game goes to the next rule, the valuesfollow the order of the arguments, not the variable names.Let's work within a �xed joint shema (�; �).Initial state. We will presume that the game begins in a speial state START, withzero variables. Thus the question will be whether Eloise has a winning strategy from thegame position (START; ).Juntive rules. The state s might be `disjuntive' or `onjuntive'. First, we look atdisjuntive rules. Let x1 and x2 list variables from x = x1; : : : ; xe. Then(s;x) :� (s1;x1) _ (s2;x2)means that if the game is in state s, and the pebbles p1; : : : ; pe are on (the vertiesrepresented by the variables) x1; : : : ; xe resp., then Eloise deides whether to go to state27



s1, with pebbles p1; : : : ; pe0 on x1;1; : : : ; x1;e0 (where x1 = x1;1; : : : ; x1;e0 onsists of variablesfrom x), or to state s2, with pebbles p1; : : : ; pe00 on x2;1; : : : ; x2;e00 (where x2 = x2;1; : : : ; x2;e00onsists of variables from x). Here, for Eloise to laim that s is TRUE at x, she has tolaim that either s1 is TRUE at x1 or that s2 is TRUE at x2. Sine she only has to defendone or the other, she is permitted to hoose whih junt to defend: from state (s;x),Eloise hooses whether to ontinue the game from (s1;x1) or from (s2;x2).Notie that there may be some rearranging of pebbles. For example, for the rule(s; x; y) :� (s1; x)_ (s2; y; x), if the game is in state s with pebble p1 on the �rst argumentand p2 on the seond, then if Eloise hooses to go to state s2, the pebbles must beswithed (if Eloise hose to go to state s1, pebble p1 would stay put and pebble p2 wouldbe removed). This is atually analogous what happens in a omputer: the variables arelike the variable-names of a higher language, while the pebbles are like the registers ofthe mahine. From now on, we will rearrange pebbles without omment.Similarly, the onjuntive rule(s;x) :� (s1;x1) ^ (s2;x2)means that Abelard deides whether to go into state s1 or state s2. Here Eloise laimsthat both junts are TRUE, so as she would be expeted to be able to defend either,Abelard an hoose whih junt to hallenge.Quantitative rules. The state s might be `existential' or `universal'. Let x1 andx2 onsist of variables hosen from x, only x1 may also list guard onstants. Let P be aguard relation (of �). Then an existential rule is of the form:(s;x) :� (9y: P (x1; y))(s0;x2; y);whih means that if the game is in state s with pebbles on the verties x, then Eloise is tohoose a vertex y suh that P (x; y). And x2 onsists of verties from x. Then rearrangingpebbles so now the tuple x2; y is pebbled, the game ontinues from state s0, i.e., fromposition (s0;x2; y).Now suppose that Eloise laimed that for every y aessible from x1, s2 would beTRUE at x2; y: we would now permit Abelard to hoose whih y he ared to hallenge.28



The result is the universal rule(s;x) :� (8y: P (x1; y))(s0;x2; y):We all these states (and their rules) existential and universal respetively.Notie that a player may be alled on to make a quantitative move, and yet theremay be no legal moves: Player Q is to hoose y suh that P (x0; y), and yet, 8y:P (x0; y).What then?� For (s;x) :� (9y: P (x1; y))(s0;x2; y), Eloise laims that a ertain y exists, so if sheannot move from (s;x), no suh y exists, so she should lose.� For (s;x) :� (8y: P (x1; y))(s0;x2; y), Abelard laims that all y with P (x1; y) leadto winning positions, whih is vauously true if 8y:P (x1; y), so if no suh y exists,he should win.This motivates the following asymmetri onvention.Convention 3.1 For the rule (s;u) :� (Qv: P (u1; v))(s0;u2; v), from (s;x), if 8y:P (x; y),then Abelard wins.Terminal rules. Finally, the state might be `terminal': this is when Eloise is assertingthat an atomi formula (or its negation) is TRUE at a tuple x0, and all that remains isto hek.Let x0 onsist of variables from x. Here the rule ould be of the form(s;x) :� R(x0);where R is a database relation from � and x0 has the appropriate number of arguments:this means that if the state is s, and x is a given tuple of verties, then Eloise wins i�R(x0); otherwise, Abelard wins. Or the rule ould be of the form(s;x) :� :R(x0);whih means that Eloise wins i� :R(x0), with Abelard winning otherwise. Notie thatthese terminal rules are the only rules in whih the database relations appear expliitly, asopposed to the guard relations, whih were expliitly available in the quantitative rules.29



A terminal rule ould also be of the form(s;x) :� x0 = ;where x0 is a variable from x and  is a database onstant, or of the form(s;x) :� x0 6= ;where x0 is from x and  is a database onstant. In the �rst ase, Eloise wins i� thevariable x0 has the same value as the onstant , and in the seond ase, Eloise wins i�the variable x0 has a di�erent value than the variable . Again, notie that unlike theguard onstants, whih were expliit in the quanti�ation rules, the database onstantsonly appear at the end of the game.De�nition 3.1 The programs as de�ned above are the game programs.Inidentally, a game position (s;x) will be alled juntive if s is a juntive state,quantitative if s is a quantitative state, and terminal if s is a terminal state.Thus the players play the game until one or the other wins. But notie that we havenot built in any guarantee that a terminal position will be reahed: indeed, we will �ndthat some games go on forever. We will want a onvention motivated by a notion similarto the \negation as failure" of [Cl78℄.Convention 3.2 If a game goes on forever, then Abelard wins.The rationale for this is that Eloise has the burden of establishing that the propertyholds on the given struture: if she never does this, she loses.Note that Conventions 3.1 and asymmetry, espeially the latter, destroy the symmetrybetween Eloise and Abelard. This will have tehnially unpleasant onsequenes later on.3.2 Winning the GameNow that we have a notion of playing the game by some rules, let's take a brief look athow the game is won or lost.Reall that Eloise should be able to win the game i� the struture in question satis�esthe given property (represented by the game program). So �rst, let's get a little shorthand.30



De�nition 3.2 Given a game program � and a struture M, let G(�;M) be the gameplayed on M using the game program �.What does it mean to say that Eloise \wins" or is \able to win"? The standard notionis to use \strategies". A strategy is a funtiongame positions! movestelling a player how to move. (We will not go into the nuts and bolts of strategies inthis paper: for that sort of thing, see [Ko85℄.) If Eloise has a strategy that an defeatAbelard no matter how Abelard plays | i.e., a strategy that an defeat any of Abelard'sstrategies | we say that Eloise has a winning strategy.De�nition 3.3 The game played on the joint struture (D;R) using the program � willbe denoted G(�; (D;R)). We say that a player wins G(�; (D;R)) if that player has awinning strategy for that game, i.e., a strategy that will defeat any strategy employed byher or his opponent.Now for a little hand-waving. It is a onsequene of the Gale-Stewart Theorem([GaS53℄ | see, e.g., [Mo80℄) that either Eloise or Abelard has a winning strategy.We will want an important measure: from a given position (s;x), if both players playoptimally, how long an the game last? Sine Abelard wins if the game goes on forever,we ask instead: how many moves before Eloise wins (if Abelard has a winning strategy,the answer is 1). In order to develop this measure, we need a fat.Proposition 3.1 Let (D;R) be a joint struture and let � be a game program. Supposethat in G(�; (D;R)), every universal quantitative position admits only �nitely many op-tions that Abelard an hoose from. Suppose that for eah n, there exists a strategy Zn forAbelard suh that if Abelard uses Zn, then (starting from the initial position (START; )),Eloise has no strategy that defeats Zn within n moves. Then Abelard wins G(�; (D;R)).Proof. We desribe a winning strategy for Abelard. We maintain a set of ative strategieswhih Abelard an use at a given position: a strategy will be ative if all the moves made31



