Formal Aspects of Computing (1993) 3: 1-000
(© 1993 BCS

A Formal Semantics of Data Flow
Diagrams

Peter Gorm Larsen,! Nico Plat? and Hans Toetenel?

1 IFAD, Odense, Denmark.
2 Delft University of Technology, Faculty of Technical Mathematics and Informatics,
Delft, The Netherlands. Nico Plat is currently with CAP Volmac, Utrecht, The Netherlands.

Keywords: Data flow diagrams; VDM: Formal semantics

Abstract. This paper presents a formal semantics of data flow diagrams as
used in Structured Analysis, based on an abstract model for data flow transfor-
mations. The semantics consists of a collection of VDM functions, transforming
an abstract syntax representation of a data flow diagram into an abstract syntax
representation of a VDM specification. Since this transformation is executable, it
becomes possible to provide a software analyst/designer with two ‘views’ of the
system being modeled: a graphical view in terms of a data flow diagram, and a
textual view in terms of a VDM specification. In this paper emphasis is on the
motivation for the choices made in the transformation. The main aspects of the
transformation itself are described using annotated VDM functions with some
examples.

1. Introduction

The introduction of formal methods in industrial organizations may become eas-
ier if these methods can be used alongside the more widely used conventional
techniques for software development, such as ‘structured methods’. Structured
methods are methods for software analysis and design, based on the use of
heuristics for making analysis and design decisions. They provide a relatively
well-defined path, often in a cookbook-like fashion (hence the term ‘structured’
methods), starting from the analysis of software requirements and ending at sys-
tem coding. The design notations used are usually graphical and have no formal

Correspondence and offprint requests to: Peter Gorm Larsen, IFAD, Forskerparken 10, DK-
5230 Odense M, Denmark. E-mail: peter@ifad.dk

2 P.G. Larsen, N. Plat and W.J. Toetenel

basis. In that sense structured and formal methods can be regarded as comple-
mentary. It is often suggested that the informal graphical notations as provided
by structured methods are intuitively appealing to software analysts/designers.
Therefore, a combined structured /formal method may not only increase the un-
derstanding of the use of formal methods in the software process, but also may
increase the acceptability of formal methods to these people.

Our work in this area so far has concentrated on combining Structured Anal-
ysis (SA) [You75, DeM79, GS79] with the Vienna Development Method (VDM)
[BJ82, Jon90]; we provide a brief introduction to SA, but we refer to text books
such as [Jon90] and [AI9]] for an introduction to VDM. We think that a well-
integrated combination of notations can be achieved by using data flow dia-
grams (DFDs) which we consider to be the main design notation of SA
as a graphical view of the system and VDM as a textual view. These different
views emphasize different aspects of the specified system: the DFD graphical
view focuses on an overview of the structure of the system, whereas the VDM
textual view focuses on the detailed functionality of the system. The base of a
combined structured/formal method consists of a formally defined relation be-
tween the structured method and the formal method. In [PvKP91] we describe
several approaches to modeling DFDs using the VDM-SL specification language
[92, Daw9l]. In this paper we discuss one such particular model in more de-
tail, thus essentially providing a ‘formal semantics’ of DFDs. A discussion on the
methodological aspects of the approach can be found in [LvKP*93].

The remainder of this paper is organized as follows. In the following section
a brief introduction to SA is given, focusing on the use of DFDs. In Section 3
we describe our strategy for transforming DFDs into VDM specifications, paying
attention to the limitations of our approach. The main part of this paper is
Section 4, in which the formal transformation from DFDs to VDM is presented.
First, we describe the main aspects of an abstract syntax representation of DFDs
(the abstract syntax representation we use for VDM specifications is the same as
the one used in [—92]'), and then we describe the formal transformation itself.
Emphasis is put on the motivation for the choices made in the transformation.
The main aspects of the transformation itself are described using VDM functions
together with a number of examples. Given the limited size of a research paper
like this, we have chosen to limit the description of the formal aspects of the
transformation as much as possible. Therefore, in some situations it is necessary
to rely on an intuitive understanding of what a function does. Furthermore, some
functions have been somewhat simplified so that attention can be focused on the
relevant aspects only. The complete transformation has been syntax-checked,
type-checked and tested using the IFAD VDM-SL Toolbox [Las93]; this has given
us confidence that the transformation we have defined is a reasonable one. The
complete specification can be freely obtained by contacting any of the authors.
Finally, in Section 5 we give an overview of related work on formal semantics for
DFDs, and present some conclusions and ideas for future work in this area.

1 To be precise, the abstract syntax used for VDM specifications is the one called ‘Outer
Abstract Syntax’ in [—92]; a lack of knowledge about this Quter Abstract Syntax does not
affect the understanding of this paper, however.

A Formal Semantics of Data Flow Diagrams 3
2. Overview of Structured Analysis

Structured Analysis (SA) [You75, DeM79, GS79] is one of the most widely used
methods for software analysis. Often it is used in combination with Structured
Design ($D) [CY79]; the resulting combination is called SA/SD. The approach to
analysis taken in SA is to concentrate on the functions to be carried out by the
system, using data flow abstraction to describe the flow of data through a net-
work of transforming processes, called data transformers, together with access
to data stores. Such a network, which is the most important design product of
SA, is called a data flow diagram (DFD). The original version of SA was meant
to be used to model sequential systems. A DFD is a directed graph consisting of
elementary building blocks. Each building block has a graphical notation (fig-
ure 1).

df

ds ep

Data transformer Data flow Data store External process

Fig. 1. Elementary building blocks of a DFD

Through the years several dialects have evolved and extensions have been
defined (e.g. SSADM [LN86] and SA/RT [WMS85]), but we limit ourselves to DFDs
with a sequential model and a small number of building blocks:

o Data transformers. Data transformers denote a transformation from (an ar-
bitrary number of) input values to (an arbitrary number of) output values,
possibly with side effects.

