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A Formal Semantics of Data FlowDiagramsPeter Gorm Larsen,1 Nico Plat2 and Hans Toetenel21 IFAD, Odense, Denmark.2 Delft University of Technology, Faculty of Technical Mathematics and Informatics,Delft, The Netherlands. Nico Plat is currently with CAP Volmac, Utrecht, The Netherlands.Keywords: Data ow diagrams; VDM; Formal semanticsAbstract. This paper presents a formal semantics of data ow diagrams asused in Structured Analysis, based on an abstract model for data ow transfor-mations. The semantics consists of a collection of VDM functions, transformingan abstract syntax representation of a data ow diagram into an abstract syntaxrepresentation of a VDM speci�cation. Since this transformation is executable, itbecomes possible to provide a software analyst/designer with two `views' of thesystem being modeled: a graphical view in terms of a data ow diagram, and atextual view in terms of a VDM speci�cation. In this paper emphasis is on themotivation for the choices made in the transformation. The main aspects of thetransformation itself are described using annotated VDM functions with someexamples.1. IntroductionThe introduction of formal methods in industrial organizations may become eas-ier if these methods can be used alongside the more widely used conventionaltechniques for software development, such as `structured methods'. Structuredmethods are methods for software analysis and design, based on the use ofheuristics for making analysis and design decisions. They provide a relativelywell-de�ned path, often in a cookbook-like fashion (hence the term `structured'methods), starting from the analysis of software requirements and ending at sys-tem coding. The design notations used are usually graphical and have no formalCorrespondence and o�print requests to: Peter Gorm Larsen, IFAD, Forskerparken 10, DK-5230 Odense M, Denmark. E-mail: peter@ifad.dk



2 P.G. Larsen, N. Plat and W.J. Toetenelbasis. In that sense structured and formal methods can be regarded as comple-mentary. It is often suggested that the informal graphical notations as providedby structured methods are intuitively appealing to software analysts/designers.Therefore, a combined structured/formal method may not only increase the un-derstanding of the use of formal methods in the software process, but also mayincrease the acceptability of formal methods to these people.Our work in this area so far has concentrated on combining Structured Anal-ysis (SA) [You75, DeM79, GS79] with the Vienna Development Method (VDM)[BJ82, Jon90]; we provide a brief introduction to SA, but we refer to text bookssuch as [Jon90] and [AI91] for an introduction to VDM. We think that a well-integrated combination of notations can be achieved by using data ow dia-grams (DFDs) { which we consider to be the main design notation of SA {as a graphical view of the system and VDM as a textual view. These di�erentviews emphasize di�erent aspects of the speci�ed system: the DFD graphicalview focuses on an overview of the structure of the system, whereas the VDMtextual view focuses on the detailed functionality of the system. The base of acombined structured/formal method consists of a formally de�ned relation be-tween the structured method and the formal method. In [PvKP91] we describeseveral approaches to modeling DFDs using the VDM-SL speci�cation language[|92, Daw91]. In this paper we discuss one such particular model in more de-tail, thus essentially providing a `formal semantics' of DFDs. A discussion on themethodological aspects of the approach can be found in [LvKP+93].The remainder of this paper is organized as follows. In the following sectiona brief introduction to SA is given, focusing on the use of DFDs. In Section 3we describe our strategy for transforming DFDs into VDM speci�cations, payingattention to the limitations of our approach. The main part of this paper isSection 4, in which the formal transformation from DFDs to VDM is presented.First, we describe the main aspects of an abstract syntax representation of DFDs(the abstract syntax representation we use for VDM speci�cations is the same asthe one used in [|92]1), and then we describe the formal transformation itself.Emphasis is put on the motivation for the choices made in the transformation.The main aspects of the transformation itself are described using VDM functionstogether with a number of examples. Given the limited size of a research paperlike this, we have chosen to limit the description of the formal aspects of thetransformation as much as possible. Therefore, in some situations it is necessaryto rely on an intuitive understanding of what a function does. Furthermore, somefunctions have been somewhat simpli�ed so that attention can be focused on therelevant aspects only. The complete transformation has been syntax-checked,type-checked and tested using the IFAD VDM-SL Toolbox [Las93]; this has givenus con�dence that the transformation we have de�ned is a reasonable one. Thecomplete speci�cation can be freely obtained by contacting any of the authors.Finally, in Section 5 we give an overview of related work on formal semantics forDFDs, and present some conclusions and ideas for future work in this area.1 To be precise, the abstract syntax used for VDM speci�cations is the one called `OuterAbstract Syntax' in [|92]; a lack of knowledge about this Outer Abstract Syntax does nota�ect the understanding of this paper, however.



