
Guarded Quanti�
ation inLeast Fixed Point Logi
Gregory M
Colm�Department of Mathemati
sUniversity of South FloridaTampa, FL 33620(813) 974-9550, fax (813) 974-2700m

olm�math.usf.eduURL http://www.math.usf.edu/~m

olmMay 14, 2002Abstra
tWe develop a variant of Least Fixed Point logi
 based on First Order logi
 with arelaxed version of guarded quanti�
ation. We develop a Game Theoreti
 Semanti
sof this logi
, and �nd that under reasonable 
onditions, guarding quanti�
ation doesnot redu
e the expressibility of Least Fixed Point logi
. But guarding quanti�
ationin
reases worst-
ase time 
omplexity.

�This resear
h was partially supported by NSF grant CCR 940-3463.1



Contents1 Introdu
tion 31.1 The Notion of Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Outline of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Guards in Logi
s 72.1 Guarded Quanti�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Guard versus database relations . . . . . . . . . . . . . . . . . . . . . . . . 132.3 Least �xed point logi
 with guards . . . . . . . . . . . . . . . . . . . . . . 172.4 Distan
e in Guard Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Game Programs 263.1 Playing the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.2 Winning the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3 The Topology of Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.4 Uniform Conne
tivity and Games . . . . . . . . . . . . . . . . . . . . . . . 394 Using Game Programs 434.1 Non-Re
ursive Games and First Order Logi
 . . . . . . . . . . . . . . . . . 444.2 Re
ursive Games and LFP Logi
 . . . . . . . . . . . . . . . . . . . . . . . 454.3 Least �xed point logi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.3.1 (Sub)Programs for Simulating Quanti�
ation . . . . . . . . . . . . . 534.3.2 The Simulation Works . . . . . . . . . . . . . . . . . . . . . . . . . 574.4 Closure Under Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 Ex
elsior 61
2



1 Introdu
tionFor over two de
ades, �nite model theorists have looked at relational databases as rela-tional stru
tures. After all, if relational databases were relational stru
tures, then thelogi
s of �nite model theory should be helpful in understanding relational databases.This approa
h seemed justi�ed by the identi�
ation of 
ertain logi
s (assisted by variousgadgets) with traditional 
omputational 
omplexity 
lasses, e.g., NP with �11 in [F74℄,PTIME with the Least Fixed Point logi
 (with su

essor) of [Mo74℄ and [AhU79℄ in [I86℄and [V82℄, and the various additional identi�
ations in [I87℄ and elsewhere. In a 
ertainsense, the logi
s of �nite model theory seem to des
ribe the power of database querysystems fairly well. But there are 
ompli
ations.The primordial logi
 of �nite model theory is First Order logi
 (FO), the basi
 logi
 of
lassi
al model theory. In addition, positive existential FO logi
 is the logi
 
orrespondingto Stru
tured Query Language (SQL) | and if you added negation to SQL, the 
orre-sponding logi
 is FO itself (see [AbiHV95℄). But there are at least two problems with FOfrom an algorithmi
 point of view:� There is a 
lassi
al problem: FO is unable to express re
ursion, and (thus) 
annotexpress popular queries like rea
hability in graphs.� As [Gu97℄ points out, quanti�
ation in FO logi
 is too easy 
ompared with exhaus-tive sear
hes through databases.Noti
e that the se
ond problem is not about the power of quanti�
ation | database querysystems are usually allowed to sear
h through an entire database, given time to do so |but that it is done in a single, inno
uous step that too easily sweeps the 
omplexitiesunder the rug. It might be helpful to have a logi
 that 
aptures the des
riptive and
omputational 
omplexity of database queries more pre
isely.In this arti
le, we will develop su
h a pre
ise logi
, and 
ompare the time 
omplexityof algorithms in this more pre
ise logi
 with that of 
lassi
al �xedpoint logi
.
3



1.1 The Notion of GuardsIn this arti
le, we propose an approa
h for dealing expli
itly with the the se
ond prob-lem (the 
omplexity of quanti�
ation) and thus impli
itly with the �rst (the need forre
ursion). We will develop a Least Fixed Point (LFP) logi
 using a system of guardssimilar to those of [Com83℄ and [AnBN96℄. As LFP has re
ursion built into it, we willbe able to deal expli
itly with issues involving re
ursion. And as the guards provide aplausible restri
tion on quanti�
ation, we will be able to look at issues arising from su
hrestri
tions. In addition, we will follow the approa
h of [M
95a℄ in using Hintikka type se-manti
s for games to des
ribe 
omputations, and we will �nd that these \Eloise-Abelard"(or \Angel-Demon" or \Assertor-Denier") 
orrespond to this guarded LFP logi
.Here are two motivating images.I. The original motivating image of [AnBN96℄ is that of a universe of many worlds,appropriate for a modal-type logi
. From a parti
ular world, only some other worldsare a

essible, and those worlds are the ones that a \guard relation" permits one to goto. The two basi
 quanti�
ations of modal logi
, \� = it is ne
essary that ..." and\� = it is possible that" 
an be represented as universal and existential quanti�
ations,respe
tively, over the worlds a

essible from the 
urrent world. This motivational imagehas been developed further in the work of [GraW99℄, et
.Guards have been used in modal-type logi
s elsewhere, e.g., in the 
ommuni
ation,pro
ess, and game logi
s. And we are very interested in games in this paper.The 
onne
tion between games and logi
 goes ba
k to Peir
e (see [Hil82℄), but the ideawas popularized by su
h works as [Hin72℄ (see [HiS97℄), [Mo72℄ and [A
75℄. Suppose thatwe have a two-player game of perfe
t information, and we want to assert that one or theother player has a winning strategy. We 
an use the guards to indi
ate the legal moves,with additional relations to indi
ate whose turn it is, and, if the game is over, who has won.Then \Player E has a winning strategy" is an assertion that 
an be expressed in a \gamelogi
." \Game logi
s" were explored for their own sake in [Pa85℄, but also for the sakeof studying validity in [Pl81℄, [He94℄, [Ba
W98, II.14℄, et
. and for the sake of studying
ommuni
ation and pro
esses in [AbaLW89℄, [Mo91℄, [Mi99℄, et
. (see [FHMV95℄).4



In this arti
le, we will explore a framework for studying many kinds of two-playergames of perfe
t information. In su
h a game, there might be several pie
es to move, withone player trying to get the pie
es into one kind of 
on�guration, and the other trying toprevent the �rst player from winning. (Imagine a game of Chess, in whi
h White wantsto win, while Bla
k would be satis�ed with a draw.) Most board games have some kindof bounds on the legal moves, and we will use guard relations to bound the range of legalmoves.As the games may go on inde�nitely, we will be spending mu
h of our time on �xedpoints. Assertions about who wins in a two-player game in a Modal-type game logi
 
anbe naturally expressed in �xed point logi
s (see, e.g., [BarM96, IV.12℄). And this leadsus 
loser to another motivating image.II. Imagine a simple-minded data storage devi
e, in whi
h we 
ould store, say, adigraph. Imagine that hashing is not an issue. There are at least two naive ways one
ould store the digraph.� We might store the digraph by putting the names of the verti
es into registers of thedevi
e, and assigning, for ea
h ar
, a register with two pointers (one for the sour
eand one for the sink).� We 
ould store an edge by having a pointer to the sink's register in the the sour
e'sregister. This approa
h would take less spa
e than the �rst, but would impose anupper bound on the outdegrees of the verti
es.(There are other options as well.) Then we naively imagine the CPU following pointersas it navigates through the database. The relation 
onsisting of all these navigationalpointers might be 
alled the guard relation.Now for a 
ompli
ation. One problem with the CPU metaphor is that navigationthrough the digraph requires the digraph's own ar
s, whi
h might be distributed unhelp-fully (e.g., if the digraph is not 
onne
ted, one 
ould be 
ut o� from some of the digraph).In some of the extant guarded quanti�
ation literature, there are several relations, and inthis paper we expli
itly distinguish relations used for 
omputations (i.e., guard relations)from database relations (i.e., relations representing the inputted stru
ture). Returning to5



the game metaphor, we have some relations | the guard relations | used for moves,and some relations | the database relations | used at the end of the game to determinewho won. In both metaphors, the guard relations do not represent any part of the inputstru
ture in itself; they are used for 
omputations only.In the �rst, modal-type, motivational image, the guard relation is an integral part ofthe stru
ture. This is typi
al of the usual versions of \guarded quanti�
ation." In these
ond, database-style, motivational image, the guard relation must merely satisfy 
ertainutilitarian 
riteria (
onne
tivity, perhaps it enables some arithmeti
, et
.).The logi
al devi
e that we will use to des
ribe this \guarding" is a generalization ofthe \bounded quanti�
ation" of 
lassi
al re
ursion theory (see [Ro67℄) and des
riptive settheory (see [Mo80℄). Su
h restri
tions on quanti�
ation entered �nite model theory withthe \
onne
ted quanti�
ation" of [Com83℄, whi
h investigated the spe
ial preservationproperties of FO senten
es whose guards were a
tually edge relations of graphs. We believethat an investigation of guarded quanti�
ation, looking at various kinds of guards, willenable us to disse
t the notion of quanti�
ation itself. We are separating out the propertiesof quanti�
ation over immediate neighbors from \global" quanti�
ation (iover the entirestru
ture), and we hope to �nd whi
h properties of quanti�
ation are preserved.In this paper, we will look at su
h a variant of what [AnBN96℄ 
alled the ThirdFragment: a `guarded' version of FO itself. This notion of \guarded quanti�
ation"will be more relaxed than the one 
urrently most popular in �nite model theory, as themotivation is di�erent. (Thus it might be 
alled \weakly guarded" quanti�
ation.) Andwe will develop a guarded Least Fixed Point logi
 (a guarded version of the logi
 \FO +LFP"), in whi
h some of the work of the quanti�
ation is represented by re
ursions onthe guarded quanti�
ations.1.2 Outline of the PaperIn this paper, we will start with a long Se
tion 2 on how our guarded quanti�
ation works,and a des
ription of guarded LFP logi
. We will also look at a te
hni
al diÆ
ulty thatarises when the guard relation is of arity > 2.In Se
tion 3, we will re
ast guarded quanti�
ation logi
 in terms of games, using6



the game-theoreti
 framework of [M
95a℄; this system is a des
endent of [Mo72℄ and[HaK84℄, but belongs in the family of games des
ribed by the Game Theoreti
 Semanti
sdeveloped by Hintikka (see [HiS97℄). In su
h a game, there are two players, whom wemay romanti
ally 
all \Eloise" and \Abelard": Eloise is trying to prove that a 
ertainstatement is TRUE on a given stru
ture, while Abelard is trying to prove that it is FALSE.The rules of a game make up a \game program", and we develop a Datalog-like languageof game programs similar to that of [M
95a℄, and we �nd that we 
an pre
isely 
aptureguarded First Order logi
 (or guarded LFP logi
) with these game programs, dependingon whether re
ursion is permitted.We will 
ontinue this exploration in Se
tion 4 by 
omparing logi
s with game programs.Thus we get a guarded version of the theorem of [HaK84℄:Theorem 4.2 Guarded FO + positive LFP logi
 
aptures the guarded game logi
.In addition, by a 
oarse measure, there is no 
hange in expressive power:Theorem 4.3 Assuming an inno
uous assumption, on �nite stru
tures, guarded FO +(positive) LFP and unguarded FO + (positive) LFP have the same expressive power.However, we will �nd that using guards in
reases time 
omplexity and, in a mannerthat will prove irritating in [M
*℄, spa
e 
omplexity as well.2 Guards in Logi
sIn this se
tion, we will de�ne the stru
tures that we will be working on, and the guardedlogi
s that we will be working with. We will also dis
uss some of the basi
 properties ofthese logi
s on these stru
tures. We start with a few basi
 de�nitions, mostly followingthe nomen
lature of [Mo74℄; see also [EbF95℄ and [I99℄.De�nition 2.1 A relational database is a tuple D = hD;R1; : : : ; 
1; : : :i, where D = jDjis some set (the domain of D, of 
ardinality kDk), where ea
h Ri is a relation on D andea
h 
k is a 
onstant in D.More logi
al papers 
all these semanti
 tuples (relational) elementary stru
tures. Wewill resort to 
alling these things stru
tures when we don't want to think of them as7



databases (in the sense that what they 
ontain is not so mu
h information as navigationalguidan
e for 
omputation). Noti
e that we use semi
olons to separate the domain from therelations and the relations from the 
onstants. We will tend to use 
apital fraktur font (M,D, R, ...) for stru
tures, 
apital itali
 font for sets and relations, and lower
ase itali
 fontfor elements and both 
apital and lower
ase itali
 font for integers. Let [n℄ = f1; 2; : : : ; ng;let [0℄ = ?.De�nition 2.2 A s
hema is a tuple � = h(R1; a1); : : : ; 
1; : : :i, where ea
h Ri is asymbol standing for a relation of arity ai, and ea
h 
k is a 
onstant symbol standingfor an element. We say that a database D = hD;RD1 ; : : : ; 
D1 ; : : :i is of s
hema � =h(R1; a1); : : : ; 
1; : : :i if:� for ea
h i, RDi � Dai, and� for ea
h j, 
Dj 2 D.We say that D is a �-stru
ture.More logi
al papers 
all these synta
ti
 tuples signatures rather than s
hemas. Wewill often look at 
lasses of databases of a 
ommon s
hema.Noti
e that in De�nition 2.1, ea
h \R" was a relation, while in De�nition 2.2, ea
h\R" was a symbol for a relation: applied to the database D, \R" is a symbol that 
anrepresent the relationRD. Usually, we will be sloppy, and not distinguish between symbolsand the obje
ts that they represent.Remark 2.1 In \real life," relational databases are multi-sorted stru
tures, i.e., theyhave many domains. Thus we would have a database D = hD1; : : : ;R1; : : : ; 
1; : : :i, whereea
hDh is a domain, ea
h Ri is a subset of some produ
t of the domains, and ea
h 
onstant
j is an element of a domain. The s
hema would be 
hanged a

ordingly. And in \reallife," many databases also have built in fun
tions. But we will avoid su
h 
omplexitiesin this paper, and merely observe that the de�nitions and theorems 
an all be generalizedin some natural way. For an introdu
tion to the foundations of database theory, see thearti
le [Ka91℄, the book [AbiHV95℄, or the tome [U88, 89℄.8