¢ Data flows. Data flows are represented as arrows, connecting one data trans-
former to another. They represent a flow of data between the data transform-
ers they connect. The flow of data is unidirectional in the direction of the
arrow.

e Data stores. Data stores provide for (temporary) storage of data.

e FExternal processes. External processes are processes that are not part of the
system but belong to the outside world. They are used to show where the
input to the system is coming from and where the output of the system is
going to.

DFDs are used to model the information flow through a system. As such they
provide a limited view of the system: in their most rudimentary form they neither
show the control flow of the system nor any timing aspects. Therefore, DFDs are
often combined with data dictionaries, control flow diagrams, state transition
diagrams, decision tables and mini-specifications to provide a comprehensive
view of all the aspects of the system.

The process of constructing a DFD is an iterative process. Initially, the sys-
tem to be designed is envisaged as one large data transformer, getting input from
and providing output to external processes. This initial, high-level DFD is called
a context diagram. The next step is the decomposition of the context diagram
into a network of data transformers, the total network providing the same func-
tionality as the original context diagram. This process is repeated for each data
transformer until the analyst/designer considers all the data transformers in the

4 P.G. Larsen, N. Plat and W.J. Toetenel

DFD to be primitive, i.e. each data transformer performs a simple operation that
does not need to be further decomposed. We call such a collection of DFDs, de-
scribing the same system but at different levels of abstraction, a hierarchy of

DFD:s.

3. Approach to the Transformation

Before presenting the formal transformation from DFDs to VDM we first explain
the underlying strategy for the transformation and the limitations imposed upon
the DFDs to make our transformation valid.

3.1. Underlying strategy

The starting point for our transformation is the work presented in [PvKP91],
in which the general properties of two transformations from DFDs to VDM con-
structs are discussed. The main difference between these two transformations is
the way data flows are modeled: in the first transformation they are modeled
as (infinitely large) queues, in the second transformation they are modeled as
operations combining the two data transformers connected by the data low. The
advantage of the latter transformation is that a more abstract interpretation of
DFDs can be achieved, because the transformation solely focuses on modeling
the information flow through a DFD. This is also the reason for choosing this
transformation as the basis for the transformation described in this paper. One
simplification with respect to the transformation described in [PvKP91] is that
the latter is more general because the order in which the ‘underlying’ operations
are called is left unspecified (i.e. it is loosely specified), which makes the op-
eration modeling the data flow rather complicated. In this paper, however, we
are dealing with purely sequential systems, and therefore we can assume that
data flows between two data transformers are ‘direct’ in the sense that the data
transformer that uses the data flow as input cannot be called before the data
transformer that uses the data flow as output.

3.2. Transformation of DFD building blocks

When providing a formal semantics for DFDs it is important to decide whether
the DFD is intended to model a concurrent system or a sequential system. More
recent versions of SA (like SA/RT [WMS85]) include concurrency and can be
used to develop real-time systems. However, originally SA was intended for the
development of information systems implemented in traditional imperative pro-
gramming languages. In that situation it seems natural to interpret the data
transformers as functions or operations which, given input data, sequentially
perform computations and produce output data. If the data flow diagrams are
used to model a concurrent system it is more natural to interpret data trans-
formers as processes, possibly executing in parallel. Since we restrict ourselves to
sequential systems we model data transformers as VDM operations?.

2 Data transformers neither having access to data stores nor being connected to external
processes can also be modeled as VDM functions. In our approach only vbm operations are used

A Formal Semantics of Data Flow Diagrams 5

To ensure that the structure of the VDM specification resembles the structure
of the DFD. we group the operations modeling data transformers at the same level
in a hierarchy of DFDs together in ‘modules’® importing the necessary types and
operations needed for the data transformers (figure 2).

formal transformation
module
module ValuesAnd

- .
g DT, (context diagram) Y Types
module module module
8 DT, DT, DT,
e\
module module
HOOIPRND =T
T
8
hierarchy of DFDs module structure of the VDM specification

Fig. 2. Transformation of a hierarchy of DFDs into a VDM module structure (example)

Ezternal processes can be considered as processes ‘executing’ in parallel with
the specified system. In our approach we model the data flows from and to
external processes as state components in the VDM specification. This is a minor
difference with the transformation presented in [PvKP91]. in which external
processes are regarded as part of the system and are therefore modeled as VDM
operations in the same way as data transformers.

Data stores are modeled as VDM state components. This corresponds to the
fact that data transformers (which can be used to access and change data stores)
are modeled as VDM operations, the constructs in VDM-SL that can access and
change state components.

We envisage data flows as constructs which can combine two data transform-
ers by providing communication facilities between these two data transformers.
A data flow is, therefore, modeled as an operation calling the operations that
model the two data transformers connected by the data flow. In this way a pro-
cess of combining data transformers can be started during which in each step
two data transformers (connected by a data flow) are integrated into a higher
level data transformer, finally resulting in the context diagram.

Generalizing this approach, we have chosen to combine all the data trans-
formers in a DFD into a higher level data transformer in one step. The data
transformer constructed in this way is modeled as a VDM operation.

because we want each different type of construct in a prFp to be mapped to (semantically) the
same construct in vom. vbm functions and vbm operations (without side-effects) semantically
differ in the way looseness is interpreted (see [LAMBS9]).

3 vpMm-siL as described in [—92] has no structuring mechanism. The structuring mechanism
we used is based on a proposal by Bear [Bea88|. The constructs we use are simple so that an
intuitive interpretation suffices.

6 P.G. Larsen, N. Plat and W.J. Toetenel
3.3. Limitations imposed upon the DFDs

Besides restricting the expressibility of the kind of DFDs for which we are able
to provide semantics to sequential systems, we assume that:

¢ Data flows not connected to an external process must form an acyclic graph
at each level in the hierarchy of DFDs. This is necessary because in our trans-
formation we provide both explicit VDM specifications as well as implicit
VDM specifications as models for DFDs. Allowing general cyclic DFDs would
make the transformation into an explicit VDM specification impossible. The
restriction furthermore simplifies the transformation of DFDs into implicit
VDM specifications. In Section 4.2.2 we come back to this restriction in more
detail.

e There is a one-to-one mapping between the input to the system and the
output from the system. One-to-many mappings and many-to-one mappings
are a common problem when interpreting DFDs, described in more detail in
[Ala88]*. However, we are not entirely satisfied with the solution proposed
by Alabiso, and since in our experience most of the DFDs with one-to-many
or many-to-one mappings should be regarded as design products and not as
specification products, we feel that a restriction to one-to-one mappings is
not a serious one for our purpose. Alternatively, the analyst may supply a
mini-specification for each non-primitive data transformer not obeying the
restriction of a one-to-one mapping between input and output.

e To simplify the formal description the data flows must have unique names at
each level in the hierarchy of DFDs.