A Formal Semantics of Data Flow Diagrams 32. Overview of Structured AnalysisStructured Analysis (SA) [You75, DeM79, GS79] is one of the most widely usedmethods for software analysis. Often it is used in combination with StructuredDesign (SD) [CY79]; the resulting combination is called SA/SD. The approach toanalysis taken in SA is to concentrate on the functions to be carried out by thesystem, using data ow abstraction to describe the ow of data through a net-work of transforming processes, called data transformers, together with accessto data stores. Such a network, which is the most important design product ofSA, is called a data ow diagram (DFD). The original version of SA was meantto be used to model sequential systems. A DFD is a directed graph consisting ofelementary building blocks. Each building block has a graphical notation (�g-ure 1).
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Data transformer Data flow Data store External processFig. 1. Elementary building blocks of a DFDThrough the years several dialects have evolved and extensions have beende�ned (e.g. SSADM [LN86] and SA/RT [WM85]), but we limit ourselves to DFDswith a sequential model and a small number of building blocks:� Data transformers. Data transformers denote a transformation from (an ar-bitrary number of) input values to (an arbitrary number of) output values,possibly with side e�ects.� Data ows. Data ows are represented as arrows, connecting one data trans-former to another. They represent a ow of data between the data transform-ers they connect. The ow of data is unidirectional in the direction of thearrow.� Data stores. Data stores provide for (temporary) storage of data.� External processes. External processes are processes that are not part of thesystem but belong to the outside world. They are used to show where theinput to the system is coming from and where the output of the system isgoing to.DFDs are used to model the information ow through a system. As such theyprovide a limited view of the system: in their most rudimentary form they neithershow the control ow of the system nor any timing aspects. Therefore, DFDs areoften combined with data dictionaries, control ow diagrams, state transitiondiagrams, decision tables and mini-speci�cations to provide a comprehensiveview of all the aspects of the system.The process of constructing a DFD is an iterative process. Initially, the sys-tem to be designed is envisaged as one large data transformer, getting input fromand providing output to external processes. This initial, high-level DFD is calleda context diagram. The next step is the decomposition of the context diagraminto a network of data transformers, the total network providing the same func-tionality as the original context diagram. This process is repeated for each datatransformer until the analyst/designer considers all the data transformers in the



4 P.G. Larsen, N. Plat and W.J. ToetenelDFD to be primitive, i.e. each data transformer performs a simple operation thatdoes not need to be further decomposed. We call such a collection of DFDs, de-scribing the same system but at di�erent levels of abstraction, a hierarchy ofDFDs.3. Approach to the TransformationBefore presenting the formal transformation from DFDs to VDM we �rst explainthe underlying strategy for the transformation and the limitations imposed uponthe DFDs to make our transformation valid.3.1. Underlying strategyThe starting point for our transformation is the work presented in [PvKP91],in which the general properties of two transformations from DFDs to VDM con-structs are discussed. The main di�erence between these two transformations isthe way data ows are modeled: in the �rst transformation they are modeledas (in�nitely large) queues, in the second transformation they are modeled asoperations combining the two data transformers connected by the data ow. Theadvantage of the latter transformation is that a more abstract interpretation ofDFDs can be achieved, because the transformation solely focuses on modelingthe information ow through a DFD. This is also the reason for choosing thistransformation as the basis for the transformation described in this paper. Onesimpli�cation with respect to the transformation described in [PvKP91] is thatthe latter is more general because the order in which the `underlying' operationsare called is left unspeci�ed (i.e. it is loosely speci�ed), which makes the op-eration modeling the data ow rather complicated. In this paper, however, weare dealing with purely sequential systems, and therefore we can assume thatdata ows between two data transformers are `direct' in the sense that the datatransformer that uses the data ow as input cannot be called before the datatransformer that uses the data ow as output.3.2. Transformation of DFD building blocksWhen providing a formal semantics for DFDs it is important to decide whetherthe DFD is intended to model a concurrent system or a sequential system. Morerecent versions of SA (like SA/RT [WM85]) include concurrency and can beused to develop real-time systems. However, originally SA was intended for thedevelopment of information systems implemented in traditional imperative pro-gramming languages. In that situation it seems natural to interpret the datatransformers as functions or operations which, given input data, sequentiallyperform computations and produce output data. If the data ow diagrams areused to model a concurrent system it is more natural to interpret data trans-formers as processes, possibly executing in parallel. Since we restrict ourselves tosequential systems we model data transformers as VDM operations2 .2 Data transformers neither having access to data stores nor being connected to externalprocesses can also be modeled as VDM functions. In our approach only VDM operations are used



A Formal Semantics of Data Flow Diagrams 5To ensure that the structure of the VDM speci�cation resembles the structureof the DFD, we group the operationsmodeling data transformers at the same levelin a hierarchy of DFDs together in `modules'3 importing the necessary types andoperations needed for the data transformers (�gure 2).
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DT6DT5Fig. 2. Transformation of a hierarchy of DFDs into a VDM module structure (example)External processes can be considered as processes `executing' in parallel withthe speci�ed system. In our approach we model the data ows from and toexternal processes as state components in the VDM speci�cation. This is a minordi�erence with the transformation presented in [PvKP91], in which externalprocesses are regarded as part of the system and are therefore modeled as VDMoperations in the same way as data transformers.Data stores are modeled as VDM state components. This corresponds to thefact that data transformers (which can be used to access and change data stores)are modeled as VDM operations, the constructs in VDM-SL that can access andchange state components.We envisage data ows as constructs which can combine two data transform-ers by providing communication facilities between these two data transformers.A data ow is, therefore, modeled as an operation calling the operations thatmodel the two data transformers connected by the data ow. In this way a pro-cess of combining data transformers can be started during which in each steptwo data transformers (connected by a data ow) are integrated into a higherlevel data transformer, �nally resulting in the context diagram.Generalizing this approach, we have chosen to combine all the data trans-formers in a DFD into a higher level data transformer in one step. The datatransformer constructed in this way is modeled as a VDM operation.because we want each di�erent type of construct in a DFD to be mapped to (semantically) thesame construct in VDM. VDM functions and VDM operations (without side-e�ects) semanticallydi�er in the way looseness is interpreted (see [LAMB89]).3 VDM-SL as described in [|92] has no structuring mechanism. The structuring mechanismwe used is based on a proposal by Bear [Bea88]. The constructs we use are simple so that anintuitive interpretation su�ces.