In this paper, we will want to add relations, fun
tions and 
onstants to databases (and
orresponding symbols to database shema).De�nition 2.3 Given a �-stru
ture M = hD;R1; : : : ; 
1; : : :i, and given a relation S �Ds, 
all (M; S) = hD;R1; : : : ; S; 
1; : : :i an expansion of M by adding the relation S, andsay that it is of the expanded s
hema (�; (S; s)).The nomen
lature for adding a 
onstant is similar, as is the nomen
lature for addinga tuple of relations and 
onstants.2.1 Guarded Quanti�
ationIn this se
tion, we de�ne guarded quanti�
ation, and the 
orresponding �rst order logi
.In this paper, the boolean operators ^, _ and : behave as usual. Our version of\guarded quanti�
ation" is as follows.First, we expand the database s
hema � by adding one or more guard relations, whi
hare of arity at least 2, and some guard 
onstants, as follows.De�nition 2.4 A guard s
hema is a tuple � = h(P1; a01); : : : ; d1; : : :i su
h that:� ea
h Pi is a relation symbol, and ea
h a0i is a positive integer greater than 1: we 
alla0i the arity of the relation symbol Pi; and� ea
h dj is a 
onstant symbol.A guard stru
ture of guard s
hema � is a tuple R = hD;PR1 ; : : : ; dR1 ; : : :i, where jRj = Dis the domain of the stru
ture, PRi � Da0i for ea
h i and dRj 2 D for ea
h j.Again, we will usually not distinguish between guard relations and guard relationsymbols, between guard 
onstants and guard 
onstant symbols.Remark 2.2 Noti
e that te
hni
ally, there is no di�eren
e between a database s
hemaand a guard s
hema: given a tuple out of 
ontext, we 
ould not tell whether it was adatabase s
hema (i.e., whether it 
ontained input information about the domain) or a9



guard s
hema (i.e., whether it 
ontained 
omputation guidan
e for the domain). Similarly,out of 
ontext, we 
annot di�erentiate between database and guard stru
tures. But if wekeep them in 
ontext, we should be able to avoid 
onfusion.We put the database and guard s
hemas together so that we 
an apply them both tothe same domains.De�nition 2.5 Let � = h(R1; a1); : : : ; 
1; : : :i be a database s
hema, and let � = h(P1; a01);: : : ; d1; : : :i be a guard s
hema. Denote the joint database-guard s
hema of � and � as:(�; �) = h(R1; a1); : : : ; (P1; a01); : : : ; 
1; : : : ; d1; : : :i:Let D = hD;RM1 ; : : : ; 
M1 ; : : :i be a �-stru
ture and R = hD;PR1 ; : : : ; dR1 ; : : :i a �-stru
ture,both of a 
ommon domain jDj = jRj = D. Then the joint database-guard stru
ture ofjoint s
hema (�; �) is the tuple(D;R) = hD;RM1 ; : : : ; 
M1 ; : : : ;PR1 ; : : : ; dR1 ; : : :i:We will often just 
all (D;R) a joint stru
ture.We will tend to denote database stru
tures by the letter D, guard stru
tures by theletter R, and joint stru
tures by the letter M. Noti
e that we distinguish between thedatabase relations and 
onstants on the one hand, and the guard relations and 
onstantson the other. On the other hand, we 
an 
onsider (�; �) as an expansion of �, and thus(D;R) as an expansion of D, in the sense of De�nition 2.3.De�nition 2.6 Let D be a set of databases of a 
ommon database s
hema, and let R bea set of guard stru
tures of a 
ommon guard s
hema. Then R is a guard system for D if,for ea
h D 2 D, there exists R 2 R su
h that jDj = jRj.We now des
ribe how guarded quanti�
ation works. The guard 
onstants dR1 ; : : : willprovide us with pla
es to begin to look during quanti�
ations, while the guard relationsPR1 ; : : : will bound our sear
h. Here is the 
riti
al idea of guarded quanti�
ation.10



De�nition 2.7 Fix a domain D and an integer a � 2. Given an a-ary guard relationP � Da and an (a � 1)-tuple x 2 Da�1, and a y 2 D, we say that x a

esses y throughP if P (x; y).De�nition 2.8 We de�ne guarded quanti�
ation as follows. If P is a guard relation, andx a tuple of variables and guard 
onstants, and if z is a tuple of variables (in
luding y)then (9y: P (x; y))�(z)is the assertion that there exists y su
h that P (x; y) and �(z) are both true. Similarly,(8y: P (x; y))�(z)is the assertion that every y satisfying P (x; y) also satis�es �(z).Think of (9y: P (x; y))�(z; y) as 9y[P (x; y) ^ �(z; y) and think of (8y: P (x; y))�(z; y)as 8y[P (x; y)! �(z; y).The simplest 
lass of guarded formulas are the guarded FO formulas:De�nition 2.9 The guarded FO formulas, whi
h we denote by FO?, are 
onstru
ted asfollows.1. The atomi
 formulas:� If x is a variable and 
 is a database 
onstant, then x = 
 is a FO? formula. We willregard equality as both a database and a guard relation.� If x is a tuple of variables, and if R is a database relation symbol, then R(x) is aFO? formula.(The idea is this: in order to ask if a tuple x is listed in R, we must have a

essed all ofx, and we do not assume that database 
onstants are automati
ally a

essible. However,given an a

essed value, we 
an 
ertainly ask if this is in fa
t the 
onstant in question.)2. Conjun
tions, disjun
tions, and negations are de�ned as usual to get: '^ , '_ ,and :'. 11



3. For any FO? formula  , and guard relation P , the formulas(9y: P (x0; y)) (x00; y) and (8y: P (x0; y)) (x00; y)are (guarded quanti�
ation) FO? formulas (where x0 is a tuple of variables and guard
onstants, while x00 is a tuple of variables). Noti
e that x00 might be an empty tuple, sothat if x0 
onsists of guard 
onstants alone, we would have a nontrivial FO? formula withno free variables; as usual, su
h a formula is 
alled a senten
e. In these formulas we saythat y is bound by the quanti�
ation: variables unbound by any quanti�
ations are free.Remark 2.3 The above system is a relaxation of the guarded logi
s in the literature. Hereare the major di�eren
es:� We distinguish between guard relations and database relations (and those that areboth). We similarly distinguish between guard 
onstants and database 
onstants.� In quanti�
ations (Qy: P (x; y)) (x0; y), we permit free variables in x0 that do noto

ur in x. This bit of permissiveness permits us to express notions like \the graphis a 4-
lique." (In fa
t, as we shall see, this permissiveness permits a great deal.)� Some guarded quanti�
ation logi
s have, instead of a single atomi
 formula servingas a guard, a 
onjun
tion of several atomi
 formulas: e.g.,(Qy: P1(x1; y); : : : ; Pk(xk; y))�(z):(The usual restri
tion is that the variables of z are all among x1; : : : ;xk; y, and theinterpretation is, if Q = 9, that there is a y satisfying P1(x1; y) ^ � � � ^ Pk(xk; y) ^�(z) | with a similar interpretation if Q = 8. The ni
e thing about permittingthese 
onjun
tions is that the restri
tion on the free variables of z no longer 
ausesirritating number-of-variables problems: e.g., it is now possible to represent \thegraph is a 4-
lique.").It is possible to 
apture queries de�ned by these 
onjun
tive guarded quanti�
ationsusing the system of this paper. De�ne,(9y:P1(x1; y); : : : ; Pk(xk; y))�(z)� (9y1:P1(x1; y1)) � � � (9yk:Pk(xk; yk))[y1 = � � � = yk ^ �(z)℄12



and (8y:P1(x1; y); : : : ; Pk(xk; y))�(z)� (8y1:P1(x1; y1)) � � � (8yk:Pk(xk; yk))[y1 = � � � = yk ! �(z)℄We 
an de�ne satisfa
tion in the usual way: given a joint stru
tureM of joint s
hema�, and given a FO? senten
e � also of joint s
hema �, \M j= �" means thatM satis�es �.There is a useful fa
t (whi
h we will need) about FO formulas that is also true of FO?formulas: we 
an push negations down to the atomi
 level.Proposition 2.1 Every FO? formula � is equivalent to a FO? �̂ whose negations modifyonly atomi
 subformulas.Idea of proof. This merely involves repeated appli
ations of De Morgan's Laws::(' _  ) � :' ^ : ;:(' ^  ) � :' _ : ;:(9y: P (x0; y)) � (8y: P (x0; y)): ;:(8y: P (x0; y)) � (9y: P (x0; y)): :�2.2 Guard versus database relationsSometimes we may want to use the database relations themselves as guards. Imagine thatwe are given a graph and some verti
es in the graph: we may want to quantify over theneighbors of the given verti
es. There is nothing to prevent us from using some of thedatabase relations as guard relations, as is done in [Com83℄ and [AnBN96℄ and, indeed,most of the literature. When we want to do this, we just list the relation symbol twi
ein the joint signature (�; �): on
e in � and on
e in �. But in this arti
le, we will permitguard relations that are not database relations, and vi
e versa, with the proviso:We will take equality to be a guard relation as well as a database relation.13



(Remember: the database 
ontains the information while the guards guide 
omputation.)Thus we have two extreme situations to deal with:1. All the guard relations and 
onstants 
ould be database relations and 
onstants.2. No guard relations (other than equality) or 
onstants would be database relationsor 
onstants.(And, of 
ourse, we 
ould have some guard relations and 
onstants be database relationsand 
onstants.) As mentioned Subse
tion 1.1, (1) is the usual situation in the literature,while (2) is the usual situation in this paper. As an example of the situation (1), 
onsiderthe following.Example 2.1 Let G be a 
onne
ted graph, with edge relation Edge. Let Edge be the guardrelation as well, and imagine that there is one guard 
onstant d. Then to determine if Gis a 
lique, i.e., if G j= 8x8y (x = y _ Edge(x; y)) ;determine the truth value of the FO? senten
e(8x: Edge(d; x))(8y: Edge(x; y))(8z: d = z)Edge(z; y):Noti
e that if G is not 
onne
ted, all this says is that d's 
omponent in G is a 
lique.We now turn to the situation where there are guard relations that are not databaserelations, and vi
e versa.We should also note that the guard relations are themselves de�nable using quanti�-
ation with guards.Proposition 2.2 Guard relations and 
onstants are expressible in FO?, as follows.For ea
h guard relation P , there is a FO? formula �P su
h that for all joint stru
turesM, M j= 8x[P (x) ! �P (x)℄.For ea
h guard 
onstant d, there is a FO? formula �d su
h that for all joint stru
turesM, M j= 8x(x = d ! �d(x)℄. 14



Proof. De�ne �P (x; y) � (9z: P (x; z))(y = z)whi
h is a FO? formula. For any guard 
onstant d,�(x) � (9y: y = d)(y = x)is a FO? formula. �Let's look at some examples.Example 2.2 The su

essor relation 
an be used as a guard. Let D be a set of databasesof a 
ommon s
hema �. We have a guard s
hema 
onsisting of a binary relation su

and a 
onstant 0. If D 2 D, then a guard stru
ture of s
hema � = hsu

; 0i will be astru
ture R = hjDj; su

R; 0Ri su
h that:1. For ea
h x 2 jDj, there exists at most one y su
h that (D;R) j= su

(x; y): for allbut one x, su
h a y exists. Let s be a partial fun
tion su
h that for ea
h x 2 jDj,s(x) is the unique y su
h that D j= su

(x; y) | if s(x) exists.2. For ea
h x 2 jDj, there exists an n su
h that n iterations of s from 0 produ
es x, i.e.,sn(0) = x. Thus the only x 2 jDj su
h that s(x) does not exist is the su

-maximumelement of D.For example, suppose that D is a set of stru
tures whose domains are the sets [n℄,n = 1; 2; 3; : : :.� One guard system for a built in su

essor would be the set of stru
turesh[n℄; su

n; 1i;for ea
h positive integer n, where su

n(x; y) � x + 1 = y for all x < n.� Another guard system, for a su

essor \independent of" the given stru
ture, mightbe the set of stru
tures h[n℄; su

n;� ; �(1)i;for ea
h positive integer n and permutation � : [n℄ ! [n℄, where su

n;� (x; y) ��(x) + 1 = �(y) for all x, �(x) < n. 15



Expanding on Example 2.2, the representation of PTIME in [Mo83℄ | see [M
89℄ |as the `re
ursive' queries over stru
tures hf0; : : : ; n � 1g;R; su

; pred; 0i, R a relationen
oding the stru
ture, might be regarded as an example using su

essor and prede
essoras guard relations (and 0 as the guard 
onstant | if we use =0 rather than =). But thereare other examples as well.Example 2.3 Consider a database whose domain is of 2m elements. We 
ould take anm-hyper
ube as a symmetri
 guard relation, with one of the verti
es as a guard 
onstant.This sort of thing works for databases of very spe
ial sizes. How about:Example 2.4 Fix a natural integer n = m1m2 � � �mk, and suppose that D was a databaseof n elements.. We 
ould apply a dire
ted toroidal k-dimensional grid as the guard relationas follows. Ea
h element of jDj might be identi�ed with a tuple (�1; : : : ; �k) 2 Nk , where�j < mj for ea
h j 2 [k℄ and N = f0; 1; 2; 3; : : :g. The guard relation would allowquanti�
ations from a vertex (�1; : : : ; �k) to a vertex (�1; : : : ; �k) i� for some i, j 6=i =) �j = �j, while �i + 1 �= �i mod mi. As a guard 
onstant, we use the vertex(0; : : : ; 0).The following is a 
hestnut: see [Mo83℄.Example 2.5 The guard relation might be a binary tree, where ea
h vertex v has at mosttwo su

essors (whi
h might be identi
al) l(v) and r(v), and quanti�
ation from v means
he
king l(v) and r(v) only. Thus we get two guard relations left and right, being thegraphs of the fun
tions l and r respe
tively. The guard 
onstant would be the root of thetree.This last example leads us to the spe
ial 
ase: suppose that the guard relation is afun
tion. Returning to the motivation of a 
omputer with tuples stored in registers andguards represented by pointers, this 
ertainly makes sense: a register 
an store only somany pointers. So we 
ould imagine a 
olle
tion of pointer fun
tions f1; : : : su
h thatgiven x, fi(x) gives you the ith pointer on x's register.16



