Guarded Quantification in
Least Fixed Point Logic

Gregory McColm*
Department of Mathematics
University of South Florida
Tampa, FL 33620
(813) 974-9550, fax (813) 974-2700
mccolm@math.usf.edu
URL http://www.math.usf.edu/"mccolm

May 14, 2002

Abstract

We develop a variant of Least Fixed Point logic based on First Order logic with a
relaxed version of guarded quantification. We develop a Game Theoretic Semantics
of this logic, and find that under reasonable conditions, guarding quantification does
not reduce the expressibility of Least Fixed Point logic. But guarding quantification
increases worst-case time complexity.

*This research was partially supported by NSF grant CCR, 940-3463.

Contents

1 Introduction
1.1 The Notion of Guards
1.2 Outline of the Paper .

2 Guards in Logics

2.1 Guarded Quantification

2.2 Guard versus database relationso
2.3 Least fixed point logic with guards
2.4 Distance in Guard Relations

4.4 Closure Under Negation

5 Excelsior

3 Game Programs
3.1 Playing the Game
3.2 Winning the Gameo
3.3 The Topology of Games
3.4 Uniform Connectivity and Games
4 Using Game Programs
4.1 Non-Recursive Games and First Order Logic
4.2 Recursive Games and LFP Logic,
4.3 Least fixed point logico
4.3.1 (Sub)Programs for Simulating Quantification
4.3.2 The Simulation Works 0oL

13
17
20

26
26
30
34
39

43
44
45
20
53
o7
60

61

1 Introduction

For over two decades, finite model theorists have looked at relational databases as rela-
tional structures. After all, if relational databases were relational structures, then the
logics of finite model theory should be helpful in understanding relational databases.
This approach seemed justified by the identification of certain logics (assisted by various
gadgets) with traditional computational complexity classes, e.g., NP with ¥ in [F74],
PTIME with the Least Fixed Point logic (with successor) of [Mo74] and [AhU79] in [186]
and [V82], and the various additional identifications in [I87] and elsewhere. In a certain
sense, the logics of finite model theory seem to describe the power of database query
systems fairly well. But there are complications.

The primordial logic of finite model theory is First Order logic (FO), the basic logic of
classical model theory. In addition, positive existential FO logic is the logic corresponding
to Structured Query Language (SQL) and if you added negation to SQL, the corre-
sponding logic is FO itself (see [AbiHV95]). But there are at least two problems with FO

from an algorithmic point of view:

e There is a classical problem: FO is unable to express recursion, and (thus) cannot

express popular queries like reachability in graphs.

e As [Gu97] points out, quantification in FO logic is too easy compared with exhaus-

tive searches through databases.

Notice that the second problem is not about the power of quantification database query
systems are usually allowed to search through an entire database, given time to do so
but that it is done in a single, innocuous step that too easily sweeps the complexities
under the rug. It might be helpful to have a logic that captures the descriptive and
computational complexity of database queries more precisely.

In this article, we will develop such a precise logic, and compare the time complexity

of algorithms in this more precise logic with that of classical fixedpoint logic.

1.1 The Notion of Guards

In this article, we propose an approach for dealing explicitly with the the second prob-
lem (the complexity of quantification) and thus implicitly with the first (the need for
recursion). We will develop a Least Fixed Point (LFP) logic using a system of guards
similar to those of [Com83] and [AnBN96]. As LFP has recursion built into it, we will
be able to deal explicitly with issues involving recursion. And as the guards provide a
plausible restriction on quantification, we will be able to look at issues arising from such
restrictions. In addition, we will follow the approach of [Mc95a] in using Hintikka type se-
mantics for games to describe computations, and we will find that these “Eloise-Abelard”

(or “Angel-Demon” or “Assertor-Denier”) correspond to this guarded LFP logic.
Here are two motivating images.

I. The original motivating image of [AnBN96] is that of a universe of many worlds,
appropriate for a modal-type logic. From a particular world, only some other worlds
are accessible, and those worlds are the ones that a “guard relation” permits one to go
to. The two basic quantifications of modal logic, “I] = it is necessary that ...” and
“{ = it is possible that” can be represented as universal and existential quantifications,
respectively, over the worlds accessible from the current world. This motivational image
has been developed further in the work of [GraW99], etc.

Guards have been used in modal-type logics elsewhere, e.g., in the communication,
process, and game logics. And we are very interested in games in this paper.

The connection between games and logic goes back to Peirce (see [Hil82]), but the idea
was popularized by such works as [Hin72] (see [HiS97]), [Mo72] and [Ac75]. Suppose that
we have a two-player game of perfect information, and we want to assert that one or the
other player has a winning strategy. We can use the guards to indicate the legal moves,
with additional relations to indicate whose turn it is, and, if the game is over, who has won.
Then “Player £ has a winning strategy” is an assertion that can be expressed in a “game
logic.” “Game logics” were explored for their own sake in [Pa85], but also for the sake
of studying validity in [PI81], [He94], [BacW98, I1.14], etc. and for the sake of studying
communication and processes in [AbalLW89], [Mo091], [Mi99], etc. (see [FHMV95]).

In this article, we will explore a framework for studying many kinds of two-player
games of perfect information. In such a game, there might be several pieces to move, with
one player trying to get the pieces into one kind of configuration, and the other trying to
prevent the first player from winning. (Imagine a game of Chess, in which White wants
to win, while Black would be satisfied with a draw.) Most board games have some kind
of bounds on the legal moves, and we will use guard relations to bound the range of legal
moves.

As the games may go on indefinitely, we will be spending much of our time on fixed
points. Assertions about who wins in a two-player game in a Modal-type game logic can
be naturally expressed in fixed point logics (see, e.g., [BarM96, IV.12]). And this leads

us closer to another motivating image.

II. Imagine a simple-minded data storage device, in which we could store, say, a
digraph. Imagine that hashing is not an issue. There are at least two naive ways one

could store the digraph.

e We might store the digraph by putting the names of the vertices into registers of the
device, and assigning, for each arc, a register with two pointers (one for the source

and one for the sink).

e We could store an edge by having a pointer to the sink’s register in the the source’s
register. This approach would take less space than the first, but would impose an

upper bound on the outdegrees of the vertices.

(There are other options as well.) Then we naively imagine the CPU following pointers
as it navigates through the database. The relation consisting of all these navigational
pointers might be called the guard relation.

Now for a complication. One problem with the CPU metaphor is that navigation
through the digraph requires the digraph’s own arcs, which might be distributed unhelp-
fully (e.g., if the digraph is not connected, one could be cut off from some of the digraph).
In some of the extant guarded quantification literature, there are several relations, and in
this paper we explicitly distinguish relations used for computations (i.e., guard relations)

from database relations (i.e., relations representing the inputted structure). Returning to

the game metaphor, we have some relations — the guard relations — used for moves,
and some relations — the database relations — used at the end of the game to determine
who won. In both metaphors, the guard relations do not represent any part of the input

structure in itself; they are used for computations only.

In the first, modal-type, motivational image, the guard relation is an integral part of
the structure. This is typical of the usual versions of “guarded quantification.” In the
second, database-style, motivational image, the guard relation must merely satisfy certain
utilitarian criteria (connectivity, perhaps it enables some arithmetic, etc.).

The logical device that we will use to describe this “guarding” is a generalization of
the “bounded quantification” of classical recursion theory (see [Ro67]) and descriptive set
theory (see [Mo80]). Such restrictions on quantification entered finite model theory with
the “connected quantification” of [Com83|, which investigated the special preservation
properties of FO sentences whose guards were actually edge relations of graphs. We believe
that an investigation of guarded quantification, looking at various kinds of guards, will
enable us to dissect the notion of quantification itself. We are separating out the properties
of quantification over immediate neighbors from “global” quantification (iover the entire
structure), and we hope to find which properties of quantification are preserved.

In this paper, we will look at such a variant of what [AnBN96] called the Third
Fragment: a ‘guarded’ version of FO itself. This notion of “guarded quantification”
will be more relaxed than the one currently most popular in finite model theory, as the
motivation is different. (Thus it might be called “weakly guarded” quantification.) And
we will develop a guarded Least Fixed Point logic (a guarded version of the logic “FO +
LFP”), in which some of the work of the quantification is represented by recursions on

the guarded quantifications.

1.2 Outline of the Paper

In this paper, we will start with a long Section 2 on how our guarded quantification works,
and a description of guarded LFP logic. We will also look at a technical difficulty that
arises when the guard relation is of arity > 2.

In Section 3, we will recast guarded quantification logic in terms of games, using

the game-theoretic framework of [Mc95al; this system is a descendent of [Mo72] and
[HaK84], but belongs in the family of games described by the Game Theoretic Semantics
developed by Hintikka (see [HiS97]). In such a game, there are two players, whom we
may romantically call “Eloise” and “Abelard”: Eloise is trying to prove that a certain
statement is TRUE on a given structure, while Abelard is trying to prove that it is FALSE.
The rules of a game make up a “game program”, and we develop a Datalog-like language
of game programs similar to that of [Mc95a], and we find that we can precisely capture
guarded First Order logic (or guarded LFP logic) with these game programs, depending
on whether recursion is permitted.

We will continue this exploration in Section 4 by comparing logics with game programs.

Thus we get a guarded version of the theorem of [HaK84]:
Theorem 4.2 Guarded FO + positive LEP logic captures the quarded game logic.
In addition, by a coarse measure, there is no change in expressive power:

Theorem 4.3 Assuming an innocuous assumption, on finite structures, guarded FO +

(positive) LFP and unguarded FO + (positive) LFP have the same expressive power.

However, we will find that using guards increases time complexity and, in a manner

that will prove irritating in [Mc*], space complexity as well.

2 Guards in Logics

In this section, we will define the structures that we will be working on, and the guarded
logics that we will be working with. We will also discuss some of the basic properties of
these logics on these structures. We start with a few basic definitions, mostly following

the nomenclature of [Mo74]; see also [EbF95] and [199].

Definition 2.1 A relational database is a tuple © = (D; Ry,...;c1,...), where D = |D)|
is some set (the domain of ©, of cardinality ||®|), where each R; is a relation on D and

each ¢ 1s a constant in D.

More logical papers call these semantic tuples (relational) elementary structures. We

will resort to calling these things structures when we don’t want to think of them as

7

databases (in the sense that what they contain is not so much information as navigational
guidance for computation). Notice that we use semicolons to separate the domain from the
relations and the relations from the constants. We will tend to use capital fraktur font (90,
D, R, ...) for structures, capital italic font for sets and relations, and lowercase italic font
for elements and both capital and lowercase italic font for integers. Let [n] = {1,2,...,n};

let [0] = 2.

Definition 2.2 A schema is a tuple o = ((Ri,a1),...; ¢1,...), where each R; is a
symbol standing for a relation of arity a;, and each cp is a constant symbol standing

for an element. We say that a database ® = (D;R?,...;cP,...) is of schema o =
((R],a]),...;c],...) Zf

e for each i, RY? C D%, and
e for each j, c? eD.

We say that ® s a o-structure.

More logical papers call these syntactic tuples signatures rather than schemas. We
will often look at classes of databases of a common schema.

Notice that in Definition 2.1, each “R” was a relation, while in Definition 2.2, each
“R” was a symbol for a relation: applied to the database ©, “R” is a symbol that can
represent the relation R®. Usually, we will be sloppy, and not distinguish between symbols

and the objects that they represent.

Remark 2.1 In “real life,” relational databases are multi-sorted structures, i.e., they
have many domains. Thus we would have a database ® = (Dy,...;Ry,...;¢1,...), where
each Dy, is a domain, each R; is a subset of some product of the domains, and each constant
¢; 15 an element of a domain. The schema would be changed accordingly. And in “real
life,” many databases also have built in functions. But we will avoid such complexities
in this paper, and merely observe that the definitions and theorems can all be generalized
in some natural way. For an introduction to the foundations of database theory, see the

article [Ka9l], the book [AbiIHV95], or the tome [U88, 89].

In this paper, we will want to add relations, functions and constants to databases (and

corresponding symbols to database shema).

Definition 2.3 Given a o-structure M = (D; Ry, ...;c1,...), and given a relation S C
D, call (M, S) = (D;Ry,...,S;c1,...) an expansion of M by adding the relation S, and
say that it is of the expanded schema (o, (S, s)).

The nomenclature for adding a constant is similar, as is the nomenclature for adding

a tuple of relations and constants.

2.1 Guarded Quantification

In this section, we define guarded quantification, and the corresponding first order logic.
In this paper, the boolean operators A, V and — behave as usual. Our version of
“guarded quantification” is as follows.
First, we expand the database schema o by adding one or more guard relations, which

are of arity at least 2, and some guard constants, as follows.

Definition 2.4 A guard schema is a tuple p = ((Py,d}),...;dy,...) such that:

e cach P; is a relation symbol, and each a is a positive integer greater than 1: we call

a; the arity of the relation symbol P;; and
e cach d; is a constant symbol.

A guard structure of guard schema p is a tuple R = (D; PR, .. ;dT,...), where |R| = D
is the domain of the structure, Pt C D% for each i and d? € D for each j.

Again, we will usually not distinguish between guard relations and guard relation

symbols, between guard constants and guard constant symbols.

Remark 2.2 Notice that technically, there is no difference between a database schema
and a guard schema: given a tuple out of context, we could not tell whether it was a

database schema (i.e., whether it contained input information about the domain) or a

guard schema (i.e., whether it contained computation guidance for the domain). Similarly,

keep them in context, we should be able to avoid confusion.

We put the database and guard schemas together so that we can apply them both to

the same domains.