4. Transformation from DFDs to VDM

This section provides a presentation of the transformation from DFDs to VDM.
It takes an abstract syntax representation of the DFDs which is presented in the
first subsection and yields the abstract syntax of a modular VDM specification.
The constructs from the abstract syntax for VDM-SL which are used below should
be directly understandable without examining the VDM-SL standard [—92]. The
last subsection presents an overview of the actual transformation functions.

4.1. The Abstract Syntax

The SA concepts used in the transformation process are a hierarchy of data
flow diagrams (HDFD), a data dictionary (DD), and a collection of uniquely
identified mini-specifications (MSs). The types of all data flows in the data flow
diagrams must be defined in the data dictionary. Besides this, the signature of
the top-level DFD must conform to its topology.

SA = HDFD x DD x MSs

4 In [Ala88] this problem is called I/O uncohesiveness. I/O uncohesiveness occurs if either a
data transformer must consume several pieces of input data before generating output data, or
if a data transformer generates pieces of output independently of all other inputs and outputs.
Alabiso describes a solution called ‘the burial method’, centered around the generation of
terminator symbols which indicate that ‘something is missing’.

A Formal Semantics of Data Flow Diagrams 7

inv mk- (hdfd, dd,-) 2
FlowTypeDefined (hdfd, dd) A TopLevelSigOK (hdfd)

The hierarchy of data flow diagrams is recursively defined. Each HDFD has
a name, an unordered collection of data stores used in the DFD, a description
of its topology, a collection of uniquely identified data transformers that are
further decomposed as HDFDs, and a description of the signatures of all the
data transformers.

The invariant for HDFD ensures that the signatures of the data transformers
(and the DFD as a whole) are consistent with the topology and the data stores,
and that all the DFDs which are further decomposed are defined.

HDFD = DFDId x DSs x DFDTopo x DFDMap x DFDSig

inv mk- (id, dss, dfdtop, dfdmap, dfdsig) &
DFDSigConsistent (id, dfdtop, dss, dfdmap, dfdsig) A
LowerLevelUsed (dfdtop, dfdmap)

The topology of a DFD is a collection of uniquely identified data flows. Each
data flow is directed from one data transformer to another. The data transformers
can either be further decomposed or they can be primitive. The invariant requires
that the data flow connects two data transformers and that the topology of the
internal connections is acyclic.

DFDTopo = Flowld = Flow

inv dfdtopo &
let top = {flow | flow € g dfdtopo - InternalFlow (flow)} in
NotRecursive (top) A
Y flow € mg dfdtopo - FlowConnectOK (flow)

4.2. The Transformation Functions

In this section we first present the top-level function and the main function
for creating a collection of definitions. The transformation functions are able to
compose the data transformers using either an implicit style or an explicit style.
These two styles are dealt with in more detail in the last two subsections. This
is done by first looking at a few simple examples and then presenting the actual
definition of this transformation.

4.2.1. The Top-level Functions

The top-level function, which transforms a hierarchy of data flow diagrams (an
HDFD), also takes as arguments the mini-specifications supplied by the user and
the specification style in which the operations are to be generated.

8 P.G. Larsen, N. Plat and W.J. Toetenel

TransHDFD : HDFD x MSs x (EXPL | IMPL) — Module-set
TransHDFD (hdfd, mss, style) 2

let mainmod = MakeDFDModule (hdfd, mss, style),
mk- (-, -, -, dfdmap, -) = hdfd,
mods = |J{TransHDFD (dfd, mss, style) |

dfd € mg dfdmap} in
{mainmod} U mods

For each module the interface and the definitions must be created by means
of MakeDFD Module; we limit ourselves here to the definitions-part of a module,
however. If the DFD contains data stores, the body will contain a corresponding
state definition. If the DFD contains data transformers that are not further de-
composed, the body also contains definitions for these. Finally the module will
always contain a definition of the operation that describes the functionality of
that DFD.

MakeDefinitions :
DFDId x DSs x DFDTopo x DFDSig x MSs x
(EXPL | IMPL) — Definitions

MakeDefinitions (dfdid, dss, dfdtopo, dfdsig, mss, style) &
let st’ = MakeState (dfdid, dss, CollectExtDFs (dfdiopo)),
msdescs = MakeMSDescs (dfdsig, mss),
dfdop = MakeDFDOp (dfdid, dfdtopo, dfdsig, style) in
if st' = nil
then {dfdop} U msdescs
else {st’, dfdop} U msdescs

4.2.2. Generation of Implicit Operations

An operation describing the functionality of a DFD uses the operations for the
lower-level DFDs. The combination that must be constructed depends upon the
topology of the DFD. Whenever a data transformer receives data from another
data transformer through a data flow (in the same DFD) this dependency must
be incorporated in the combination, by using the output value from the first
data transformer (and possibly changed state component(s)) as input for the
second data transformer. However, since a data transformer in principle is a
loose construct it is necessary when generating pre- and post-conditions to take
this possible looseness into account. This is done by specifying that there must
exist an output value (and possibly one or more changed state values) such that
the post-condition of the first data transformer is fulfilled and then use this value
(or values) for the data transformer which depends upon the first one (see e.g.
[PvKP9I1)).

By means of three small examples we illustrate the issues to be considered
when describing the functionality of a DFD as a whole.