2.3 Least �xed point logi
 with guardsWe will work mostly with guarded versions of the LFP logi
s of [Mo74℄ and [AhU79℄.These are extensions of FO logi
, but here we use guarded quanti�
ation. We 
onstru
tguarded positive LFP Logi
 (whi
h we denote FO? + pos LFP) and unguarded positiveLFP Logi
 (whi
h we denote FO + pos LFP) as follows.An operative system of formulas is a sequen
e ' = '0; : : : ; '� of se
ond order formulas'i(xi;1; : : : ; xi;ri; S0; : : : ; S�); i = 0; : : : ; �;where, for ea
h j, Sj ranges over rj-ary relation variables. (We permit 0-ary relationvariables, i.e., variables ranging over TRUE and FALSE.)Now suppose that ea
h of these formulas 'i is monotone, i.e., on any joint stru
tureM, if Sj � Tj for ea
h j, then for any x from M, and any i,M j= 'i(x; S0; : : : ; S�)! 'i(x; T0; : : : ; T�):Then we 
an 
arry out a re
ursion (as des
ribed in [Mo74℄ and [Mo83℄) as follows. TheLeast Fixed Point of the system ' is 
onstru
ted by setting '0i = ? for ea
h i, and then,for ea
h n, we de�ne(2.1) 'n+1i (x) � 'i(x; 'n0 ; : : : ; 'n�);and it follows from an indu
tion on n that(2.2) ? = '0i � '1i � '2i � � � � ;so that on a �nite stru
ture M, there exists an n su
h that for all j, M j= 'nj = 'n+1j .Then if '1i = Sn 'ni for ea
h i, the tuple ('10 ; : : : ; '1� ) is the `Least Fixed Point' of thesystem '. If all the 'i are L-expressible for some logi
 L, we say that '10 is (L + posLFP)-expressible.(We will tend to use S0; : : : ; S� or T0; : : : ; T� as relation-valued re
ursion variables, oras relations, depending on the 
ontext. We will also use the notation '� = ('�0 ; : : : ; '��).)In
identally, this is why we are sti
king to �nite stru
tures throughout most of thispaper: in in�nite stru
tures, these re
ursions 
an 
ontinue for trans�nitely many iter-ations. We will use this number-of-iterations measure as a time 
omplexity measure.17



(More ma
hine-oriented time-
omplexity issues in guarded quanti�
ation are dis
ussed in[GraW99℄.)De�nition 2.10 Suppose that we have an operative system ', a joint stru
ture M, andthat M j= 'ni (x)^:'n�1i (x). Then n is the stage of x, denoted jxjM'i;' (if ' is understood,write jxjM'i; ifM is understood, write jxj'i;'; if both ' andM are understood, write jxj'i).If :'1i (x), write jxji =1.By Formula 2.2, m < n =) ('mi (x)! 'ni (x)) for all x.De�nition 2.11 Suppose that we have an operative system ', and letM be a joint stru
-ture. Then k'kM = supx;i fjxj'i: x fromM & i 2 f0; 1; : : : ; �ggis the 
losure ordinalof ' in M.(Closure ordinals on in�nite stru
tures are dis
ussed in [Mo74℄, [Bar77℄, and [M
90a℄.)We 
an get the formulas 'i(x; S0; : : : ; S�) to be monotone by requiring that they beSj-positive for ea
h j. Given S, the S-positive formulas are 
onstru
ted by the followingre
ursion:1. If S does not o

ur in �, then � is S-positive.2. If � and � are S-positive, then so are �^�, �_�, (9y: P (x; y))�, and (8x: P (x; y))�,where P is a guard relation.In essen
e, ' is S-positive if there are no negations \in front of" any o

urren
e of S in'. It is straightforward to prove (see [Mo74℄) that if 'i is Sj-positive for ea
h j, thenea
h 'i is monotone in ea
h relational argument, so we 
an �nd least �xed points of thesystem '0; : : : ; '�.We will 
all an operative system ' of formulas, ea
h being Sj-positive for ea
h j, a\positive operative system."Let's 
onstru
t a system of formulas for graph rea
hability:REACH(x; y) � \there is a path along edges from x to y":18



In this example, the guard stru
tures are 
omplete digraphs, i.e., for any x, y, there is aP -ar
 from x to y.Example 2.6 Imagine that Edge is the edge relation we want to get REACH for, whileP is the (
omplete) binary guard relation. One operative system of formulas, with guardedquanti�
ation, for generating graph rea
hability as a least �xed point, is the following:'0(x; y; S0; S1) � x = y _ S1(x; y; y)'1(x; y; z; S0; S1) � [Edge(x; z) ^ S0(z; y)℄ _ (9w: P (z;w))S1(x; y; w):Here, REACH = '10 . Noti
e that k'0; '1kM is quadrati
 in kMk.Noti
e that if the quanti�
ation had been unguarded, i.e., if '1(x; y; z; S0; S1) �[Edge(x; z)^S0(z; y)℄_9wS1(x; y; w), the e�e
t would have been the same. The least �xedpoint logi
 FO + pos LFP of [Mo74℄ and [AhU79℄ uses stri
tly unguarded quanti�
ation,but is otherwise developed the same way as FO?+ LFP..Noti
e that in the above example, we did not use any guard 
onstants. However, sin
ea quanti�
ation in a senten
e requires something for the �rst k arguments of the ((k+1)-ary) guard relation in the outmost quanti�
ation, senten
es require guard 
onstants.If P is merely strongly 
onne
ted | i.e., for any x, y, one 
an go along P -ar
s from xto y| the algorithm would require that in the se
ond line, we would need to sear
h for anappropriate w by traversing an indeterminate number of P -ar
s. A single quanti�
ation(9w: P (�;w)) would not be suÆ
ient. We will look at this situation later.De�nition 2.12 Fix a database s
hema � and a guard s
hema �.The logi
 FO?+ pos LFP on (�; �) de�nes the set of queries '10 , for '0 being from apositive operative system ' = '0; : : : '� of formulas with guarded quanti�
ations, whoseguard 
onstants and relations are from � and whose database 
onstants and relations are�. The logi
 FO + pos LFP on � [ � de�nes the set of queries '10 , for '0 being from apositive operative system ' = '0; : : : '� of formulas with unguarded quanti�
ations, whose
onstants and relations are from � [ �. 19



We have de�ned the logi
s this way be
ause we will prove that on �nite stru
tures,given a uniformly 
onne
ted guard system, FO?+ pos LFP on (�; �) has the same expres-sive power as FO + pos LFP on � [ �.The logi
 FO? + pos LFP 
onsists of the \Least Fixed Points" when L is the set offormulas in FO? that are S-positive for ea
h se
ond order variable S. Noti
e that FO? +pos LFP is the least logi
 
ontaining FO? and 
losed under disjun
tion and 
onjun
tion,guarded quanti�
ations, and LFP indu
tions. The logi
 FO? + LFP is the least logi

ontaining FO? and 
losed under boolean operations, guarded quanti�
ations, and LFPindu
tions: unlike FO? + pos LFP, FO? + LFP is expli
itly 
losed under negations. Itwill turn out in Subse
tion 4.3 that on �nite stru
tures, all FO? + pos LFP expressiblequeries are FO? + LFP expressible; in Subse
tion 4.4, we will see that this is not true forin�nite stru
tures.2.4 Distan
e in Guard RelationsThere is one pathology that we en
ountered in Example 2.1 whi
h we will have to dealwith: suppose that from the guard 
onstants, one 
annot rea
h all verti
es of the database.Fix a guard stru
ture R of domain D. Without loss of generality, suppose that thereis one guard relation P , besides equality. Let d = d1; : : : be the guard 
onstants, letD0 = fd1; : : :g, let Dm+1 = fy: 9x1; : : : (P (x1; : : : ; y) ^ Vh xh 2 Dm)g for ea
h integerm � 0, and let D1 = SmDm.De�nition 2.13 A guard stru
ture of domain D is of radius m if it satis�es Dm�1 6=D = Dm; it is 
onne
ted if D = D1. A guard system is of radius m if m is the supremumof the radii of its stru
tures, and it is 
onne
ted if all of its stru
tures are 
onne
ted.Noti
e that on a �nite database, a guard stru
ture is 
onne
ted i� it is of �nite radius.This is a perfe
tly natural notion. Unfortunately, this is not quite the notion we willneed. In this se
tion, we will present the uglier notion that we will need, and show thatthe natural notion above is insuÆ
ient. First, here is the uglier notion.
20



De�nition 2.14 Fix a guard stru
ture R. Fix an integer p > 1. Suppose that for ea
hy 2 jRj, if y is not itself a guard 
onstant, then there exists a sequen
e x0, x1, ..., xn ofp-tuples from jRj su
h that the following is true (if xi = xi;1; : : : ; xi;p for ea
h i):� The tuple x0 
onsists of guard 
onstants.� For ea
h i 2 [n℄ and j 2 [p� 1℄, xi;j is either a guard 
onstant or is equal to xi�1;j0for some j 0.� For ea
h i 2 [n℄, there is a guard relation P and a tuple x0 from xi;1; : : : ; xi;p�1 su
hthat P (x0; xi;p).� The sequen
e of tuples ends with xn;p = y.If this is true, 
all R p-uniformly 
onne
ted. If R is a 
lass of p-uniformly 
onne
ted(guard) stru
tures for some one integer p, 
all R uniformly 
onne
ted.De�nition 2.14 is the notion that we will use in this paper.Remark 2.4 We 
ould have de�ned p-uniform 
onne
tedness slightly di�erently, e.g., asfollows. Suppose that for ea
h y 2 jRj, if y is not itself a guard 
onstant, then there existsa sequen
e x0;x1; : : : ;xn of tuples from jRj, su
h that the following is true:� For ea
h i, xi is a tuple xi;1; : : : ; xi;qi, where qi � p.� For ea
h i and ea
h j 2 [qi℄, xi;j either o

urs in xi�1, or 
an be a

essed from guard
onstants and elements of xi�1 via a guard relation.� The element y o

urs in xn.If these three 
onditions hold for all y 2 jRj, 
all R p-uniformly* 
onne
ted. It is nothard to prove that if there are � guard 
onstants, then any p-uniformly 
onne
ted guardstru
ture is p-uniformly* 
onne
ted, and that any p-uniformly* 
onne
ted stru
ture is(2p+ �)-uniformly 
onne
ted. And we would get a notion of \uniform* 
onne
tivity" thatwould 
oin
ide with uniform 
onne
tivity. 21



The rest of this subse
tion is devoted to the di�eren
e between 
onne
ted and uni-formly 
onne
ted guard systems. First the good news: these notions 
oin
ide when allthe guard relations are binary.Theorem 2.1 Let � be a guard s
hema whose relations are all binary. Then all 
onne
ted�-stru
tures are 2-uniformly 
onne
ted.Proof. Fix a 
onne
ted guard stru
ture R, with binary guard relations P1; : : :. As inDe�nition 2.13, let D0 be the set of guard 
onstants, and for ea
h m, letDm+1 = (y 2 jRj � [i�mDm: 9x x 2 Dm ^_i Pi(x; y)!) :As R is 
onne
ted, if y 2 jRj, there exists x0; x1; : : : ; xn su
h that:� The vertex x0 is a guard 
onstant.� For ea
h i < n, xi 2 Di, xi+1 2 Di+1, and there exists ji su
h that Pji(xi; xi+1).� The sequen
e ends with xn = y.Thus R is 2-uniformly 
onne
ted. �This means that in most of the examples one would play with, the ni
e De�nition 2.13would suÆ
e. However, when dealing with messier models, we may want ternary (orworse) guard relations. This brings us to the bad news: if there are guard relations ofarity > 2 in a guard s
hema �, then some 
onne
ted �-guard systems are 
onne
ted butnot uniformly 
onne
ted.Theorem 2.2 For any p, there exists a guard stru
ture with a 3-ary guard relation anda guard 
onstant that is 
onne
ted but not p-uniformly 
onne
ted.Proof. We will prove this by indu
tion on p. We start with a variant of De�nition 2.14De�nition 2.15 Let R be a guard stru
ture and let y 2 jRj. A sequen
e x0;x1; : : : ;xna

esses y if (letting qi = length(xi) for ea
h i):22



� For ea
h i, xi = xi;1; : : : ; xi;qi is a tuple from jRj..� For ea
h i and j, if j 2 [qi � 1℄, then xi;j = xi�1;k for some k 2 [qi�1℄. (Here,[0℄ = ?.)� For ea
h i, there exists a tuple x0 of guard 
onstants and elements from xi;1; : : : ; xi;qi�1su
h that for some guard relation P , R j= P (x0; xi;qi).� The sequen
e ends with xn;qn = y.In addition, y is a

essed within q variables if there is a sequen
e x0;x1; : : : ;xn a

essingy in whi
h maxi qi � q.If p = minfq: \y is a

essed within q variables"g;say that a

essing y requires p variables.Observe that if y 
an be a

essed within q(y) variables for ea
h y, and p = maxy2R q(y),then R is p-uniformly 
onne
ted.We now 
onstru
t the stru
tures that will have verti
es requiring many variables toa

ess. Fix p. Let Tp = hTp; Ar
p; xpi be the 
omplete binary tree of root xp, verti
es Tp,ar
 relation Ar
p, and height p. Let Lp be the leaves in Tp, and ea
h vertex in Tp � Lphas pre
isely two su

essors. Following Example 2.5, label the two su

essors of a vertext 2 Tp � Lp by lt and rt: 
onsider these the left and right su

essors of t (but noti
e thatlt and rt are not distinguishable in the language of Tp). Extend Tp by adding a vertexd 62 Tp, and let Pp = f(lt; rt; t): t 2 Tp � Lpg [ f(d; d; t): t 2 Lpg;and let Rp = hTp [ fdg;Pp; di. Note that xp 2 jRpj, but xp is not the guard 
onstant d.Figure 1 displays R1.
23



d

lx rx

x

Figure 1To prove the Theorem, it suÆ
es to prove the following Claim by indu
tion on p.Claim 2.1 In Rp, a

essing xp requires p + 2 variables.The basis of the indu
tion is: p = 1. Here, if x = x1,R1 = hfx; lx; rx; dg; f(d; d; lx); (d; d; rx); (lx; rx; x)g; di:To a

ess x, one uses the tuple (lx; rx; x), so a

essing x requires at least 3 variables. But3 variables are suÆ
ient: to a

ess x via (d; d; lx), (d; d; rx), (lx; rx; x), the sequen
e (lx),(lx; rx), (lx; rx; x) satis�es De�nition 2.15.We pro
eed by indu
tion on p. Suppose that a

essing xp inRp requires p+2 variables.We 
laim that a

essing xp+1 in Rp+1 requires p + 3 variables.First, we 
laim that p+3 variables are ne
essary to a

ess xp+1 in Rp+1. Suppose thatx0; : : : ;xn witnesses the a

essing of xp+1 as in De�nition 2.15. Then x = xp+1 is the lastentry of xn, while lx and rx are other entries in xn (for otherwise, we 
annot a

ess x).Thus lx and rx o

ur in xn�1.Now, observe that Rp+1 
onsists of two 
opies of Rp, disjoint ex
ept that they shared, with lx and rx as the roots of the two 
opies of Rp, and with the additional vertex24



x = xp+1 on top (look at Figure 2 below). Denote the (left) 
opy 
ontaining lx by lRp, andthe (right) 
opy 
ontaining rx by rRp. Thus ea
h tuple xm, m < n, 
onsists of elementsfrom jlRpj and elements from jrRpj. Let xlm be the tuple from xm of elements from jlRpj,and let xrm be the tuple from xm of elements from jrRpj.
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x = x

lx rx

lRp
rRp

d

........... ........