Definition 2.5 Let 0 = ((Ry,a1),...;¢1,...) be a database schema, and let p = (P, a}),

...;dy,...) be a guard schema. Denote the joint database-guard schema of o and p as:

((f,p):<(R],0,]),...,(P],(Lll),...;C],...,d],...>.

Let® = (D; R ..M.) be a o-structure and R = (D; PR, ... dT, . ..) a p-structure,
both of a common domain |D| = |R| = D. Then the joint database-guard structure of

joint schema (o, p) is the tuple
(D,M) = (D; R, .. ;. PR dT).
We will often just call (D,9R) a joint structure.

We will tend to denote database structures by the letter , guard structures by the
letter R, and joint structures by the letter 21. Notice that we distinguish between the
database relations and constants on the one hand, and the guard relations and constants
on the other. On the other hand, we can consider (o, p) as an expansion of o, and thus

(D,9R) as an expansion of D, in the sense of Definition 2.3.

Definition 2.6 Let D be a set of databases of a common database schema, and let R be
a set of gquard structures of a common guard schema. Then R s a guard system for D if,

for each © € D, there exists R € R such that |D| = |R.

We now describe how guarded quantification works. The guard constants d3, ... will
provide us with places to begin to look during quantifications, while the guard relations

PR, ... will bound our search. Here is the critical idea of guarded quantification.

10

Definition 2.7 Fiz a domain D and an integer a > 2. Given an a-ary guard relation
P C D* and an (a — 1)-tuple x € D* ', and a y € D, we say that x accesses y through
P if P(x;y).

Definition 2.8 We define guarded quantification as follows. If P is a gquard relation, and
x a tuple of variables and guard constants, and if z is a tuple of variables (including y)

then
(Fy: P(x;9))0(z)

is the assertion that there exists y such that P(x;y) and 6(z) are both true. Similarly,
(Vy: P(x;9))0(2)
is the assertion that every y satisfying P(x;y) also satisfies 0(z).

Think of (Jy: P(x;y))0(z,y) as Fy[P(x;y) A 8(z,y) and think of (Vy: P(x;y))0(z,vy)
as Vy[P(x;y) — 0(z, y)-

The simplest class of guarded formulas are the guarded FO formulas:

Definition 2.9 The guarded FO formulas, which we denote by FO,, are constructed as

follows.

1. The atomic formulas:

e If x is a variable and c is a database constant, then = = ¢ is a FO, formula. We will

regard equality as both a database and a guard relation.

e If x is a tuple of variables, and if R is a database relation symbol, then R(x) is a

FO, formula.

(The idea is this: in order to ask if a tuple x is listed in R, we must have accessed all of

x, and we do not assume that database constants are automatically accessible. However,

given an accessed value, we can certainly ask if this is in fact the constant in question.)
2. Conjunctions, disjunctions, and negations are defined as usual to get: @ A, V),

and —p.

11

3. For any FO, formula ¢, and guard relation P, the formulas

(By: P(x3y))o(x"y) and (Vi P(x'iy)o(x",y)
are (guarded quantification) FO, formulas (where x' is a tuple of variables and guard
constants, while x” is a tuple of variables). Notice that x” might be an empty tuple, so
that if x" consists of guard constants alone, we would have a nontrivial FO, formula with
no free variables; as usual, such a formula is called a sentence. In these formulas we say

that y is bound by the quantification: variables unbound by any quantifications are free.

Remark 2.3 The above system is a relaxation of the guarded logics in the literature. Here

are the major differences:

e We distinguish between guard relations and database relations (and those that are

both). We similarly distinguish between guard constants and database constants.

e In quantifications (Qy: P(x;y))¢(x;y), we permit free variables in x’ that do not
occur in x. This bit of permissiveness permits us to express notions like “the graph

is a 4-clique.” (In fact, as we shall see, this permissiveness permits a great deal.)

e Some guarded quantification logics have, instead of a single atomic formula serving

as a guard, a conjunction of several atomic formulas: e.g.,

(Qu: Pi(x139),-- -, Pu(xi;9))0(2).
(The usual restriction is that the variables of z are all among x1, ..., Xy, y, and the
interpretation is, if Q = 3, that there is a y satisfying Py (x1;y) A -+ A Pr(xg;y) A
6(z) with a similar interpretation if () = V. The nice thing about permitting
these conjunctions is that the restriction on the free variables of z no longer causes
irritating number-of-variables problems: e.g., it is now possible to represent “the

graph is a 4-clique.”).

It is possible to capture queries defined by these conjunctive guarded quantifications

using the system of this paper. Define,

(Fy:Pr(x1;9), - Pr(xk;y))0(2)
= (Fyi:Pi(xi501)) - Qe Pe(xXes ye)) [= -+ = yi A 0(2)]

12

and

(Vy:Pr(x159), - - -, Pe(xx;9))0(2)
= (Yyi:Pi(xi;91)) - (Yye: Po(xis i)) = - = yr — 60(2)]

We can define satisfaction in the usual way: given a joint structure 9t of joint schema
k, and given a FO, sentence 6 also of joint schema k, “O = #” means that 90 satisfies 6.
There is a useful fact (which we will need) about FO formulas that is also true of FO,

formulas: we can push negations down to the atomic level.

Proposition 2.1 Every FO, formula 0 is equivalent to a FO, 0 whose negations modify

only atomic subformulas.

Idea of proof. This merely involves repeated applications of De Morgan’s Laws:

N,
= “pV Y,
(Vy: P(x';y)) 9,
(By: P(x'5y)) .

ERES
< LU
NS
RS
ST
s =
g &
11—l

2.2 Guard versus database relations

Sometimes we may want to use the database relations themselves as guards. Imagine that
we are given a graph and some vertices in the graph: we may want to quantify over the
neighbors of the given vertices. There is nothing to prevent us from using some of the
database relations as guard relations, as is done in [Com83] and [AnBN96| and, indeed,
most of the literature. When we want to do this, we just list the relation symbol twice
in the joint signature (o, p): once in ¢ and once in p. But in this article, we will permit

guard relations that are not database relations, and vice versa, with the proviso:

We will take equality to be a guard relation as well as a database relation.

13

(Remember: the database contains the information while the guards guide computation.)

Thus we have two extreme situations to deal with:
1. All the guard relations and constants could be database relations and constants.

2. No guard relations (other than equality) or constants would be database relations

or constants.

(And, of course, we could have some guard relations and constants be database relations
and constants.) As mentioned Subsection 1.1, (1) is the usual situation in the literature,
while (2) is the usual situation in this paper. As an example of the situation (1), consider

the following.

Example 2.1 Let & be a connected graph, with edge relation Edge. Let Edge be the guard
relation as well, and imagine that there is one guard constant d. Then to determine if &
1 a clique, i.e., if

& =VaVy (z =y Vv Edge(z,y)),

determine the truth value of the FO, sentence
(Vz: Edge(d, x))(Vy: Edge(x,y))(Vz: d = z)Edge(z,y).
Notice that if & is not connected, all this says is that d’s component in & is a clique.

We now turn to the situation where there are guard relations that are not database
relations, and vice versa.
We should also note that the guard relations are themselves definable using quantifi-

cation with guards.

Proposition 2.2 Guard relations and constants are expressible in FO,, as follows.

For each guard relation P, there is a FO, formula Op such that for all joint structures
M, M = Vx[P(x) «— Op(x)].

For each guard constant d, there is a FO, formula 04 such that for all joint structures

M, M =Ve(x =d < 04(x)].

14

Proof. Define
Op(x;y) = (F2: P(x;2))(y = 2)

which is a FO, formula. For any guard constant d,
0(z) = Gyry=d)(y=x)
is a FO, formula. W

Let’s look at some examples.

Example 2.2 The successor relation can be used as a guard. Let D be a set of databases
of a common schema o. We have a guard schema consisting of a binary relation succ
and a constant 0. If © € D, then a guard structure of schema p = (succ;0) will be a

structure R = (|D]; succ™; 07) such that:

1. For each x € |D|, there exists at most one y such that (D,R) = succ(z,y): for all
but one x, such a y exists. Let s be a partial function such that for each x € |D|,

s(x) is the unique y such that ® = succ(z,y) if s(x) exists.

2. For each © € |D)|, there exists an n such that n iterations of s from 0 produces z, i.e.,

s"(0) = x. Thus the only x € |D| such that s(x) does not exist is the succ-mazimum

element of ©.

For example, suppose that D is a set of structures whose domains are the sets [n],

n=123,...
e One guard system for a built in successor would be the set of structures
([n]; succy; 1),
for each positive integer n, where succ,(x,y) =z + 1 =1y for all z < n.

e Another guard system, for a successor “independent of” the given structure, might

be the set of structures
([n]; succ,, - 7(1)),

for each positive integer n and permutation 7: [n| — [n], where succ, ,(x,y) =

7(x) +1=7(y) for all x, T7(x) < n.

15

Expanding on Example 2.2, the representation of PTIME in [Mo83] — see [Mc89] —
as the ‘recursive’ queries over structures ({0,...,n — 1}; R, succ,pred;0), R a relation
encoding the structure, might be regarded as an example using successor and predecessor
as guard relations (and 0 as the guard constant — if we use =0 rather than =). But there

are other examples as well.

Example 2.3 Consider a database whose domain is of 2™ elements. We could take an

m-hypercube as a symmetric guard relation, with one of the vertices as a guard constant.
This sort of thing works for databases of very special sizes. How about:

Example 2.4 Fiz a natural integer n = myms - - - my, and suppose that ® was a database
of n elements.. We could apply a directed toroidal k-dimensional grid as the guard relation
as follows. Each element of |D| might be identified with a tuple (cv, ..., o) € N, where
a; < my for each j € [k] and N = {0,1,2,3,...}. The guard relation would allow
quantifications from a vertex (aa,...,qx) to a vertexr ((1,...,0) iff for some i, j #
i = o = B, while ; +1 = 3; mod m,;. As a guard constant, we use the vertex

0,...,0).
The following is a chestnut: see [Mo83].

Example 2.5 The guard relation might be a binary tree, where each vertex v has at most
two successors (which might be identical) [(v) and v(v), and quantification from v means
checking I(v) and v(v) only. Thus we get two guard relations left and right, being the
graphs of the functions | and v respectively. The guard constant would be the root of the

tree.

This last example leads us to the special case: suppose that the guard relation is a
function. Returning to the motivation of a computer with tuples stored in registers and
guards represented by pointers, this certainly makes sense: a register can store only so
many pointers. So we could imagine a collection of pointer functions fi,... such that

given x, f;(x) gives you the ith pointer on x’s register.

16

2.3 Least fixed point logic with guards

We will work mostly with guarded versions of the LEP logics of [Mo74] and [AhU79].
These are extensions of FO logic, but here we use guarded quantification. We construct
guarded positive LFP Logic (which we denote FO, + pos LFP) and unguarded positive
LFP Logic (which we denote FO + pos LFP) as follows.

An operative system of formulas is a sequence ¢ = ¢y, . . ., @, of second order formulas
(,07:(.’177;’1,...,.Z'imi,So,...,S,,), iZO,...,V,

where, for each j, S; ranges over r;-ary relation variables. (We permit (-ary relation
variables, i.e., variables ranging over TRUE and FALSE.)
Now suppose that each of these formulas ¢; is monotone, i.e., on any joint structure

M, it S; C Tj for each j, then for any x from 9N, and any 1,
M= wi(x,S,...,95,) = pi(x,Ty,...,T,).

Then we can carry out a recursion (as described in [Mo74] and [Mo83]) as follows. The

0

Least Fixed Point of the system ¢ is constructed by setting ¢; = @ for each 7, and then,

for each n, we define

(2.1) P (x) = wi(x, 05, - o),
and it follows from an induction on n that

(2.2) G =) Cop; Cp;Coen,

so that on a finite structure 9, there exists an n such that for all j, M |= ¢} = go?“.

Then if ¢ = [, ¢ for each i, the tuple (¢f°, ..., ¢ °) is the ‘Least Fixed Point’ of the
system . If all the ¢; are L-expressible for some logic £, we say that ¢5° is (£ + pos
LFP)-expressible.
(We will tend to use Sy, ..., S, or Ty, ..., T, as relation-valued recursion variables, or
as relations, depending on the context. We will also use the notation ¢* = (¢f, ..., ©%).)
Incidentally, this is why we are sticking to finite structures throughout most of this
paper: in infinite structures, these recursions can continue for transfinitely many iter-

ations. We will use this number-of-iterations measure as a time complexity measure.

17

(More machine-oriented time-complexity issues in guarded quantification are discussed in

[GraW99].)

Definition 2.10 Suppose that we have an operative system @, a joint structure M, and

that M = @} (x) A=y ' (x). Then n is the stage of x, denoted |x|* (if ¢ is understood,

write |x|7; if M is understood, write |X|,, o7 if both ¢ and M are understood, write x|,).

If —p$°(x), write |x|; = oo.
By Formula 2.2, m <n = (¢"(x) — ¢'(x)) for all x.

Definition 2.11 Suppose that we have an operative system ¢, and let M be a joint struc-
ture. Then
| ™ = sup{[x|,;: x from M & i € {0,1,...,v}}

x,i

15 the closure ordinalof ¢ in 9.

(Closure ordinals on infinite structures are discussed in [Mo74], [Bar77], and [Mc90a].)
We can get the formulas @;(x, S, ...,S,) to be monotone by requiring that they be
Sj-positive for each j. Given S, the S-positive formulas are constructed by the following

recursion:
1. If S does not occur in 0, then # is S-positive.

2. If § and ¢ are S-positive, then so are A, OV ¢, (Fy: P(x;y))0, and (Vz: P(x;y))o,

where P is a guard relation.