Ezample 1

Consider the DFD in figure 3. It is a simple DFD consisting of two data trans-
formers P and @, each having one input data flow (e and b respectively) and
one output data flow (b and ¢ respectively). @ receives data from P and thus
Q depends on P. When this DFD is intended to model a sequential system it is

A Formal Semantics of Data Flow Diagrams 9
a

pre-P (a: A)

post-P (a: A, b: B)

pre-Q(b: B)

post-Q (b: B, c: C)

Fig. 3. DFD for example 1

obvious that P must be executed before @ can be executed. This dependency be-
tween P and @ also can be found in the pre- and post-condition of the composite
DFD:

PQ(a:A)c: C

ore Ab: B -
pre-P(a) A
post-P(a,b) A
pre-Q(b)

post 3b: B -

pre-P(a) A post-P(a,b) A
pre-Q(b) A post-Q(b, ¢)

It is necessary to quote the post-condition® of P to produce a value that
must satisfy the pre-condition of ¢. Since P may be loosely specified there may
be several values satisfying the post-condition of P given some argument a.
However, since only some of these values might satisfy the pre-condition of @ an

5 ‘Quoting’ pre- and post-conditions of (implicitly defined) functions and operations is a VDM
technique to ‘invoke’ other functions or operations from within a pre- or post-condition (i.e.
a predicate): each implicitly defined function or operation f has associated boolean functions
pre-f and post-f which, given the appropriate arguments, yield true if the pre- or post-condition
respectively of f holds for those arguments, and false otherwise. A quoted pre-condition of an
operation takes the input arguments of the operation and the state components used by the
operation as its arguments. A quotation of a post-condition of an operation first takes the
input arguments of the operation, then some arguments representing the values of the state
components before the operation is executed, the output result of the operation, and finally
the new state components (only those to which the operation has write access).

10 P.G. Larsen, N. Plat and W.J. Toetenel

existential quantification over this ‘internal data flow’, b, is necessary. Alternative
solutions can be envisaged, differing in the strength of the constraints put upon
the combination.

O

Ezample 2
Example 1 is now expanded by introducing a data store that both data trans-
former P and data transformer @ have write access to. This DFD is given in

figure 4. The data store ds is as has been mentioned interpreted as a state
component.

pre-P (a: A ds: DS

P
post-P (a: A, b: B,ds: DS ds': DS

ds b

pre-Q (b: B,ds': DS

post-Q (b: B, c: C,ds': DS ds. DS

Fig. 4. DFD for example 2

This composite DFD can be specified by the following implicit definition:

PQps(a:A)c:C

ext wr ds: DS

pre 3b: B, ds': DS -
pre-P(a, ds) A
post-P(a, ds, b, ds") A
pre-Q (b, ds')

post Hb:B,d.S’ZDS-
pre-P(a, @) A post-P(a, %, b,ds’) A
pre-Q(b, ds') A post-Q(b,ds’, ¢, ds)

It is necessary to introduce an intermediate state component, ds’, which holds
the value of ds in between execution of the different data transformers, P and

A Formal Semantics of Data Flow Diagrams 11

@. This situation occurs when several data transformers are allowed to modify
the same data store.

In addition, this example illustrates another technicality that must be taken
into account in the transformation from DFDs to VDM. The value of the state
component, ds, before activation of the operation is referred to differently inside

the pre-condition (as ds) and the post-condition (as ds). When a pre- or post-
condition (using an old state value) is quoted it is necessary to supply information
about whether it was quoted inside a pre-condition or inside a post-condition.
O

Ezample 3
The DFD from example 2 is now expanded by adding an extra data transformer,

R. which also modifies data store ds, but otherwise is not connected to the two
other data transformers (P and @). The DFD is given in figure 5.

a

pre-P (a: A *: DS

post-P (a: A, b: B, *: DS *: DS
pre-R(d: D, *: DS

ds b

post-R (d: D, e E, *: *: DY

pre-Q (b: B, *: DS

post-Q (b: B, c: C, *: DS, *: DY)

Fig. 5. DFD for example 3

Although the DFD at first sight still looks rather simple, it turns out that the
VDM specification for the DFD is quite complicated. The DFD is illustrative for
the situation in which the writer of the DFD may understand it differently than
the reader of the DFD. The ambiguity comes from the fact that nothing is said
about in which order the three data transformers should modify the data store.
Maybe it is not important, but maybe it is essential that one specific execution
order is chosen in the implementation. The notation “+: DS’ (in the figure) means
that a value of type DS will be used at this point, but we don’t know exactly
which value that will be. Consider P and R. One of them uses the old value of
ds in the quotation of its post-condition, but we don’t know which one because

12 P.G. Larsen, N. Plat and W.J. Toetenel

that depends on the execution order. The possible execution orders are visible
in the generated VDM specification.

The following implicit definition of the composite DFD can be generated:

PQRps(a:A,d:D)r:C x E
extwr ds : DS
pre 3b:B,c:C,e: E,ds’, ds" : DS -
(pre R(d ds) /\post R(d,ds, e, ds') A
pre P(a,ds’) A post-P(a, ds b ds") A pre-Q(b,ds")) Vv
(pre-P(a, ds) A post-P(a, ds, b ds) A
pre-R(d, ds') A post-R(d, ds s”) A pre-Q(b,ds")) v
(pre-P(a, ds) A post-P(a, ds, b ds) A
pre-Q (b, ds') A post-Q(b, ds ds") A pre-R(d, ds"))
post let (c,)=7‘in

3b:B,ds',ds" : DS -
(pre-R(d, ds) A post-R(d, ds, e,ds") A pre-P(a,ds’) A
post-P(a, ds’, b, ds") Apre-Q (b, ds")Apost-Q(b,ds" ¢, ds)) V
(pre-P(a, E) A post-P(a, % b,ds') A pre-R(d, ds') A
post-R(d, ds', e, ds") Apre- Q(b ds'" YApost-Q (b, ds", c,ds)) V
(pre-P(a, ds) A post-P(a, ds b,ds') A pre-Q(b,ds") A
post-Q(b,ds’, c,ds") A pre- R(d7 ds") A post-R(d, ds" e, ds))

The post-condition shows that there are three possible execution orders:
[P,Q,R]. [P,R,Q] and [R, P, @]. The pre- and post-conditions defined above
ensure that at least one possible execution order can be used. r is a new name,

introduced to denote the output as a whole.
O

Below, we present the functions that are used to compose data transformers
into implicit specifications. These functions illustrate how the problematic issues
from the three examples above are dealt with.