Figure 2Note that without loss of generality, we 
an assume that if xlm has entries, andm0 > m,then xlm0 also has entries. Otherwise, we 
ould delete all entries of jlRpj from ea
h xlm00 ,m00 < m0, and we would still have a sequen
e of tuples a

essing x. Thus there is an mlsu
h that xlm has entries i� m � ml; similarly, there is an mr su
h that xrm has entries i�m � mr.By the Indu
tion Hypothesis, as lx is a

essed by the sequen
e a

essing x, there existsml � ml su
h that the tuple xlml has at least p+2 entries. Similarly, there exists mr � mrsu
h that the tuple xrmr has at least p + 2 entries. Without loss of generality, supposethat ml � mr: then ml � mr, so xmr has at least one from lRp. Then xmr must have at25



least (p+ 2) + 1 = p+ 3 entries.Thus a

essing x in Rp+1 requires at least p+ 3 variables.We 
on
lude by 
laiming that p+ 3 variables suÆ
e.Let x0; : : : ;xml be a sequen
e of tuples of jlRpj a

essing lx (with p+2 variables), andlet y0; : : : ;ymr be a sequen
e of tuples of jrRpj a

essing rx (again, with p+ 2 variables).Letting \^" mean 
on
atenation of tuples, the sequen
ex0; : : : ;xml ; (lx)^y0; : : : ; (lx)^ymr ; (lx; rx; x)a

esses x within p+ 3 variables. �In Subse
tion 3.4, we will see that uniform 
onne
tivity is what we want. We 
on
ludewith a de�nition we will need later.De�nition 2.16 Fix an integer p > 0 and a guard relation R. Given y 2 jRj, the p-uniform norm of y is the least n su
h that there is a sequen
e of n p-tuples satisfyingDe�nition 2.14 for a

essing y. The p-uniform radius is the maximum p-uniform normof any element of R.3 Game ProgramsIn order to simplify proofs, we will use a variant of the pebble game 
al
ulus of [M
95a℄,whi
h is a sort of generalized Datalog. In this se
tion, we will des
ribe the games andthen look at the 
onne
tion between the games on the one hand and FO? and FO? + posLFP on the other.In this se
tion, we will be using Peir
ean (as in Charles Sanders Peir
e) games of thesort des
ribed in [HiS97℄: given a stru
ture M and a property P, one player is assertingthatM satis�es property P and the other is denying it. In this Se
tion, we will look thesePeir
ean games and their 
onne
tions to guarded least �xed point logi
.3.1 Playing the GameThe game is played between two players | 
all them Eloise and Abelard | on a board(a joint stru
ture M), where the pie
es are an assortment of pebbles. The idea is that26



Eloise is trying to prove that M has a 
ertain property (e.g., it is a 
onne
ted graph, ora linear partial order, or some su
h), in the fa
e of Abelard's 
hallenges.At any moment, the game is in a parti
ular state s (representing some kind of asser-tion), with pebbles on a tuple of verti
es x. Eloise 
laims that the notion asso
iated withthe state s is true of M at the tuple x, while Abelard 
laims that it is false. For ea
hstate s, there is a rule whi
h determines how many pebbles are on the board (possiblyzero) and what is to be done: if someone is to move, the rule determines whose turn itis, how that player may move, or if someone is to win, the rule determines the 
riteria forvi
tory. The 
olle
tion of these �nitely many rules is the game program.Game programming is a variant of Datalog programming (see a theoreti
al text like[AbiHV95℄ or [U88, 89℄ for a des
ription of Datalog). A game program is a 
olle
tion ofrules (s;x) :� � � �where x is a tuple of variables (for positions of the pebbles) and `...' des
ribes what is tobe done if the game is in state s. The rules are `jun
tive', `quantitative', or `terminal'.As in Datalog, we will say that the term on the left hand side of ` :� ' is the head of therule while the expression on the right hand side of ` :� ' is the body. And we will use abookkeeping 
onvention from Datalog: when the game moves from state to state, withina rule, the values follow the variables; but when the game goes to the next rule, the valuesfollow the order of the arguments, not the variable names.Let's work within a �xed joint s
hema (�; �).Initial state. We will presume that the game begins in a spe
ial state START, withzero variables. Thus the question will be whether Eloise has a winning strategy from thegame position (START; ).Jun
tive rules. The state s might be `disjun
tive' or `
onjun
tive'. First, we look atdisjun
tive rules. Let x1 and x2 list variables from x = x1; : : : ; xe. Then(s;x) :� (s1;x1) _ (s2;x2)means that if the game is in state s, and the pebbles p1; : : : ; pe are on (the verti
esrepresented by the variables) x1; : : : ; xe resp., then Eloise de
ides whether to go to state27



s1, with pebbles p1; : : : ; pe0 on x1;1; : : : ; x1;e0 (where x1 = x1;1; : : : ; x1;e0 
onsists of variablesfrom x), or to state s2, with pebbles p1; : : : ; pe00 on x2;1; : : : ; x2;e00 (where x2 = x2;1; : : : ; x2;e00
onsists of variables from x). Here, for Eloise to 
laim that s is TRUE at x, she has to
laim that either s1 is TRUE at x1 or that s2 is TRUE at x2. Sin
e she only has to defendone or the other, she is permitted to 
hoose whi
h jun
t to defend: from state (s;x),Eloise 
hooses whether to 
ontinue the game from (s1;x1) or from (s2;x2).Noti
e that there may be some rearranging of pebbles. For example, for the rule(s; x; y) :� (s1; x)_ (s2; y; x), if the game is in state s with pebble p1 on the �rst argumentand p2 on the se
ond, then if Eloise 
hooses to go to state s2, the pebbles must beswit
hed (if Eloise 
hose to go to state s1, pebble p1 would stay put and pebble p2 wouldbe removed). This is a
tually analogous what happens in a 
omputer: the variables arelike the variable-names of a higher language, while the pebbles are like the registers ofthe ma
hine. From now on, we will rearrange pebbles without 
omment.Similarly, the 
onjun
tive rule(s;x) :� (s1;x1) ^ (s2;x2)means that Abelard de
ides whether to go into state s1 or state s2. Here Eloise 
laimsthat both jun
ts are TRUE, so as she would be expe
ted to be able to defend either,Abelard 
an 
hoose whi
h jun
t to 
hallenge.Quantitative rules. The state s might be `existential' or `universal'. Let x1 andx2 
onsist of variables 
hosen from x, only x1 may also list guard 
onstants. Let P be aguard relation (of �). Then an existential rule is of the form:(s;x) :� (9y: P (x1; y))(s0;x2; y);whi
h means that if the game is in state s with pebbles on the verti
es x, then Eloise is to
hoose a vertex y su
h that P (x; y). And x2 
onsists of verti
es from x. Then rearrangingpebbles so now the tuple x2; y is pebbled, the game 
ontinues from state s0, i.e., fromposition (s0;x2; y).Now suppose that Eloise 
laimed that for every y a

essible from x1, s2 would beTRUE at x2; y: we would now permit Abelard to 
hoose whi
h y he 
ared to 
hallenge.28



The result is the universal rule(s;x) :� (8y: P (x1; y))(s0;x2; y):We 
all these states (and their rules) existential and universal respe
tively.Noti
e that a player may be 
alled on to make a quantitative move, and yet theremay be no legal moves: Player Q is to 
hoose y su
h that P (x0; y), and yet, 8y:P (x0; y).What then?� For (s;x) :� (9y: P (x1; y))(s0;x2; y), Eloise 
laims that a 
ertain y exists, so if she
annot move from (s;x), no su
h y exists, so she should lose.� For (s;x) :� (8y: P (x1; y))(s0;x2; y), Abelard 
laims that all y with P (x1; y) leadto winning positions, whi
h is va
uously true if 8y:P (x1; y), so if no su
h y exists,he should win.This motivates the following asymmetri
 
onvention.Convention 3.1 For the rule (s;u) :� (Qv: P (u1; v))(s0;u2; v), from (s;x), if 8y:P (x; y),then Abelard wins.Terminal rules. Finally, the state might be `terminal': this is when Eloise is assertingthat an atomi
 formula (or its negation) is TRUE at a tuple x0, and all that remains isto 
he
k.Let x0 
onsist of variables from x. Here the rule 
ould be of the form(s;x) :� R(x0);where R is a database relation from � and x0 has the appropriate number of arguments:this means that if the state is s, and x is a given tuple of verti
es, then Eloise wins i�R(x0); otherwise, Abelard wins. Or the rule 
ould be of the form(s;x) :� :R(x0);whi
h means that Eloise wins i� :R(x0), with Abelard winning otherwise. Noti
e thatthese terminal rules are the only rules in whi
h the database relations appear expli
itly, asopposed to the guard relations, whi
h were expli
itly available in the quantitative rules.29



A terminal rule 
ould also be of the form(s;x) :� x0 = 
;where x0 is a variable from x and 
 is a database 
onstant, or of the form(s;x) :� x0 6= 
;where x0 is from x and 
 is a database 
onstant. In the �rst 
ase, Eloise wins i� thevariable x0 has the same value as the 
onstant 
, and in the se
ond 
ase, Eloise wins i�the variable x0 has a di�erent value than the variable 
. Again, noti
e that unlike theguard 
onstants, whi
h were expli
it in the quanti�
ation rules, the database 
onstantsonly appear at the end of the game.De�nition 3.1 The programs as de�ned above are the game programs.In
identally, a game position (s;x) will be 
alled jun
tive if s is a jun
tive state,quantitative if s is a quantitative state, and terminal if s is a terminal state.Thus the players play the game until one or the other wins. But noti
e that we havenot built in any guarantee that a terminal position will be rea
hed: indeed, we will �ndthat some games go on forever. We will want a 
onvention motivated by a notion similarto the \negation as failure" of [Cl78℄.Convention 3.2 If a game goes on forever, then Abelard wins.The rationale for this is that Eloise has the burden of establishing that the propertyholds on the given stru
ture: if she never does this, she loses.Note that Conventions 3.1 and asymmetry, espe
ially the latter, destroy the symmetrybetween Eloise and Abelard. This will have te
hni
ally unpleasant 
onsequen
es later on.3.2 Winning the GameNow that we have a notion of playing the game by some rules, let's take a brief look athow the game is won or lost.Re
all that Eloise should be able to win the game i� the stru
ture in question satis�esthe given property (represented by the game program). So �rst, let's get a little shorthand.30



De�nition 3.2 Given a game program � and a stru
ture M, let G(�;M) be the gameplayed on M using the game program �.What does it mean to say that Eloise \wins" or is \able to win"? The standard notionis to use \strategies". A strategy is a fun
tiongame positions! movestelling a player how to move. (We will not go into the nuts and bolts of strategies inthis paper: for that sort of thing, see [Ko85℄.) If Eloise has a strategy that 
an defeatAbelard no matter how Abelard plays | i.e., a strategy that 
an defeat any of Abelard'sstrategies | we say that Eloise has a winning strategy.De�nition 3.3 The game played on the joint stru
ture (D;R) using the program � willbe denoted G(�; (D;R)). We say that a player wins G(�; (D;R)) if that player has awinning strategy for that game, i.e., a strategy that will defeat any strategy employed byher or his opponent.Now for a little hand-waving. It is a 
onsequen
e of the Gale-Stewart Theorem([GaS53℄ | see, e.g., [Mo80℄) that either Eloise or Abelard has a winning strategy.We will want an important measure: from a given position (s;x), if both players playoptimally, how long 
an the game last? Sin
e Abelard wins if the game goes on forever,we ask instead: how many moves before Eloise wins (if Abelard has a winning strategy,the answer is 1). In order to develop this measure, we need a fa
t.Proposition 3.1 Let (D;R) be a joint stru
ture and let � be a game program. Supposethat in G(�; (D;R)), every universal quantitative position admits only �nitely many op-tions that Abelard 
an 
hoose from. Suppose that for ea
h n, there exists a strategy Zn forAbelard su
h that if Abelard uses Zn, then (starting from the initial position (START; )),Eloise has no strategy that defeats Zn within n moves. Then Abelard wins G(�; (D;R)).Proof. We des
ribe a winning strategy for Abelard. We maintain a set of a
tive strategieswhi
h Abelard 
an use at a given position: a strategy will be a
tive if all the moves made31