In essence, ¢ is S-positive if there are no negations “in front of” any occurrence of S in
¢. It is straightforward to prove (see [Mo74]) that if ¢, is S;-positive for each j, then
each ; is monotone in each relational argument, so we can find least fixed points of the
system g, ..., py.

We will call an operative system ¢ of formulas, each being S;-positive for each j, a
“positive operative system.”

Let’s construct a system of formulas for graph reachability:
REACH(z,y) = “there is a path along edges from z to y”.

18

In this example, the guard structures are complete digraphs, i.e., for any z, y, there is a

P-arc from x to y.

Example 2.6 Imagine that Edge is the edge relation we want to get REACH for, while
P is the (complete) binary guard relation. One operative system of formulas, with guarded

quantification, for generating graph reachability as a least fixed point, is the following:

wo(®,y,50,51) = z=yVS(z,yy)
901(33;?/; 2, S0, 51) = [Edge(a:, Z) A SU(ZJ/)] \Y% (3103 P(ZE w))Sl(l"a?/;w)-

Here, REACH = @g°. Notice that ||¢g, 01]|™ is quadratic in ||90].

Notice that if the quantification had been unguarded, i.e., if ¢i(x,y, 2z, Sy, S1) =
[Edge(z, 2) ASy(z,y)]VIwS: (x,y, w), the effect would have been the same. The least fixed
point logic FO + pos LEP of [Mo74] and [AhU79] uses strictly unguarded quantification,
but is otherwise developed the same way as FO,+ LFP..

Notice that in the above example, we did not use any guard constants. However, since
a quantification in a sentence requires something for the first k& arguments of the ((k+1)-
ary) guard relation in the outmost quantification, sentences require guard constants.

If P is merely strongly connected i.e., for any z, y, one can go along P-arcs from x
toy the algorithm would require that in the second line, we would need to search for an
appropriate w by traversing an indeterminate number of P-arcs. A single quantification

(Jw: P(—;w)) would not be sufficient. We will look at this situation later.

Definition 2.12 Fiz a database schema o and a guard schema p.

The logic FO,+ pos LFP on (0, p) defines the set of queries ¢5°, for ¢ being from a
positive operative system @ = @q,...p, of formulas with guarded quantifications, whose
guard constants and relations are from p and whose database constants and relations are
0.

The logic FO + pos LEP on o U p defines the set of queries ¢g°, for ¢ being from a
positive operative system @ = @y, . .. @, of formulas with unguarded quantifications, whose

constants and relations are from o U p.

19

We have defined the logics this way because we will prove that on finite structures,
given a uniformly connected guard system, FO,+ pos LFP on (o, p) has the same expres-
sive power as FO + pos LFP on o U p.

The logic FO, + pos LFP consists of the “Least Fixed Points” when L is the set of
formulas in FO, that are S-positive for each second order variable S. Notice that FO, +
pos LFP is the least logic containing FO, and closed under disjunction and conjunction,
guarded quantifications, and LFP inductions. The logic FO, 4+ LFP is the least logic
containing FO, and closed under boolean operations, guarded quantifications, and LFP
inductions: unlike FO, + pos LFP, FO, + LFP is explicitly closed under negations. It
will turn out in Subsection 4.3 that on finite structures, all FO, + pos LFP expressible
queries are FO, + LFP expressible; in Subsection 4.4, we will see that this is not true for

infinite structures.

2.4 Distance in Guard Relations

There is one pathology that we encountered in Example 2.1 which we will have to deal
with: suppose that from the guard constants, one cannot reach all vertices of the database.
Fix a guard structure R of domain D. Without loss of generality, suppose that there
is one guard relation P, besides equality. Let d = d;,... be the guard constants, let
Dy = {dy,...}, let Dyy = {y: Fz1,... (P(21,...;y) AN, xn € Dy,)} for each integer
m >0, and let Dy, = {J,, Dp.

Definition 2.13 A guard structure of domain D is of radius m if it satisfies D, 1 #
D = D,,; it is connected if D = Dy,. A guard system is of radius m if m is the supremum

of the radii of its structures, and it is connected if all of its structures are connected.

Notice that on a finite database, a guard structure is connected iff it is of finite radius.
This is a perfectly natural notion. Unfortunately, this is not quite the notion we will
need. In this section, we will present the uglier notion that we will need, and show that

the natural notion above is insufficient. First, here is the uglier notion.

20

Definition 2.14 Fix a guard structure R. Fix an integer p > 1. Suppose that for each
y € |R|, if y is not itself a guard constant, then there erists a sequence Xy, X1, ..., X, of

p-tuples from || such that the following is true (if x; = x;1,...,2;, for each i):
e The tuple x¢ consists of quard constants.

e For eachi € [n] and j € [p — 1], x;; is either a guard constant or is equal to x;_q j

for some j'.

e For each i € [n], there is a guard relation P and a tuple X' from x;1, ..., %1 such

that P(x';x;).
o The sequence of tuples ends with x, , = y.

If this is true, call R p-uniformly connected. If R s a class of p-uniformly connected

(guard) structures for some one integer p, call R uniformly connected.
Definition 2.14 is the notion that we will use in this paper.

Remark 2.4 We could have defined p-uniform connectedness slightly differently, e.g., as
follows. Suppose that for each y € |R|, if y is not itself a guard constant, then there exists

a sequence Xg, Xy, ..., X, of tuples from |R|, such that the following is true:
e For each i, x; 15 a tuple x; 1, ..., %;q, where ¢; < p.

e Foreachi and each j € [q;], x; ; either occurs in X;_1, or can be accessed from guard

constants and elements of X;_1 via a guard relation.
e The element y occurs in x,.

If these three conditions hold for all y € |R|, call R p-uniformly* connected. It is not
hard to prove that if there are v guard constants, then any p-uniformly connected guard
structure is p-uniformly* connected, and that any p-uniformly* connected structure is
(2p + v)-uniformly connected. And we would get a notion of “uniform™ connectivity” that

would coincide with uniform connectivity.

21

The rest of this subsection is devoted to the difference between connected and uni-
formly connected guard systems. First the good news: these notions coincide when all

the guard relations are binary.

Theorem 2.1 Let p be a guard schema whose relations are all binary. Then all connected

p-structures are 2-uniformly connected.

Proof. Fix a connected guard structure R, with binary guard relations P,.... As in

Definition 2.13, let Dy be the set of guard constants, and for each m, let

Dy = {yE || — UDm: dx (TEDm/\\/Pz(T?J))}

i<m

As R is connected, if y € |FR|, there exists xg, z1, ..., z, such that:
e The vertex z, is a guard constant.
e For each i <n, z; € D;, x;41 € D;41, and there exists j; such that Pj,(x;, ;1)
e The sequence ends with z, = y.

Thus R is 2-uniformly connected. B

This means that in most of the examples one would play with, the nice Definition 2.13
would suffice. However, when dealing with messier models, we may want ternary (or
worse) guard relations. This brings us to the bad news: if there are guard relations of
arity > 2 in a guard schema p, then some connected p-guard systems are connected but

not uniformly connected.

Theorem 2.2 For any p, there exists a guard structure with a 3-ary guard relation and

a guard constant that is connected but not p-uniformly connected.
Proof. We will prove this by induction on p. We start with a variant of Definition 2.14

Definition 2.15 Let R be a guard structure and let y € |R|. A sequence xg,X1,...,X,
accesses y if (letting ¢; = length(x;) for each i):

22

e For eachi, X; = ;1,...,%iq is a tuple from |R]|..

e For each i and j, if j € [¢; — 1], then x;; = x;_1 for some k € [gi_1]. (Here,
=2

e Foreach i, there exists a tuple X' of guard constants and elements from x; 1, ..., T4 1

such that for some guard relation P, R = P(x';2,,,).
o The sequence ends with x, ,, =Y.

In addition, y is accessed within ¢ variables if there is a sequence Xy, X1, . ..,X, GCCESSIN
i 05) s An
y i which max; ¢; < q.
If

p = min{q: “y is accessed within ¢ variables” },

say that accessing y requires p variables.

Observe that if y can be accessed within ¢(y) variables for each y, and p = max,en ¢(y),
then R is p-uniformly connected.

We now construct the structures that will have vertices requiring many variables to
access. Fix p. Let T, = (T},; Arcy; x,) be the complete binary tree of root x,, vertices T,
arc relation Arc,, and height p. Let L, be the leaves in T}, and each vertex in 7, — L,
has precisely two successors. Following Example 2.5, label the two successors of a vertex
t € T, — L, by It and tt: consider these the left and right successors of ¢ (but notice that
[t and vt are not distinguishable in the language of ¥,). Extend ¥, by adding a vertex
d ¢ T, and let

P,={(it,xt,t): t €T, — L,y U{(d,d,t):t € L,},

and let R, = (T, U {d}; P,;d). Note that =, € |R,|, but z, is not the guard constant d.
Figure 1 displays ‘R;.

23

X

A\
N

Figure 1

To prove the Theorem, it suffices to prove the following Claim by induction on p.
Claim 2.1 In R, accessing x, requires p + 2 variables.

The basis of the induction is: p = 1. Here, if x = x4,
R = {x, lx, vz, d}; {(d, d, 2), (d, d, vx), (lx, vz, z) }; d).

To access z, one uses the tuple (Iz, vz, z), so accessing x requires at least 3 variables. But
3 variables are sufficient: to access z via (d,d,), (d,d, vx), (Ix, vz, x), the sequence (lx),
(lz,vx), (I, vx,) satisfies Definition 2.15.

We proceed by induction on p. Suppose that accessing x, in R, requires p+2 variables.
We claim that accessing x,41 in R, requires p + 3 variables.

First, we claim that p+ 3 variables are necessary to access x,41 in R, 1. Suppose that
Xg, . .., Xp Witnesses the accessing of x,4, as in Definition 2.15. Then x = z,,, is the last
entry of x,,, while [z and vz are other entries in x,, (for otherwise, we cannot access).
Thus [z and vz occur in x,,_1.

Now, observe that $R,;; consists of two copies of 2, disjoint except that they share

d, with [z and vz as the roots of the two copies of QR,, and with the additional vertex

24

x = x,41 on top (look at Figure 2 below). Denote the (left) copy containing [z by IR, and

the (right) copy containing vz by t98,. Thus each tuple x,,, m < n, consists of elements

from |IR,| and elements from [tR,|. Let x|, be the tuple from x,, of elements from |I9R,)],

and let x}, be the tuple from x,, of elements from [t9,|.

X

oy

7
i
=

P
A
@
o
00

“

Xy

s
o
o
(0

W7

00
&
i

%
¢
()
(A2

I N N o

d

Figure 2
Note that without loss of generality, we can assume that if x,[ﬂ has entries, and m’' > m,
then x!, also has entries. Otherwise, we could delete all entries of |[RR,| from each x! ,,
m” < m’, and we would still have a sequence of tuples accessing x. Thus there is an m;

such that x' has entries iff m > my; similarly, there is an m, such that x°, has entries iff

m > Me.

By the Induction Hypothesis, as [z is accessed by the sequence accessing x, there exists
my; > my such that the tuple Xfm has at least p+ 2 entries. Similarly, there exists m, > m,
such that the tuple xj, has at least p + 2 entries. Without loss of generality, suppose

m
that m; < m,: then mi < m,, so x,,,, has at least one from [?R,. Then x,, must have at

25

least (p +2) + 1 = p + 3 entries.
Thus accessing z in R4 requires at least p + 3 variables.

We conclude by claiming that p + 3 variables suffice.

Let X, ..., X, be a sequence of tuples of [IR,| accessing [z (with p+ 2 variables), and
let yo,...,¥m. be a sequence of tuples of [t!R,| accessing vz (again, with p + 2 variables).
Letting “”” mean concatenation of tuples, the sequence

X0y -+ s Xngs (12) Yo, ooy (12) Yo, (lz, vz,)

accesses x within p + 3 variables. B

In Subsection 3.4, we will see that uniform connectivity is what we want. We conclude

with a definition we will need later.

Definition 2.16 Fiz an integer p > 0 and a guard relation R. Given y € |R|, the p-
uniform norm of y s the least n such that there is a sequence of n p-tuples satisfying
Definition 2.14 for accessing y. The p-uniform radius is the mazximum p-uniform norm

of any element of R.

3 Game Programs

In order to simplify proofs, we will use a variant of the pebble game calculus of [Mc95al,
which is a sort of generalized Datalog. In this section, we will describe the games and
then look at the connection between the games on the one hand and FO, and FO, + pos
LFP on the other.

In this section, we will be using Peircean (as in Charles Sanders Peirce) games of the
sort described in [HiS97]: given a structure 9 and a property P, one player is asserting
that 901 satisfies property P and the other is denying it. In this Section, we will look these

Peircean games and their connections to guarded least fixed point logic.

3.1 Playing the Game

The game is played between two players — call them Eloise and Abelard — on a board

(a joint structure 90t), where the pieces are an assortment of pebbles. The idea is that

26

Eloise is trying to prove that 9t has a certain property (e.g., it is a connected graph, or
a linear partial order, or some such), in the face of Abelard’s challenges.

At any moment, the game is in a particular state s (representing some kind of asser-
tion), with pebbles on a tuple of vertices x. Eloise claims that the notion associated with
the state s is true of 91 at the tuple x, while Abelard claims that it is false. For each
state s, there is a rule which determines how many pebbles are on the board (possibly
zero) and what is to be done: if someone is to move, the rule determines whose turn it
is, how that player may move, or if someone is to win, the rule determines the criteria for
victory. The collection of these finitely many rules is the game program.