First, consider the function Make DFDImplOp that is used to create opera-
tions for DFDs in the implicit style. The signature of the given DFD is used to
create the input parameter list, the possible output pair and the externals for
the operation (by means of a few auxiliary functions) whereas the body of the
operation is much more complicated to create, so this is further explained below.

Make DFDImplOp : DFDId x DFDTopo x DFDSig — ImplOp

MakeDFDImplOp (dfdid, dfdtopo, dfdsig) &
let mk- (in', out, st') = dfdsig (dfdid),

partpl = MakelnpPar (in'),

residip = MakeOutPair (out),

ext’ = MakeEzt (st'),

body = MakelImplOpBody (dfdid, dfdtopo, dfdsig) in

mk-ImplOp (OpldConf (dfdid), partpl, residip, ext’, body)

The function MakelmplOpBody is used to generate both the pre-condition
and the post-condition of an implicit operation definition. To take intermediate
data store values into account, MakeImplOpBody and its auxiliary functions use a
map from state components to the current number of intermediate values (intm).

A Formal Semantics of Data Flow Diagrams 13

The map is initialized by mapping all state components to zero (indicating that
no intermediate state values have yet been introduced)®. In addition, a map
mazm with the same domain of state components is used to ensure that a post-
condition uses the state after an operation as the last of a series of intermediate
state components. Each state component in mazm is mapped to the number
of data transformers in a partition having write access (and thus potentially
introduce an intermediate state value) to that state component.

MakelImplOpBody : DFDId x DFDTopo x DFDSig — ImplOpBody
MakeImplOpBody (dfdid, dfdtopo, dfdsig) 2

let intm = {stid — O |
mk- (stid, -) € CollectStlds (mg dfdsig)},
mazm = {stid — NoOfWr (g dfdsig, stid) |
mk- (stid, -) € CollectStlds (g dfdsig)},
pre' = MakePreExpr (dfdid, dfdtopo, dfdsig, intm, mazm),
post’ = MakePostEzpr (dfdid, dfdtopo, dfdsig, intm, mazm) in
mk-ImplOpBody (pre', post’)

MakePostEzpr is used to generate the post-condition of an implicit operation”.
The body of the post-condition is created by means of the function MakePostBody.
When a DFD has more than one output, these outputs are combined into a tu-
ple expression. A new name for this tuple expression is created by generating a
let-expression. MakePostExpr decides whether such a let-expression should be
generated and if so a let-expression is put around the body.

MakePostEzpr : DFDId x DFDTopo x DFDStg X IntM X IntM — FEzpr

MakePostEzpr (dfdid, dfdtopo, dfdsig, intm, mazm) £
let mk- (-, out, st’) = dfdsig (dfdid),
body = MakePostBody (out, st', dfdtopo, dfdsig,
intm, mazm) in
if len out <1
then body
else mk-LetEzpr (MakePattern (out), ResultIdConf (), body)

The function MakePostBody examines whether an existential quantification
is needed®, and if this is the case such a quantified expression is generated. The
remaining part of the post-condition is generated by calling MakePostPred.

8 The configuration function StateVarIntConf inserts a number of quotes corresponding to
the number of the intermediate value, as it was done in the examples.

7 The function MakePreEzpr is essentially doing the same thing for pre-conditions, but it is
slightly simpler.

8 As can be seen in the examples above, quantification is necessary for data flows that are not
direct input (or output) to a given DFD or if intermediate state values are needed.

14 P.G. Larsen, N. Plat and W.J. Toetenel

MakePostBody :
Flowld™ x State x DFDTopo x DFDSig x IntM x IntM — Ezpr

MakePostBody (out, st', dfdtopo, dfdsig, intm, mazm) &
let pred = MakePostPred (dfdtopo, dfdsig, intm, mazm),
fids = NeedsQuant (dfdtopo, dfdsig,elems out,{}) in
if QuantNecessary (out, st’, fids, intm, mazm
then mk- EzistsEzpr (MakeEzistsBind (fids, st', intm, mazm, POST),
pred)
else pred

The function MakePostPred is used to create the core part of the ‘body’ of
the post-condition of an implicit operation. First, all possible orders of execution
are determined, and for each execution order® a conjunction of quoted function
applications are generated using the intermediate state values (this is done in
MakePostForEO). The separate conjunctions are then combined in one large
disjunction, in this way specifying that the implementor can choose either one
of the execution orders to implement the DFD.

MakePostPred : DFDTopo x DFDSig x IntM x IntM — Ezxpr

MakePostPred (dfdtopo, dfdsig, intm, mazm) &
let eos = EzecutionOrders (dfdtopo) in
DBinOp (or, {MakePostForEQ
(piseq, dfdsig, intm, mazm) | piseq € eos})

The function MakePostForEQO generates a post-expression for a specific ex-
ecution order. An application of the quoted post-condition of the first data
transformer in the execution order is generated (by MakeQuotedApply) and then
MakePostForEQ is called recursively with the remainder of the data transform-
ers. A collection of intermediate state values intm’ is constructed in each recur-
sion step in order to use the correct intermediate state values in the construction
of a quotation for an operation. All quotations are combined in a conjunction.

9 The auxiliary function EzecutionOrders generates a set of ‘possible execution orders’. An
execution order is a sequence of process identifiers suggesting a valid order in which the data
transformers in a pFp with topology dfdtopo can be executed.