thus far made by Abelard were made onsistent with the strategy. Notie that if Zn isative after m moves, where m < n, then Abelard an play (namely as ditated by Zn)so that Eloise an't win within n�m moves.We will start with a set of strategies ST0 = fZ1; Z2; Z3; Z4; : : :g. If ST0 is �nite, thenthere exists Z 2 ST0 suh Z = Zn for arbitrarily large n, and thus Z an never be defeatedby Eloise, and thus is a winning strategy for Abelard. So suppose that ST0 is in�nite.During the game, at the kth move, STk will be a set of strategies for Abelard, all of themonsistent with the play (i.e., with Abelard's play) thus far.Start at (START;) with the set of ative strategies is ST0 = fZ1; : : :g. Let STk bethe set of ative strategies at the position for the (k+1)st move, whether it is Eloise's orAbelard's turn to move. Suppose that STk is in�nite:� If it is Eloise's turn to move, then as no move by Eloise an be inonsistent with anative strategy for Abelard, STk = STk+1, and STk+1 is in�nite.� We will prove that for any k, if it is Abelard's turn to move, then as STk is in�nite,Abelard an move so that STk+1 is in�nite.It will follow that for eah k, and eah N , there will exist n > N suh that Zn 2 STk.Suppose that the game is at the position (s;x), in whih it is Abelard's turn to move,and he has already had k moves. Suppose that STk is in�nite.If s is onjuntive, then Abelard is to move aording to(s;x) :� (s1;x1) ^ (s2;x2):So for some i 2 [2℄, there exist in�nitely many Zn 2 STk suh that from (s;x), Zn hoosesto go to junt si: Abelard hooses that si. Let STk+1 be the set of all Zn 2 STk ditatingthat Abelard move to the ith junt, and note that STk+1 is in�nite.If s is universal, then Abelard is to move aording to(s;x) :� (8y: P (x0; y))(s0;x00; y):There are only �nitely many y suh that P (x0; y), so for at least one of these y, there arein�nitely many Zn 2 STk that has Zn hoose that y from (s;x): Abelard hooses that32



y. Let STk+1 be the set of all Zn 2 STk ditating that Abelard hoose y, and note thatSTk+1 is in�nite.If Abelard plays so that STk is always in�nite, then Eloise an never make STk �nite,so she never an win within a �xed number of moves, hene ertainly never within 0moves, so she never wins, so Abelard wins by default. �We needed the assumption that the guard relations permit quanti�ation over only�nitely many elements. Note that if we had a guard struture like the following, then whileAbelard has a strategy Zn preventing Eloise's vitory for n moves, Eloise will eventuallywin the game.Example 3.1 Let R = hM ;R; di, where M and R are to be onstruted as follows (seeFigure 3):� For eah positive integer z, let Mz = faz;1; : : : ; az;zg.� Let M = S1z=1Mz.� Let R(a; b) � (a = d ^W1z=1 b = az;1) _ (Wz;i: i2[z�1℄(a = az;i ^ b = az;i+1)).Let � onsist of Abelard starting from d, and going down R-ars until he annot moveany more: one he annot move, he loses. For any n, Abelard an hoose to go down apath of length at least n, but no matter whih path he hooses, he will eventually reah theend of it and lose.
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Figure 3We return to the problem of how long a game an last before Eloise wins.De�nition 3.4 Fix a joint struture M. Suppose that the game G(�;M) is being played,and that s is a state from � and that x is a tuple from jMj. If Eloise has a strategy towin from the position (s;x) within n moves, but no faster, write jxjs = n. If Eloise doesnot have a strategy to win from the position (s;x), write jxjs =1.Notie the similarity to De�nition 2.10; in Subsetion 4.2, we will see that this simi-larity is not oinidental.De�nition 3.5 A game program � aptures a property ' i� for every joint struture M,M j= ' i� Eloise wins the game G(�;M). Thus if L is a logi and P is a olletion of gameprograms, we say that all L-expressible queries are P-expressible if every L-expressibleproperty is aptured by some game program in P; we de�ne the onverse similarly.3.3 The Topology of GamesThere are two kinds of games: those that an go on inde�nitely, and those that endwithin a �xed number of moves. In this subsetion, we �nd that the di�erene lies in the34



\topology" of the game programs { or more preisely, in the topology of the digraphs ofthe game programs.Let's start with an example of a game that ends in three moves.Example 3.2 Consider a database M = hM ; Ari, where Ar is binary, and a guardstruture R = hM ;P ; di, where P is binary. Let the database relation be Ar, the databaseonstant be , the guard relation be P , and the guard onstant be d. Consider the sentene(8x: P (d; x))(8y: P (x; y))(9z: P (d; z))(y = z):This sentene says that if there is a P -path from d to x, then P (d; x). Thus if R was aonneted guard struture, this sentene would say that for every vertex (exept perhapsd itself), there is a P -ar from d to x. Notie that this sentene says nothing about thedatabase relation Ar.Compare the above sentene with the following game program. (We will typially havedesriptive names for the states.)(START; ) :� (8x: P (d; x))(ADJACENT; x)(ADJACENT; x) :� (8y: P (x; y))(NEXT; y)(NEXT; y) :� (9z: P (d; z))(EQUALS; y; z)(EQUALS; y; z) :� y = zHere, Eloise wants to prove d is adjaent to every other vertex (assuming that the guardstruture is onneted). Then Eloise an win the above game (no matter how Abelardplays) i� the sentene in Example 3.2 is true. We say that the above game aptures thesentene.Notie that in the above game, one an never revisit a state. Compare this to thefollowing program. Here we ask a dual question of the database Ar that we asked of theguard relation P : is it true that for some vertex x, there exists an Ar from x to d?Example 3.3 The guard struture is onneted, with one guard onstant d and one guardrelation P . Now we want to searh the entire database, even if the guard struture is of35



large (if �nite) radius. (START; ) :� (8x: x = d)(ASK; x)(ASK; x) :� (REACH; x) _ (CONTINUE; x)(REACH; x) :� (9y: d = y)(ARC; x; y)(CONTINUE; x) :� (9y: P (x; y))(ASK; y)(ARC; x; y) :� Ar(x; y)In this game, the states ASK and CONTINUE an be visited any number of times: wewill all these states reursive.So here we have two kinds of free games: those that have reursive states and thosethat don't. Let's formalize this notion.De�nition 3.6 Let � be a game program. Let \s ` t" mean that in �, the state t appearsin the body of s's rule. Let `� be the transitive losure of `, and let \s `+ t" mean thatin �, for some u, s ` u and u `� t.Call a state s reursive if s `+ s. Call a game reursive if it has reursive states.If a game's program has no reursive states, the game will not last very long. On theother hand, if there are reursive states, then it is possible for the game to go on forever:reall that if the game never ends, then Abelard wins.Example 3.4 Here is a game program for graph reahability. The database is a graphG = hV ; Edge; a; bi, where V is the set of verties and Edge is the edge relation, anda; b 2 V . The query is: there is a path along edges from a to b. The (2-onneted) guardrelation is a digraph hV ;P ; di, where P is a binary relation on V and d 2 V . The naive(unguarded) vertex-by-vertex algorithm an be represented by the following program from[M95a℄.The suggested program for reahability is the following. First, here is the program forunguarded games, as in [M95a℄: all Eloise has to do is start at a and proeed until she36



reahes b: (START; ) :� (REACH; a; b)(REACH; x; y) :� (EQ; x; y) _ (STEP; x; y)(STEP; x; y) :� 9z(CHECK; x; y; z)(CHECK; x; y; z) :� (EDGE; x; z) ^ (REACH; z; y)(EQ; x; y) :� x = y(EDGE; x; y) :� Edge(x; y):See Figure 4 below for a piture (it may help to represent these games as owharts)(notie that for pitoral reasons, variables are handled di�erently in owharts, inluding\reset" to help human observers keep trak of variable values).
START

x := a, y:= b

REACH
E chooses

STEP
E pebbles z

CHECK
A chooses

x = y

Edge(x, z)