Game programming is a variant of Datalog programming (see a theoretical text like
[AbiHV95] or [U88, 89] for a description of Datalog). A game program is a collection of
rules

(%) i— -
where x is a tuple of variables (for positions of the pebbles) and ‘..." describes what is to
be done if the game is in state s. The rules are ‘junctive’, ‘quantitative’, or ‘terminal’.
As in Datalog, we will say that the term on the left hand side of ‘ :— ’ is the head of the

Y

rule while the expression on the right hand side of ‘ :— "’ is the body. And we will use a
bookkeeping convention from Datalog: when the game moves from state to state, within
a rule, the values follow the variables; but when the game goes to the next rule, the values
follow the order of the arguments, not the variable names.

Let’s work within a fixed joint schema (o, p).

Initial state. We will presume that the game begins in a special state START, with
zero variables. Thus the question will be whether Eloise has a winning strategy from the
game position (START}).

Junctive rules. The state s might be ‘disjunctive’ or ‘conjunctive’. First, we look at

disjunctive rules. Let x; and x, list variables from x = x4,...,2.. Then
(s;x) 1= (s1;%x71) V (82;%2)

means that if the game is in state s, and the pebbles p;,...,p. are on (the vertices

represented by the variables) z;,..., z. resp., then Eloise decides whether to go to state

27

s1, with pebbles py, ..., ps on x4, ..., 21 ¢ (Where x; = 1 ,..., 2 consists of variables
from x), or to state sy, with pebbles py, ..., per on 91, . .., To e (Where Xo = 291, .., Toen
consists of variables from x). Here, for Eloise to claim that s is TRUE at x, she has to
claim that either s; is TRUE at x; or that s, is TRUE at x5. Since she only has to defend
one or the other, she is permitted to choose which junct to defend: from state (s;x),
Eloise chooses whether to continue the game from (s1;x7) or from (s9;x3).

Notice that there may be some rearranging of pebbles. For example, for the rule
(s;x,y) :— (s1;2) V(s9;y, x), if the game is in state s with pebble p; on the first argument
and py; on the second, then if Eloise chooses to go to state sy, the pebbles must be
switched (if Eloise chose to go to state s;, pebble p; would stay put and pebble p, would
be removed). This is actually analogous what happens in a computer: the variables are
like the variable-names of a higher language, while the pebbles are like the registers of
the machine. From now on, we will rearrange pebbles without comment.

Similarly, the conjunctive rule
(six) = (s1:%1) A (523 X2)

means that Abelard decides whether to go into state s; or state s;. Here Eloise claims
that both juncts are TRUE, so as she would be expected to be able to defend either,

Abelard can choose which junct to challenge.

Quantitative rules. The state s might be ‘existential’ or ‘universal’. Let x; and
x5 consist of variables chosen from x, only x; may also list guard constants. Let P be a

guard relation (of p). Then an existential rule is of the form:

(s;%x) 1= (Fy: P(x159))(s3x2,9),

which means that if the game is in state s with pebbles on the vertices x, then Eloise is to
choose a vertex y such that P(x;y). And x5 consists of vertices from x. Then rearranging
pebbles so now the tuple x5,y is pebbled, the game continues from state s, i.e., from
position (s';xa,y).

Now suppose that Eloise claimed that for every y accessible from x;, sy would be

TRUE at xs,y: we would now permit Abelard to choose which y he cared to challenge.

28

The result is the universal rule

(s;%x) := (Vy: P(x159))(s3x2,9).

We call these states (and their rules) existential and universal respectively.

Notice that a player may be called on to make a quantitative move, and yet there
may be no legal moves: Player Q is to choose y such that P(x’;y), and yet, Vy—P(x';y).
What then?

e For (s;x) :— (Jy: P(x1;y))(s"; x2,y), Eloise claims that a certain y exists, so if she

cannot move from (s;x), no such y exists, so she should lose.

e For (s;x) :— (Vy: P(x1;y))(s";x2,y), Abelard claims that all y with P(x;;y) lead
to winning positions, which is vacuously true if Vy—P(x1;y), so if no such y exists,

he should win.

This motivates the following asymmetric convention.

Convention 3.1 For the rule (s;u) :— (Qu: P(uy;v))(s"; ug, v), from (s;x), if Vy—=P(x; y),

then Abelard wins.

Terminal rules. Finally, the state might be ‘terminal’: this is when Eloise is asserting
that an atomic formula (or its negation) is TRUE at a tuple x’, and all that remains is
to check.

Let x’' consist of variables from x. Here the rule could be of the form
(8; X) S R(X’)a

where R is a database relation from ¢ and x’ has the appropriate number of arguments:
this means that if the state is s, and x is a given tuple of vertices, then Eloise wins iff

R(x'); otherwise, Abelard wins. Or the rule could be of the form
(%) 1= ~R(x),

which means that Eloise wins iff =R(x’), with Abelard winning otherwise. Notice that
these terminal rules are the only rules in which the database relations appear explicitly, as

opposed to the guard relations, which were explicitly available in the quantitative rules.

29

A terminal rule could also be of the form
(s;x) :— 2’ = ¢,
where 2’ is a variable from x and ¢ is a database constant, or of the form

(s;x) :— 2’ # ¢,

where 2’ is from x and ¢ is a database constant. In the first case, Eloise wins iff the
variable 2’ has the same value as the constant ¢, and in the second case, Eloise wins iff
the variable x’ has a different value than the variable ¢. Again, notice that unlike the
guard constants, which were explicit in the quantification rules, the database constants

only appear at the end of the game.
Definition 3.1 The programs as defined above are the game programs.

Incidentally, a game position (s;x) will be called junctive if s is a junctive state,
quantitative if s is a quantitative state, and terminal if s is a terminal state.

Thus the players play the game until one or the other wins. But notice that we have
not built in any guarantee that a terminal position will be reached: indeed, we will find
that some games go on forever. We will want a convention motivated by a notion similar

to the “negation as failure” of [CI78].
Convention 3.2 If a game goes on forever, then Abelard wins.

The rationale for this is that Eloise has the burden of establishing that the property
holds on the given structure: if she never does this, she loses.
Note that Conventions 3.1 and asymmetry, especially the latter, destroy the symmetry

between Eloise and Abelard. This will have technically unpleasant consequences later on.

3.2 Winning the Game

Now that we have a notion of playing the game by some rules, let’s take a brief look at
how the game is won or lost.
Recall that Eloise should be able to win the game iff the structure in question satisfies

the given property (represented by the game program). So first, let’s get a little shorthand.

30

Definition 3.2 Given a game program ® and a structure M, let G(P,IM) be the game
played on 9 using the game program P.

What does it mean to say that Eloise “wins” or is “able to win”? The standard notion

is to use “strategies”. A strategy is a function
game positions — moves

telling a player how to move. (We will not go into the nuts and bolts of strategies in
this paper: for that sort of thing, see [Ko85].) If Eloise has a strategy that can defeat
Abelard no matter how Abelard plays — i.e., a strategy that can defeat any of Abelard’s

strategies — we say that Eloise has a winning strategy.

Definition 3.3 The game played on the joint structure (D,R) using the program ® will
be denoted G(®, (D,R)). We say that a player wins G(®, (D, R)) if that player has a
winning strateqy for that game, i.e., a strateqy that will defeat any strateqy employed by

her or his opponent.

Now for a little hand-waving. It is a consequence of the Gale-Stewart Theorem
([GaS53] see, e.g., [Mo80]) that either Eloise or Abelard has a winning strategy.

We will want an important measure: from a given position (s;x), if both players play
optimally, how long can the game last? Since Abelard wins if the game goes on forever,
we ask instead: how many moves before Eloise wins (if Abelard has a winning strategy,

the answer is oc). In order to develop this measure, we need a fact.

Proposition 3.1 Let (D,R) be a joint structure and let & be a game program. Suppose
that in G(®, (D,R)), every universal quantitative position admits only finitely many op-
tions that Abelard can choose from. Suppose that for each n, there exists a strategy Z, for
Abelard such that if Abelard uses Z,, then (starting from the initial position (START;)),
FEloise has no strategy that defeats Z, within n moves. Then Abelard wins G(®, (D, R)).

Proof. We describe a winning strategy for Abelard. We maintain a set of active strategies

which Abelard can use at a given position: a strategy will be active if all the moves made

31

thus far made by Abelard were made consistent with the strategy. Notice that if Z, is
active after m moves, where m < n, then Abelard can play (namely as dictated by Z,,)
so that Eloise can’t win within n —m moves.

We will start with a set of strategies STy = {Z1, Zs, Z3, Z4, .. .}. If STy is finite, then
there exists Z € ST, such Z = Z,, for arbitrarily large n, and thus Z can never be defeated
by Eloise, and thus is a winning strategy for Abelard. So suppose that STj is infinite.
During the game, at the kth move, ST} will be a set of strategies for Abelard, all of them
consistent with the play (i.e., with Abelard’s play) thus far.

Start at (START;) with the set of active strategies is STy = {Zi,...}. Let ST} be
the set of active strategies at the position for the (k4 1)st move, whether it is Eloise’s or

Abelard’s turn to move. Suppose that ST} is infinite:

e If it is Eloise’s turn to move, then as no move by Eloise can be inconsistent with an

active strategy for Abelard, STy = STy, 1, and ST} is infinite.

e We will prove that for any k, if it is Abelard’s turn to move, then as ST}, is infinite,

Abelard can move so that STy, is infinite.

It will follow that for each k, and each N, there will exist n > N such that Z,, € ST}.
Suppose that the game is at the position (s;x), in which it is Abelard’s turn to move,
and he has already had k£ moves. Suppose that ST}, is infinite.

If s is conjunctive, then Abelard is to move according to
(s1x) 1= (s1;%x1) A (892; X2).

So for some i € [2], there exist infinitely many Z, € STy such that from (s;x), 7, chooses
to go to junct s;: Abelard chooses that s;. Let STy 1 be the set of all Z,, € ST} dictating
that Abelard move to the ith junct, and note that STy, is infinite.

If s is universal, then Abelard is to move according to

(s;x) :— (Vy: P(x';9))(s";x", y).

There are only finitely many y such that P(x';y), so for at least one of these y, there are

infinitely many 7, € ST that has Z, choose that y from (s;x): Abelard chooses that

32

y. Let STy, be the set of all Z,, € ST} dictating that Abelard choose y, and note that
ST+ is infinite.

If Abelard plays so that ST} is always infinite, then Eloise can never make ST}, finite,
so she never can win within a fixed number of moves, hence certainly never within 0

moves, so she never wins, so Abelard wins by default. H

We needed the assumption that the guard relations permit quantification over only
finitely many elements. Note that if we had a guard structure like the following, then while
Abelard has a strategy Z, preventing Eloise’s victory for n moves, Eloise will eventually

win the game.

Example 3.1 Let R = (M; R;d), where M and R are to be constructed as follows (see
Figure 3):

e For each positive integer z, let M, = {a,1,...,0,.}.
o Let M =2, M,.
o Let R(a,b) =(a=dA VL 0=a.1)V (V,ic, (@ =a:i Ab=a,;11)).

Let ® consist of Abelard starting from d, and going down R-arcs until he cannot move
any more: once he cannot move, he loses. For any n, Abelard can choose to go down a
path of length at least n, but no matter which path he chooses, he will eventually reach the

end of it and lose.

33

L L
o [
L

Figure 3

We return to the problem of how long a game can last before Eloise wins.

Definition 3.4 Fiz a joint structure . Suppose that the game G(®, M) is being played,
and that s is a state from ® and that x is a tuple from |9N|. If Eloise has a strategy to
win from the position (s;X) within n moves, but no faster, write |x|; = n. If Eloise does

not have a strateqy to win from the position (s;x), write |x|, = oc.

Notice the similarity to Definition 2.10; in Subsection 4.2, we will see that this simi-

larity is not coincidental.

Definition 3.5 A game program ® captures a property ¢ iff for every joint structure I,
M |= ¢ iff Eloise wins the game G(®,0M). Thus if L is a logic and P is a collection of game
programs, we say that all L-expressible queries are P-expressible if every L-expressible

property is captured by some game program in P; we define the converse similarly.

3.3 The Topology of Games

There are two kinds of games: those that can go on indefinitely, and those that end

within a fixed number of moves. In this subsection, we find that the difference lies in the

34

)

“topology” of the game programs — or more precisely, in the topology of the digraphs of
the game programs.

Let’s start with an example of a game that ends in three moves.

Example 3.2 Consider a database M = (M; Arc), where Arc is binary, and a guard
structure R = (M; P;d), where P is binary. Let the database relation be Arc, the database

constant be ¢, the guard relation be P, and the guard constant be d. Consider the sentence
(Vo P(d;) (Vy: P(21y))(32: P(d; 2))(y = 2).

This sentence says that if there is a P-path from d to x, then P(d,x). Thus if R was a
connected guard structure, this sentence would say that for every vertex (except perhaps
d itself), there is a P-arc from d to x. Notice that this sentence says nothing about the

database relation Arc.

Compare the above sentence with the following game program. (We will typically have

descriptive names for the states.)

(START;) :— (Va: P(d;z))(ADJACENT;z)
(ADJACENT;z) :— (Vy: P(z;y))(NEXT;y)
(NEXT;y) :— (32 P(d;z))(EQUALS;y, 2)
(EQUALS;y,2) — y=z

Here, Eloise wants to prove d is adjacent to every other vertex (assuming that the guard
structure is connected). Then Eloise can win the above game (no matter how Abelard
plays) iff the sentence in Example 3.2 is true. We say that the above game captures the
sentence.

Notice that in the above game, one can never revisit a state. Compare this to the
following program. Here we ask a dual question of the database Arc that we asked of the

guard relation P: is it true that for some vertex z, there exists an Arc from z to d?

Example 3.3 The guard structure is connected, with one guard constant d and one guard

relation P. Now we want to search the entire database, even if the quard structure is of

35

large (if finite) radius.