A Formal Semantics of Data Flow Diagrams 15

MakePostForEQ : Procld™ x DFDSig x IntM x IntM — Ezpr

MakePostForEO (piseq, dfdsig, intm, mazm) 2
let ned = hd piseq,
intm' = {stid — if mk- (stid, READWRITE) €
CollectStlds ({dfdsig (nid)})
then intm (stid) + 1
else intm (stid) | stid € dom intm},
pre'’ = MakeQuotedApply (nid, dfdsig (nid), intm’,
mazm, POST, PRE),
post’ = MakeQuotedApply (nid, dfdsig (nid), intm’,
mazm,POST, POST) in
if len piseq = 1
then mk-BinaryExzpr (pre’, AND, post’)
else let pred = mk-BinaryEzpr (pre’, AND, post’) in
mk-BinaryEzpr (pred, AND, MakePostForEO (1l piseq, dfdsig,
intm', mazm))

MakeQuotedApply generates the application of the quotation of a pre- or
a post-condition of an operation. The configuration function State VarIntConf
receives information about where it is quoted from; the necessity for this was
shown in example 2. Notice how MakeQuotedApply uses the rules for quoting
(as explained above) through some auxiliary functions that extract the different

kinds of arguments.

MakeQuotedApply :
(DFDId | MSId) x Signature x IntM x IntM x

(PRE | POST) X (PRE | POST) — Apply
MakeQuotedApply (id, mk- (in’, out, st'), intm, mazm, ¢, ¢) 2

let snarg = [FlowIdVarConf (in' (z)) | i € inds in'],
oldstarg = [let mk- (s, m) = st' () in
if m = READ

then State VarIntConf (s, intm (s), mazm (s), c)
else State VarIntConf (s,intm (s) — 1, mazm (s), ¢) |

1 € inds St/],
outarg = [FlowldVarConf (out (i)) | i € inds out],
starg = [let mk-(s,-) = st' (2)in

State VarIntConf (s, intm (s), mazm (s), c)
| ¢ € inds st - let mk- (-, m) = st (Z) in
m = READWRITE] in
if ¢ = PRE
then mk-Apply ("pre_" 7 OpldConf (id),inarg " oldstarg)
else mk-Apply ("post_" " OpIdConf (id),inarg " oldstarg ™
outarg " starg)
pre V mk- (S, m) € elems st’ -
§ € dom intm A s € dom mazm A
m = READWRITE = intm (s) > 0

This completes the presentation of the generation of implicit operations. No-
tice that it is possible to mechanize the process such that any DFD can be trans-

16 P.G. Larsen, N. Plat and W.J. Toetenel

formed into one implicit VDM-SL operation definition capturing the semantics of
the DFD.

4.2.3. Generation of Explicit Operations

The explicit definitions of operations for composing data transformers in a DFD
are constructed following the same dependency strategy that is used for gen-
erating the implicit definitions. The principle for combining data transformers
uses the same dependency information from the DFD. However, since the state
of the DFD is not explicitly mentioned in the call of an operation, there is no
problem with intermediate state values for the explicit definitions. Thus, the
explicit definitions in general are shorter and easier to read than the implicit
ones. Partitioning is dealt with by using the non-deterministic statement;!® in
this way the choice of execution order is left open.

Example 4

Before presenting the formal description of how DFDs as a whole can be trans-
formed into explicit operation definitions, we show how the DFDs from the first
three examples can be described explicitly.

The first DFD from figure 3 can be specified by the following explicit operation
definition:

PQ:A>C
PQ(a) &
def b = P(a) in
def ¢ = Q(b) in

return C

Def-statements!! are used to introduce the (intermediate) data fows.
For the DFD in figure 4 the following explicit operation can be generated:

PQDS:A1>C

PQps (a) &
def b = P(a)in
def ¢ = Q(b) in

return C

This operation is equivalent to the one generated for the DFD in example 3,
because the state components that are modified by the different operation need
not be explicitly mentioned in the call of these operations. In this respect, ex-
plicit operations in VDM-SL are very much similar to procedures in imperative
programming languages accessing global variables.

The following explicit operation can be generated for the DFD in figure 5:

10 A non-deterministic statement takes a set of statements and executes each of them in a
non-deterministic order.

11 A def-statement corresponds to a let-statement (or let-expression) except that it is legal at
the right-hand-side of the equal sign to use an operation call that may modify the state.

A Formal Semantics of Data Flow Diagrams 17

PQRpslAXDi)CXE

PQRDS (a d)
|| ((def & =
def ¢ =
def € =

return mk-

def ¢ =
return mk-

in
e)).
in
in
def ¢ =
return mk-

in

e)))

The three different execution orders are incorporated in a non-deterministic
statement. It is necessary to use a return statement at the end of each sequence
statement in the nondeterministic statement (each represents a possible execu-
tion order) to ensure that a correct return value is created.

O

P(a)i
Q(b) i
R(d) i
(c,
R(d)i
def b = (a) in
Q(b)
(c,
P(a)
R(d)i
Q(b)
(¢

The function used to create operations for DFDs in the explicit style is called
Make DFDEzplOp. The strategy is somewhat similar to the one that has been
used for the implicit style. Here we also have a number of possible execution
orders that must be taken into account. The type of the operation and the
parameters to it are created through some auxiliary functions. The main part of
the work is done by MakeStmtForEQO that creates a statement for each possible
execution order. If there is more than one possible execution order, then the
final body is derived by making a non-deterministic statement of these statement
bodies.

Make DFDEzplOp : DFDId x DFDTopo x DFDSig — ExplOp

MakeDFDEzplOp (dfdid, dfdtopo, dfdsig) &
let mk- (in', out, st') = dfdsig (dfdid),

€0s = EzecutionOrders (dfdtopo),

optype = MakeOp Type (dfdsig (dfdid)),

parms = [mk-Patternld (FlowldVarConf (in' (3))) |
t € inds in’],

bodys = {MakeStmiForEO (piseq, dfdid, dfdsig) |
piseq € eos},

body = MakeNonDetStmi (bodys) in

mk-EzplOp (OpldConf (dfdid), optype, parms, body)

The function MakeStmtForEQ is defined recursively. In each recursion step
one data transformer is processed until all data transformers in the given parti-
tion have been incorporated. The strategy is the same as for MakePostEzpr where
a new (independent) data transformer is chosen. The function MakeCallAndPat
creates a call of the operation for the given data transformer and the correspond-
ing pattern against which the call must be matched. If the operation returns a
value (i.e. kind = OPRES), the call is used in a def-statement. Otherwise it is a
call statement which must be included as a part of a sequence of statements.