6 P.G. Larsen, N. Plat and W.J. Toetenel3.3. Limitations imposed upon the DFDsBesides restricting the expressibility of the kind of DFDs for which we are ableto provide semantics to sequential systems, we assume that:� Data ows not connected to an external process must form an acyclic graphat each level in the hierarchy of DFDs. This is necessary because in our trans-formation we provide both explicit VDM speci�cations as well as implicitVDM speci�cations as models for DFDs. Allowing general cyclic DFDs wouldmake the transformation into an explicit VDM speci�cation impossible. Therestriction furthermore simpli�es the transformation of DFDs into implicitVDM speci�cations. In Section 4.2.2 we come back to this restriction in moredetail.� There is a one-to-one mapping between the input to the system and theoutput from the system. One-to-many mappings and many-to-one mappingsare a common problem when interpreting DFDs, described in more detail in[Ala88]4. However, we are not entirely satis�ed with the solution proposedby Alabiso, and since in our experience most of the DFDs with one-to-manyor many-to-one mappings should be regarded as design products and not asspeci�cation products, we feel that a restriction to one-to-one mappings isnot a serious one for our purpose. Alternatively, the analyst may supply amini-speci�cation for each non-primitive data transformer not obeying therestriction of a one-to-one mapping between input and output.� To simplify the formal description the data ows must have unique names ateach level in the hierarchy of DFDs.4. Transformation from DFDs to VDMThis section provides a presentation of the transformation from DFDs to VDM.It takes an abstract syntax representation of the DFDs which is presented in the�rst subsection and yields the abstract syntax of a modular VDM speci�cation.The constructs from the abstract syntax for VDM-SL which are used below shouldbe directly understandable without examining the VDM-SL standard [|92]. Thelast subsection presents an overview of the actual transformation functions.4.1. The Abstract SyntaxThe SA concepts used in the transformation process are a hierarchy of dataow diagrams (HDFD), a data dictionary (DD), and a collection of uniquelyidenti�ed mini-speci�cations (MSs). The types of all data ows in the data owdiagrams must be de�ned in the data dictionary. Besides this, the signature ofthe top-level DFD must conform to its topology.SA = HDFD � DD �MSs4 In [Ala88] this problem is called I/O uncohesiveness. I/O uncohesiveness occurs if either adata transformer must consume several pieces of input data before generating output data, orif a data transformer generates pieces of output independently of all other inputs and outputs.Alabiso describes a solution called `the burial method', centered around the generation ofterminator symbols which indicate that `something is missing'.



A Formal Semantics of Data Flow Diagrams 7inv mk- (hdfd ; dd ; -) 4FlowTypeDe�ned (hdfd ; dd) ^ TopLevelSigOK (hdfd)The hierarchy of data ow diagrams is recursively de�ned. Each HDFD hasa name, an unordered collection of data stores used in the DFD, a descriptionof its topology, a collection of uniquely identi�ed data transformers that arefurther decomposed as HDFDs, and a description of the signatures of all thedata transformers.The invariant for HDFD ensures that the signatures of the data transformers(and the DFD as a whole) are consistent with the topology and the data stores,and that all the DFDs { which are further decomposed { are de�ned.HDFD = DFDId �DSs �DFDTopo �DFDMap � DFDSiginv mk- (id ; dss ; dfdtop; dfdmap; dfdsig) 4DFDSigConsistent (id ; dfdtop; dss ; dfdmap; dfdsig) ^LowerLevelUsed (dfdtop; dfdmap)The topology of a DFD is a collection of uniquely identi�ed data ows. Eachdata ow is directed from one data transformer to another. The data transformerscan either be further decomposed or they can be primitive. The invariant requiresthat the data ow connects two data transformers and that the topology of theinternal connections is acyclic.DFDTopo = FlowId m-! Flowinv dfdtopo 4let top = fow j ow 2 rng dfdtopo � InternalFlow (ow)g inNotRecursive (top) ^8ow 2 rng dfdtopo � FlowConnectOK (ow)4.2. The Transformation FunctionsIn this section we �rst present the top-level function and the main functionfor creating a collection of de�nitions. The transformation functions are able tocompose the data transformers using either an implicit style or an explicit style.These two styles are dealt with in more detail in the last two subsections. Thisis done by �rst looking at a few simple examples and then presenting the actualde�nition of this transformation.4.2.1. The Top-level FunctionsThe top-level function, which transforms a hierarchy of data ow diagrams (anHDFD), also takes as arguments the mini-speci�cations supplied by the user andthe speci�cation style in which the operations are to be generated.