(START;) (Va: 2 = d)(ASK; z)
(ASK;z) :— (REACH;z)V (CONTINUE;z)
(REACH:z) :— (3y:d=y)(ARC;z,y)
(CONTINUE; z) (3y: P(a:y))(ASK; y)
)

(ARC;z,y) :— Arc(z,y)

In this game, the states ASK and CONTINUE can be visited any number of times: we

will call these states recursive.

So here we have two kinds of free games: those that have recursive states and those

that don’t. Let’s formalize this notion.

Definition 3.6 Let ® be a game program. Let “s =17 mean that in ®, the state t appears
in the body of s’s rule. Let F* be the transitive closure of &, and let “s =1 t” mean that
in ®, for somew, st u and u " t.

Call a state s recursive if s =+ s. Call a game recursive if it has recursive states.

If a game’s program has no recursive states, the game will not last very long. On the
other hand, if there are recursive states, then it is possible for the game to go on forever:

recall that if the game never ends, then Abelard wins.

Example 3.4 Here is a game program for graph reachability. The database is a graph
& = (V;Edge;a,b), where V' is the set of vertices and Edge is the edge relation, and
a,b € V.. The query is: there is a path along edges from a to b. The (2-connected) guard
relation is a digraph (V; P;d), where P is a binary relation on V and d € V. The naive
(unguarded) vertez-by-vertex algorithm can be represented by the following program from

[Mc95a.

The suggested program for reachability is the following. First, here is the program for

unguarded games, as in [Mc95al: all Eloise has to do is start at a and proceed until she

36

reaches b:

(START:
(REACH; z, y

(CHECK; z, vy, 2

(EQ;z,y

)
)
(STEP; 2, y)
)
)
(EDGE; z, y)

(REACH: a, b)

(EQiz,y) Vv (STEP; 2, y)
J2(CHECK; z, y, 2)

(EDGE; z, 2) A (REACH,; 2, y)
T=y

Edge(z,y).

See Figure 4 below for a picture (it may help to represent these games as flowcharts)

(notice that for pictoral reasons, variables are handled differently in flowcharts, including

“reset” to help human observers keep track of variable values).

Edge(x, z)

START
X:=ay:=b

STEP RESET
E pebbles z X:=z
CHECK
A chooses
Figure 4

To convert this “unguarded” game program into a “guarded” game program, we need

37

to have Eloise navigate through the guard structure. One way to do this is:

(START;)

(TO-a; x)
(TOWARDS-; z)
(IS-a; z)

(EQ-a; z)

(AND-b; 2)

(TO-b; z, y)
(TOWARDS-b; ,)
(IS-b; z,)
)

)

)

)

2)

)

)

)

Jw: P(z,w))(TO-a; w)

(d
(IS-a; z) V (TOWARDS-q; x)
(
(EQ-a; z) A (AND-b; z)

Jw: P(z,w))(TO-b; z, w)

(
(IS-b; z,y) V (TOWARDS-b; z, y)
(
(EQ-b;y) V (REACH; z,y)

(EQ-b; z r=0b
(REACH; 2, y (EQ; z,y) V (STEP; z, y)
(STEP; z,y (Jz: 2z = d)(NEXT; 2,9, 2)
(NEXT: 2, y, » (SEARCH: 2.y, 2) V (CHECK; 2, 1, 2)
(SEARCH; z,y, 2 (Fw: P(z,w))(NEXT; z, y, w)
(CHECK: 2, v, 2 (EDGE; z, 2) A (REACH; 2, y)
(EQ; 7,y =y
(EDGE; x,y Edge(z, y).

See Figure 5 below for a picture of this program. Notice that this program has three
subdigraphs of recursive states: unlike the unguarded program, a single existential quan-
tification may involve as much work as a recursion of existential quantifications. Notice
that in a sense, the guarded program is a refinement of the unguarded one: we will

formalize a notion of refinement in Subsubsection 4.3.

38

START W
E pebbles x = d

TO-a TOWARDS-a
E chooses E pebbles w

AND-b

E pebblesy = d

|
TO-b | TOWARDS-b
E choo E pebbles w

1S-b
y=Db E chooses

<=y REACH
E chooses/
STEP CHECK
E pebbles z A chooses
|
SEARCH < NEXT > (Edgex. 2))
E pebblesw | E choo gelx. 2)

Figure 5

3.4 Uniform Connectivity and Games

We are now ready to explain, in a precise sense, why Definition 2.14 is the right definition

for accessing an entire database.

To search an entire database, we need something like Example 3.3. Here’s the idea.

Starting at the guard constants d, repeatedly accessing additional vertices, one should be

39

able to reach any vertex. We want to formalize this notion within a game context. In

order to do this, we need a notion from combinatorial game theory.

Definition 3.7 Let ® be a program over a joint schema (o,p), and let M be a joint

a, p)-structure. A run of G(P, M) is a sequence of game positions
p g

(START;) = (s05), (515X1), (825 X2), (83:%X3), - -,
such that:

e for each n, s, is a state whose number of variables equals the length of the tuple x,,

of elements from M, and

e for each n, s, b s,i1, and from (s,;x,), a legal application of the rule for s,

produces (Spy1;Xp41), and

e if the sequence terminates, it terminates in a position (s;x), where s is terminal.
We need a notion from [I81] (see [Mc95b]):

Definition 3.8 Let ® be a game program. The Number of Variables of ® is the mazximum

number of variables of any state of ®.

Notice that in a run of ® on any structure, the tuples are all of a length no greater
than the number of variables of ®.

First, we observe the obvious.

Proposition 3.2 Fiz a positive integer p and a joint schema (o, p). Let 9 be a joint
(0, p)-structure, and let ® be a game program of no more than p variables and of schema
(0,p). Suppose that for every x € |9M|, there is a run of G(®, M) such that x occurs in
the run. Then 9N is p-uniformly connected.

Thus, if M s a set of joint structures of a common schema, and if ® is a game
program in that schema such that for every M € M and every x € |IM|, x occurs in some

run of G(®, M), then M is uniformly connected.

40

And the converse is also true.

Theorem 3.1 Let M be a class of structures of a common joint schema. Suppose that
M is uniformly connected. Then there exists a game program ® of that schema such that
for every M € M and every x € MM, there exists a run of G(®, M) such that x occurs in

that run.

Proof. Fix a positive integer p, and suppose that M is p-uniformly connected. We
will describe the construction of a complicated variant of the program in Example 3.3.
Suppose, for simplicity, that there is but one ((k + 1)-ary, k& < p), guard relation P and
one guard constant d.

The idea is as follows. Then we will construct a game program ® such that on any
M e M and any = € M, if x¢,xq,...,X, is a sequence of tuples (each of at most p
components) witnessing the accessing of z (so that the sequence satisfies the criteria of
Definition 2.14, and x occurs in x,,), then this is a subsequence of a sequence of tuples in
a run of ®.

Here we go. First, Eloise needs to build up a (p + k& — 1)-tuple of copies of d.

(START;) :— (Yu:u = d)(Start;u)
(Start;u) :— (NEXT;u,...,u)V (NEXT;u,..., u).

The second line is to get in the tuple of p+ £k — 1 ds.

Then comes the heart of the program:
(NEXT7 u, V) S (Ely P(u: y))(ASK1 3V, y)a

where u is a k-tuple and v is a (p — 1)-tuple. Note that ASK; has p arguments.

The idea is this: in the ith time that the game goes into state ASK;, the game position
is (ASKj;x;). For each i, let x! be the tuple of the first £ components of x; used to access
Tip, and let x} be the first (p — 1) components of x;, and let y; = ;.

Now comes the tedious part: Eloise wants to select xj, from x; to get a k-tuple of

elements in the right order to access ;;1,. She also wants to select x; ; from x;. to

keep the run in lockstep with the connecting sequence Xg, X1, Thus for each of the k

41

n

arguments of xj;,

she chooses one of the (up to) p + 1 elements of x; or (don’t forget!)

!

d. Then for each of the p — 1 arguments of xj_,,

she chooses one of the (up to) p + 1
elements of x; or d. Together, this can be done by choosing one of the (p + 1)**?~! maps
from [k + p — 1] (giving the argument positions of X} ;) to [p+ 1] (giving the elements of
x;,d). We can set up rules for this as follows.

Let 7,72,...,Tpsiye+e-1 be the set of all maps [k +p — 1] — [p+ 1]. For each

i< (p+ 1)kt -2 let
(ASKL w, ?J) T (ASK1+1 W, ?J) \% (NEXT7 Bri(1)s -+« ZTi(k+pf]))7

where, for each j € [k +p — 1],
I if 7(5) € [p],
Pold ifr(j)=p+1,

and let

(ASK(ppiyern-1_1:w,y) = (NEXT; Zr et (D7 ZT(p+1)k+pf1,1(k+p71))

V(NEXT; z,

(p+1)k+p—1 (1) -= ZT(p+1)k+p71 (k+p*]))'

The resulting program is ®. Notice that as there are no terminal states (!), for any 90,
no run of G(®, M) terminates.

We now verify that for any 9t € M and any = € |91/, there is a run of G(®, M) in which
x occurs. As M is p-uniformly connected, for any 9t € M, and any = € |9|, x occurs as
the last element in some p-tuple x,, of a sequence xg, ..., x, satisfying Definition 2.14.

Here is the run that reaches z. For each i, let w; = v; |, ..., v},

e Start at (START;) at the empty tuple. If x;’ is the (p — 1)-tuple of copies of d,
n

and x/ is the k-tuple of copies of d, then Eloise quickly reaches (NEXT; x/, x/), and

then (ASK;;x;), where x; is the concatenation of x| and y;.

e After the ith move, i < n, at (ASKj;x;), Eloise goes through the disjunctions
to choose one that selects xj,, and x;,, from x;, and the next game position is
(NEXT; xj, . x],,), followed by (ASKy;x},,,yit1), and x;4; is the concatenation of
X1 and yiyq.

42

e Repeat until the position is (ASK;;x,), in which = occurs.

Since we will use this sort of system of rules again, lets cook up a formalism. For
simplicity, we have a definition for when there is one guard constant d and one ((k + 1)-
ary) guard relation P.

We want an abbreviation for: from (s;x), Player Q chooses y by selecting x" and x”
from d, x, and then the game goes into a state (s'; x”,y). Suppose that s is an n-variable

state, while s’ is an m-variable state. Fix M = (n + 1)™*F 1,

Definition 3.9 The traversal block for Player Q from s to s' is the sequence of M for-

mulas as follows. First, let

e For each i € [M — 2], 7; is a map from [k +m — 1] to [n+ 1], and

e Foreachi € [M —2], X, = (Try(1), - - -, Loy (htm)), Where T = d, and
. r / / no__ / / mo__ / /
o Givenx' = (af,..., 2y), let X" = (2}, ...,2}) and X" = (2}, 1, ..., %) ,,).
Then let

(5:%) - (51:%) V (52 %)
and for each i € [M — 2],
(55%) :— (si41:%) V (5”5 %7,)
culminating with
(sm2:%) := (5" %7y, 1) V (8" %7y,)
Then let
(s";x") = (Qy: P(x";9))(s"sx",).

4 Using Game Programs

In this section, we will find that some logics correspond with natural classes of game
programs. we will look at non-recursive games and find that non-recursive game programs
corresponds to (guarded) first order logic. That will be straightforward. The rest of the

section will be devoted to recursive games and (guarded) least fixed point logic.

43

4.1 Non-Recursive Games and First Order Logic

We first look at games with no recursive states. It turns out that these correspond to the

guarded First Order queries.

Theorem 4.1 Let T be a guard system. The queries expressible in FOL[T are precisely

the queries captured by mon-recursive free games using guards from T .

(Compare with the guard-free version in [HiK83].) We will need a notion of “subfor-

mula depth” of a FO formula.

Definition 4.1 The subformula depth (sfdepth) of a formula is computed as follows.
If the formula is atomic or the negation of atomic, it is of subformula depth 0. And

sfdepth(y * ¢)) = max{sfdepth(p)+1, sfdepth(1))+1} if * is a junction, while sfdepth((Qy:
P(x,y))¢(x',y)) = stdepth(p) + 1.

One warning: sfdepth is a different notion from the more popular “quantifier depth.”

Proof of Theorem 4.1. First, suppose that 0 is in FO,[7. By Proposition 2.1, we can
assume that all the negations have been pushed down to the atomic level. Decompose it
into a game, as follows. We will construct a game program, whose states are precisely the
subformulas of § (counting repetitious occurences of the subformulas in 6), as follows. If
©(v) = (vy) x §(vy) is a subformula, where v; and v, are strings of variables from v,

and where * is a junction, then ¢’s rule will be

(@;v) == (Y;v1) * (05 v2).

If o(v) = (Qw: P(vy,w))(vs), where vi and vy are strings of arguments from v, then

©’s rule will be
(05 v) = (Qu:P(v1,9)) (¥: v, y)

(where again v; and v, are appropriately chosen). And if ¢(v) = R(v'), where v’ is a
string of arguments from v, then ¢’s rule is (¢; v) :— R(v'); while if ¢(v) = ~R(v') then
its rule will be (;v) :— =R(v'). Finally, if p(v) =v' = ¢, then its rule is (p; v) :— v' = ¢;
if p(v) =" # ¢, then its rule is (p;v) :— v' # ¢

44

We claim that for any subformula ¢ and any x, 9 |= ¢(x) iff Eloise wins from (¢;x).
We proceed by induction on the subformula depth sfdepth. Suppose that for any FO,
formula 1 of subformula depth less than r, Eloise wins from (¢;x) on 9t iff M = ¢ (x).
Suppose that sfdepth(¢) = r. We claim that Eloise wins from (¢;x) on 9 iff M = p(x).
There are three cases.