thus far made by Abelard were made 
onsistent with the strategy. Noti
e that if Zn isa
tive after m moves, where m < n, then Abelard 
an play (namely as di
tated by Zn)so that Eloise 
an't win within n�m moves.We will start with a set of strategies ST0 = fZ1; Z2; Z3; Z4; : : :g. If ST0 is �nite, thenthere exists Z 2 ST0 su
h Z = Zn for arbitrarily large n, and thus Z 
an never be defeatedby Eloise, and thus is a winning strategy for Abelard. So suppose that ST0 is in�nite.During the game, at the kth move, STk will be a set of strategies for Abelard, all of them
onsistent with the play (i.e., with Abelard's play) thus far.Start at (START;) with the set of a
tive strategies is ST0 = fZ1; : : :g. Let STk bethe set of a
tive strategies at the position for the (k+1)st move, whether it is Eloise's orAbelard's turn to move. Suppose that STk is in�nite:� If it is Eloise's turn to move, then as no move by Eloise 
an be in
onsistent with ana
tive strategy for Abelard, STk = STk+1, and STk+1 is in�nite.� We will prove that for any k, if it is Abelard's turn to move, then as STk is in�nite,Abelard 
an move so that STk+1 is in�nite.It will follow that for ea
h k, and ea
h N , there will exist n > N su
h that Zn 2 STk.Suppose that the game is at the position (s;x), in whi
h it is Abelard's turn to move,and he has already had k moves. Suppose that STk is in�nite.If s is 
onjun
tive, then Abelard is to move a

ording to(s;x) :� (s1;x1) ^ (s2;x2):So for some i 2 [2℄, there exist in�nitely many Zn 2 STk su
h that from (s;x), Zn 
hoosesto go to jun
t si: Abelard 
hooses that si. Let STk+1 be the set of all Zn 2 STk di
tatingthat Abelard move to the ith jun
t, and note that STk+1 is in�nite.If s is universal, then Abelard is to move a

ording to(s;x) :� (8y: P (x0; y))(s0;x00; y):There are only �nitely many y su
h that P (x0; y), so for at least one of these y, there arein�nitely many Zn 2 STk that has Zn 
hoose that y from (s;x): Abelard 
hooses that32



y. Let STk+1 be the set of all Zn 2 STk di
tating that Abelard 
hoose y, and note thatSTk+1 is in�nite.If Abelard plays so that STk is always in�nite, then Eloise 
an never make STk �nite,so she never 
an win within a �xed number of moves, hen
e 
ertainly never within 0moves, so she never wins, so Abelard wins by default. �We needed the assumption that the guard relations permit quanti�
ation over only�nitely many elements. Note that if we had a guard stru
ture like the following, then whileAbelard has a strategy Zn preventing Eloise's vi
tory for n moves, Eloise will eventuallywin the game.Example 3.1 Let R = hM ;R; di, where M and R are to be 
onstru
ted as follows (seeFigure 3):� For ea
h positive integer z, let Mz = faz;1; : : : ; az;zg.� Let M = S1z=1Mz.� Let R(a; b) � (a = d ^W1z=1 b = az;1) _ (Wz;i: i2[z�1℄(a = az;i ^ b = az;i+1)).Let � 
onsist of Abelard starting from d, and going down R-ar
s until he 
annot moveany more: on
e he 
annot move, he loses. For any n, Abelard 
an 
hoose to go down apath of length at least n, but no matter whi
h path he 
hooses, he will eventually rea
h theend of it and lose.
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Figure 3We return to the problem of how long a game 
an last before Eloise wins.De�nition 3.4 Fix a joint stru
ture M. Suppose that the game G(�;M) is being played,and that s is a state from � and that x is a tuple from jMj. If Eloise has a strategy towin from the position (s;x) within n moves, but no faster, write jxjs = n. If Eloise doesnot have a strategy to win from the position (s;x), write jxjs =1.Noti
e the similarity to De�nition 2.10; in Subse
tion 4.2, we will see that this simi-larity is not 
oin
idental.De�nition 3.5 A game program � 
aptures a property ' i� for every joint stru
ture M,M j= ' i� Eloise wins the game G(�;M). Thus if L is a logi
 and P is a 
olle
tion of gameprograms, we say that all L-expressible queries are P-expressible if every L-expressibleproperty is 
aptured by some game program in P; we de�ne the 
onverse similarly.3.3 The Topology of GamesThere are two kinds of games: those that 
an go on inde�nitely, and those that endwithin a �xed number of moves. In this subse
tion, we �nd that the di�eren
e lies in the34



\topology" of the game programs { or more pre
isely, in the topology of the digraphs ofthe game programs.Let's start with an example of a game that ends in three moves.Example 3.2 Consider a database M = hM ; Ar
i, where Ar
 is binary, and a guardstru
ture R = hM ;P ; di, where P is binary. Let the database relation be Ar
, the database
onstant be 
, the guard relation be P , and the guard 
onstant be d. Consider the senten
e(8x: P (d; x))(8y: P (x; y))(9z: P (d; z))(y = z):This senten
e says that if there is a P -path from d to x, then P (d; x). Thus if R was a
onne
ted guard stru
ture, this senten
e would say that for every vertex (ex
ept perhapsd itself), there is a P -ar
 from d to x. Noti
e that this senten
e says nothing about thedatabase relation Ar
.Compare the above senten
e with the following game program. (We will typi
ally havedes
riptive names for the states.)(START; ) :� (8x: P (d; x))(ADJACENT; x)(ADJACENT; x) :� (8y: P (x; y))(NEXT; y)(NEXT; y) :� (9z: P (d; z))(EQUALS; y; z)(EQUALS; y; z) :� y = zHere, Eloise wants to prove d is adja
ent to every other vertex (assuming that the guardstru
ture is 
onne
ted). Then Eloise 
an win the above game (no matter how Abelardplays) i� the senten
e in Example 3.2 is true. We say that the above game 
aptures thesenten
e.Noti
e that in the above game, one 
an never revisit a state. Compare this to thefollowing program. Here we ask a dual question of the database Ar
 that we asked of theguard relation P : is it true that for some vertex x, there exists an Ar
 from x to d?Example 3.3 The guard stru
ture is 
onne
ted, with one guard 
onstant d and one guardrelation P . Now we want to sear
h the entire database, even if the guard stru
ture is of35



large (if �nite) radius. (START; ) :� (8x: x = d)(ASK; x)(ASK; x) :� (REACH; x) _ (CONTINUE; x)(REACH; x) :� (9y: d = y)(ARC; x; y)(CONTINUE; x) :� (9y: P (x; y))(ASK; y)(ARC; x; y) :� Ar
(x; y)In this game, the states ASK and CONTINUE 
an be visited any number of times: wewill 
all these states re
ursive.So here we have two kinds of free games: those that have re
ursive states and thosethat don't. Let's formalize this notion.De�nition 3.6 Let � be a game program. Let \s ` t" mean that in �, the state t appearsin the body of s's rule. Let `� be the transitive 
losure of `, and let \s `+ t" mean thatin �, for some u, s ` u and u `� t.Call a state s re
ursive if s `+ s. Call a game re
ursive if it has re
ursive states.If a game's program has no re
ursive states, the game will not last very long. On theother hand, if there are re
ursive states, then it is possible for the game to go on forever:re
all that if the game never ends, then Abelard wins.Example 3.4 Here is a game program for graph rea
hability. The database is a graphG = hV ; Edge; a; bi, where V is the set of verti
es and Edge is the edge relation, anda; b 2 V . The query is: there is a path along edges from a to b. The (2-
onne
ted) guardrelation is a digraph hV ;P ; di, where P is a binary relation on V and d 2 V . The naive(unguarded) vertex-by-vertex algorithm 
an be represented by the following program from[M
95a℄.The suggested program for rea
hability is the following. First, here is the program forunguarded games, as in [M
95a℄: all Eloise has to do is start at a and pro
eed until she36



rea
hes b: (START; ) :� (REACH; a; b)(REACH; x; y) :� (EQ; x; y) _ (STEP; x; y)(STEP; x; y) :� 9z(CHECK; x; y; z)(CHECK; x; y; z) :� (EDGE; x; z) ^ (REACH; z; y)(EQ; x; y) :� x = y(EDGE; x; y) :� Edge(x; y):See Figure 4 below for a pi
ture (it may help to represent these games as 
ow
harts)(noti
e that for pi
toral reasons, variables are handled di�erently in 
ow
harts, in
luding\reset" to help human observers keep tra
k of variable values).
START

x := a, y:= b

REACH
E chooses

STEP
E pebbles z

CHECK
A chooses

x = y

Edge(x, z)

RESET
x := z

Figure 4To 
onvert this \unguarded" game program into a \guarded" game program, we need
37



to have Eloise navigate through the guard stru
ture. One way to do this is:(START; ) :� (9x: x = d)(TO-a; x)(TO-a; x) :� (IS-a; x) _ (TOWARDS-a; x)(TOWARDS-a; x) :� (9w: P (x; w))(TO-a;w)(IS-a; x) :� (EQ-a; x) ^ (AND-b; x)(EQ-a; x) :� x = a(AND-b; x) :� (9y: y = d)(TO-b; x; y)(TO-b; x; y) :� (IS-b; x; y) _ (TOWARDS-b; x; y)(TOWARDS-b; x; y) :� (9w: P (x; w))(TO-b; x; w)(IS-b; x; y) :� (EQ-b; y) _ (REACH; x; y)(EQ-b; x) :� x = b(REACH; x; y) :� (EQ; x; y) _ (STEP; x; y)(STEP; x; y) :� (9z: z = d)(NEXT; x; y; z)(NEXT; x; y; z) :� (SEARCH; x; y; z) _ (CHECK; x; y; z)(SEARCH; x; y; z) :� (9w: P (z; w))(NEXT; x; y; w)(CHECK; x; y; z) :� (EDGE; x; z) ^ (REACH; z; y)(EQ; x; y) :� x = y(EDGE; x; y) :� Edge(x; y):See Figure 5 below for a pi
ture of this program. Noti
e that this program has threesubdigraphs of re
ursive states: unlike the unguarded program, a single existential quan-ti�
ation may involve as mu
h work as a re
ursion of existential quanti�
ations. Noti
ethat in a sense, the guarded program is a re�nement of the unguarded one: we willformalize a notion of re�nement in Subsubse
tion 4.3.
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START
E pebbles x = d

TO-a
E chooses

TOWARDS-a
E pebbles w

IS-a
A chooses

AND-b
E pebbles y = d

TO-b
E chooses

TOWARDS-b
E pebbles w

IS-b
E choosesy = b

REACH
E chooses

E pebbles z
STEP

SEARCH
E pebbles w E chooses

NEXT

CHECK
A chooses

Edge(x, z)

x = a

x = y

Figure 53.4 Uniform Conne
tivity and GamesWe are now ready to explain, in a pre
ise sense, why De�nition 2.14 is the right de�nitionfor a

essing an entire database.To sear
h an entire database, we need something like Example 3.3. Here's the idea.Starting at the guard 
onstants d, repeatedly a

essing additional verti
es, one should be39



able to rea
h any vertex. We want to formalize this notion within a game 
ontext. Inorder to do this, we need a notion from 
ombinatorial game theory.De�nition 3.7 Let � be a program over a joint s
hema (�; �), and let M be a joint(�; �)-stru
ture. A run of G(�;M) is a sequen
e of game positions(START; ) = (s0; ); (s1;x1); (s2;x2); (s3;x3); : : : ;su
h that:� for ea
h n, sn is a state whose number of variables equals the length of the tuple xnof elements from M, and� for ea
h n, sn ` sn+1, and from (sn;xn), a legal appli
ation of the rule for snprodu
es (sn+1;xn+1), and� if the sequen
e terminates, it terminates in a position (s;x), where s is terminal.We need a notion from [I81℄ (see [M
95b℄):De�nition 3.8 Let � be a game program. The Number of Variables of � is the maximumnumber of variables of any state of �.Noti
e that in a run of � on any stru
ture, the tuples are all of a length no greaterthan the number of variables of �.First, we observe the obvious.Proposition 3.2 Fix a positive integer p and a joint s
hema (�; �). Let M be a joint(�; �)-stru
ture, and let � be a game program of no more than p variables and of s
hema(�; �). Suppose that for every x 2 jMj, there is a run of G(�;M) su
h that x o

urs inthe run. Then M is p-uniformly 
onne
ted.Thus, if M is a set of joint stru
tures of a 
ommon s
hema, and if � is a gameprogram in that s
hema su
h that for every M 2 M and every x 2 jMj, x o

urs in somerun of G(�;M), thenM is uniformly 
onne
ted.40



And the 
onverse is also true.Theorem 3.1 Let M be a 
lass of stru
tures of a 
ommon joint s
hema. Suppose thatM is uniformly 
onne
ted. Then there exists a game program � of that s
hema su
h thatfor every M 2 M and every x 2M, there exists a run of G(�;M) su
h that x o

urs inthat run.Proof. Fix a positive integer p, and suppose that M is p-uniformly 
onne
ted. Wewill des
ribe the 
onstru
tion of a 
ompli
ated variant of the program in Example 3.3.Suppose, for simpli
ity, that there is but one ((k + 1)-ary, k � p), guard relation P andone guard 
onstant d.The idea is as follows. Then we will 
onstru
t a game program � su
h that on anyM 2 M and any x 2 M, if x0;x1; : : : ;xn is a sequen
e of tuples (ea
h of at most p
omponents) witnessing the a

essing of x (so that the sequen
e satis�es the 
riteria ofDe�nition 2.14, and x o

urs in xn), then this is a subsequen
e of a sequen
e of tuples ina run of �.Here we go. First, Eloise needs to build up a (p+ k � 1)-tuple of 
opies of d.(START; ) :� (8u: u = d)(Start; u)(Start; u) :� (NEXT; u; : : : ; u) _ (NEXT; u; : : : ; u):The se
ond line is to get in the tuple of p+ k � 1 ds.Then 
omes the heart of the program:(NEXT;u;v) :� (9y: P (u; y))(ASK1;v; y);where u is a k-tuple and v is a (p� 1)-tuple. Note that ASK1 has p arguments.The idea is this: in the ith time that the game goes into state ASK1, the game positionis (ASK1;xi). For ea
h i, let x00i be the tuple of the �rst k 
omponents of xi used to a

essxi;p, and let x0i be the �rst (p� 1) 
omponents of xi, and let yi = xi;p.Now 
omes the tedious part: Eloise wants to sele
t x00i+1 from xi to get a k-tuple ofelements in the right order to a