18 P.G. Larsen, N. Plat and W.J. Toetenel

MakeStmtForEQ : Procld™ x DFDId x DFDSig — Stmt
MakeStmtForEO (piseq, dfdid, dfdsig) 2

let nid = hd piseq,
mk- (call, pat) = MakeCallAndPat (nid, dfdsig (nid)),
kind = FindKind (dfdsig (nid)) in

if len piseq = 1
then let mk- (-, out, -) = dfdsig (dfdid),
return’ = mk-Return (MakeResult (out)) in
if kind = OPRES
then mk-DefStmt (pat, call, return’)
else mk-Sequence ([call, return’])
else let Test = MakeStmtForEO (1 piseq, dfdid, dfdsig) in
if kind = OPRES
then mk-DefStmt (pat, call, rest)
else if is-Sequence (rest)
then let mk-Sequence (sl) = rest in
mk-Sequence ([call] 7 sl)
else mk-Sequence ([call, rest])
pre hd piseq € dom dfdsig

This completes the presentation of the generation of explicit operations. No-
tice that here as well it is possible to mechanize the process such that any DFD
can be transformed into one explicit VDM-SL operation definition that captures
the semantics of the DFD. It is also worth noticing here that when the explicit
specification style is used intermediate values are not visible, but that different
execution orders influence the resulting operations.

5. Conclusions

In this paper we have defined a semantics for DFDs by formally specifying a
transformation from DFDs to VDM specifications. In this section we give a brief
overview of related work in the area of defining semantics for DFDs, and we
conclude with some observations on our work and some ideas for further research.

5.1. Related work

When DFDs were originally introduced, they were presented as a graphical nota-
tion. The intended semantics of this notation was defined verbally, but the need
for a formal base is now more commonly recognized, see e.g. [fHvdW92]. Work
has been done on formalizing DFDs, with the intention of either disambiguat-
ing their meaning, or of using the formal semantics as a base for a combined
formal/structured method.

In [Ran90] a translation back and forth between DFDs and Z specifications is
described. [Ala88] contains an explanation of how DFDs can manually be trans-
formed into an object-oriented design. The paper touches upon some problematic
issues arising in a transformation from DFDs. In [SA] a small example of how a
DFD can be transformed in Z is presented. However, no formal semantics of the
DFDs is presented and it is not clear to what extent the transformation can be
automated. In [BvdW89] some guidelines for how semantics can be attached to

A Formal Semantics of Data Flow Diagrams 19

DFDs are given. It is sketched how DFDs can be transformed into a Petri net vari-
ant combined with path expressions. In [ELP93] a complete semantics is provided
for the Ward and Mellor version of SA/RT by means of high-level timed Petri
nets. Here an executable subset of VDM-SL is also used to describe the mini-
specifications of an SA/RT model. In [AdI88] a semantic base for guiding the
decomposition process in the construction of a hierarchy of DFDs is presented.
This work is based on graph theory in an algebraic setting. Kevin Jones uses
VDM to provide a denotational style semantics of a non-conventional machine
architecture (The Manchester DataFlow Machine) based on data flow graphs
[Jon87]. In [FKV91] a rule-based approach for transforming SA products into
VDM specifications is presented. Their VDM specifications are very explicit and
hard to read, mainly because of the way decision tables have been taken into
account. Polack et al. concentrate on the methodological aspects of combining
SA notations and Z specifications [Pol92], the resulting combination is known as
SAZ. Tse and Pong use extended Petri nets for formalizing DFDs [TP89]. France
discusses an algebraic approach to modeling control-extended DFDs in [Fra92].
In [SFD92| an overview of several approaches to combining SA techniques and
notations with formal methods (including our approach) is given.

The main result of the work presented in this paper with respect to other
work in this area is that we have been able to capture the semantics of a DFD as
a whole in a compositional way at a high level of abstraction, taking into account
the whole hierarchy of DFDs that is created during an SA development, which to
our knowledge has not been done before.

5.2. Status and Perspectives

With respect to the semantics of DFDs in terms of a formal transformation to
VDM specifications the following observations can be made:

¢ An unambiguous interpretation of DFDs is available, which due to the par-
ticular transformation chosen is abstract. Consequently, there are few re-
strictions on the further development of the DFD into a software design.

e The transformation is executable, which opens up possibilities for automati-
cally generating VDM specifications from DFDs. In this way, the initial effort
needed to produce a formal specification is significantly decreased.

¢ The DFDs and their VDM counterparts can be regarded as equivalent views
on the system, using different representations.

A few restrictions apply to our transformation, however. One of these is the
exclusion of concurrent systems, whereas some SA extensions provide facilities for
specifying such systems. We briefly mentioned how some of the DFD constructs
would be interpreted if we had taken concurrency into account. A transformation
from a real-time SA variant to a combination of VDM and e.g. CCS [Mil80], CSP
[Hoa85] or Petri nets [Pet77] would be an interesting area for future research. We
foresee that the main problem in automatically providing a concurrent specifi-
cation description would be that such a description would have a very low level
of abstraction. Intuitively it would be expected that each data transformer is
transformed into a process and that all these processes are executed in parallel.
This would result in a large number of processes due to the number of data
transformers usually present in a DFD.

20 P.G. Larsen, N. Plat and W.J. Toetenel

Concerns might also arise with respect to the size of the class of DFDs having
no cyclic internal data flows and obeying the one-to-one mapping from input
values to output values. In our experience, cyclic data flows are often used to
model error situations which could also have been modeled by means of state
components in data stores. Therefore, most DFDs with such cyclic structures
can be rewritten using only acyclic structures, and therefore we believe that this
restriction is not very important. With respect to the restriction to one-to-one
mappings between input values and output values, we can say that usually the
need for other mappings only occurs when DFDs are used as a design notation,
but not when they are used as an (abstract) specification notation. Therefore,
this restriction cannot be considered very important in our situation.