Case : r = 0 and ¢ is atomic or the negation of atomic. Then Eloise wins at once iff
M = (x).

Case *: ¢ is junctive: ¢ = ¢ % § where max{sfdepth(¢), sfdepth(§)} = r — 1. There
are two subcases: * is V or A; consider the subcase * is V. Then Eloise wins from (¢; x)
iff either she wins from (1;x’) or from (§;x"), where x" and x" are defined appropriately
from x. By the induction hypothesis, Eloise thus wins from (p;x) iff MM E ¢ (x') or
M = 0(x"). Thus Eloise thus wins from (p;x) iff M = O(x). The argument for * being
A is similar.

Case Q: ¢ is quantitative: ¢ = (Qy: P(x';y)¢(x", y), where sfdepth(p) = r—1. There
are two subcases:) is 3 or V; consider the subcase @) is V. Then Eloise wins from (¢;x)
iff for any y such that P(x';y), Eloise will go on to win from (¢;x",y). By the induction
hypothesis, this is equivalent to: Eloise wins from (p;x) iff for any y such that P(x';y),
M = (x",y), which holds iff M = (Qy: P(x';y))(x", y).

The converse simply goes backwards: given a game, construct the subformulas, one per
rule, reversing the construction of the previous paragraph. Again, by an easy induction,

¢(x) is true iff Player £ wins from (p;x). W

4.2 Recursive Games and LFP Logic

Now, let’s look at guarded Least Fixed Point logic. We will show that the guarded LFP-
expressible queries are precisely those captured by recursive guarded game programs. The
following proof is essentially a rearrangement of the proof in [Mc95a].

First, let’s revisit the notion of stages in Definitions 2.10 and 3.4.

Say that an operative system ¢ = g, ..., @, is of subformula depth 1 if all p; are
of subformula depth at most 1. We first observe that there is a correspondence between

game programs and operative systems of depth 1: they are essentially variants of each

45

other.

Definition 4.2 Let ¢ be a positive operative system of formulas of sfdepth 1, and let ®
be a game program. Then ¢ and ® are associates if there is a one-to-one correspondence

between formulas of ¢ and rules of ® as follows. (We will use the states of ® to index the

formulas of .)

1. If % is a junction, and the formula p,(v) = Sy, (v1) * S, (Ve) is associated with the
rule (s;v) :— (s1;v1) * (S2;va), then @, is associated with the rule for s; and @, is

associated with the rule for ss.

2. If Q is a quantification, and 5(v) = (Qw: P(v1,y))Sy¢(ve,y) is associated with
(s;v) :— (Qw: P(vq,y))(s';va,w), then pg is associated with the rule for s'.

3. If R is a relation symbol, then ps(v) = R(V') is associated with (s;v) :— R(v') and
0s(v) = 2R(V') is associated with (s;v) :— —R(v'). This is still true if R is =.

The following is elementary but crucial.

Lemma 4.1 If ¢ is associated with ®, then on any joint database M, and each state s

and each tuple x from M, the stage of the induction equals the length of the rest of the

game, i.e., |X|; = x|y, .

Proof. This proof is by an induction on the stages. We will use the states of the game
to index the formulas, and we will work on a fixed joint structure 9. For any state s,
|x|s = 0 iff the game is over iff |x|,, = 0 (iff s is terminal iff p, is atomic or the negation
of an atomic). Now suppose that this Lemma was true of all tuples u of stage |u|, < n,
and suppose that |x|, = n. There are the usual four cases.

Suppose that s is disjunctive, i.e., that ¢, = @, V @s,, so that Eloise chooses to go to

(s1;x1) or (s9;%9) from (s;z). As |x|; = n, Eloise could choose s; or s, and win within

n—1 moves: min{|x|,,, [Xa|s,} = n—1. By induction, |x1,, = |x1[s, and |xg|,,, = |Xals,,

and hence |x|,, = |x|, = n. Conjunction is similar.

Suppose that @, is universal: ¢4(x,S) = (Vy: P(x',y))Sy(x",y), so that the sth
rule is (s;x) :— (Vy: P(x',9))(S";x",y). Then for any tuple a, M = ¢7(a) iff M |=

46

(Vy: P(a,y))¢% '(a”,y), i.e., for every y such that P(a’,y), ¢% '(a”,y) is true. By the
inductive hypothesis, this is true iff for every y satisfying 9 = P(a’,y), Eloise wins

from (s';a”,y) within n — 1 moves, which is true iff Eloise wins (s;a) within n moves, so

|x|,, = n = |x|;. The argument for existential ¢; is similar. l

Thus we can refer to the stage unambiguously as |x|,, where s is the state of the game,
or index of the formula — provided that the operative system is of subformula depth 1.

From this we can associate the formula ¢, with the state START and get:

Corollary 4.1 If ¢ is associated with ® (with the states of ® indexing the formulas of
@), then on any joint database M, Eloise wins G(P, M) iff M = ¢5°.

Hence all game expressible queries are FO, + pos LFP expressible. The converse is

also true. Almost.

Theorem 4.2 Restrict attention to uniformly connected guard systems. All free game

programs can be captured by FO, + pos LFP and vice versa.

The theorem very similar to Theorem 2.1 of [Mc95a] (which is in fact the main theorem

of [HaK84]). By Lemma 4.1 and Corollary 4.1, it suffices to prove:

Lemma 4.2 Fvery FO,+ pos LFP expressible query can be expressed as a fixed point of

a positive operative system with guarded quantification and of subformula depth 1.

Proof. To prove Lemma 4.2, it suffices to prove the following. Let ¢ = ¢, ..., p, be a

positive operative system of formulas in which:
e for each k, i, ¢ is S;-positive, and

e for each k, the only negations in the formula ¢, are negations of atomic subformu-

las (which we can require by Proposition 2.1 and the S-positivity of the formulas

Lo, - -)

47

Let vk, ..., Ykny, be the subformulas of ¢, where ¢, o = ¢,. We will construct a positive

operative system

77b0,0a .. 'awo,ﬂoa e 71/)/6,_7'7 e -,Zby,n,,

of formulas of subformula depth 1 and guarded quantification, such that for each k,
v = Yo

Define the formulas v, as follows:

k. If 0 p(X) = @ri(X) % op ("), let g p(x) = T (x") * Tj ;(x").

Q- If orn(x) = (Qy: P(x',y))ni(x",y), let vy (x) = (Qy: P(x',y))Thi(x", y).

Fo I ppa(x) is R(X') or =R(X'), let Yun = @rn I @rn(x) = Si(X'), let ¢pn(x) =
Tio(x).

The result is a positive operative system 1, associated via Lemma 4.1 with a game
program V.

Let r = max{sfdepth(y;): i = 0,...,v}. We claim that by induction on n and on the

subformulas ¢y, that for all &, x,
(4.1) Pt (x) = wro(x, ¢") = YT (x) = 0" (%),

where " = ¢

m
0"

.., @', This will imply that for each k, x,

or (%) = @ro(x,0%) = Yro(x,) = Yo%) = v (x),

and hence pp° = 5 for each k, and Lemma 4.2 follows.

We will actually prove that for each k, h, x, n,

T’I’L+Sfdepth(npkqh)

Crn(x,¢") => wkyh (x) = ppal(x, g07«n+sfdepth(ga,m,,,))’

from which Formula 4.1 follows by monotonicity. We have the usual cases.

- stdepth(grn) = 0. If g 4(x) is R(x") or =R(x'), then

wk,h(ga ey @) — wg,h(x) — Sok,h(xa 800)

as all three are the same atomic (or negated atomic) formula. And if ¢y ,(x) = S;0(x'),

48

then by induction on n,

wlo(x')
©1,0 (X s gon)
Yro(x', ™) by induction

@k,h(X, %0”')

b (%)

wk,h(X’; Wn)

@ZnhH ()

Prn(x, ™)
rn+Sdepth(<pk,h)) .

el

CPk,h(X, %

. Suppose that ¢y, is a conjunction. If ¢y (%, S) = ¢ri(x',S) A ¢r (%", S), then by

induction on subformulas,

Ori(x, ") N i (x", ")
wlrcni+sfdepth(tpk,i)()A¢;Z+Sfd6pth((pk’j)(xl')

@k,h(X, %0n)

rn+sfdepth(y rn+§fdepthcp)—1
ki) A)

rn-sfdepth(pg)—1 Tn+SfdePth(<Pk,h)*])

ori(x', o YA o (x" e

rn+sfdepth(pg p)—1
(Pk,h,(x;(ﬂ pth(k,n))

el

fdepth
QOk,h(X, (prn+s ep (ﬂpk,h))‘

Disjunction is similar.

(. Suppose that ¢y p is an existential quantification. If

ora(x,S) = (3 P(x; ?J))%Dk,i(xuay),

49

then by induction on subformulas again,

oen(x,9") = (Fy: P(x"1y)ori(x", y, ")
= (Fy: P(yy))up) ()
= [y PO y))ups T (1 y)
= (Jy: P(xX3y))gpna(x", y, @ reerthloen) 1)
- (pk’h(X”7 v, (pTTl+Sfdepth(<pk’h),])
- (pk’h(x”7 v, @Tn+sfdepth(¢k,h)).

Universal quantification is similar. W

4.3 Least fixed point logic

Recall that we defined guarded and unguarded least fixed point logic in Definition 2.12,
and we promised to compare their expressive power. In this subsection, we will compare
their expressive power (and time complexity). We will find that (assuming uniform con-
nectivity) they have the same expressive power, but that their computations differ in time
complexity. Our time complexity measure will be the stages of an induction: recall the
stages and closure ordinals from Definitions 2.10, 2.11, and 3.4. We will look at the effect
of guarding quantifications on this measure. We will find that the closure ordinal of an
FO, + pos LFP induction on a structure 9 is on the order of the p-uniform radius times
the closure ordinal of the “associated” FO 4 pos LFP induction.

Remember (Remark 2.2) that there is no technical difference between a database re-
lation or constant and a guard relation or constant, so that in setting up an unguarded
positive operative system of formulas, we can use “database” and “guard” relations and
constants indiscriminately. And remember (Proposition 2.2) that guard relations and con-
stants are FO,-expressible, and thus the “guard” relations and constants are both (FO +
pos LEP)-expressible and (FO,+ pos LFP)-expressible. With these technicalities out of

the way, we proceed to a result involving many more technicalities.

Theorem 4.3 Fiz an integer p > 0. Let o be a database schema and let p be a guard

schema. Let M be a uniformly connected class of joint structures — each of finite p-

20

uniform radius — of joint schema (o, p). Then FO,+ pos LFP and FO + pos LEP have

the same expressive power on M.

Clearly, all (FO,+ pos LEP)-expressible queries on M are (FO + pos LFP)-expressible.
So we want to prove that given a positive operative system ¢ of formulas with unguarded
quantifications, we can find a positive operative system 1) computing the same query (or
queries). This proof is game-theoretic, and we will actually prove that there is a game
program (with guarded quantification moves) that captures the queries generated by .

This is ... merely ... a matter of taking an unguarded positive operative system ¢ and
developing an equivalent guarded game program @, i.e., such that for all 9t € M, all x
from |9, and each j, M = ¢ (x) iff Eloise wins G(®, M) from (s;; x).

It will be convenient to restrict our attention to FO + pos LFP queries defined from

systems of formulas of sfdepth 1.

Proposition 4.1 Every FO + pos LFP expressible query can be expressed as the least

fixed point of a positive operative system of formulas of subformula depth 1.

The proof is the guardless version of Lemma 4.2, and we omit it.

So we presume that our unguarded positive operative system consists of formulas of
subformula depth 1.

Replacing formulas by rules as in Definition 4.2 (1) and (3) — junctions and literals

is straightforward and we leave them to the reader.

The main problem is Definition 4.2 (2): simulating unguarded quantifications with

guarded ones. We will proceed in two subsubsections:

e We construct (sub)games that represent computations (with guarded quantifica-

tions) for simulating unguarded existential and universal quantification.

e We use stages of the induction to prove that the unguarded quantifications are
successfully simulated, and thus that the guarded game program captures the same

query that the FO + pos LFP query did.

ol

In the next subsection, we will see that the assumption that the structures have finite
p-uniform radii is necessary by looking at an infinite counterexample.

It is not difficult to see how existential quantification can be simulated, by looking at
a game program. Consider the following game. Eloise can start at any tuple of guard
constants xo = d, and repeatedly choose p-tuples x;, x, etc., where x; = x;, y, where
x is a (p — 1)-tuples from x,_; and where x}-’ is a tuple of guard constants and entries

j
from x (which in turn comes from x;), and P(x};y) for some guard relation P. As the

j
guard system is uniformly connected, Eloise can eventually reach any vertex, and thus if
there exists a vertex y such that Eloise would win G(0©, ((2,), y)), she will eventually
reach it, and go on to win. If no such vertex exists, she will search forever, and thus lose.

Simulating universal quantification is more difficult: it is not obvious how to have
Abelard fail to find an element y satisfying = in order to justify Vy6(y). (This is the
technical problem that arises from Convention 3.2.) We employ the same trick as in Figure
4 of [Mc95a]: we conduct a race. Suppose that an element y such that —6(y) existed. Then
starting from the database constants, Abelard should be able to find it. We do not want
to give Abelard the opportunity to stall by wandering around the database, pretending
to look for a possibly nonexistent y. So we devise a restriction in which Abelard must
always move further and further away from his starting place: if he backtracks, Eloise
can challenge his last move and have a chance to prove that Abelard was stalling. (What
Eloise will do is challenge Abelard to a race which Eloise can win if Abelard was stalling.)