RESET
x := z

Figure 4To onvert this \unguarded" game program into a \guarded" game program, we need
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to have Eloise navigate through the guard struture. One way to do this is:(START; ) :� (9x: x = d)(TO-a; x)(TO-a; x) :� (IS-a; x) _ (TOWARDS-a; x)(TOWARDS-a; x) :� (9w: P (x; w))(TO-a;w)(IS-a; x) :� (EQ-a; x) ^ (AND-b; x)(EQ-a; x) :� x = a(AND-b; x) :� (9y: y = d)(TO-b; x; y)(TO-b; x; y) :� (IS-b; x; y) _ (TOWARDS-b; x; y)(TOWARDS-b; x; y) :� (9w: P (x; w))(TO-b; x; w)(IS-b; x; y) :� (EQ-b; y) _ (REACH; x; y)(EQ-b; x) :� x = b(REACH; x; y) :� (EQ; x; y) _ (STEP; x; y)(STEP; x; y) :� (9z: z = d)(NEXT; x; y; z)(NEXT; x; y; z) :� (SEARCH; x; y; z) _ (CHECK; x; y; z)(SEARCH; x; y; z) :� (9w: P (z; w))(NEXT; x; y; w)(CHECK; x; y; z) :� (EDGE; x; z) ^ (REACH; z; y)(EQ; x; y) :� x = y(EDGE; x; y) :� Edge(x; y):See Figure 5 below for a piture of this program. Notie that this program has threesubdigraphs of reursive states: unlike the unguarded program, a single existential quan-ti�ation may involve as muh work as a reursion of existential quanti�ations. Notiethat in a sense, the guarded program is a re�nement of the unguarded one: we willformalize a notion of re�nement in Subsubsetion 4.3.
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START
E pebbles x = d

TO-a
E chooses

TOWARDS-a
E pebbles w

IS-a
A chooses

AND-b
E pebbles y = d

TO-b
E chooses

TOWARDS-b
E pebbles w

IS-b
E choosesy = b

REACH
E chooses

E pebbles z
STEP

SEARCH
E pebbles w E chooses

NEXT

CHECK
A chooses

Edge(x, z)

x = a

x = y

Figure 53.4 Uniform Connetivity and GamesWe are now ready to explain, in a preise sense, why De�nition 2.14 is the right de�nitionfor aessing an entire database.To searh an entire database, we need something like Example 3.3. Here's the idea.Starting at the guard onstants d, repeatedly aessing additional verties, one should be39



able to reah any vertex. We want to formalize this notion within a game ontext. Inorder to do this, we need a notion from ombinatorial game theory.De�nition 3.7 Let � be a program over a joint shema (�; �), and let M be a joint(�; �)-struture. A run of G(�;M) is a sequene of game positions(START; ) = (s0; ); (s1;x1); (s2;x2); (s3;x3); : : : ;suh that:� for eah n, sn is a state whose number of variables equals the length of the tuple xnof elements from M, and� for eah n, sn ` sn+1, and from (sn;xn), a legal appliation of the rule for snprodues (sn+1;xn+1), and� if the sequene terminates, it terminates in a position (s;x), where s is terminal.We need a notion from [I81℄ (see [M95b℄):De�nition 3.8 Let � be a game program. The Number of Variables of � is the maximumnumber of variables of any state of �.Notie that in a run of � on any struture, the tuples are all of a length no greaterthan the number of variables of �.First, we observe the obvious.Proposition 3.2 Fix a positive integer p and a joint shema (�; �). Let M be a joint(�; �)-struture, and let � be a game program of no more than p variables and of shema(�; �). Suppose that for every x 2 jMj, there is a run of G(�;M) suh that x ours inthe run. Then M is p-uniformly onneted.Thus, if M is a set of joint strutures of a ommon shema, and if � is a gameprogram in that shema suh that for every M 2 M and every x 2 jMj, x ours in somerun of G(�;M), thenM is uniformly onneted.40



And the onverse is also true.Theorem 3.1 Let M be a lass of strutures of a ommon joint shema. Suppose thatM is uniformly onneted. Then there exists a game program � of that shema suh thatfor every M 2 M and every x 2M, there exists a run of G(�;M) suh that x ours inthat run.Proof. Fix a positive integer p, and suppose that M is p-uniformly onneted. Wewill desribe the onstrution of a ompliated variant of the program in Example 3.3.Suppose, for simpliity, that there is but one ((k + 1)-ary, k � p), guard relation P andone guard onstant d.The idea is as follows. Then we will onstrut a game program � suh that on anyM 2 M and any x 2 M, if x0;x1; : : : ;xn is a sequene of tuples (eah of at most pomponents) witnessing the aessing of x (so that the sequene satis�es the riteria ofDe�nition 2.14, and x ours in xn), then this is a subsequene of a sequene of tuples ina run of �.Here we go. First, Eloise needs to build up a (p+ k � 1)-tuple of opies of d.(START; ) :� (8u: u = d)(Start; u)(Start; u) :� (NEXT; u; : : : ; u) _ (NEXT; u; : : : ; u):The seond line is to get in the tuple of p+ k � 1 ds.Then omes the heart of the program:(NEXT;u;v) :� (9y: P (u; y))(ASK1;v; y);where u is a k-tuple and v is a (p� 1)-tuple. Note that ASK1 has p arguments.The idea is this: in the ith time that the game goes into state ASK1, the game positionis (ASK1;xi). For eah i, let x00i be the tuple of the �rst k omponents of xi used to aessxi;p, and let x0i be the �rst (p� 1) omponents of xi, and let yi = xi;p.Now omes the tedious part: Eloise wants to selet x00i+1 from xi to get a k-tuple ofelements in the right order to aess xi+1;p. She also wants to selet x0i+1 from xi. tokeep the run in lokstep with the onneting sequene x0;x1; : : :. Thus for eah of the k41



arguments of x00i+1, she hooses one of the (up to) p + 1 elements of xi or (don't forget!)d. Then for eah of the p � 1 arguments of x0i+1, she hooses one of the (up to) p + 1elements of xi or d. Together, this an be done by hoosing one of the (p+ 1)k+p�1 mapsfrom [k + p� 1℄ (giving the argument positions of x0i+1) to [p+ 1℄ (giving the elements ofxi; d). We an set up rules for this as follows.Let �1; �2; : : : ; �(p+1)k+p�1 be the set of all maps [k + p � 1℄ ! [p + 1℄. For eahi < (p+ 1)k+p�1 � 2, let(ASKi;w; y) :� (ASKi+1;w; y) _ (NEXT; z�i(1); : : : ; z�i(k+p�1));where, for eah j 2 [k + p� 1℄,zj = � wj if �(j) 2 [p℄,d if �(j) = p+ 1,and let(ASK(p+1)k+p�1�1;w; y) :� (NEXT; z�(p+1)k+p�1�1(1); : : : ; z�(p+1)k+p�1�1(k+p�1))_(NEXT; z�(p+1)k+p�1 (1); : : : ; z�(p+1)k+p�1(k+p�1)):The resulting program is �. Notie that as there are no terminal states (!), for any M,no run of G(�;M) terminates.We now verify that for anyM 2 M and any x 2 jMj, there is a run of G(�;M) in whihx ours. AsM is p-uniformly onneted, for anyM 2 M, and any x 2 jMj, x ours asthe last element in some p-tuple xn of a sequene x0; : : : ;xn satisfying De�nition 2.14.Here is the run that reahes x. For eah i, let wi = v0i;1; : : : ; v0i;2p.� Start at (START; ) at the empty tuple. If x1' is the (p � 1)-tuple of opies of d,and x001 is the k-tuple of opies of d, then Eloise quikly reahes (NEXT;x001;x01), andthen (ASK1;x1), where x1 is the onatenation of x01 and y1.� After the ith move, i < n, at (ASK1;xi), Eloise goes through the disjuntionsto hoose one that selets x00i+1 and x0i+1 from xi, and the next game position is(NEXT;x00i+1;x0i+1), followed by (ASK1;x0i+1; yi+1), and xi+1 is the onatenation ofx0i+1 and yi+1. 42