Acknowledgements

We would like to thank Michael Andersen, Hanne Christensen and John Dawes
for their comments on this paper. We would also like to thank the anonymous
referees of this paper for their useful suggestions for improvement. Peter Gorm
Larsen acknowledges the financial support of the Commission of the European
Communities under the COMETT programme (90/5199-Bc) and the Danish
COWI-foundation.

References

[—92] ——. VDM Specification Language: Proto-Standard (Draft). Document N-246
(1-9), BSI IST/5/-/19 and ISO/IEC JTC1/SC22/WG19, December 1992.

[AdI88] Mike Adler. An Algebra for Data Flow Diagram Process Decomposition. IEEE
Transactions on Software Engineering, SE-14(2):169-183, February 1988.

[AT91] Derek Andrews and Darell Ince. Practical Formal Methods with VDM. McGraw
Hill, 1991.

[Ala88] Bruno Alabiso. Transformation of Data Flow Analysis Models to Object Oriented
Design. In OOPSLA’88 Proceedings, pages 335-353. ACM, November 1988.

[Bea88] Stephen Bear. Structuring for the VDM Specification Language. In R. Jones

R. Bloomfield, L. Marshall, editor, VDM’88; VDM — The Way Ahead, pages 2—
25. Springer-Verlag, March 1988. LNCS 328.

(BJ82] D. Bjgrner and C.B. Jones. Formal Specification & Software Development. Pren-
tice Hall International, 1982.

[BvdW89] P.D. Bruza and Th. P. van der Weide. The Semantics of Data Flow Diagrams.
Technical Report 89-16, University of Nijmegen, The Netherlands, October 1989.

[CYT79] L.L. Constantine and E. Yourdon. Structured Design. Prentice Hall International,
1979.

[Daw91] John Dawes. The VDM-SL Reference Guide. Pitman (London, UK), 1991.

[DeMT79] Tom DeMarco. Structured Analysis and System Specification. Yourdon Press
(New Jersey, USA), 1979.

[ELP93] René Elmstrgm, Raino Lintulampi, and Mauro Pezzé. Giving Semantics to SA/RT
by Means of High Level Timed Petri Nets. Real-Time Systems, 5(2/3):249-272,
May 1993.

[FKV91] M.D. Fraser, K. Kumar, and V.K. Vaishnavi. Informal and Formal Requirements
Specification Languages: Bridging the Gap. IEEE Transactions on Software En-
gineering, SE-17(5):454-466, May 1991.

[Fra92] Robert B. France. Semantically Extended Data Flow Diagrams: A Formal Spec-
ification Tool. IEEE Transactions on Software Engineering, SE-18(4):329-346,
April 1992.

[GS79] Chris Gane and Trish Sarson. Structured Systems Analysis: Tools and Techniques.

Prentice Hall International, 1979.

A Formal Semantics of Data Flow Diagrams 21

[Hoa85]

[Jon87]

[Jon90]

[LAMBS]

[Las93]

[LN86]
[LvKP+93]

[Mil80]
[Pet7T7]

[Pol92]

[PvKP91]

[Ran90]

[SA]

[SFD92]

[tHvdW92]

[TP89)]
[WM85]

[YouT75]

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

K.D. Jones. A Formal Semantics for a Dataflow Machine. In C.B. Jones D. Bjgrner,
editor, VDM’87; VDM - A Formal Method at Work, pages 331-355. Springer-
Verlag, March 1987. LNCS 252.

C.B. Jones. Systematic Software Development using VDM (2nd edition). Prentice
Hall International, 1990.

Peter Gorm Larsen, Michael Meincke Arentoft, Brian Monahan, and Stephen Bear.
Towards a Formal Semantics of The BSI/VDM Specification Language. In Ritter,
editor, Information Processing 89, pages 95-100. IFIP, North-Holland, August
1989.

Poul Bggh Lassen. IFAD VDM-SL Toolbox. In J.C.P. Woodcock and P.G. Larsen,
editors, FFME’93: Industrial-Strength Formal Methods, page 681, Berlin Heidel-
berg, April 1993. Springer-Verlag.

G. Longworth and D. Nicholls. SSADM Manual. NCC, December 1986.

Peter Gorm Larsen, Jan van Katwijk, Nico Plat, Kees Pronk, and Hans Toetenel.
SVDM: An Integrated Combination of SA and VDM. In Proc. of the Methods
Integration Conference, Leeds, UK, September 1991 (to appear), 1993.

A.J.R.G. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
LNCS 92.

J.L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223-252, September
1977.

Fiona Polack. Integrating Formal Notations and Systems Analysis: using Entity
Relationship Diagrams. IEE/BCS Software Engineering Journal, 7(5):363-371,
September 1992.

Nico Plat, Jan van Katwijk, and Kees Pronk. A Case for Structured Analy-
sis/Formal Design. In VDM’91; Formal Software Development Methods, pages
81-105. Springer-Verlag, 1991. LNCS 551.

G.P. Randell. Translating Data Flow Diagrams into Z (and Vice Versa). Techni-
cal Report 90019, Procurement Executive, Ministry of Defence, RSRE, Malvern,
Worcestershire, UK, October 1990.

Lesley Semmens and Pat Allen. Using Entity Relationship Models as a basis for
Z Specifications.

L.T. Semmens, R.B. France, and T.W.G. Docker. Integrated Strudtured Analy-
sis and Formal Specification Techniques. The Computer Journal, 35(6):600-610,
December 1992.

A H.M. ter Hofstede and T.P. van der Weide. Formalization of Techniques: Chop-
ping Down the Methodology Jungle. Journal of Information and Software Tech-
nology, 34(1):57-65, January 1992.

T.H. Tse and L. Pong. Towards a Formal Foundation for DeMarco Data Flow
Diagrams. The Computer Journal, 32(1):1-12, January 1989.

Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time
Systems. Yourdon Press (New Jersey, USA), 1985.

E. Yourdon. Techniques of Program Structure and Design. Prentice Hall Interna-

tional, 1975.