Notice that this algorithm will not work for databases of infinite (uniform) radius, for
then Abelard’s failure to find, within a finite amount of time, an element y such that
—#(y) cannot be taken as evidence that no such y exists.

We turn to simulating an unguarded universal quantification. Here is the idea. Imagine
that we are simulating Vz6(z), assuming that there is one guard constant d and one binary
guard relation P. Abelard is given the chance to find an z such that —f(z). Starting from
the guard constant zq = d, Abelard chooses x1, s, ... in succession such that P(x;;x;,1)

for each ¢. After each choice z;,, there is a brief deliberation:

1. Abelard may decide that x;; is what he wants, and the game continues from his

denial of §(z;11).

02

2. Eloise may decide that Abelard is stalling, and challenge Abelard to a race from d:
he is racing to x; and she is racing to z;,,. If he doesn’t beat her, then he had not
moved further away from d in his move from x; to x;,1, so it is fair that Eloise wins.

But if he does beat her, then Eloise loses.

3. Both Abelard and Eloise decide not to take advantage of options (1) or (2), and

Abelard now continues, choosing z; o such that P(x;i1;x;9), ... -
That’s the idea. The rest of this section is devoted to formalizing this idea.

4.3.1 (Sub)Programs for Simulating Quantification

We first formalize the sort of translation done in Example 3.4. Notice that for logistical

reasons, we are “refining” an operative system into a game program.

Definition 4.3 Given an operative system ¢ of (unguarded) formulas of depth 1, we
obtain its guarded refinement ® by making the following substitutions. Assume p-uniform
connectedness. For simplicity, we assume that there are no database constants, one gquard
constant d, and one (k + 1)-ary guard relation P. (If we had database constants, we
could either search for the relevant constant during each quantification cycle, or we could
start the program with a search for all relevant database constants. This would add at
most O(r) iterations, r being the uniform p-radius of the guard structure.) We replace

individual formulas with subsystems of formulas as follows.

Literals. If ¢;(x, —) = R(x'), let (s;;x) :— R(x'). Similarly, if ¢;(x, —) = —~R(x'), let
(si;x) :— = R(x').

Junctions. If p;(x, —) = S;(x’) * Sp(x"), let (s;;x) :— (s5;x") * (s5;x").

Existential Quantifications. If ¢;(x, —) = JyS;(x’,y), and letting d be a tuple of

copies of the guard constant (and letting Mj be the appropriate number of rearrangements

23

of tuples), let:

(sisx) — (Fy:d=y)(si1;%x,9)
(sin;x,y) — (si1nXy...,y)V(sii1:%,Yy...,Y)
is an appropriate traversal for Eloise (for tuples z) from
(si11:%,2) to (s;9;%,2')
(sig;x,z) :— (Jy: P(Z';y))(siz;x,2",y)

(Si,?y;xazvy) T (Si,]ﬂ;xa Z’vy) \ (S,]';X’ay)

where z’ and z" are appropriate tuples of guard constants and arguments from z, and x’
is an appropriate tuple from x. This search will take up to 2 + (M, + 2r)r moves.

Universal Quantifications. If ¢;(x) = VyS;(x’,y), we set up a subsystem for
Abelard’s search and, since Eloise might grow impatient, for conducting the race. The
subsystem of formulas is described below.

First, here is some nomenclature for these formulas:

e We use the p-tuples z~ and z*, and w~ and w* to denote the position(s) of the

pebbles for Eloise and Abelard in the race thus far, with respective goals z and w.
e Let d be the tuple of guard constants.
e Let M, My, M3 be the appropriate numbers of rearrangements of tuples.

e letz ',z " zt', z" etc., be the appropriate tuples of guard constants and argu-

ments from z—, zT, etc., respectively.

Then a subsystem for conducting the universal quantification, i.e., Abelard’s search,
could be the following subsystems, which we break into several small pieces for clarity.

Before giving the precise subsystem, let’s outline the idea. For simplicity, and without
loss of much generality, suppose that the one guard relation P is binary, and that there is
one guard constant d. Let r be the p-uniform radius. Abelard starts at the guard constant
d; let yo = d. He then successively chooses y1,¥s, ... (going through the traversal blocks)

such that for each i, P(y;; y;1). If he ever reaches y; such that =6(y,), he announces the

o4

fact to poor Eloise, and goes on to win. If not, then as the structure is finite, he must
reach a k& < r such that distp(d, yx) = distp(d, yxs1), where distp measures distance along
P-arcs. This part of the game takes at most (M; +3)r moves. When this happens, Eloise
challenges him to a race.

For brevity, we describe a combinatorial game, suppressing the game states and junc-
tive moves.

They start at (d, yx, d, yr+1), and move alternately, Eloise moving first. When it is
Eloise’s turn to move from (z,yk, ¥y, yr+1), she chooses y' such that P(y;y’), and then
they are at (z, Yk, ¥, yks1). Then Abelard moves similarly: if it is his turn to move from
(%, Yk, Y, Y 11), he chooses x’ such that P(x;z'), the position is (', yx, ¥, Yes1). Y = Yni1,
Eloise wins. (Note that each of these “moves” are actually successions of moves through
traversal blocks.) If not, then either 2’ = y; and Abelard wins, or 2’ # y, and it is now
Eloise’s turn to move.

Clearly, Eloise wins iff distancep(d, y;) < distancep(d, ygi1)-

Now let’s construct the precise subsystem for universal quantification.

First, Abelard goes out for his search. Note that after each new position w is chosen
(as opposed to his old position z), Abelard can decide at s, 4 that he’s done (go to (s;;y)),
or if he wants to continue, Eloise can choose at s; s whether to let him continue (go to

Si21), or she can challenge him to a race (go to s;4).

(si3x) = (Vy: P(d=u))(si1; %', u)
(sin;x'yu) = (sign;X,u...,u)V (sig1;X,u. .., u)
8i9.1y s Si2, M, is an appropriate traversal for Abelard

(for tuples y) from (s;21;x,2)

to (si3;x,2z,w'),
(sig;x'yz,w') = (Vy: P(W"y))(sig;x 2, W' y), &ifw=w,y,
(sia;x,z,w)) = (85X, y) A (855X, 2, W)

(condensing w', y to w)

(‘92‘75;XI,Z,W) T (=9i,2,];xlaw) \ (Si,ﬁ;zaw)'

95

If Eloise challenges Abelard’s move from z to w, they conduct a race from d: Abelard to
z and Eloise to w. If Eloise does not challenge Abelard to a race, this search will take up
to 2 4 (M + 3)r moves.

Suppose Eloise challenges. Both players start from d, ..., d:

(sie; (2, W) :— (Vy: P(d=u))(Siz1: 2, Uy ..., U, W, U, ..., U)
Then Abelard moves first:

Si7 05 Si T Mo is an appropriate traversal for Abelard
(for tuples z7) from (s;71:2,27, w, W)
to (sig;z, 27, w,w")

(Si,S;ZaZ+1W7W7) T (vy P(Z+”;y))(Si’gy];Z,Z+I,y,W,W7)-
Letting zT = z1', y, we let Eloise move:

8i9.1s- -« Si0,Ms is an appropriate traversal for Eloise
(for tuples w™) from (s;9.1;2,2%, w,w")
to (si10;2,27, w,wt)

+1
b)

(52',10;Z3Z+awaw+a7) T (Ely P(W+”;y))(3i7]];Z,Z+,W,W y)a

and letting z* = w™', y, we ask: has someone won the race? This means comparing the
tuple w* to w (and if equality holds, Eloise wins) and then, that failing, z to z* (and if

equality holds, Abelard wins). Notice that we have set it up so that if Abelard announces

26

he wants to compare z and z*, then Eloise wins iff they are different.

(SZ"]];Z,Z_I—,W,W_‘_) T (,9Z"]2;Z,Z+,W,W+) \ (SZ"]]’];Z,Z_l—,W,W_'_)

and for [l =1,...,p—1,

(sinpz,zt,w,wh) — (sposwpwt) Vo (singiz,zt,wowt)
while:
(Si11p;2, 27, W, W) 1= (812; wp, w;') V (sinz 2,20, w,w?)
(sigosu,v) — u=w
(siaz;z, 20, w,wh) = (siz;z,27, W, W) A (sina1; 2,2, w,w?)

and for [=1,...,p— 2,

(Si,14,l§Z;Z y W, W = (57:,15;»21,sz) \% (S¢,14,z+1;Z,Z+,W;W+)
while:

(sitap-1:2,2" , W, W — (8015 2p—1, Z{,tl) V (Si155 Zps Z;)

(siisiu,v) — uF#wv.
Let M = max{M,, M, + My + M;}. Notice that if the radius of the guard structure is
r, then this race takes at most p + 4 + (M, + M3 + 2)r moves. And whether or not Eloise

wins, if the radius of the guard structure is r, then getting to (s;(x’,y), or to the end of

the game, takes at most p + 6 + (M; + My + M+ 5)r < (M + 5)r + p + 6 moves.

Remark 4.1 If the guard relation is not binary, then assuming p-uniform connectedness,
the race ends if Eloise reaches her triple before Abelard reaches his, and checking that the

appropriate tuple is reached takes an additional p moves.

Remark 4.2 If an operative system, or game program, is of n > p wvariables, and has
one (k + 1)-ary guard relation, and there is one guard constant, then My, My, Moy, M3 <

(n+ 1)"**. Call p = (n+ 1)"** the system or program’s traversal number.

4.3.2 The Simulation Works

Now let’s check this proposed system of refinements and see if it does the job.

o7

Lemma 4.3 Let ¢ be a positive operative system of unguarded formulas of depth 1, and
traversal number p. Let ® be the guarded refinement of ¢, so that for each formula ¢;, s;
15 the corresponding state in the program ®. Fiz a joint structure. Then for each i, and

each x, if v is the radius of the guard system, then

(4.2) x|y, < [x]s; < Bp+5)r|x|y, +17+2p+6.

(The last “+r” is in case there are any database constants, a “+p” for checking at the

end of a race as in Remark 4.1, and the last “+p+ 67 for the end of a challenge race in

the universal subroutine.) Thus |x|,, < oo iff |x|s, < oco.

Proof. We prove the two inequalities of Formula 4.2 separately by induction on the
stages.

First, we prove by induction on n that for each 7 and x,

|X‘V7i >n —= |X

s; = N

This is true if n = 0. Suppose that this is true for all m < n, and suppose that |x|,, > n.
We have the usual cases.

. If ¢, is, say, conjunctive (¢; = @; A ¢y), then:

X[p; >n = ‘X"w >n—1or[x"|, >n-1

— ||

5 >n—Tlor|[x",, >n—1 (by induction)

= |x]|5; > n.

Disjunction is similar.

Q. If ¢, is, say, existential (¢; = Jyy;), then:

X|p, >n = forally,|x',yl,, >n—1

— forally, |x',yl,, >n 1 (by induction)

= [|x[;;, > n.

Universal quantification is similar.

This concludes the proof of the left inequality of Formula 4.2.

28

Second, we prove by induction on n that for each 7 and x,

X[y, =n = [x[;, < Bpu+5)rn+r+2p+6.

This is true if » = 0. Suppose that this is true for all m < n, and suppose that |x

i — N

Again, we have the usual cases.
. If ; is, say, disjunctive (¢; = ¢; V @), then:
x|y, =n = X[, <n—Tor|x"|,, <n-1
— X[, <@u+5)n-—Lr+r+2p+6
or [x"|s, < Bu+5)(n—1)r+r+2p+6
(by induction)
= |x|;, <@Bp+d)n—1)r+r+2p+7<Bu+5)nr+r+2p+6.

Conjunction is similar.

Q. If ¢, is, say, universal (¢; = Vyyp,), then:

x|y, =n = forally,|x yl,, <n-—-1

— forally, |x',yl,, < Bu+5)(n—1)r+7r+2p+6 (by induction)

— [x|,, <max{(Bu+5)(n—1)r+@Bu+5)r+r+2p+6,
(Bu+5)r+p+6}

= [x[y; < Bp+5)nr+r+2p+6.

The last inequality holds because it takes at most (3 + 5)r moves to search through the
structure and/or conduct a race as in the algorithm of Definition 4.3, and then either a
last run of p+ 6 moves, or the remaining (3u+5)(n—1)r+ (3u+5)r+r+2p+ 6 moves
but not both. Existential quantification is similar, if simpler, and the search takes only
2+ (p + 2)r moves.

This concludes the proof of the right inequality of Formula 4.2. B

And now for the punch line:
Proof of Theorem 4.3. By Lemma 4.2, all FO + pos LFP expressible queries are fixed

points of operative systems of subformula depth 1. Any operative system ¢ of subformula

29

depth 1 has a guarded refinement ®, and by Lemma 4.3, for each ¢; of ¢, there is a s;
of @ such that on any joint structure 9, and any x from |9, x|, < oo iff |x[,, < oo.
Thus, for ¢y being the formula corresponding to s = START, M = ¢g° iff Eloise wins
G(o,om).

Finally, since FO + pos LFP is closed under negation on finite structures ([I86]), so
is FO,+ pos LFP.

4.4 Closure Under Negation

We conclude this section with the comment that things are different on infinite structures.
Let FO + LFP be the boolean closure of FO + pos LFP, and let FO, + LFP be the boolean
closure of FO, + pos LFP.

By [I86], FO + pos LFP has the same expressive power as FO + LFP on finite
databases. Thus on finite databases with connected guard systems, FO, 4 pos LFP
has the same expressive power as FO, + LFP. The situation is entirely different for
infinite databases, in which it is possible FO + pos LFP is not closed under negation (see
[Mo74]). In addition, Theorem 4.3 is false for infinite structures. Suppose that you had a
joint structure, whose domain was the nonnegative integers (N) and whose guard relations
were succ(z,y) =y = = + 1 and pred(z,y) = succ(y, z), and whose guard constant was

0. We get the joint structure 91 = ((N, 0), (N, pred, succ, 0)).

Theorem 4.4 There exists a FO + pos LEP expressible relation that is not FO, + pos
LFP expressible on .