� Repeat until the position is (ASK1;xn), in whih x ours.� Sine we will use this sort of system of rules again, lets ook up a formalism. Forsimpliity, we have a de�nition for when there is one guard onstant d and one ((k + 1)-ary) guard relation P .We want an abbreviation for: from (s;x), Player Q hooses y by seleting x0 and x00from d;x, and then the game goes into a state (s0;x00; y). Suppose that s is an n-variablestate, while s0 is an m-variable state. Fix M = (n + 1)m+k�1.De�nition 3.9 The traversal blok for Player Q from s to s0 is the sequene of M for-mulas as follows. First, let� For eah i 2 [M � 2℄, �i is a map from [k +m� 1℄ to [n+ 1℄, and� For eah i 2 [M � 2℄, x�i = (x�i(1); : : : ; x�i(k+m)), where xn+1 = d, and� Given x0 = (x01; : : : ; x0k+m), let x00 = (x01; :::; x0k) and x000 = (x0k+1; : : : ; x0k+m).Then let (s;x) :� (s1;x) _ (s2;x�1)and for eah i 2 [M � 2℄, (si;x) :� (si+1;x) _ (s00;x�i+1)ulminating with (sM�2;x) :� (s00;x�M�1) _ (s00;x�M ):Then let (s00;x00) :� (Qy: P (x00; y))(s0;x000; y):4 Using Game ProgramsIn this setion, we will �nd that some logis orrespond with natural lasses of gameprograms. we will look at non-reursive games and �nd that non-reursive game programsorresponds to (guarded) �rst order logi. That will be straightforward. The rest of thesetion will be devoted to reursive games and (guarded) least �xed point logi.43



4.1 Non-Reursive Games and First Order LogiWe �rst look at games with no reursive states. It turns out that these orrespond to theguarded First Order queries.Theorem 4.1 Let T be a guard system. The queries expressible in FO?�T are preiselythe queries aptured by non-reursive free games using guards from T .(Compare with the guard-free version in [HiK83℄.) We will need a notion of \subfor-mula depth" of a FO formula.De�nition 4.1 The subformula depth (sfdepth) of a formula is omputed as follows.If the formula is atomi or the negation of atomi, it is of subformula depth 0. Andsfdepth(' � ) = maxfsfdepth(')+1, sfdepth( )+1g if � is a juntion, while sfdepth((Qy:P (x; y))'(x0; y)) = sfdepth(') + 1.One warning: sfdepth is a di�erent notion from the more popular \quanti�er depth."Proof of Theorem 4.1. First, suppose that � is in FO?�T . By Proposition 2.1, we anassume that all the negations have been pushed down to the atomi level. Deompose itinto a game, as follows. We will onstrut a game program, whose states are preisely thesubformulas of � (ounting repetitious ourenes of the subformulas in �), as follows. If'(v) �  (v1) � Æ(v2) is a subformula, where v1 and v2 are strings of variables from v,and where � is a juntion, then ''s rule will be(';v) :� ( ;v1) � (Æ;v2):If '(v) � (Qw: P (v1; w)) (v2), where v1 and v2 are strings of arguments from v, then''s rule will be (';v) :� (Qy:P (v1; y))( ;v2; y)(where again v1 and v2 are appropriately hosen). And if '(v) � R(v0), where v0 is astring of arguments from v, then ''s rule is (';v) :� R(v0); while if '(v) � :R(v0) thenits rule will be (';v) :� :R(v0). Finally, if '(v) � v0 = , then its rule is (';v) :� v0 = ;if '(v) � v0 6= , then its rule is (';v) :� v0 6= 44



We laim that for any subformula ' and any x,M j= '(x) i� Eloise wins from (';x).We proeed by indution on the subformula depth sfdepth. Suppose that for any FO?formula  of subformula depth less than r, Eloise wins from ( ;x) on M i� M j=  (x).Suppose that sfdepth(') = r. We laim that Eloise wins from (';x) onM i�M j= '(x).There are three ases.Case `: r = 0 and ' is atomi or the negation of atomi. Then Eloise wins at one i�M j= '(x).Case �: ' is juntive: ' �  � Æ where maxfsfdepth( ); sfdepth(Æ)g = r � 1. Thereare two subases: � is _ or ^; onsider the subase � is _. Then Eloise wins from (';x)i� either she wins from ( ;x0) or from (Æ;x00), where x0 and x00 are de�ned appropriatelyfrom x. By the indution hypothesis, Eloise thus wins from (';x) i� M j=  (x0) orM j= Æ(x00). Thus Eloise thus wins from (';x) i� M j= �(x). The argument for � being^ is similar.Case Q: ' is quantitative: ' � (Qy: P (x0; y) (x00; y), where sfdepth(') = r�1. Thereare two subases: Q is 9 or 8; onsider the subase Q is 8. Then Eloise wins from (';x)i� for any y suh that P (x0; y), Eloise will go on to win from ( ;x00; y). By the indutionhypothesis, this is equivalent to: Eloise wins from (';x) i� for any y suh that P (x0; y),M j=  (x00; y), whih holds i�M j= (Qy: P (x0; y)) (x00; y).The onverse simply goes bakwards: given a game, onstrut the subformulas, one perrule, reversing the onstrution of the previous paragraph. Again, by an easy indution,'(x) is true i� Player E wins from (';x). �4.2 Reursive Games and LFP LogiNow, let's look at guarded Least Fixed Point logi. We will show that the guarded LFP-expressible queries are preisely those aptured by reursive guarded game programs. Thefollowing proof is essentially a rearrangement of the proof in [M95a℄.First, let's revisit the notion of stages in De�nitions 2.10 and 3.4.Say that an operative system ' = '0; : : : ; '� is of subformula depth 1 if all 'i areof subformula depth at most 1. We �rst observe that there is a orrespondene betweengame programs and operative systems of depth 1: they are essentially variants of eah45