8 P.G. Larsen, N. Plat and W.J. ToetenelTransHDFD : HDFD �MSs � (expl j impl)! Module-setTransHDFD (hdfd ;mss ; style) 4let mainmod =MakeDFDModule (hdfd ;mss ; style);mk- (-; -; -; dfdmap; -) = hdfd ;mods = S fTransHDFD (dfd ;mss ; style) jdfd 2 rng dfdmapg infmainmodg [modsFor each module the interface and the de�nitions must be created by meansof MakeDFDModule; we limit ourselves here to the de�nitions-part of a module,however. If the DFD contains data stores, the body will contain a correspondingstate de�nition. If the DFD contains data transformers that are not further de-composed, the body also contains de�nitions for these. Finally the module willalways contain a de�nition of the operation that describes the functionality ofthat DFD.MakeDe�nitions :DFDId �DSs �DFDTopo �DFDSig �MSs �(expl j impl)! De�nitionsMakeDe�nitions (dfdid ; dss ; dfdtopo; dfdsig ;mss ; style) 4let st 0 = MakeState (dfdid ; dss ;CollectExtDFs (dfdtopo));msdescs = MakeMSDescs (dfdsig ;mss);dfdop = MakeDFDOp (dfdid ; dfdtopo; dfdsig ; style) inif st 0 = nilthen fdfdopg [msdescselse fst 0; dfdopg [msdescs4.2.2. Generation of Implicit OperationsAn operation describing the functionality of a DFD uses the operations for thelower-level DFDs. The combination that must be constructed depends upon thetopology of the DFD. Whenever a data transformer receives data from anotherdata transformer through a data ow (in the same DFD) this dependency mustbe incorporated in the combination, by using the output value from the �rstdata transformer (and possibly changed state component(s)) as input for thesecond data transformer. However, since a data transformer in principle is aloose construct it is necessary when generating pre- and post-conditions to takethis possible looseness into account. This is done by specifying that there mustexist an output value (and possibly one or more changed state values) such thatthe post-condition of the �rst data transformer is ful�lled and then use this value(or values) for the data transformer which depends upon the �rst one (see e.g.[PvKP91]).By means of three small examples we illustrate the issues to be consideredwhen describing the functionality of a DFD as a whole.Example 1Consider the DFD in �gure 3. It is a simple DFD consisting of two data trans-formers P and Q , each having one input data ow (a and b respectively) andone output data ow (b and c respectively). Q receives data from P and thusQ depends on P . When this DFD is intended to model a sequential system it is
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pre-P (a: A)

pre-Q(b: B)

c

b

a

Q

P

post-Q (b: B, c: C)

post-P (a: A, b: B)

Fig. 3. DFD for example 1obvious that P must be executed beforeQ can be executed. This dependency be-tween P and Q also can be found in the pre- and post-condition of the compositeDFD: PQ (a :A) c : Cpre 9 b : B �pre-P(a) ^post-P(a; b) ^pre-Q(b)post 9 b : B �pre-P(a) ^ post-P(a; b) ^pre-Q(b) ^ post-Q(b; c)It is necessary to quote the post-condition5 of P to produce a value thatmust satisfy the pre-condition of Q . Since P may be loosely speci�ed there maybe several values satisfying the post-condition of P given some argument a.However, since only some of these values might satisfy the pre-condition of Q an5 `Quoting' pre- and post-conditions of (implicitly de�ned) functions and operations is a VDMtechnique to `invoke' other functions or operations from within a pre- or post-condition (i.e.a predicate): each implicitly de�ned function or operation f has associated boolean functionspre-f and post-f which, given the appropriate arguments, yield true if the pre- or post-conditionrespectively of f holds for those arguments, and false otherwise. A quoted pre-condition of anoperation takes the input arguments of the operation and the state components used by theoperation as its arguments. A quotation of a post-condition of an operation �rst takes theinput arguments of the operation, then some arguments representing the values of the statecomponents before the operation is executed, the output result of the operation, and �nallythe new state components (only those to which the operation has write access).



10 P.G. Larsen, N. Plat and W.J. Toetenelexistential quanti�cation over this `internal data ow', b, is necessary. Alternativesolutions can be envisaged, di�ering in the strength of the constraints put uponthe combination.2Example 2Example 1 is now expanded by introducing a data store that both data trans-former P and data transformer Q have write access to. This DFD is given in�gure 4. The data store ds is { as has been mentioned { interpreted as a statecomponent.
pre-Q (b: B, ds’: DS)

pre-P (a: A, ds: DS)
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post-Q (b: B, c: C, ds’: DS, ds: DS)

post-P (a: A, b: B, ds: DS, ds’: DS)

Fig. 4. DFD for example 2This composite DFD can be speci�ed by the following implicit de�nition:PQDS (a : A) c : Cext wr ds : DSpre 9 b : B ; ds 0 : DS �pre-P(a; ds) ^post-P(a; ds ; b; ds 0) ^pre-Q(b; ds 0)post 9 b : B ; ds 0 : DS �pre-P(a;(�ds ) ^ post-P(a;(�ds ; b; ds 0) ^pre-Q(b; ds 0) ^ post-Q(b; ds 0 ; c; ds)It is necessary to introduce an intermediate state component, ds 0, which holdsthe value of ds in between execution of the di�erent data transformers, P and