ess xi+1;p. She also wants to sele
t x0i+1 from xi. tokeep the run in lo
kstep with the 
onne
ting sequen
e x0;x1; : : :. Thus for ea
h of the k41



arguments of x00i+1, she 
hooses one of the (up to) p + 1 elements of xi or (don't forget!)d. Then for ea
h of the p � 1 arguments of x0i+1, she 
hooses one of the (up to) p + 1elements of xi or d. Together, this 
an be done by 
hoosing one of the (p+ 1)k+p�1 mapsfrom [k + p� 1℄ (giving the argument positions of x0i+1) to [p+ 1℄ (giving the elements ofxi; d). We 
an set up rules for this as follows.Let �1; �2; : : : ; �(p+1)k+p�1 be the set of all maps [k + p � 1℄ ! [p + 1℄. For ea
hi < (p+ 1)k+p�1 � 2, let(ASKi;w; y) :� (ASKi+1;w; y) _ (NEXT; z�i(1); : : : ; z�i(k+p�1));where, for ea
h j 2 [k + p� 1℄,zj = � wj if �(j) 2 [p℄,d if �(j) = p+ 1,and let(ASK(p+1)k+p�1�1;w; y) :� (NEXT; z�(p+1)k+p�1�1(1); : : : ; z�(p+1)k+p�1�1(k+p�1))_(NEXT; z�(p+1)k+p�1 (1); : : : ; z�(p+1)k+p�1(k+p�1)):The resulting program is �. Noti
e that as there are no terminal states (!), for any M,no run of G(�;M) terminates.We now verify that for anyM 2 M and any x 2 jMj, there is a run of G(�;M) in whi
hx o

urs. AsM is p-uniformly 
onne
ted, for anyM 2 M, and any x 2 jMj, x o

urs asthe last element in some p-tuple xn of a sequen
e x0; : : : ;xn satisfying De�nition 2.14.Here is the run that rea
hes x. For ea
h i, let wi = v0i;1; : : : ; v0i;2p.� Start at (START; ) at the empty tuple. If x1' is the (p � 1)-tuple of 
opies of d,and x001 is the k-tuple of 
opies of d, then Eloise qui
kly rea
hes (NEXT;x001;x01), andthen (ASK1;x1), where x1 is the 
on
atenation of x01 and y1.� After the ith move, i < n, at (ASK1;xi), Eloise goes through the disjun
tionsto 
hoose one that sele
ts x00i+1 and x0i+1 from xi, and the next game position is(NEXT;x00i+1;x0i+1), followed by (ASK1;x0i+1; yi+1), and xi+1 is the 
on
atenation ofx0i+1 and yi+1. 42



� Repeat until the position is (ASK1;xn), in whi
h x o

urs.� Sin
e we will use this sort of system of rules again, lets 
ook up a formalism. Forsimpli
ity, we have a de�nition for when there is one guard 
onstant d and one ((k + 1)-ary) guard relation P .We want an abbreviation for: from (s;x), Player Q 
hooses y by sele
ting x0 and x00from d;x, and then the game goes into a state (s0;x00; y). Suppose that s is an n-variablestate, while s0 is an m-variable state. Fix M = (n + 1)m+k�1.De�nition 3.9 The traversal blo
k for Player Q from s to s0 is the sequen
e of M for-mulas as follows. First, let� For ea
h i 2 [M � 2℄, �i is a map from [k +m� 1℄ to [n+ 1℄, and� For ea
h i 2 [M � 2℄, x�i = (x�i(1); : : : ; x�i(k+m)), where xn+1 = d, and� Given x0 = (x01; : : : ; x0k+m), let x00 = (x01; :::; x0k) and x000 = (x0k+1; : : : ; x0k+m).Then let (s;x) :� (s1;x) _ (s2;x�1)and for ea
h i 2 [M � 2℄, (si;x) :� (si+1;x) _ (s00;x�i+1)
ulminating with (sM�2;x) :� (s00;x�M�1) _ (s00;x�M ):Then let (s00;x00) :� (Qy: P (x00; y))(s0;x000; y):4 Using Game ProgramsIn this se
tion, we will �nd that some logi
s 
orrespond with natural 
lasses of gameprograms. we will look at non-re
ursive games and �nd that non-re
ursive game programs
orresponds to (guarded) �rst order logi
. That will be straightforward. The rest of these
tion will be devoted to re
ursive games and (guarded) least �xed point logi
.43



4.1 Non-Re
ursive Games and First Order Logi
We �rst look at games with no re
ursive states. It turns out that these 
orrespond to theguarded First Order queries.Theorem 4.1 Let T be a guard system. The queries expressible in FO?�T are pre
iselythe queries 
aptured by non-re
ursive free games using guards from T .(Compare with the guard-free version in [HiK83℄.) We will need a notion of \subfor-mula depth" of a FO formula.De�nition 4.1 The subformula depth (sfdepth) of a formula is 
omputed as follows.If the formula is atomi
 or the negation of atomi
, it is of subformula depth 0. Andsfdepth(' � ) = maxfsfdepth(')+1, sfdepth( )+1g if � is a jun
tion, while sfdepth((Qy:P (x; y))'(x0; y)) = sfdepth(') + 1.One warning: sfdepth is a di�erent notion from the more popular \quanti�er depth."Proof of Theorem 4.1. First, suppose that � is in FO?�T . By Proposition 2.1, we 
anassume that all the negations have been pushed down to the atomi
 level. De
ompose itinto a game, as follows. We will 
onstru
t a game program, whose states are pre
isely thesubformulas of � (
ounting repetitious o

uren
es of the subformulas in �), as follows. If'(v) �  (v1) � Æ(v2) is a subformula, where v1 and v2 are strings of variables from v,and where � is a jun
tion, then ''s rule will be(';v) :� ( ;v1) � (Æ;v2):If '(v) � (Qw: P (v1; w)) (v2), where v1 and v2 are strings of arguments from v, then''s rule will be (';v) :� (Qy:P (v1; y))( ;v2; y)(where again v1 and v2 are appropriately 
hosen). And if '(v) � R(v0), where v0 is astring of arguments from v, then ''s rule is (';v) :� R(v0); while if '(v) � :R(v0) thenits rule will be (';v) :� :R(v0). Finally, if '(v) � v0 = 
, then its rule is (';v) :� v0 = 
;if '(v) � v0 6= 
, then its rule is (';v) :� v0 6= 
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We 
laim that for any subformula ' and any x,M j= '(x) i� Eloise wins from (';x).We pro
eed by indu
tion on the subformula depth sfdepth. Suppose that for any FO?formula  of subformula depth less than r, Eloise wins from ( ;x) on M i� M j=  (x).Suppose that sfdepth(') = r. We 
laim that Eloise wins from (';x) onM i�M j= '(x).There are three 
ases.Case `: r = 0 and ' is atomi
 or the negation of atomi
. Then Eloise wins at on
e i�M j= '(x).Case �: ' is jun
tive: ' �  � Æ where maxfsfdepth( ); sfdepth(Æ)g = r � 1. Thereare two sub
ases: � is _ or ^; 
onsider the sub
ase � is _. Then Eloise wins from (';x)i� either she wins from ( ;x0) or from (Æ;x00), where x0 and x00 are de�ned appropriatelyfrom x. By the indu
tion hypothesis, Eloise thus wins from (';x) i� M j=  (x0) orM j= Æ(x00). Thus Eloise thus wins from (';x) i� M j= �(x). The argument for � being^ is similar.Case Q: ' is quantitative: ' � (Qy: P (x0; y) (x00; y), where sfdepth(') = r�1. Thereare two sub
ases: Q is 9 or 8; 
onsider the sub
ase Q is 8. Then Eloise wins from (';x)i� for any y su
h that P (x0; y), Eloise will go on to win from ( ;x00; y). By the indu
tionhypothesis, this is equivalent to: Eloise wins from (';x) i� for any y su
h that P (x0; y),M j=  (x00; y), whi
h holds i�M j= (Qy: P (x0; y)) (x00; y).The 
onverse simply goes ba
kwards: given a game, 
onstru
t the subformulas, one perrule, reversing the 
onstru
tion of the previous paragraph. Again, by an easy indu
tion,'(x) is true i� Player E wins from (';x). �4.2 Re
ursive Games and LFP Logi
Now, let's look at guarded Least Fixed Point logi
. We will show that the guarded LFP-expressible queries are pre
isely those 
aptured by re
ursive guarded game programs. Thefollowing proof is essentially a rearrangement of the proof in [M
95a℄.First, let's revisit the notion of stages in De�nitions 2.10 and 3.4.Say that an operative system ' = '0; : : : ; '� is of subformula depth 1 if all 'i areof subformula depth at most 1. We �rst observe that there is a 
orresponden
e betweengame programs and operative systems of depth 1: they are essentially variants of ea
h45



other.De�nition 4.2 Let ' be a positive operative system of formulas of sfdepth 1, and let �be a game program. Then ' and � are asso
iates if there is a one-to-one 
orresponden
ebetween formulas of ' and rules of � as follows. (We will use the states of � to index theformulas of '.)1. If � is a jun
tion, and the formula 's(v) � Ss1(v1) � Ss2(v2) is asso
iated with therule (s;v) :� (s1;v1) � (s2;v2), then 's1 is asso
iated with the rule for s1 and 's2 isasso
iated with the rule for s2.2. If Q is a quanti�
ation, and 's(v) � (Qw: P (v1; y))Ss0(v2; y) is asso
iated with(s;v) :� (Qw: P (v1; y))(s0;v2; w), then 's0 is asso
iated with the rule for s0.3. If R is a relation symbol, then 's(v) � R(v0) is asso
iated with (s;v) :� R(v0) and's(v) � :R(v0) is asso
iated with (s;v) :� :R(v0). This is still true if R is =.The following is elementary but 
ru
ial.Lemma 4.1 If ' is asso
iated with �, then on any joint database M, and ea
h state sand ea
h tuple x from M, the stage of the indu
tion equals the length of the rest of thegame, i.e., jxjs = jxj's.Proof. This proof is by an indu
tion on the stages. We will use the states of the gameto index the formulas, and we will work on a �xed joint stru
ture M. For any state s,jxjs = 0 i� the game is over i� jxj's = 0 (i� s is terminal i� 's is atomi
 or the negationof an atomi
). Now suppose that this Lemma was true of all tuples u of stage jujs < n,and suppose that jxjs = n. There are the usual four 
ases.Suppose that s is disjun
tive, i.e., that 's � 's1 _'s2 , so that Eloise 
hooses to go to(s1;x1) or (s2;x2) from (s; x). As jxjs = n, Eloise 
ould 
hoose s1 or s2 and win withinn�1 moves: minfjx1js1; jx2js2g = n�1. By indu
tion, jx1j's1 = jx1js1 and jx2j's2 = jx2js2,and hen
e jxj's = jxjs = n. Conjun
tion is similar.Suppose that 's is universal: 's(x;S) � (8y: P (x0; y))Ss0(x00; y), so that the sthrule is (s;x) :� (8y: P (x0; y))(S 0;x00; y). Then for any tuple a, M j= 'ns (a) i� M j=46



(8y: P (a0; y))'n�1S0 (a00; y), i.e., for every y su
h that P (a0; y), 'n�1S0 (a00; y) is true. By theindu
tive hypothesis, this is true i� for every y satisfying M j= P (a0; y), Eloise winsfrom (s0; a00; y) within n� 1 moves, whi
h is true i� Eloise wins (s; a) within n moves, sojxj's = n = jxjs. The argument for existential 'i is similar. �Thus we 
an refer to the stage unambiguously as jxjs, where s is the state of the game,or index of the formula | provided that the operative system is of subformula depth 1.From this we 
an asso
iate the formula '0 with the state START and get:Corollary 4.1 If ' is asso
iated with � (with the states of � indexing the formulas of'), then on any joint database M, Eloise wins G(�;M) i� M j= '10 .Hen
e all game expressible queries are FO? + pos LFP expressible. The 
onverse isalso true. Almost.Theorem 4.2 Restri
t attention to uniformly 
onne
ted guard systems. All free gameprograms 
an be 
aptured by FO? + pos LFP and vi
e versa.The theorem very similar to Theorem 2.1 of [M
95a℄ (whi
h is in fa
t the main theoremof [HaK84℄). By Lemma 4.1 and Corollary 4.1, it suÆ
es to prove:Lemma 4.2 Every FO?+ pos LFP expressible query 
an be expressed as a �xed point ofa positive operative system with guarded quanti�
ation and of subformula depth 1.Proof. To prove Lemma 4.2, it suÆ
es to prove the following. Let ' = '0; : : : ; '� be apositive operative system of formulas in whi
h:� for ea
h k, i, 'k is Si-positive, and� for ea
h k, the only negations in the formula 'k are negations of atomi
 subformu-las (whi
h we 
an require by Proposition 2.1 and the S-positivity of the formulas'0; : : :.).
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Let 'k;0; : : : ; 'k;�k be the subformulas of 'k, where 'k;0 = 'k. We will 
onstru
t a positiveoperative system  0;0; : : : ;  0;�0 ; : : : ;  k;j; : : : ;  �;��of formulas of subformula depth 1 and guarded quanti�
ation, su
h that for ea
h k,'1k =  1k;0.De�ne the formulas  k;h as follows:�. If 'k;h(x) � 'k;i(x0) � 'k;j(x00), let  k;h(x) � Tk;i(x0) � Tk;j(x00).Q. If 'k;h(x) � (Qy: P (x0; y))'k;i(x00; y), let  k;h(x) � (Qy: P (x0; y))Tk;i(x00; y).`. If 'k;h(x) is R(x0) or :R(x0), let  k;h = 'k;h. If 'k;h(x) � Sl(x0), let  k;h(x) �Tl;0(x0).The result is a positive operative system  , asso
iated via Lemma 4.1 with a gameprogram 	.Let r = maxfsfdepth('i): i = 0; : : : ; �g. We 
laim that by indu
tion on n and on thesubformulas 'k;h that for all k, x,(4.1) 'n+1k (x) =) 'k;0(x; 'n) =)  rn+rk;0 (x) =) 'rn+rk (x);where 'm = 'm0 ; : : : ; 'm� . This will imply that for ea
h k, x,'1k (x) =) 'k;0(x; '1) =)  k;0(x;  1) =)  1k;0(x) =) '1k (x);and hen
e '1k =  1k;0 for ea
h k, and Lemma 4.2 follows.We will a
tually prove that for ea
h k, h, x, n,'k;h(x; 'n) =)  rn+sfdepth('k;h)k;h (x) =) 'k;h(x; 'rn+sfdepth('k;h));from whi
h Formula 4.1 follows by monotoni
ity. We have the usual 
ases.`: sfdepth('k;h) = 0. If 'k;h(x) is R(x0) or :R(x0), then'k;h(?; : : : ;?) =)  0k;h(x) =) 'k;h(x; '0)as all three are the same atomi
 (or negated atomi
) formula. And if 'k;h(x) � Sl;0(x0),48