other.De�nition 4.2 Let ' be a positive operative system of formulas of sfdepth 1, and let �be a game program. Then ' and � are assoiates if there is a one-to-one orrespondenebetween formulas of ' and rules of � as follows. (We will use the states of � to index theformulas of '.)1. If � is a juntion, and the formula 's(v) � Ss1(v1) � Ss2(v2) is assoiated with therule (s;v) :� (s1;v1) � (s2;v2), then 's1 is assoiated with the rule for s1 and 's2 isassoiated with the rule for s2.2. If Q is a quanti�ation, and 's(v) � (Qw: P (v1; y))Ss0(v2; y) is assoiated with(s;v) :� (Qw: P (v1; y))(s0;v2; w), then 's0 is assoiated with the rule for s0.3. If R is a relation symbol, then 's(v) � R(v0) is assoiated with (s;v) :� R(v0) and's(v) � :R(v0) is assoiated with (s;v) :� :R(v0). This is still true if R is =.The following is elementary but ruial.Lemma 4.1 If ' is assoiated with �, then on any joint database M, and eah state sand eah tuple x from M, the stage of the indution equals the length of the rest of thegame, i.e., jxjs = jxj's.Proof. This proof is by an indution on the stages. We will use the states of the gameto index the formulas, and we will work on a �xed joint struture M. For any state s,jxjs = 0 i� the game is over i� jxj's = 0 (i� s is terminal i� 's is atomi or the negationof an atomi). Now suppose that this Lemma was true of all tuples u of stage jujs < n,and suppose that jxjs = n. There are the usual four ases.Suppose that s is disjuntive, i.e., that 's � 's1 _'s2 , so that Eloise hooses to go to(s1;x1) or (s2;x2) from (s; x). As jxjs = n, Eloise ould hoose s1 or s2 and win withinn�1 moves: minfjx1js1; jx2js2g = n�1. By indution, jx1j's1 = jx1js1 and jx2j's2 = jx2js2,and hene jxj's = jxjs = n. Conjuntion is similar.Suppose that 's is universal: 's(x;S) � (8y: P (x0; y))Ss0(x00; y), so that the sthrule is (s;x) :� (8y: P (x0; y))(S 0;x00; y). Then for any tuple a, M j= 'ns (a) i� M j=46



(8y: P (a0; y))'n�1S0 (a00; y), i.e., for every y suh that P (a0; y), 'n�1S0 (a00; y) is true. By theindutive hypothesis, this is true i� for every y satisfying M j= P (a0; y), Eloise winsfrom (s0; a00; y) within n� 1 moves, whih is true i� Eloise wins (s; a) within n moves, sojxj's = n = jxjs. The argument for existential 'i is similar. �Thus we an refer to the stage unambiguously as jxjs, where s is the state of the game,or index of the formula | provided that the operative system is of subformula depth 1.From this we an assoiate the formula '0 with the state START and get:Corollary 4.1 If ' is assoiated with � (with the states of � indexing the formulas of'), then on any joint database M, Eloise wins G(�;M) i� M j= '10 .Hene all game expressible queries are FO? + pos LFP expressible. The onverse isalso true. Almost.Theorem 4.2 Restrit attention to uniformly onneted guard systems. All free gameprograms an be aptured by FO? + pos LFP and vie versa.The theorem very similar to Theorem 2.1 of [M95a℄ (whih is in fat the main theoremof [HaK84℄). By Lemma 4.1 and Corollary 4.1, it suÆes to prove:Lemma 4.2 Every FO?+ pos LFP expressible query an be expressed as a �xed point ofa positive operative system with guarded quanti�ation and of subformula depth 1.Proof. To prove Lemma 4.2, it suÆes to prove the following. Let ' = '0; : : : ; '� be apositive operative system of formulas in whih:� for eah k, i, 'k is Si-positive, and� for eah k, the only negations in the formula 'k are negations of atomi subformu-las (whih we an require by Proposition 2.1 and the S-positivity of the formulas'0; : : :.).
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Let 'k;0; : : : ; 'k;�k be the subformulas of 'k, where 'k;0 = 'k. We will onstrut a positiveoperative system  0;0; : : : ;  0;�0 ; : : : ;  k;j; : : : ;  �;��of formulas of subformula depth 1 and guarded quanti�ation, suh that for eah k,'1k =  1k;0.De�ne the formulas  k;h as follows:�. If 'k;h(x) � 'k;i(x0) � 'k;j(x00), let  k;h(x) � Tk;i(x0) � Tk;j(x00).Q. If 'k;h(x) � (Qy: P (x0; y))'k;i(x00; y), let  k;h(x) � (Qy: P (x0; y))Tk;i(x00; y).`. If 'k;h(x) is R(x0) or :R(x0), let  k;h = 'k;h. If 'k;h(x) � Sl(x0), let  k;h(x) �Tl;0(x0).The result is a positive operative system  , assoiated via Lemma 4.1 with a gameprogram 	.Let r = maxfsfdepth('i): i = 0; : : : ; �g. We laim that by indution on n and on thesubformulas 'k;h that for all k, x,(4.1) 'n+1k (x) =) 'k;0(x; 'n) =)  rn+rk;0 (x) =) 'rn+rk (x);where 'm = 'm0 ; : : : ; 'm� . This will imply that for eah k, x,'1k (x) =) 'k;0(x; '1) =)  k;0(x;  1) =)  1k;0(x) =) '1k (x);and hene '1k =  1k;0 for eah k, and Lemma 4.2 follows.We will atually prove that for eah k, h, x, n,'k;h(x; 'n) =)  rn+sfdepth('k;h)k;h (x) =) 'k;h(x; 'rn+sfdepth('k;h));from whih Formula 4.1 follows by monotoniity. We have the usual ases.`: sfdepth('k;h) = 0. If 'k;h(x) is R(x0) or :R(x0), then'k;h(?; : : : ;?) =)  0k;h(x) =) 'k;h(x; '0)as all three are the same atomi (or negated atomi) formula. And if 'k;h(x) � Sl;0(x0),48



then by indution on n,'k;h(x; 'n) =) 'n+1l;0 (x0)=) 'l;0(x0; 'n)=)  l;0(x0;  rn) by indution=)  rn+1k;h (x0)=)  k;h(x0;  rn)=) 'rn+1k;h (x0)=) 'k;h(x; 'rn)=) 'k;h(x; 'rn+sdepth('k;h)):�. Suppose that 'k;h is a onjuntion. If 'k;h(x;S) � 'k;i(x0;S)^ 'k;j(x00;S), then byindution on subformulas,'k;h(x; 'n) =) 'k;i(x0; 'n) ^ 'k;j(x00; 'n)=)  rn+sfdepth('k;i)k;i (x0) ^  rn+sfdepth('k;j)k;j (x00)=)  rn+sfdepth('k;h)�1k;i (x0) ^  rn+sfdepth('k;h)�1k;j (x00)=) 'k;i(x0; 'rn+sfdepth('k;h)�1) ^ 'k;j(x00; 'rn+sfdepth('k;h)�1)=) 'k;h(x; 'rn+sfdepth('k;h)�1)=) 'k;h(x; 'rn+sfdepth('k;h)):Disjuntion is similar.Q. Suppose that 'k;h is an existential quanti�ation. If'k;h(x;S) � (9: P (x0; y))'k;i(x00; y);
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then by indution on subformulas again,'k;h(x; 'n) =) (9y: P (x0; y))'k;i(x00; y; 'n)=) (9y: P (x0; y)) rn+sfdepth('k;i)k;i (x00; y)=) (9y: P (x0; y)) rn+sfdepth('k;h)�1k;i (x00; y)=) (9y: P (x0; y))'k;i(x00; y; 'rn+sfdepth('k;h)�1)=) 'k;h(x00; y; 'rn+sfdepth('k;h)�1)=) 'k;h(x00; y; 'rn+sfdepth('k;h)):Universal quanti�ation is similar. �4.3 Least �xed point logiReall that we de�ned guarded and unguarded least �xed point logi in De�nition 2.12,and we promised to ompare their expressive power. In this subsetion, we will omparetheir expressive power (and time omplexity). We will �nd that (assuming uniform on-netivity) they have the same expressive power, but that their omputations di�er in timeomplexity. Our time omplexity measure will be the stages of an indution: reall thestages and losure ordinals from De�nitions 2.10, 2.11, and 3.4. We will look at the e�etof guarding quanti�ations on this measure. We will �nd that the losure ordinal of anFO? + pos LFP indution on a strutureM is on the order of the p-uniform radius timesthe losure ordinal of the \assoiated" FO + pos LFP indution.Remember (Remark 2.2) that there is no tehnial di�erene between a database re-lation or onstant and a guard relation or onstant, so that in setting up an unguardedpositive operative system of formulas, we an use \database" and \guard" relations andonstants indisriminately. And remember (Proposition 2.2) that guard relations and on-stants are FO?-expressible, and thus the \guard" relations and onstants are both (FO +pos LFP)-expressible and (FO?+ pos LFP)-expressible. With these tehnialities out ofthe way, we proeed to a result involving many more tehnialities.Theorem 4.3 Fix an integer p > 0. Let � be a database shema and let � be a guardshema. Let M be a uniformly onneted lass of joint strutures | eah of �nite p-50