A Formal Semantics of Data Flow Diagrams 11Q . This situation occurs when several data transformers are allowed to modifythe same data store.In addition, this example illustrates another technicality that must be takeninto account in the transformation from DFDs to VDM. The value of the statecomponent, ds , before activation of the operation is referred to di�erently insidethe pre-condition (as ds) and the post-condition (as (�ds ). When a pre- or post-condition (using an old state value) is quoted it is necessary to supply informationabout whether it was quoted inside a pre-condition or inside a post-condition.2Example 3The DFD from example 2 is now expanded by adding an extra data transformer,R, which also modi�es data store ds , but otherwise is not connected to the twoother data transformers (P and Q). The DFD is given in �gure 5.
pre-Q (b: B, *: DS)

pre-P (a: A, *: DS)
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pre-R (d: D, *: DS)
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post-Q (b: B, c: C, *: DS, *: DS)

post-P (a: A, b: B, *: DS, *: DS)

post-R (d: D, e: E, *: DS, *: DS)

Fig. 5. DFD for example 3Although the DFD at �rst sight still looks rather simple, it turns out that theVDM speci�cation for the DFD is quite complicated. The DFD is illustrative forthe situation in which the writer of the DFD may understand it di�erently thanthe reader of the DFD. The ambiguity comes from the fact that nothing is saidabout in which order the three data transformers should modify the data store.Maybe it is not important, but maybe it is essential that one speci�c executionorder is chosen in the implementation. The notation `� :DS ' (in the �gure) meansthat a value of type DS will be used at this point, but we don't know exactlywhich value that will be. Consider P and R. One of them uses the old value ofds in the quotation of its post-condition, but we don't know which one because



12 P.G. Larsen, N. Plat and W.J. Toetenelthat depends on the execution order. The possible execution orders are visiblein the generated VDM speci�cation.The following implicit de�nition of the composite DFD can be generated:PQRDS (a :A; d :D) r :C � Eext wr ds : DSpre 9 b : B ; c : C ; e : E ; ds 0; ds 00 : DS �(pre-R(d ; ds) ^ post-R(d ; ds ; e; ds 0) ^pre-P(a; ds 0) ^ post-P(a; ds 0; b; ds 00) ^ pre-Q(b; ds 00)) _(pre-P(a; ds) ^ post-P(a; ds ; b; ds 0) ^pre-R(d ; ds 0)^ post-R(d ; ds 0; e; ds 00) ^ pre-Q(b; ds 00)) _(pre-P(a; ds) ^ post-P(a; ds ; b; ds 0) ^pre-Q(b; ds 0)^ post-Q(b; ds 0; c; ds 00) ^ pre-R(d ; ds 00))post let (c; e) = r in9 b : B ; ds 0; ds 00 :DS �(pre-R(d ;(�ds ) ^ post-R(d ;(�ds ; e; ds 0) ^ pre-P(a; ds 0) ^post-P(a; ds 0; b; ds 00)^pre-Q(b; ds 00)^post-Q(b; ds 00; c; ds)) _(pre-P(a;(�ds ) ^ post-P(a;(�ds ; b; ds 0)^ pre-R(d ; ds 0) ^post-R(d ; ds 0; e; ds 00)^pre-Q(b; ds 00)^post-Q(b; ds 00; c; ds)) _(pre-P(a;(�ds ) ^ post-P(a;(�ds ; b; ds 0)^ pre-Q(b; ds 0) ^post-Q(b; ds 0; c; ds 00)^ pre-R(d ; ds 00) ^ post-R(d ; ds 00; e; ds))The post-condition shows that there are three possible execution orders:[P ;Q ;R], [P ;R;Q ] and [R;P ;Q ]. The pre- and post-conditions de�ned aboveensure that at least one possible execution order can be used. r is a new name,introduced to denote the output as a whole.2 Below, we present the functions that are used to compose data transformersinto implicit speci�cations. These functions illustrate how the problematic issuesfrom the three examples above are dealt with.First, consider the function MakeDFDImplOp that is used to create opera-tions for DFDs in the implicit style. The signature of the given DFD is used tocreate the input parameter list, the possible output pair and the externals forthe operation (by means of a few auxiliary functions) whereas the body of theoperation is much more complicated to create, so this is further explained below.MakeDFDImplOp : DFDId �DFDTopo � DFDSig ! ImplOpMakeDFDImplOp (dfdid ; dfdtopo; dfdsig) 4let mk- (in 0; out ; st 0) = dfdsig (dfdid);partpl = MakeInpPar (in 0);residtp = MakeOutPair (out);ext 0 = MakeExt (st 0);body = MakeImplOpBody (dfdid ; dfdtopo; dfdsig) inmk-ImplOp (OpIdConf (dfdid); partpl ; residtp; ext 0 ; body)The function MakeImplOpBody is used to generate both the pre-conditionand the post-condition of an implicit operation de�nition. To take intermediatedata store values into account,MakeImplOpBody and its auxiliary functions use amap from state components to the current number of intermediate values (intm).