then by indu
tion on n,'k;h(x; 'n) =) 'n+1l;0 (x0)=) 'l;0(x0; 'n)=)  l;0(x0;  rn) by indu
tion=)  rn+1k;h (x0)=)  k;h(x0;  rn)=) 'rn+1k;h (x0)=) 'k;h(x; 'rn)=) 'k;h(x; 'rn+sdepth('k;h)):�. Suppose that 'k;h is a 
onjun
tion. If 'k;h(x;S) � 'k;i(x0;S)^ 'k;j(x00;S), then byindu
tion on subformulas,'k;h(x; 'n) =) 'k;i(x0; 'n) ^ 'k;j(x00; 'n)=)  rn+sfdepth('k;i)k;i (x0) ^  rn+sfdepth('k;j)k;j (x00)=)  rn+sfdepth('k;h)�1k;i (x0) ^  rn+sfdepth('k;h)�1k;j (x00)=) 'k;i(x0; 'rn+sfdepth('k;h)�1) ^ 'k;j(x00; 'rn+sfdepth('k;h)�1)=) 'k;h(x; 'rn+sfdepth('k;h)�1)=) 'k;h(x; 'rn+sfdepth('k;h)):Disjun
tion is similar.Q. Suppose that 'k;h is an existential quanti�
ation. If'k;h(x;S) � (9: P (x0; y))'k;i(x00; y);
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then by indu
tion on subformulas again,'k;h(x; 'n) =) (9y: P (x0; y))'k;i(x00; y; 'n)=) (9y: P (x0; y)) rn+sfdepth('k;i)k;i (x00; y)=) (9y: P (x0; y)) rn+sfdepth('k;h)�1k;i (x00; y)=) (9y: P (x0; y))'k;i(x00; y; 'rn+sfdepth('k;h)�1)=) 'k;h(x00; y; 'rn+sfdepth('k;h)�1)=) 'k;h(x00; y; 'rn+sfdepth('k;h)):Universal quanti�
ation is similar. �4.3 Least �xed point logi
Re
all that we de�ned guarded and unguarded least �xed point logi
 in De�nition 2.12,and we promised to 
ompare their expressive power. In this subse
tion, we will 
omparetheir expressive power (and time 
omplexity). We will �nd that (assuming uniform 
on-ne
tivity) they have the same expressive power, but that their 
omputations di�er in time
omplexity. Our time 
omplexity measure will be the stages of an indu
tion: re
all thestages and 
losure ordinals from De�nitions 2.10, 2.11, and 3.4. We will look at the e�e
tof guarding quanti�
ations on this measure. We will �nd that the 
losure ordinal of anFO? + pos LFP indu
tion on a stru
tureM is on the order of the p-uniform radius timesthe 
losure ordinal of the \asso
iated" FO + pos LFP indu
tion.Remember (Remark 2.2) that there is no te
hni
al di�eren
e between a database re-lation or 
onstant and a guard relation or 
onstant, so that in setting up an unguardedpositive operative system of formulas, we 
an use \database" and \guard" relations and
onstants indis
riminately. And remember (Proposition 2.2) that guard relations and 
on-stants are FO?-expressible, and thus the \guard" relations and 
onstants are both (FO +pos LFP)-expressible and (FO?+ pos LFP)-expressible. With these te
hni
alities out ofthe way, we pro
eed to a result involving many more te
hni
alities.Theorem 4.3 Fix an integer p > 0. Let � be a database s
hema and let � be a guards
hema. Let M be a uniformly 
onne
ted 
lass of joint stru
tures | ea
h of �nite p-50



uniform radius | of joint s
hema (�; �). Then FO?+ pos LFP and FO + pos LFP havethe same expressive power onM.Clearly, all (FO?+ pos LFP)-expressible queries onM are (FO+ pos LFP)-expressible.So we want to prove that given a positive operative system ' of formulas with unguardedquanti�
ations, we 
an �nd a positive operative system  
omputing the same query (orqueries). This proof is game-theoreti
, and we will a
tually prove that there is a gameprogram (with guarded quanti�
ation moves) that 
aptures the queries generated by '.This is ... merely ... a matter of taking an unguarded positive operative system ' anddeveloping an equivalent guarded game program �, i.e., su
h that for all M 2 M, all xfrom jMj, and ea
h j, M j= '1i (x) i� Eloise wins G(�;M) from (sj;x).It will be 
onvenient to restri
t our attention to FO + pos LFP queries de�ned fromsystems of formulas of sfdepth 1.Proposition 4.1 Every FO + pos LFP expressible query 
an be expressed as the least�xed point of a positive operative system of formulas of subformula depth 1.The proof is the guardless version of Lemma 4.2, and we omit it.So we presume that our unguarded positive operative system 
onsists of formulas ofsubformula depth 1.Repla
ing formulas by rules as in De�nition 4.2 (1) and (3) | jun
tions and literals| is straightforward and we leave them to the reader.The main problem is De�nition 4.2 (2): simulating unguarded quanti�
ations withguarded ones. We will pro
eed in two subsubse
tions:� We 
onstru
t (sub)games that represent 
omputations (with guarded quanti�
a-tions) for simulating unguarded existential and universal quanti�
ation.� We use stages of the indu
tion to prove that the unguarded quanti�
ations aresu

essfully simulated, and thus that the guarded game program 
aptures the samequery that the FO + pos LFP query did.51



In the next subse
tion, we will see that the assumption that the stru
tures have �nitep-uniform radii is ne
essary by looking at an in�nite 
ounterexample.It is not diÆ
ult to see how existential quanti�
ation 
an be simulated, by looking ata game program. Consider the following game. Eloise 
an start at any tuple of guard
onstants x0 = d, and repeatedly 
hoose p-tuples x1, x2, et
., where xj = x0j; y, wherex0j is a (p � 1)-tuples from xj�1 and where x00j is a tuple of guard 
onstants and entriesfrom x0j (whi
h in turn 
omes from xj�1), and P (x00j ; y) for some guard relation P . As theguard system is uniformly 
onne
ted, Eloise 
an eventually rea
h any vertex, and thus ifthere exists a vertex y su
h that Eloise would win G(�; ((A;R); y)), she will eventuallyrea
h it, and go on to win. If no su
h vertex exists, she will sear
h forever, and thus lose.Simulating universal quanti�
ation is more diÆ
ult: it is not obvious how to haveAbelard fail to �nd an element y satisfying :� in order to justify 8y�(y). (This is thete
hni
al problem that arises from Convention 3.2.) We employ the same tri
k as in Figure4 of [M
95a℄: we 
ondu
t a ra
e. Suppose that an element y su
h that :�(y) existed. Thenstarting from the database 
onstants, Abelard should be able to �nd it. We do not wantto give Abelard the opportunity to stall by wandering around the database, pretendingto look for a possibly nonexistent y. So we devise a restri
tion in whi
h Abelard mustalways move further and further away from his starting pla
e: if he ba
ktra
ks, Eloise
an 
hallenge his last move and have a 
han
e to prove that Abelard was stalling. (WhatEloise will do is 
hallenge Abelard to a ra
e whi
h Eloise 
an win if Abelard was stalling.)Noti
e that this algorithm will not work for databases of in�nite (uniform) radius, forthen Abelard's failure to �nd, within a �nite amount of time, an element y su
h that:�(y) 
annot be taken as eviden
e that no su
h y exists.We turn to simulating an unguarded universal quanti�
ation. Here is the idea. Imaginethat we are simulating 8x�(x), assuming that there is one guard 
onstant d and one binaryguard relation P . Abelard is given the 
han
e to �nd an x su
h that :�(x). Starting fromthe guard 
onstant x0 = d, Abelard 
hooses x1; x2; : : : in su

ession su
h that P (xi; xi+1)for ea
h i. After ea
h 
hoi
e xi+1, there is a brief deliberation:1. Abelard may de
ide that xi+1 is what he wants, and the game 
ontinues from hisdenial of �(xi+1). 52



2. Eloise may de
ide that Abelard is stalling, and 
hallenge Abelard to a ra
e from d:he is ra
ing to xi and she is ra
ing to xi+1. If he doesn't beat her, then he had notmoved further away from d in his move from xi to xi+1, so it is fair that Eloise wins.But if he does beat her, then Eloise loses.3. Both Abelard and Eloise de
ide not to take advantage of options (1) or (2), andAbelard now 
ontinues, 
hoosing xi+2 su
h that P (xi+1; xi+2), ... .That's the idea. The rest of this se
tion is devoted to formalizing this idea.4.3.1 (Sub)Programs for Simulating Quanti�
ationWe �rst formalize the sort of translation done in Example 3.4. Noti
e that for logisti
alreasons, we are \re�ning" an operative system into a game program.De�nition 4.3 Given an operative system ' of (unguarded) formulas of depth 1, weobtain its guarded re�nement � by making the following substitutions. Assume p-uniform
onne
tedness. For simpli
ity, we assume that there are no database 
onstants, one guard
onstant d, and one (k + 1)-ary guard relation P . (If we had database 
onstants, we
ould either sear
h for the relevant 
onstant during ea
h quanti�
ation 
y
le, or we 
ouldstart the program with a sear
h for all relevant database 
onstants. This would add atmost O(r) iterations, r being the uniform p-radius of the guard stru
ture.) We repla
eindividual formulas with subsystems of formulas as follows.Literals. If 'i(x;�) � R(x0), let (si;x) :� R(x0). Similarly, if 'i(x;�) � :R(x0), let(si;x) :� :R(x0).Jun
tions. If 'i(x;�) � Sj(x0) � Sk(x00), let (si;x) :� (sj;x0) � (sk;x00).Existential Quanti�
ations. If 'i(x;�) � 9ySj(x0; y), and letting d be a tuple of
opies of the guard 
onstant (and lettingM0 be the appropriate number of rearrangements
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of tuples), let:(si;x) :� (9y: d = y)(si;1;x; y)(si;1;x; y) :� (si;1;1;x; y : : : ; y) _ (si;1;1;x; y : : : ; y)is an appropriate traversal for Eloise (for tuples z) from(si;1;1;x; z) to (si;2;x; z0)(si;2;x; z) :� (9y: P (z0; y))(si;3;x; z00; y)(si;3;x; z; y) :� (si;1;1;x; z0; y) _ (sj;x0; y)where z0 and z00 are appropriate tuples of guard 
onstants and arguments from z, and x0is an appropriate tuple from x. This sear
h will take up to 2 + (M0 + 2r)r moves.Universal Quanti�
ations. If 'i(x) � 8ySj(x0; y), we set up a subsystem forAbelard's sear
h and, sin
e Eloise might grow impatient, for 
ondu
ting the ra
e. Thesubsystem of formulas is des
ribed below.First, here is some nomen
lature for these formulas:� We use the p-tuples z� and z+, and w� and w+ to denote the position(s) of thepebbles for Eloise and Abelard in the ra
e thus far, with respe
tive goals z and w.� Let d be the tuple of guard 
onstants.� Let M1;M2;M3 be the appropriate numbers of rearrangements of tuples.� Let z�0, z�00, z+0, z+00, et
., be the appropriate tuples of guard 
onstants and argu-ments from z�, z+, et
., respe
tively.Then a subsystem for 
ondu
ting the universal quanti�
ation, i.e., Abelard's sear
h,
ould be the following subsystems, whi
h we break into several small pie
es for 
larity.Before giving the pre
ise subsystem, let's outline the idea. For simpli
ity, and withoutloss of mu
h generality, suppose that the one guard relation P is binary, and that there isone guard 
onstant d. Let r be the p-uniform radius. Abelard starts at the guard 
onstantd; let y0 = d. He then su

essively 
hooses y1; y2; : : : (going through the traversal blo
ks)su
h that for ea
h i, P (yi; yi+1). If he ever rea
hes yk su
h that :�(yk), he announ
es the54



fa
t to poor Eloise, and goes on to win. If not, then as the stru
ture is �nite, he mustrea
h a k � r su
h that distP (d; yk) = distP (d; yk+1), where distP measures distan
e alongP -ar
s. This part of the game takes at most (M1+3)r moves. When this happens, Eloise
hallenges him to a ra
e.For brevity, we des
ribe a 
ombinatorial game, suppressing the game states and jun
-tive moves.They start at (d; yk; d; yk+1), and move alternately, Eloise moving �rst. When it isEloise's turn to move from (x; yk; y; yk+1), she 
hooses y0 su
h that P (y; y0), and thenthey are at (x; yk; y0; yk+1). Then Abelard moves similarly: if it is his turn to move from(x; yk; y; yk+1), he 
hooses x0 su
h that P (x; x0), the position is (x0; yk; y; yk+1). If y = yn+1,Eloise wins. (Note that ea
h of these \moves" are a
tually su

essions of moves throughtraversal blo
ks.) If not, then either x0 = yk and Abelard wins, or x0 6= yk and it is nowEloise's turn to move.Clearly, Eloise wins i� distan
eP (d; yk) � distan
eP (d; yk+1).Now let's 
onstru
t the pre
ise subsystem for universal quanti�
ation.First, Abelard goes out for his sear
h. Note that after ea
h new position w is 
hosen(as opposed to his old position z), Abelard 
an de
ide at si;4 that he's done (go to (sj;y)),or if he wants to 
ontinue, Eloise 
an 
hoose at si;6 whether to let him 
ontinue (go tosi;2;1), or she 
an 
hallenge him to a ra
e (go to si;6).(si;x) :� (8y: P (d = u))(si;1;x0; u)(si;1;x0; u) :� (si;2;1;x0; u : : : ; u) _ (si;2;1;x0; u : : : ; u)si;2;1; : : : ; si;2;M1 is an appropriate traversal for Abelard(for tuples y) from (si;2;1;x; z)to (si;3;x; z;w0),(si;3;x0; z;w0) :� (8y: P (w00; y))(si;4;x0; z;w0; y); & if w = w0; y,(si;4;x0; z;w)) :� (sj;x0; y) ^ (si;5;x0; z;w)(
ondensing w0; y to w)(si;5;x0; z;w) :� (si;2;1;x0;w) _ (si;6; z;w):55