uniform radius | of joint shema (�; �). Then FO?+ pos LFP and FO + pos LFP havethe same expressive power onM.Clearly, all (FO?+ pos LFP)-expressible queries onM are (FO+ pos LFP)-expressible.So we want to prove that given a positive operative system ' of formulas with unguardedquanti�ations, we an �nd a positive operative system  omputing the same query (orqueries). This proof is game-theoreti, and we will atually prove that there is a gameprogram (with guarded quanti�ation moves) that aptures the queries generated by '.This is ... merely ... a matter of taking an unguarded positive operative system ' anddeveloping an equivalent guarded game program �, i.e., suh that for all M 2 M, all xfrom jMj, and eah j, M j= '1i (x) i� Eloise wins G(�;M) from (sj;x).It will be onvenient to restrit our attention to FO + pos LFP queries de�ned fromsystems of formulas of sfdepth 1.Proposition 4.1 Every FO + pos LFP expressible query an be expressed as the least�xed point of a positive operative system of formulas of subformula depth 1.The proof is the guardless version of Lemma 4.2, and we omit it.So we presume that our unguarded positive operative system onsists of formulas ofsubformula depth 1.Replaing formulas by rules as in De�nition 4.2 (1) and (3) | juntions and literals| is straightforward and we leave them to the reader.The main problem is De�nition 4.2 (2): simulating unguarded quanti�ations withguarded ones. We will proeed in two subsubsetions:� We onstrut (sub)games that represent omputations (with guarded quanti�a-tions) for simulating unguarded existential and universal quanti�ation.� We use stages of the indution to prove that the unguarded quanti�ations aresuessfully simulated, and thus that the guarded game program aptures the samequery that the FO + pos LFP query did.51



In the next subsetion, we will see that the assumption that the strutures have �nitep-uniform radii is neessary by looking at an in�nite ounterexample.It is not diÆult to see how existential quanti�ation an be simulated, by looking ata game program. Consider the following game. Eloise an start at any tuple of guardonstants x0 = d, and repeatedly hoose p-tuples x1, x2, et., where xj = x0j; y, wherex0j is a (p � 1)-tuples from xj�1 and where x00j is a tuple of guard onstants and entriesfrom x0j (whih in turn omes from xj�1), and P (x00j ; y) for some guard relation P . As theguard system is uniformly onneted, Eloise an eventually reah any vertex, and thus ifthere exists a vertex y suh that Eloise would win G(�; ((A;R); y)), she will eventuallyreah it, and go on to win. If no suh vertex exists, she will searh forever, and thus lose.Simulating universal quanti�ation is more diÆult: it is not obvious how to haveAbelard fail to �nd an element y satisfying :� in order to justify 8y�(y). (This is thetehnial problem that arises from Convention 3.2.) We employ the same trik as in Figure4 of [M95a℄: we ondut a rae. Suppose that an element y suh that :�(y) existed. Thenstarting from the database onstants, Abelard should be able to �nd it. We do not wantto give Abelard the opportunity to stall by wandering around the database, pretendingto look for a possibly nonexistent y. So we devise a restrition in whih Abelard mustalways move further and further away from his starting plae: if he baktraks, Eloisean hallenge his last move and have a hane to prove that Abelard was stalling. (WhatEloise will do is hallenge Abelard to a rae whih Eloise an win if Abelard was stalling.)Notie that this algorithm will not work for databases of in�nite (uniform) radius, forthen Abelard's failure to �nd, within a �nite amount of time, an element y suh that:�(y) annot be taken as evidene that no suh y exists.We turn to simulating an unguarded universal quanti�ation. Here is the idea. Imaginethat we are simulating 8x�(x), assuming that there is one guard onstant d and one binaryguard relation P . Abelard is given the hane to �nd an x suh that :�(x). Starting fromthe guard onstant x0 = d, Abelard hooses x1; x2; : : : in suession suh that P (xi; xi+1)for eah i. After eah hoie xi+1, there is a brief deliberation:1. Abelard may deide that xi+1 is what he wants, and the game ontinues from hisdenial of �(xi+1). 52



2. Eloise may deide that Abelard is stalling, and hallenge Abelard to a rae from d:he is raing to xi and she is raing to xi+1. If he doesn't beat her, then he had notmoved further away from d in his move from xi to xi+1, so it is fair that Eloise wins.But if he does beat her, then Eloise loses.3. Both Abelard and Eloise deide not to take advantage of options (1) or (2), andAbelard now ontinues, hoosing xi+2 suh that P (xi+1; xi+2), ... .That's the idea. The rest of this setion is devoted to formalizing this idea.4.3.1 (Sub)Programs for Simulating Quanti�ationWe �rst formalize the sort of translation done in Example 3.4. Notie that for logistialreasons, we are \re�ning" an operative system into a game program.De�nition 4.3 Given an operative system ' of (unguarded) formulas of depth 1, weobtain its guarded re�nement � by making the following substitutions. Assume p-uniformonnetedness. For simpliity, we assume that there are no database onstants, one guardonstant d, and one (k + 1)-ary guard relation P . (If we had database onstants, weould either searh for the relevant onstant during eah quanti�ation yle, or we ouldstart the program with a searh for all relevant database onstants. This would add atmost O(r) iterations, r being the uniform p-radius of the guard struture.) We replaeindividual formulas with subsystems of formulas as follows.Literals. If 'i(x;�) � R(x0), let (si;x) :� R(x0). Similarly, if 'i(x;�) � :R(x0), let(si;x) :� :R(x0).Juntions. If 'i(x;�) � Sj(x0) � Sk(x00), let (si;x) :� (sj;x0) � (sk;x00).Existential Quanti�ations. If 'i(x;�) � 9ySj(x0; y), and letting d be a tuple ofopies of the guard onstant (and lettingM0 be the appropriate number of rearrangements
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of tuples), let:(si;x) :� (9y: d = y)(si;1;x; y)(si;1;x; y) :� (si;1;1;x; y : : : ; y) _ (si;1;1;x; y : : : ; y)is an appropriate traversal for Eloise (for tuples z) from(si;1;1;x; z) to (si;2;x; z0)(si;2;x; z) :� (9y: P (z0; y))(si;3;x; z00; y)(si;3;x; z; y) :� (si;1;1;x; z0; y) _ (sj;x0; y)where z0 and z00 are appropriate tuples of guard onstants and arguments from z, and x0is an appropriate tuple from x. This searh will take up to 2 + (M0 + 2r)r moves.Universal Quanti�ations. If 'i(x) � 8ySj(x0; y), we set up a subsystem forAbelard's searh and, sine Eloise might grow impatient, for onduting the rae. Thesubsystem of formulas is desribed below.First, here is some nomenlature for these formulas:� We use the p-tuples z� and z+, and w� and w+ to denote the position(s) of thepebbles for Eloise and Abelard in the rae thus far, with respetive goals z and w.� Let d be the tuple of guard onstants.� Let M1;M2;M3 be the appropriate numbers of rearrangements of tuples.� Let z�0, z�00, z+0, z+00, et., be the appropriate tuples of guard onstants and argu-ments from z�, z+, et., respetively.Then a subsystem for onduting the universal quanti�ation, i.e., Abelard's searh,ould be the following subsystems, whih we break into several small piees for larity.Before giving the preise subsystem, let's outline the idea. For simpliity, and withoutloss of muh generality, suppose that the one guard relation P is binary, and that there isone guard onstant d. Let r be the p-uniform radius. Abelard starts at the guard onstantd; let y0 = d. He then suessively hooses y1; y2; : : : (going through the traversal bloks)suh that for eah i, P (yi; yi+1). If he ever reahes yk suh that :�(yk), he announes the54