A Formal Semantics of Data Flow Diagrams 13The map is initialized by mapping all state components to zero (indicating thatno intermediate state values have yet been introduced)6. In addition, a mapmaxm with the same domain of state components is used to ensure that a post-condition uses the state after an operation as the last of a series of intermediatestate components. Each state component in maxm is mapped to the numberof data transformers in a partition having write access (and thus potentiallyintroduce an intermediate state value) to that state component.MakeImplOpBody : DFDId � DFDTopo �DFDSig ! ImplOpBodyMakeImplOpBody (dfdid ; dfdtopo; dfdsig) 4let intm = fstid 7! 0 jmk- (stid ; -) 2 CollectStIds (rng dfdsig)g;maxm = fstid 7! NoOfWr (rng dfdsig ; stid) jmk- (stid ; -) 2 CollectStIds (rng dfdsig)g;pre 0 = MakePreExpr (dfdid ; dfdtopo; dfdsig ; intm ;maxm);post 0 = MakePostExpr (dfdid ; dfdtopo; dfdsig ; intm;maxm) inmk-ImplOpBody (pre 0; post 0)MakePostExpr is used to generate the post-condition of an implicit operation7.The body of the post-condition is created by means of the functionMakePostBody .When a DFD has more than one output, these outputs are combined into a tu-ple expression. A new name for this tuple expression is created by generating alet-expression. MakePostExpr decides whether such a let-expression should begenerated and if so a let-expression is put around the body.MakePostExpr :DFDId�DFDTopo�DFDSig�IntM �IntM ! ExprMakePostExpr (dfdid ; dfdtopo; dfdsig ; intm;maxm) 4let mk- (-; out ; st 0) = dfdsig (dfdid);body =MakePostBody (out ; st 0; dfdtopo; dfdsig ;intm;maxm) inif len out � 1then bodyelse mk-LetExpr (MakePattern (out);ResultIdConf (); body)The function MakePostBody examines whether an existential quanti�cationis needed8, and if this is the case such a quanti�ed expression is generated. Theremaining part of the post-condition is generated by calling MakePostPred .6 The con�guration function StateVarIntConf inserts a number of quotes corresponding tothe number of the intermediate value, as it was done in the examples.7 The function MakePreExpr is essentially doing the same thing for pre-conditions, but it isslightly simpler.8 As can be seen in the examples above, quanti�cation is necessary for data ows that are notdirect input (or output) to a given DFD or if intermediate state values are needed.



14 P.G. Larsen, N. Plat and W.J. ToetenelMakePostBody :FlowId� � State �DFDTopo �DFDSig � IntM � IntM ! ExprMakePostBody (out ; st 0; dfdtopo; dfdsig ; intm ;maxm) 4let pred =MakePostPred (dfdtopo; dfdsig ; intm ;maxm);�ds = NeedsQuant (dfdtopo; dfdsig ; elems out ; f g) inif QuantNecessary (out ; st 0;�ds ; intm;maxm)then mk-ExistsExpr (MakeExistsBind (�ds ; st 0; intm;maxm;post);pred)else predThe function MakePostPred is used to create the core part of the `body' ofthe post-condition of an implicit operation. First, all possible orders of executionare determined, and for each execution order9 a conjunction of quoted functionapplications are generated using the intermediate state values (this is done inMakePostForEO). The separate conjunctions are then combined in one largedisjunction, in this way specifying that the implementor can choose either oneof the execution orders to implement the DFD.MakePostPred :DFDTopo � DFDSig � IntM � IntM ! ExprMakePostPred (dfdtopo; dfdsig ; intm;maxm) 4let eos = ExecutionOrders (dfdtopo) inDBinOp (or; fMakePostForEO(piseq ; dfdsig ; intm;maxm) j piseq 2 eosg)The function MakePostForEO generates a post-expression for a speci�c ex-ecution order. An application of the quoted post-condition of the �rst datatransformer in the execution order is generated (by MakeQuotedApply) and thenMakePostForEO is called recursively with the remainder of the data transform-ers. A collection of intermediate state values intm 0 is constructed in each recur-sion step in order to use the correct intermediate state values in the constructionof a quotation for an operation. All quotations are combined in a conjunction.
9 The auxiliary function ExecutionOrders generates a set of `possible execution orders'. Anexecution order is a sequence of process identi�ers suggesting a valid order in which the datatransformers in a DFD with topology dfdtopo can be executed.



A Formal Semantics of Data Flow Diagrams 15MakePostForEO : ProcId+ �DFDSig � IntM � IntM ! ExprMakePostForEO (piseq ; dfdsig ; intm;maxm) 4let nid = hd piseq ;intm 0 = fstid 7! if mk- (stid ;readwrite) 2CollectStIds (fdfdsig (nid)g)then intm (stid) + 1else intm (stid) j stid 2 dom intmg;pre 0 =MakeQuotedApply (nid ; dfdsig (nid); intm 0;maxm;post;pre);post 0 =MakeQuotedApply (nid ; dfdsig (nid); intm 0;maxm;post;post) inif len piseq = 1then mk-BinaryExpr (pre 0;and; post 0)else let pred = mk-BinaryExpr (pre 0;and; post 0) inmk-BinaryExpr (pred ;and;MakePostForEO (tl piseq ; dfdsig ;intm 0;maxm))MakeQuotedApply generates the application of the quotation of a pre- ora post-condition of an operation. The con�guration function StateVarIntConfreceives information about where it is quoted from; the necessity for this wasshown in example 2. Notice how MakeQuotedApply uses the rules for quoting(as explained above) through some auxiliary functions that extract the di�erentkinds of arguments.MakeQuotedApply :(DFDId jMSId)� Signature � IntM � IntM �(pre j post)� (pre j post)! ApplyMakeQuotedApply (id ;mk- (in 0; out ; st 0); intm;maxm; c; q) 4let inarg = [FlowIdVarConf (in 0 (i)) j i 2 inds in 0];oldstarg = [let mk- (s ;m) = st 0 (i) inif m = readthen StateVarIntConf (s ; intm (s);maxm (s); c)else StateVarIntConf (s ; intm (s)� 1;maxm (s); c) ji 2 inds st 0];outarg = [FlowIdVarConf (out (i)) j i 2 inds out ];starg = [let mk- (s ; -) = st 0 (i) inStateVarIntConf (s ; intm (s);maxm (s); c)j i 2 inds st 0 � let mk- (-;m) = st 0 (i) inm = readwrite] inif q = prethen mk-Apply ("pre "yOpIdConf (id); inarg y oldstarg)else mk-Apply ("post "yOpIdConf (id); inarg y oldstarg youtarg y starg)pre 8mk- (s ;m) 2 elems st 0 �s 2 dom intm ^ s 2 dom maxm ^m = readwrite ) intm (s) > 0This completes the presentation of the generation of implicit operations. No-tice that it is possible to mechanize the process such that any DFD can be trans-