To prove this, we will need a lemma. Let w be the least transfinite ordinal.

Lemma 4.4 For each operative system o of S-positive formulas with guarded quantifica-

tions, sup \x|3} < w, where the supremum is not achieved.

Proof of Lemma 4.4. Suppose otherwise: for some s and some x, |(s;x)|” = w. Then
either s is a junctive state, in which whoever is to play has two choices to choose from, or s

is a quantitative state, in which case the player who is to play has to choose a predecessor

60

or successor of one of the finitely many elements of x (or of 0) to continue from. Either
way, the player who is to play has finitely many choices to choose from: list them as
(s1;%1), ..., (sg;xg). If the player is Eloise, at least one of these is of a stage n < w, in
which case |(s;x)|™ < n + 1, contradicting |(s;x)|” = w. If the player is Abelard, then
all of the finitely many options are of stages less than w, and hence their maximum is a
number m < w, forcing |(s;x)[™ I

= m + 1, again contradicting |(s;x)|”' = w. Getting a

contradiction either way, we conclude that |(s;x)[™" < w for all 5, x. B

Proof of Theorem 4.4. We will use some facts about FO + pos LFP from [Mo74].
First of all, note that all the FO, + pos LFP expressible relations on 9t are FO + pos
LFP expressible. There are FO + pos LFP inductions whose closure ordinals are greater

than w, e.g., letting Sy and Sy range over the “O-ary” relations TRUE and FALSE;,

(;OO(S[]JSI;SQ) = S27

o1(x, Sy, 51,52) = =0V Jy(pred(z,y) A Si(y)),

©2(S0, S1,82) = VySi(y).
whose closure ordinal is w + 1. In [Mo74], a relation is called hyperelementary if both it
and its complement are in FO + pos LFP. The Closure Theorem, [Mo74, Thm. 2B.4],
says that if ¢ is an operative system of positive formulas, and if its closure ordinal on O
is not maximal on I, then > is hyperelementary. Thus all FO, 4+ pos LFP relations
on N are hyperelementary. But there is a relation — the universal relation for FO + pos

LFP relations on 9 (see [Mo74]) — that is not hyperelementary but still FO + pos LFP

expressible. W

In fact, the industrious reader can confirm that:

Proposition 4.2 On N, the FO, + pos LEP expressible relations are precisely the clas-

sically semirecursive relations.

5 Excelsior

In this paper, we saw what happened to Least Fixed Point logic when we use guarded

quantification. It turns out that guarded Least Fixed Point logic behaves very similarly:

61

the Stage Comparison Theorem still holds, two popular measures of descriptive complexity
seem to behave similarly, and so on. In other words, what increases is the complexity. We
have to worry about things like connectivity of the guard structures, and about safety.
But the underlying results are the same. This may seem dull, but the nice thing is that
we can develop theorems about what can be done in FO + LFP, and then we know that
they can be done in FO,+ LFP as well.

We will take advantage of this in a sequel. In [Mc*|, we generalize a conjecture of
[ChH82]: over any class of structures admitting unbounded inductions of arbitrarily high
“dimension,”, i.e., there exist FO + pos LFP queries requiring second order recursion
variables of arbitrarily high arity. This conjecture has been proven for FO + pos LFP
on the class of all finite structures in [Gro96]; we will prove it for FO,+ pos LFP on all
classes of joint structures in which the guard system is sufficiently “sparse.”

Let us close with a more basic question. Let’s first take another look at the topology of
games, from Subsection 3.3. Recall that a game flowchart has several strongly connected

subdigraphs, which we could call subroutines:

Definition 5.1 Given a game program ®, a subroutine is a mazimal set of states I" from

® such that for any s,s' €T, s T 5.

In simulating unguarded existential quantification, we constructed a subroutine in
which all quantifications were existential (following [Mc95a], we can call this an ezis-
tential subroutine). However, thanks to the asymmetry induced by Convention 3.2, the
game program code simulating unguarded universal quantification included a race, which
forms (part of) a subroutine in which both guarded existential and guarded universal
quantification occurred: following [Mc95a], such a subroutine could be called alternating.

In [Ko91], it was proven that there exist FO + pos LFP expressible queries which could
not be computed by game programs (with unguarded quantification) lacking alternating
subroutines. This leads to a number of papers on the fine structure of alternation (or lack
thereof), such as [D87], [BIG87], [Gra92], [GraM96], [Mc95a], etc. And it leaves us with
the question: in order to simulate unguarded universal quantification, was alternation

necessary?

62

Conjecture 5.1 There exists a first order sentence in the language of graph theory that

cannot be represented by a game program with guarded quantifications and no alternating

subroutines.

In fact, we suspect that one such first order sentence is:

VaVyVz[-Edge(z,y) V —Edge(z, 2) V —Edge(y, 2)].

References

[AbalLW89] M. Abadi, L.. Lamport & P. Wolper, Realizable and unrealizable specifications

of reactive systems, in: G. Ausiello, et al, eds., Proc. 16th ICALP (Stresa,
Italy) (Springer Lect. Notes C.S. 372, 1989), 1 17.

[AbiHV95] S. Abiteboul, R. Hull & V. Vianu, Foundations of Databases (Addison-

[AcT5]

[AhUTY]

[AnBN96]

[BacW98|

[Bar77]

[BarM96]

Wesley, 1995).

P. Aczel, Quantifiers, games and inductive definitions, Proc. 3rd Scandina-

vian Logic Symp. (North-Holland, 1975), 1 14.

A. Aho & J. Ullman, Universality of data retrieval languages, Proc. 6th ACM
Symp. Principles of Programming Languages (1979), 110-117.

H. Andréka, J. van Benthem & I. Németi, Modal Languages and Bounded
Fragments of Predicate Logic, ILLC Research Repport and Technical Notes
Series (1996).

R.-J. Back & J. von Wright, Refinement Calculus: A Systematics Intro-
duction (Springer, 1998).

J. Barwise, On Moschovakis Closure Ordinals, J. Sym. Logic 42 (1977),
292-296.

J. Barwise & L. Moss, Vicious Circles: On the Mathematics of Non-
Wellfounded Phenomena (CSLI, 1996).

63

[Bi92]

[BIG87]

[CaF192]

[ChH82]

[C178]

[Com83]

[D87]

[EbF95]

[Eh61]

[F74]

K. Binmore, Fun and Games: A Text on Game Theory (Heath, 1992).

A. Blass & Y. Gurevich, Ezistential fized-point logic, in: E. Borger, ed., Com-
putation Theory and Logic (Lecture Notes in C.S. 270, Springer, 1987),
20 36.

J.-Y. Cai, M. Fiirer & N. Immerman, An optimal lower bound on the number

of variables for graph identification, Combinatorica 12:4 (1992), 389-410.

A. Chandra & D. Harel, Structure and complexity of relational queries J.
Comp. Sys. Sci. 25 (1982), 99-128.

K. Clark, Negation as Failure, in: H. Gallaire & J. Minke, eds., Logic and
Databases, (Plenum Pr., 1978), 293-322.

K. Compton, Some useful preservation theorems, J. Sym. Logic 48:2 (1983),
427 440.

E. Dahlhaus, Skolem normal forms concerning the least fixed point, in: E.
Borger, ed., Computation Theory and Logic (Lecture Notes in C.S. 270,
Springer, 1987), 101 106.

H.-D. Ebbinghaus & J. Flum, Finite Model Theory (Springer-Verlag, 1995).

A. Ehrenfeucht, An application of games to the completeness problem for for-

malized theories, Fund. Math. 49 (1961), 129-141.

R. Fagin, Generalized first-order spectra and polynomaial time recognizable sets,
in: R. Karp, ed., Complexity of Computations (STAM-AMS Proc. 7, 1974),
43 73.

[FHMVO95] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge

[GaS53|

(MIT Pr., 1995).

D. Gale & F. M. Stewart, Infinite games with perfect information, Ann. Math.
Stud. 28 (1953), 245-266.

64

[Gra92]

[GraM96]

[GraW99]

[Gro96]

[Gu97]

[GuS86]

[HaK84]

[He94]

[Hil82]

[Hin72]

[HiK83]

[HiS97]

E. Gradel, On transitive closure logic, in: Proc. 5th Workshop on Com-
puter Science Logic (CSL’91) (Lect. Notes in C. S. 626, Springer, 1992)
149-163.

E. Gradel & G. McColm, Hierarchies in transitive closure logic, stratified Dat-
alog and infinitary logic, Ann. Pure & Appl. Logic 77 (1996) 169 199.

E. Gradel & I. Wakiewicz, Guarded Fixed Point Logic, Proc. 14th IEEE
Symp. on Logic in Computer Science (1999), 45-54.

M. Grohe, Arity hierarchies, Ann. Pure and Applied Logic 82 (1996),
103 163.

Y. Gurevich, personal communication, 1997.

Y. Gurevich & S. Shelah, Fized-point extensions of first order logic, Ann.
Pure Appl. Log. 32 (1986), 265-280.

D. Harel & D. Kozen, A programming language for the inductive sets, and

applications, Information and Control 63 (1984), 118-139.

W. H. Hesselink, Nondeterminism and recursion via games and stacks, The-

oretical Computer Science 124 (1994), 273-295.

R. Hilpenen, On C. §. Peirce’s theory of the proposition: Peirce as a precursor

of game-theoretic semantics The Monist 62 (1982), 182 189.
J. Hintikka, Language Games and Information (Clarendon, 1972).

J. Hintikka & J. Kulas, The Game of Language: Studies in Game-
Theoretical Semantics and its Applications (D. Reidel, 1983).

J. Hintikka & G. Sandu, Game-Theoretic Semantics, in: J. van Benthem &
A. ter Meulen, eds., Handbook of Logic & Language (MIT Pr. & North-
Holland, 1997), 361-410.

65

[181]

[182]

[186]

[187]

[199]

[Ka91]

[Ko85]

[Ko91]

[Mc89)]

[Mc90a)]

[Mc90b]

[Mc95al

[Mc95hb]

N. Immerman, Number of Quantifiers is Better than Number of Tape Cells, J.
Computer and System Sciences 22 (1981), 384-406.

N. Immerman, Upper and lower bounds for first order expressibility, J. Com-

puter and System Sciences 25 (1982), 76 98.

N. Immerman, Relational Queries Computable in Polynomial Time, Inform.

& Control 68 (1986), 86 104.

N. Immerman, Languages that capture complexity classes, SIAM J. Com-

puting 16 (1987), 760-778.
N. Immerman, Descriptive Complexity (Springer-Verlag, 1999).

P. Kanellakis, Elements of relational database theory, in: J. van Leeuwen, ed.,

Handbook of Theoretical Computer Science (Elsevier, 1991), 1074 1156.

P. Kolaites, Game Quantification, in: J. Barwise & S. Feferman, eds., Model-
Theoretic Logics (Springer-Verlag, 1985), 365—421.

P. Kolaitis, The Ezpressive Power of Stratified Logic Programs, Information

& Comp. 90 (1991), 50 66.

G. McColm, Some restrictions on simple fized points of the integers, J. Sym.

Log. 54:4 (1989), 13241345,

G. McColm, Parametrization over inductive relations of a bounded number of

variables, Ann. Pure and Applied Logic 48 (1990), 103-134.

G. McColm, When is Arithmetic Possible?, Ann. Pure and Applied Logic
50 (1990), 29 51.

G. McColm, Pebble Games and Subroutines in Least Fized Point Logic, Infor-
mation & Comp. 122:2 (1995), 201-220.

G. McColm, Dimension Versus Number of Variables, and Connectivity, too,

Math. Log. Quart. 41 (1995), 111-134.

66

M

[Mi99]

[Mo72]

[Mo74]

[Mo80]

[Mo83]

[Mo91]

(0t97]

[Pag5]

[P181]

[Ro67]

[U88, 89]

V2]

G. McColm, The Dimension of Guarded LFP Queries, in preparation.

R. Milner, Communicating and Mobile Systems: the m-Calculus (Cam-

bridge U. Pr., 1999).
Y. Moschovakis, The Game Quantifier, Proc. AMS 31:1 (1972), 245-250.

Y. Moschovakis, Elementary induction on abstract structures, (North-

Holland, 1974).
Y. Moschovakis, Descriptive Set Theory (North-Holland, 1980).

Y. Moschovakis, Abstract recursion as a foundation for the theory of algo-
rithms, in: M. M. Richter, et al, Computation and proof theory, Lect.
Notes in Math. 1104 (Springer-Verlag, Berlin, 1983), 289-364.

Y. Moschovakis, A model of concurrency with fair merge and full recursion,

Information & Computation 93 (1991), 114 171.

M. Otto, Bounded variable logics and counting: a study in finite

models (Springer-Verlag, Lect. Notes Logic 9, 1997).

R. Parikh, The Logic of Games and its Applications, Ann. Disc. Math. 24
(1985), 111 140.

G. Plotkin, A Structural Approach to Operational Semantics ((DAIMI
FN 19, Computer Science Dept., Aarhus U., 1981).

H. Rogers, Jr., Theory of Recursive Functions and Effective Com-

putability (McGraw-Hill, 1967).

J. D. Ullman, Principles of Database Systems and Knowledge Base
Systems I & II (Computer Science Pr., 1988, 1989).

M. Vardi, Complexity of relational database systems, Proc. 14th ACM Sym-
posium on the Theory Of Computing (1982), 137-146.

67