fat to poor Eloise, and goes on to win. If not, then as the struture is �nite, he mustreah a k � r suh that distP (d; yk) = distP (d; yk+1), where distP measures distane alongP -ars. This part of the game takes at most (M1+3)r moves. When this happens, Eloisehallenges him to a rae.For brevity, we desribe a ombinatorial game, suppressing the game states and jun-tive moves.They start at (d; yk; d; yk+1), and move alternately, Eloise moving �rst. When it isEloise's turn to move from (x; yk; y; yk+1), she hooses y0 suh that P (y; y0), and thenthey are at (x; yk; y0; yk+1). Then Abelard moves similarly: if it is his turn to move from(x; yk; y; yk+1), he hooses x0 suh that P (x; x0), the position is (x0; yk; y; yk+1). If y = yn+1,Eloise wins. (Note that eah of these \moves" are atually suessions of moves throughtraversal bloks.) If not, then either x0 = yk and Abelard wins, or x0 6= yk and it is nowEloise's turn to move.Clearly, Eloise wins i� distaneP (d; yk) � distaneP (d; yk+1).Now let's onstrut the preise subsystem for universal quanti�ation.First, Abelard goes out for his searh. Note that after eah new position w is hosen(as opposed to his old position z), Abelard an deide at si;4 that he's done (go to (sj;y)),or if he wants to ontinue, Eloise an hoose at si;6 whether to let him ontinue (go tosi;2;1), or she an hallenge him to a rae (go to si;6).(si;x) :� (8y: P (d = u))(si;1;x0; u)(si;1;x0; u) :� (si;2;1;x0; u : : : ; u) _ (si;2;1;x0; u : : : ; u)si;2;1; : : : ; si;2;M1 is an appropriate traversal for Abelard(for tuples y) from (si;2;1;x; z)to (si;3;x; z;w0),(si;3;x0; z;w0) :� (8y: P (w00; y))(si;4;x0; z;w0; y); & if w = w0; y,(si;4;x0; z;w)) :� (sj;x0; y) ^ (si;5;x0; z;w)(ondensing w0; y to w)(si;5;x0; z;w) :� (si;2;1;x0;w) _ (si;6; z;w):55



If Eloise hallenges Abelard's move from z to w, they ondut a rae from d: Abelard toz and Eloise to w. If Eloise does not hallenge Abelard to a rae, this searh will take upto 2 + (M1 + 3)r moves.Suppose Eloise hallenges. Both players start from d; : : : ; d:(si;6; (z;w) :� (8y: P (d = u))(si;7;1; z; u; :::; u;w; u; :::; u)Then Abelard moves �rst:si;7;1; : : : ; si;7;M2 is an appropriate traversal for Abelard(for tuples z�) from (si;7;1; z; z�;w;w�)to (si;8; z; z+;w;w�)(si;8; z; z+;w;w�) :� (8y: P (z+00; y))(si;9;1; z; z+0; y;w;w�):Letting z+ = z+0; y, we let Eloise move:si;9;1; : : : ; si;9;M3 is an appropriate traversal for Eloise(for tuples w�) from (si;9;1; z; z+;w;w�)to (si;10; z; z+;w;w+)(si;10; z; z+;w;w+;�) :� (9y: P (w+00; y))(si;11; z; z+;w;w+0; y);and letting z+ = w+0; y, we ask: has someone won the rae? This means omparing thetuple w+ to w (and if equality holds, Eloise wins) and then, that failing, z to z+ (and ifequality holds, Abelard wins). Notie that we have set it up so that if Abelard announes
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he wants to ompare z and z+, then Eloise wins i� they are di�erent.(si;11; z; z+;w;w+) :� (si;12; z; z+;w;w+) _ (si;11;1; z; z+;w;w+)and for l = 1; : : : ; p� 1,(si;11;l; z; z+;w;w+) :� (si;12;wl; w+l ) _ (si;11;l+1; z; z+;w;w+)while:(si;11;p; z; z+;w;w+) :� (si;12;wp; w+p ) _ (si;13; z; z+;w;w+)(si;12; u; v) :� u = v(si;13; z; z+;w;w+) :� (si;7;1; z; z+;w;w+) ^ (si;14;1; z; z+;w;w+)and for l = 1; : : : ; p� 2,(si;14;l; z; z+;w;w+) :� (si;15; zl; z+l ) _ (si;14;l+1; z; z+;w;w+)while:(si;14;p�1; z; z+;w;w+) :� (si;15; zp�1; z+p�1) _ (si;15; zp; z+p )(si;15; u; v) :� u 6= v:Let M = maxfM0;M1+M2+M3g. Notie that if the radius of the guard struture isr, then this rae takes at most p+4+ (M2+M3 +2)r moves. And whether or not Eloisewins, if the radius of the guard struture is r, then getting to (sj(x0; y), or to the end ofthe game, takes at most p+ 6 + (M1 +M2 +M3 + 5)r � (M + 5)r + p+ 6 moves.Remark 4.1 If the guard relation is not binary, then assuming p-uniform onnetedness,the rae ends if Eloise reahes her triple before Abelard reahes his, and heking that theappropriate tuple is reahed takes an additional p moves.Remark 4.2 If an operative system, or game program, is of n � p variables, and hasone (k + 1)-ary guard relation, and there is one guard onstant, then M0;M1;M2;M3 �(n+ 1)n+k. Call � = (n+ 1)n+k the system or program's traversal number.4.3.2 The Simulation WorksNow let's hek this proposed system of re�nements and see if it does the job.57



Lemma 4.3 Let ' be a positive operative system of unguarded formulas of depth 1, andtraversal number �. Let � be the guarded re�nement of ', so that for eah formula 'i, siis the orresponding state in the program �. Fix a joint struture. Then for eah i, andeah x, if r is the radius of the guard system, then(4.2) jxj'i � jxjsi � (3�+ 5)rjxj'i + r + 2p+ 6:(The last \+r" is in ase there are any database onstants, a \+p" for heking at theend of a rae as in Remark 4.1, and the last \+p+ 6" for the end of a hallenge rae inthe universal subroutine.) Thus jxj'i <1 i� jxjsi <1.Proof. We prove the two inequalities of Formula 4.2 separately by indution on thestages.First, we prove by indution on n that for eah i and x,jxj'i � n =) jxjsi � n:This is true if n = 0. Suppose that this is true for all m < n, and suppose that jxj'i � n.We have the usual ases.�. If 'i is, say, onjuntive ('i � 'j ^ 'k), then:jxj'i � n =) jx0j'j � n� 1 or jx00j'k � n� 1=) jx0jsj � n� 1 or jx00jsk � n� 1 (by indution)=) jxjsi � n:Disjuntion is similar.Q. If 'i is, say, existential ('i � 9y'j), then:jxj'i � n =) for all y; jx0; yj'j � n� 1=) for all y; jx0; yjsj � n� 1 (by indution)=) jxjsj � n:Universal quanti�ation is similar.This onludes the proof of the left inequality of Formula 4.2.58