16 P.G. Larsen, N. Plat and W.J. Toetenelformed into one implicit VDM-SL operation de�nition capturing the semantics ofthe DFD.4.2.3. Generation of Explicit OperationsThe explicit de�nitions of operations for composing data transformers in a DFDare constructed following the same dependency strategy that is used for gen-erating the implicit de�nitions. The principle for combining data transformersuses the same dependency information from the DFD. However, since the stateof the DFD is not explicitly mentioned in the call of an operation, there is noproblem with intermediate state values for the explicit de�nitions. Thus, theexplicit de�nitions in general are shorter and easier to read than the implicitones. Partitioning is dealt with by using the non-deterministic statement;10 inthis way the choice of execution order is left open.Example 4Before presenting the formal description of how DFDs as a whole can be trans-formed into explicit operation de�nitions, we show how the DFDs from the �rstthree examples can be described explicitly.The �rst DFD from �gure 3 can be speci�ed by the following explicit operationde�nition:PQ : A o! CPQ (a) 4def b = P(a) indef c = Q(b) inreturn cDef-statements11 are used to introduce the (intermediate) data ows.For the DFD in �gure 4 the following explicit operation can be generated:PQDS : A o! CPQDS (a) 4def b = P(a) indef c = Q(b) inreturn cThis operation is equivalent to the one generated for the DFD in example 3,because the state components that are modi�ed by the di�erent operation neednot be explicitly mentioned in the call of these operations. In this respect, ex-plicit operations in VDM-SL are very much similar to procedures in imperativeprogramming languages accessing global variables.The following explicit operation can be generated for the DFD in �gure 5:10 A non-deterministic statement takes a set of statements and executes each of them in anon-deterministic order.11 A def-statement corresponds to a let-statement (or let-expression) except that it is legal atthe right-hand-side of the equal sign to use an operation call that may modify the state.



A Formal Semantics of Data Flow Diagrams 17PQRDS :A �D o! C � EPQRDS (a; d) 4k ((def b = P(a) indef c = Q(b) indef e = R(d) inreturn mk-(c; e)),(def e = R(d) indef b = P(a) indef c = Q(b) inreturn mk-(c; e)),(def b = P(a) indef e = R(d) indef c = Q(b) inreturn mk-(c; e)))The three di�erent execution orders are incorporated in a non-deterministicstatement. It is necessary to use a return statement at the end of each sequencestatement in the nondeterministic statement (each represents a possible execu-tion order) to ensure that a correct return value is created.2 The function used to create operations for DFDs in the explicit style is calledMakeDFDExplOp. The strategy is somewhat similar to the one that has beenused for the implicit style. Here we also have a number of possible executionorders that must be taken into account. The type of the operation and theparameters to it are created through some auxiliary functions. The main part ofthe work is done by MakeStmtForEO that creates a statement for each possibleexecution order. If there is more than one possible execution order, then the�nal body is derived by making a non-deterministic statement of these statementbodies.MakeDFDExplOp :DFDId �DFDTopo �DFDSig ! ExplOpMakeDFDExplOp (dfdid ; dfdtopo; dfdsig) 4let mk- (in 0; out ; st 0) = dfdsig (dfdid);eos = ExecutionOrders (dfdtopo);optype = MakeOpType (dfdsig (dfdid));parms = [mk-PatternId (FlowIdVarConf (in 0 (i))) ji 2 inds in 0];bodys = fMakeStmtForEO (piseq ; dfdid ; dfdsig) jpiseq 2 eosg;body = MakeNonDetStmt (bodys) inmk-ExplOp (OpIdConf (dfdid); optype; parms ; body)The function MakeStmtForEO is de�ned recursively. In each recursion stepone data transformer is processed until all data transformers in the given parti-tion have been incorporated.The strategy is the same as forMakePostExpr wherea new (independent) data transformer is chosen. The functionMakeCallAndPatcreates a call of the operation for the given data transformer and the correspond-ing pattern against which the call must be matched. If the operation returns avalue (i.e. kind = opres), the call is used in a def-statement. Otherwise it is acall statement which must be included as a part of a sequence of statements.