If Eloise 
hallenges Abelard's move from z to w, they 
ondu
t a ra
e from d: Abelard toz and Eloise to w. If Eloise does not 
hallenge Abelard to a ra
e, this sear
h will take upto 2 + (M1 + 3)r moves.Suppose Eloise 
hallenges. Both players start from d; : : : ; d:(si;6; (z;w) :� (8y: P (d = u))(si;7;1; z; u; :::; u;w; u; :::; u)Then Abelard moves �rst:si;7;1; : : : ; si;7;M2 is an appropriate traversal for Abelard(for tuples z�) from (si;7;1; z; z�;w;w�)to (si;8; z; z+;w;w�)(si;8; z; z+;w;w�) :� (8y: P (z+00; y))(si;9;1; z; z+0; y;w;w�):Letting z+ = z+0; y, we let Eloise move:si;9;1; : : : ; si;9;M3 is an appropriate traversal for Eloise(for tuples w�) from (si;9;1; z; z+;w;w�)to (si;10; z; z+;w;w+)(si;10; z; z+;w;w+;�) :� (9y: P (w+00; y))(si;11; z; z+;w;w+0; y);and letting z+ = w+0; y, we ask: has someone won the ra
e? This means 
omparing thetuple w+ to w (and if equality holds, Eloise wins) and then, that failing, z to z+ (and ifequality holds, Abelard wins). Noti
e that we have set it up so that if Abelard announ
es
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he wants to 
ompare z and z+, then Eloise wins i� they are di�erent.(si;11; z; z+;w;w+) :� (si;12; z; z+;w;w+) _ (si;11;1; z; z+;w;w+)and for l = 1; : : : ; p� 1,(si;11;l; z; z+;w;w+) :� (si;12;wl; w+l ) _ (si;11;l+1; z; z+;w;w+)while:(si;11;p; z; z+;w;w+) :� (si;12;wp; w+p ) _ (si;13; z; z+;w;w+)(si;12; u; v) :� u = v(si;13; z; z+;w;w+) :� (si;7;1; z; z+;w;w+) ^ (si;14;1; z; z+;w;w+)and for l = 1; : : : ; p� 2,(si;14;l; z; z+;w;w+) :� (si;15; zl; z+l ) _ (si;14;l+1; z; z+;w;w+)while:(si;14;p�1; z; z+;w;w+) :� (si;15; zp�1; z+p�1) _ (si;15; zp; z+p )(si;15; u; v) :� u 6= v:Let M = maxfM0;M1+M2+M3g. Noti
e that if the radius of the guard stru
ture isr, then this ra
e takes at most p+4+ (M2+M3 +2)r moves. And whether or not Eloisewins, if the radius of the guard stru
ture is r, then getting to (sj(x0; y), or to the end ofthe game, takes at most p+ 6 + (M1 +M2 +M3 + 5)r � (M + 5)r + p+ 6 moves.Remark 4.1 If the guard relation is not binary, then assuming p-uniform 
onne
tedness,the ra
e ends if Eloise rea
hes her triple before Abelard rea
hes his, and 
he
king that theappropriate tuple is rea
hed takes an additional p moves.Remark 4.2 If an operative system, or game program, is of n � p variables, and hasone (k + 1)-ary guard relation, and there is one guard 
onstant, then M0;M1;M2;M3 �(n+ 1)n+k. Call � = (n+ 1)n+k the system or program's traversal number.4.3.2 The Simulation WorksNow let's 
he
k this proposed system of re�nements and see if it does the job.57



Lemma 4.3 Let ' be a positive operative system of unguarded formulas of depth 1, andtraversal number �. Let � be the guarded re�nement of ', so that for ea
h formula 'i, siis the 
orresponding state in the program �. Fix a joint stru
ture. Then for ea
h i, andea
h x, if r is the radius of the guard system, then(4.2) jxj'i � jxjsi � (3�+ 5)rjxj'i + r + 2p+ 6:(The last \+r" is in 
ase there are any database 
onstants, a \+p" for 
he
king at theend of a ra
e as in Remark 4.1, and the last \+p+ 6" for the end of a 
hallenge ra
e inthe universal subroutine.) Thus jxj'i <1 i� jxjsi <1.Proof. We prove the two inequalities of Formula 4.2 separately by indu
tion on thestages.First, we prove by indu
tion on n that for ea
h i and x,jxj'i � n =) jxjsi � n:This is true if n = 0. Suppose that this is true for all m < n, and suppose that jxj'i � n.We have the usual 
ases.�. If 'i is, say, 
onjun
tive ('i � 'j ^ 'k), then:jxj'i � n =) jx0j'j � n� 1 or jx00j'k � n� 1=) jx0jsj � n� 1 or jx00jsk � n� 1 (by indu
tion)=) jxjsi � n:Disjun
tion is similar.Q. If 'i is, say, existential ('i � 9y'j), then:jxj'i � n =) for all y; jx0; yj'j � n� 1=) for all y; jx0; yjsj � n� 1 (by indu
tion)=) jxjsj � n:Universal quanti�
ation is similar.This 
on
ludes the proof of the left inequality of Formula 4.2.58



Se
ond, we prove by indu
tion on n that for ea
h i and x,jxj'i = n =) jxjsi � (3�+ 5)rn+ r + 2p+ 6:This is true if n = 0. Suppose that this is true for all m < n, and suppose that jxj'i = n.Again, we have the usual 
ases.�. If 'i is, say, disjun
tive ('i � 'j _ 'k), then:jxj'i = n =) jx0j'j � n� 1 or jx00j'k � n� 1=) jx0jsj � (3�+ 5)(n� 1)r + r + 2p+ 6or jx00jsk � (3�+ 5)(n� 1)r + r + 2p+ 6(by indu
tion)=) jxjsi � (3�+ 5)(n� 1)r + r + 2p+ 7 � (3�+ 5)nr + r + 2p+ 6:Conjun
tion is similar.Q. If 'i is, say, universal ('i � 8y'j), then:jxj'i = n =) for all y; jx0; yj'j � n� 1=) for all y; jx0; yjsj � (3�+ 5)(n� 1)r + r + 2p+ 6 (by indu
tion)=) jxjsj � maxf(3�+ 5)(n� 1)r + (3�+ 5)r + r + 2p+ 6;(3�+ 5)r + p+ 6g=) jxjsj � (3�+ 5)nr + r + 2p+ 6:The last inequality holds be
ause it takes at most (3�+ 5)r moves to sear
h through thestru
ture and/or 
ondu
t a ra
e as in the algorithm of De�nition 4.3, and then either alast run of p+6 moves, or the remaining (3�+5)(n�1)r+(3�+5)r+r+2p+6 moves |but not both. Existential quanti�
ation is similar, if simpler, and the sear
h takes only2 + (�+ 2)r moves.This 
on
ludes the proof of the right inequality of Formula 4.2. �And now for the pun
h line:Proof of Theorem 4.3. By Lemma 4.2, all FO + pos LFP expressible queries are �xedpoints of operative systems of subformula depth 1. Any operative system ' of subformula59



depth 1 has a guarded re�nement �, and by Lemma 4.3, for ea
h 'i of ', there is a siof � su
h that on any joint stru
ture M, and any x from jMj, jxj'i < 1 i� jxjsi < 1.Thus, for '0 being the formula 
orresponding to s0 = START, M j= '10 i� Eloise winsG(�;M). �Finally, sin
e FO + pos LFP is 
losed under negation on �nite stru
tures ([I86℄), sois FO?+ pos LFP.4.4 Closure Under NegationWe 
on
lude this se
tion with the 
omment that things are di�erent on in�nite stru
tures.Let FO + LFP be the boolean 
losure of FO + pos LFP, and let FO? + LFP be the boolean
losure of FO? + pos LFP.By [I86℄, FO + pos LFP has the same expressive power as FO + LFP on �nitedatabases. Thus on �nite databases with 
onne
ted guard systems, FO? + pos LFPhas the same expressive power as FO? + LFP. The situation is entirely di�erent forin�nite databases, in whi
h it is possible FO + pos LFP is not 
losed under negation (see[Mo74℄). In addition, Theorem 4.3 is false for in�nite stru
tures. Suppose that you had ajoint stru
ture, whose domain was the nonnegative integers (N) and whose guard relationswere su

(x; y) � y = x + 1 and pred(x; y) � su

(y; x), and whose guard 
onstant was0. We get the joint stru
ture N = (hN ; 0i; hN ; pred; su

; 0i).Theorem 4.4 There exists a FO + pos LFP expressible relation that is not FO? + posLFP expressible on N.To prove this, we will need a lemma. Let ! be the least trans�nite ordinal.Lemma 4.4 For ea
h operative system ' of S-positive formulas with guarded quanti�
a-tions, sup jxjN' � !, where the supremum is not a
hieved.Proof of Lemma 4.4. Suppose otherwise: for some s and some x, j(s;x)jN = !. Theneither s is a jun
tive state, in whi
h whoever is to play has two 
hoi
es to 
hoose from, or sis a quantitative state, in whi
h 
ase the player who is to play has to 
hoose a prede
essor60



or su

essor of one of the �nitely many elements of x (or of 0) to 
ontinue from. Eitherway, the player who is to play has �nitely many 
hoi
es to 
hoose from: list them as(s1;x1); : : : ; (sk;xk). If the player is Eloise, at least one of these is of a stage n < !, inwhi
h 
ase j(s;x)jN � n + 1, 
ontradi
ting j(s;x)jN = !. If the player is Abelard, thenall of the �nitely many options are of stages less than !, and hen
e their maximum is anumber m < !, for
ing j(s;x)jN = m + 1, again 
ontradi
ting j(s;x)jN = !. Getting a
ontradi
tion either way, we 
on
lude that j(s;x)jN < ! for all s, x. �Proof of Theorem 4.4. We will use some fa
ts about FO + pos LFP from [Mo74℄.First of all, note that all the FO? + pos LFP expressible relations on N are FO + posLFP expressible. There are FO + pos LFP indu
tions whose 
losure ordinals are greaterthan !, e.g., letting S0 and S2 range over the \0-ary" relations TRUE and FALSE,'0(S0; S1; S2) � S2;'1(x; S0; S1; S2) � x = 0 _ 9y(pred(x; y) ^ S1(y));'2(S0; S1; S2) � 8yS1(y):whose 
losure ordinal is ! + 1. In [Mo74℄, a relation is 
alled hyperelementary if both itand its 
omplement are in FO + pos LFP. The Closure Theorem, [Mo74, Thm. 2B.4℄,says that if  is an operative system of positive formulas, and if its 
losure ordinal on Nis not maximal on N, then  1 is hyperelementary. Thus all FO? + pos LFP relationson N are hyperelementary. But there is a relation | the universal relation for FO + posLFP relations on N (see [Mo74℄) | that is not hyperelementary but still FO + pos LFPexpressible. �In fa
t, the industrious reader 
an 
on�rm that:Proposition 4.2 On N, the FO? + pos LFP expressible relations are pre
isely the 
las-si
ally semire
ursive relations.5 Ex
elsiorIn this paper, we saw what happened to Least Fixed Point logi
 when we use guardedquanti�
ation. It turns out that guarded Least Fixed Point logi
 behaves very similarly:61



the Stage Comparison Theorem still holds, two popular measures of des
riptive 
omplexityseem to behave similarly, and so on. In other words, what in
reases is the 
omplexity. Wehave to worry about things like 
onne
tivity of the guard stru
tures, and about safety.But the underlying results are the same. This may seem dull, but the ni
e thing is thatwe 
an develop theorems about what 
an be done in FO + LFP, and then we know thatthey 
an be done in FO?+ LFP as well.We will take advantage of this in a sequel. In [M
*℄, we generalize a 
onje
ture of[ChH82℄: over any 
lass of stru
tures admitting unbounded indu
tions of arbitrarily high\dimension,", i.e., there exist FO + pos LFP queries requiring se
ond order re
ursionvariables of arbitrarily high arity. This 
onje
ture has been proven for FO + pos LFPon the 
lass of all �nite stru
tures in [Gro96℄; we will prove it for FO?+ pos LFP on all
lasses of joint stru
tures in whi
h the guard system is suÆ
iently \sparse."Let us 
lose with a more basi
 question. Let's �rst take another look at the topology ofgames, from Subse
tion 3.3. Re
all that a game 
ow
hart has several strongly 
onne
tedsubdigraphs, whi
h we 
ould 
all subroutines:De�nition 5.1 Given a game program �, a subroutine is a maximal set of states � from� su
h that for any s; s0 2 �, s `+ s0.In simulating unguarded existential quanti�
ation, we 
onstru
ted a subroutine inwhi
h all quanti�
ations were existential (following [M
95a℄, we 
an 
all this an exis-tential subroutine). However, thanks to the asymmetry indu
ed by Convention 3.2, thegame program 
ode simulating unguarded universal quanti�
ation in
luded a ra
e, whi
hforms (part of) a subroutine in whi
h both guarded existential and guarded universalquanti�
ation o

urred: following [M
95a℄, su
h a subroutine 
ould be 
alled alternating.In [Ko91℄, it was proven that there exist FO + pos LFP expressible queries whi
h 
ouldnot be 
omputed by game programs (with unguarded quanti�
ation) la
king alternatingsubroutines. This leads to a number of papers on the �ne stru
ture of alternation (or la
kthereof), su
h as [D87℄, [BlG87℄, [Gra92℄, [GraM96℄, [M
95a℄, et
. And it leaves us withthe question: in order to simulate unguarded universal quanti�
ation, was alternationne
essary? 62



Conje
ture 5.1 There exists a �rst order senten
e in the language of graph theory that
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tive de�nitions, Pro
. 3rd S
andina-vian Logi
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