Seond, we prove by indution on n that for eah i and x,jxj'i = n =) jxjsi � (3�+ 5)rn+ r + 2p+ 6:This is true if n = 0. Suppose that this is true for all m < n, and suppose that jxj'i = n.Again, we have the usual ases.�. If 'i is, say, disjuntive ('i � 'j _ 'k), then:jxj'i = n =) jx0j'j � n� 1 or jx00j'k � n� 1=) jx0jsj � (3�+ 5)(n� 1)r + r + 2p+ 6or jx00jsk � (3�+ 5)(n� 1)r + r + 2p+ 6(by indution)=) jxjsi � (3�+ 5)(n� 1)r + r + 2p+ 7 � (3�+ 5)nr + r + 2p+ 6:Conjuntion is similar.Q. If 'i is, say, universal ('i � 8y'j), then:jxj'i = n =) for all y; jx0; yj'j � n� 1=) for all y; jx0; yjsj � (3�+ 5)(n� 1)r + r + 2p+ 6 (by indution)=) jxjsj � maxf(3�+ 5)(n� 1)r + (3�+ 5)r + r + 2p+ 6;(3�+ 5)r + p+ 6g=) jxjsj � (3�+ 5)nr + r + 2p+ 6:The last inequality holds beause it takes at most (3�+ 5)r moves to searh through thestruture and/or ondut a rae as in the algorithm of De�nition 4.3, and then either alast run of p+6 moves, or the remaining (3�+5)(n�1)r+(3�+5)r+r+2p+6 moves |but not both. Existential quanti�ation is similar, if simpler, and the searh takes only2 + (�+ 2)r moves.This onludes the proof of the right inequality of Formula 4.2. �And now for the punh line:Proof of Theorem 4.3. By Lemma 4.2, all FO + pos LFP expressible queries are �xedpoints of operative systems of subformula depth 1. Any operative system ' of subformula59



depth 1 has a guarded re�nement �, and by Lemma 4.3, for eah 'i of ', there is a siof � suh that on any joint struture M, and any x from jMj, jxj'i < 1 i� jxjsi < 1.Thus, for '0 being the formula orresponding to s0 = START, M j= '10 i� Eloise winsG(�;M). �Finally, sine FO + pos LFP is losed under negation on �nite strutures ([I86℄), sois FO?+ pos LFP.4.4 Closure Under NegationWe onlude this setion with the omment that things are di�erent on in�nite strutures.Let FO + LFP be the boolean losure of FO + pos LFP, and let FO? + LFP be the booleanlosure of FO? + pos LFP.By [I86℄, FO + pos LFP has the same expressive power as FO + LFP on �nitedatabases. Thus on �nite databases with onneted guard systems, FO? + pos LFPhas the same expressive power as FO? + LFP. The situation is entirely di�erent forin�nite databases, in whih it is possible FO + pos LFP is not losed under negation (see[Mo74℄). In addition, Theorem 4.3 is false for in�nite strutures. Suppose that you had ajoint struture, whose domain was the nonnegative integers (N) and whose guard relationswere su(x; y) � y = x + 1 and pred(x; y) � su(y; x), and whose guard onstant was0. We get the joint struture N = (hN ; 0i; hN ; pred; su; 0i).Theorem 4.4 There exists a FO + pos LFP expressible relation that is not FO? + posLFP expressible on N.To prove this, we will need a lemma. Let ! be the least trans�nite ordinal.Lemma 4.4 For eah operative system ' of S-positive formulas with guarded quanti�a-tions, sup jxjN' � !, where the supremum is not ahieved.Proof of Lemma 4.4. Suppose otherwise: for some s and some x, j(s;x)jN = !. Theneither s is a juntive state, in whih whoever is to play has two hoies to hoose from, or sis a quantitative state, in whih ase the player who is to play has to hoose a predeessor60



or suessor of one of the �nitely many elements of x (or of 0) to ontinue from. Eitherway, the player who is to play has �nitely many hoies to hoose from: list them as(s1;x1); : : : ; (sk;xk). If the player is Eloise, at least one of these is of a stage n < !, inwhih ase j(s;x)jN � n + 1, ontraditing j(s;x)jN = !. If the player is Abelard, thenall of the �nitely many options are of stages less than !, and hene their maximum is anumber m < !, foring j(s;x)jN = m + 1, again ontraditing j(s;x)jN = !. Getting aontradition either way, we onlude that j(s;x)jN < ! for all s, x. �Proof of Theorem 4.4. We will use some fats about FO + pos LFP from [Mo74℄.First of all, note that all the FO? + pos LFP expressible relations on N are FO + posLFP expressible. There are FO + pos LFP indutions whose losure ordinals are greaterthan !, e.g., letting S0 and S2 range over the \0-ary" relations TRUE and FALSE,'0(S0; S1; S2) � S2;'1(x; S0; S1; S2) � x = 0 _ 9y(pred(x; y) ^ S1(y));'2(S0; S1; S2) � 8yS1(y):whose losure ordinal is ! + 1. In [Mo74℄, a relation is alled hyperelementary if both itand its omplement are in FO + pos LFP. The Closure Theorem, [Mo74, Thm. 2B.4℄,says that if  is an operative system of positive formulas, and if its losure ordinal on Nis not maximal on N, then  1 is hyperelementary. Thus all FO? + pos LFP relationson N are hyperelementary. But there is a relation | the universal relation for FO + posLFP relations on N (see [Mo74℄) | that is not hyperelementary but still FO + pos LFPexpressible. �In fat, the industrious reader an on�rm that:Proposition 4.2 On N, the FO? + pos LFP expressible relations are preisely the las-sially semireursive relations.5 ExelsiorIn this paper, we saw what happened to Least Fixed Point logi when we use guardedquanti�ation. It turns out that guarded Least Fixed Point logi behaves very similarly:61



the Stage Comparison Theorem still holds, two popular measures of desriptive omplexityseem to behave similarly, and so on. In other words, what inreases is the omplexity. Wehave to worry about things like onnetivity of the guard strutures, and about safety.But the underlying results are the same. This may seem dull, but the nie thing is thatwe an develop theorems about what an be done in FO + LFP, and then we know thatthey an be done in FO?+ LFP as well.We will take advantage of this in a sequel. In [M*℄, we generalize a onjeture of[ChH82℄: over any lass of strutures admitting unbounded indutions of arbitrarily high\dimension,", i.e., there exist FO + pos LFP queries requiring seond order reursionvariables of arbitrarily high arity. This onjeture has been proven for FO + pos LFPon the lass of all �nite strutures in [Gro96℄; we will prove it for FO?+ pos LFP on alllasses of joint strutures in whih the guard system is suÆiently \sparse."Let us lose with a more basi question. Let's �rst take another look at the topology ofgames, from Subsetion 3.3. Reall that a game owhart has several strongly onnetedsubdigraphs, whih we ould all subroutines:De�nition 5.1 Given a game program �, a subroutine is a maximal set of states � from� suh that for any s; s0 2 �, s `+ s0.In simulating unguarded existential quanti�ation, we onstruted a subroutine inwhih all quanti�ations were existential (following [M95a℄, we an all this an exis-tential subroutine). However, thanks to the asymmetry indued by Convention 3.2, thegame program ode simulating unguarded universal quanti�ation inluded a rae, whihforms (part of) a subroutine in whih both guarded existential and guarded universalquanti�ation ourred: following [M95a℄, suh a subroutine ould be alled alternating.In [Ko91℄, it was proven that there exist FO + pos LFP expressible queries whih ouldnot be omputed by game programs (with unguarded quanti�ation) laking alternatingsubroutines. This leads to a number of papers on the �ne struture of alternation (or lakthereof), suh as [D87℄, [BlG87℄, [Gra92℄, [GraM96℄, [M95a℄, et. And it leaves us withthe question: in order to simulate unguarded universal quanti�ation, was alternationneessary? 62
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