18 P.G. Larsen, N. Plat and W.J. ToetenelMakeStmtForEO : ProcId+ �DFDId �DFDSig ! StmtMakeStmtForEO (piseq ; dfdid ; dfdsig) 4let nid = hd piseq ;mk- (call ; pat) =MakeCallAndPat (nid ; dfdsig (nid));kind = FindKind (dfdsig (nid)) inif len piseq = 1then let mk- (-; out ; -) = dfdsig (dfdid);return 0 = mk-Return (MakeResult (out)) inif kind = opresthen mk-DefStmt (pat ; call ; return 0)else mk-Sequence ([call ; return 0 ])else let rest = MakeStmtForEO (tl piseq ; dfdid ; dfdsig) inif kind = opresthen mk-DefStmt (pat ; call ; rest)else if is-Sequence (rest)then let mk-Sequence (sl) = rest inmk-Sequence ([call ]y sl)else mk-Sequence ([call ; rest ])pre hd piseq 2 dom dfdsigThis completes the presentation of the generation of explicit operations. No-tice that here as well it is possible to mechanize the process such that any DFDcan be transformed into one explicit VDM-SL operation de�nition that capturesthe semantics of the DFD. It is also worth noticing here that when the explicitspeci�cation style is used intermediate values are not visible, but that di�erentexecution orders inuence the resulting operations.5. ConclusionsIn this paper we have de�ned a semantics for DFDs by formally specifying atransformation from DFDs to VDM speci�cations. In this section we give a briefoverview of related work in the area of de�ning semantics for DFDs, and weconclude with some observations on our work and some ideas for further research.5.1. Related workWhen DFDs were originally introduced, they were presented as a graphical nota-tion. The intended semantics of this notation was de�ned verbally, but the needfor a formal base is now more commonly recognized, see e.g. [tHvdW92]. Workhas been done on formalizing DFDs, with the intention of either disambiguat-ing their meaning, or of using the formal semantics as a base for a combinedformal/structured method.In [Ran90] a translation back and forth between DFDs and Z speci�cations isdescribed. [Ala88] contains an explanation of how DFDs can manually be trans-formed into an object-oriented design. The paper touches upon some problematicissues arising in a transformation from DFDs. In [SA] a small example of how aDFD can be transformed in Z is presented. However, no formal semantics of theDFDs is presented and it is not clear to what extent the transformation can beautomated. In [BvdW89] some guidelines for how semantics can be attached to



A Formal Semantics of Data Flow Diagrams 19DFDs are given. It is sketched how DFDs can be transformed into a Petri net vari-ant combined with path expressions. In [ELP93] a complete semantics is providedfor the Ward and Mellor version of SA/RT by means of high-level timed Petrinets. Here an executable subset of VDM-SL is also used to describe the mini-speci�cations of an SA/RT model. In [Adl88] a semantic base for guiding thedecomposition process in the construction of a hierarchy of DFDs is presented.This work is based on graph theory in an algebraic setting. Kevin Jones usesVDM to provide a denotational style semantics of a non-conventional machinearchitecture (The Manchester DataFlow Machine) based on data ow graphs[Jon87]. In [FKV91] a rule-based approach for transforming SA products intoVDM speci�cations is presented. Their VDM speci�cations are very explicit andhard to read, mainly because of the way decision tables have been taken intoaccount. Polack et al. concentrate on the methodological aspects of combiningSA notations and Z speci�cations [Pol92], the resulting combination is known asSAZ. Tse and Pong use extended Petri nets for formalizing DFDs [TP89]. Francediscusses an algebraic approach to modeling control-extended DFDs in [Fra92].In [SFD92] an overview of several approaches to combining SA techniques andnotations with formal methods (including our approach) is given.The main result of the work presented in this paper with respect to otherwork in this area is that we have been able to capture the semantics of a DFD asa whole in a compositional way at a high level of abstraction, taking into accountthe whole hierarchy of DFDs that is created during an SA development, which toour knowledge has not been done before.5.2. Status and PerspectivesWith respect to the semantics of DFDs in terms of a formal transformation toVDM speci�cations the following observations can be made:� An unambiguous interpretation of DFDs is available, which { due to the par-ticular transformation chosen { is abstract. Consequently, there are few re-strictions on the further development of the DFD into a software design.� The transformation is executable, which opens up possibilities for automati-cally generating VDM speci�cations from DFDs. In this way, the initial e�ortneeded to produce a formal speci�cation is signi�cantly decreased.� The DFDs and their VDM counterparts can be regarded as equivalent viewson the system, using di�erent representations.A few restrictions apply to our transformation, however. One of these is theexclusion of concurrent systems, whereas some SA extensions provide facilities forspecifying such systems. We briey mentioned how some of the DFD constructswould be interpreted if we had taken concurrency into account. A transformationfrom a real-time SA variant to a combination of VDM and e.g. CCS [Mil80], CSP[Hoa85] or Petri nets [Pet77] would be an interesting area for future research. Weforesee that the main problem in automatically providing a concurrent speci�-cation description would be that such a description would have a very low levelof abstraction. Intuitively it would be expected that each data transformer istransformed into a process and that all these processes are executed in parallel.This would result in a large number of processes due to the number of datatransformers usually present in a DFD.
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