
Towards Veri�ed SystemsOVERVIEW
Jonathan Bowen (Ed.)

October 7, 1993DRAFT CHAPTER BY MJCG

Contents1 State transition assertions: a case study 31.1 An example: Mult : 41.1.1 Overview : 41.1.2 Informal speci�cation of Mult : 51.1.3 MultProg: an implementation of Mult : : : : : : : : : : : : : : : : 61.2 More detailed speci�cation of Mult : 71.3 Determining a machine from a program : 71.4 State transition assertions : 101.4.1 Holding states : 111.5 Formal speci�cation of Mult : 121.6 Correctness of MultProg : 141.7 Generating atomic STAs : 141.8 Laws for combining STAs : 171.8.1 The consequence rule : 171.8.2 The sequencing rule : 171.8.3 Cases rules : 181.8.4 The wait loop rule : 181.8.5 The while rule : 201.9 Conclusions : 22Bibliography 24
1

2 CONTENTS

Chapter 1State transition assertions:a case studyM.J.C. GordonOverviewThe temporal behaviour of programs that interact with their environment depends onthe compiler used and the timing characteristics of the host processor. Working out thedetails can be messy. As part of the safemos project, an approach to managing thiscomplexity based on special-purpose theorem proving tools, has been developed. Speci-�cations are written in a state transition notation annotated with real-time constraints.Implementations are programs coded in a simple imperative language with assignments,sequencing, conditionals, asynchronous inputs, wait-statements, while-commands andforever-loops. The meaning of programs is de�ned by a translation to sequences of ma-chine instructions, but automated tools can derive behavioural abstractions, called statetransition assertions (or STAs) that enable reasoning to be conducted near the sourceprogram level.At the core of the approach are a number of `laws' for combining STAs. These arederived from the de�nition of state transition assertions and are thus theorems rather thanaxioms. These laws combine aspects of Hoare logic [4] and interval temporal logic [3]. Aspecialized theorem prover automatically generates STAs that describe the behaviour ofa program considered as a sequence of assignments and jumps (see Section 1.3). Semi-automatic tools then combine these `atomic STAs' to derive STAs for straight line codesegments and certain looping structures, including wait loops. Finally, a user interactivelycombines these derived STAs to establish properties of the candidate implementation.The machine used in the semantics is idealized: it has an unbounded stack and un-speci�ed word-size. Some mechanized tools have been implemented to enable the actualresources required by a given program to be analysed (e.g. to determine the maximumstack depth). After such an analysis has been carried out, a �nite machine customizedto the program and suitable for physical realization can be computed. It is intended thatsuch machines will implemented directly in hardware (e.g. with �eld programmable gate3

4 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYarrays) or via a software emulation; in both cases it is necessary to prove that the abstractmachine used as a semantic base is correctly implemented. The physical realization ofabstract machines is not considered here.1.1. An example: MultThe example program studied here implements a reactive system which is required tomeet hard real-time constraints. It is also required to be resettable from an arbitraryprocessor state within a hard real-time bound; this is intended to support fault recoveryprotocols. The approach adopted is to count the number of machine cycles taken by thecompiled code. This very �ne-grained kind of analysis may be quite inappropriate insome situations; intended applications include low-level communication software, criticalsystems requiring very rapid responses and the software emulation of hardware functions.The example in this chapter illustrates aspects of all of these.Programs use a very simple low-level input/output model. Inputs are `asynchronously'supplied by the environment, outputs are `memory mapped'. When an input is read, theprogram gets whatever value the environment happens to be o�ering at the time of theread. For example, inputs might be provided directly by a sensor. It is assumed inputs aredigitized, but not that they are latched. Outputs, on the other hand, are identi�ed withparticular program variables whose values are assumed to remain stable until changed.Thus outputs are latched. This particular treatment of input/output was chosen fortwo reasons: it corresponds to a simple physical implementation and it can be used tomodel more complex regimes. For example, a regime in which inputs are latched wouldbe modeled by requiring the environment to hold inputs stable between input events.The example in this chapter may be viewed as a study of the �ne detail underlying aparticular kind of synchronized communication. Juanito Camilleri has studied this topicmore generally, with the eventual aim of producing a veri�ed implementation of occam-style synchronized communication in terms of the simple input/output model describedhere [1].1.1.1. OverviewMult is a multiplier that reacts with the environment via a four-phase handshake. The�rst phase is a request by the environment that two numbers be read from input lines;the second phase is the reading of these by the program; the third phase is the initiation,by the environment, of the multiplication of the two numbers read in during the secondphase; the fourth phase is the computation of the product. At the end of such a cycle theprogram outputs the computed product whilst awaiting the �rst phase of a new cycle.The �rst three phases all take place within a �xed time bound; the duration of the fourthphase depends on the size of the numbers being multiplied.

1.1. AN EXAMPLE: MULT 51.1.2. Informal speci�cation of MultMult has two data inputs in1 and in2 that carry numbers.1 It has two control inputsreq and reset that carry truthvalues (i.e. single bits). It has one numerical data outputout and one boolean2 control output avail.In the normal operation of Mult there are just four possibilities, corresponding to thefour phases of the handshake: (i) it is waiting to engage in a handshake; (ii) it is readinginputs; (iii) it is waiting to start a multiplication; (iv) it is performing a multiplication.Both (i) and (iii) are `wait states': the waiting will continue inde�nitely until the environ-ment sends the appropriate signal via the req input (see below). The other possibilities,(ii) and (iv), are transitions between waiting states.It is required that no matter what state the host processor is in, if the environmentholds reset at the value 1 continuously for �1 cycles, then the system Mult will be resetto the state (i) of waiting to engage in a handshake. In this state the value output onavail is 1.The environment signals the start of a handhake by changing the input req from 0 to 1.When this happens, it is required that the system will input the values, m and n say, oninputs in1 and in2 and move to a state in which it is waiting to start the multiplicationof m and n. This inputting transition is required to complete within �2 processor cycles.The system will then wait, outputting 0 on avail, until the environment sets the inputreq to 0. When that happens the system will compute m � n, output this value on out,and then return to the initial state. This multiplication transition is required to takeplace within �3(m) cycles. The timing parameters �1 and �2 are given numbers and �3 isa given function.This speci�cation requires that if Mult is waiting to engage in a handshake, then theproduct m�n can be computed in �2+�+�3(m) machine cycles, where � is the number ofmachine cycles taken by the environment to set req to 0 after m and n have been input.But how can the environment know when Mult is in the state of waiting to engage in ahandshake? It is speci�ed that in this state avail has value 1, but the converse is notnecessarily the case. For example, the value of avail will continue to be 1 for a short timeafter the environment sets req to 1, i.e. during the �rst part of phase (ii) of the handshake.It is tempting to require in the speci�cation that avail be 1 if and only if the system iswaiting to engage in a handshake, but such a speci�cation would be unimplementable.This is because there will always be time delays in sensing environmental changes and thencommunicating the results to outputs, hence there will always be times at which internalstate changes have occurred, but not yet been signalled on outputs. In general, whentiming is considered, it is not possible to characterize internal states by instantaneousvalues on outputs. However, if inputs and outputs are observed over a sequence of cycles,then conclusions about internal states can be drawn. For example, if the input reset hasbeen 1 for �1 cycles, then the speci�cation requires the system to be waiting to engage ina handshake.1For simplicity, arbitrary-precision (i.e. `mathematical') numbers are used here but, at the expense ofsome arithmetical messiness, �nite-precision numbers could have been used instead.2The truthvalues T and F will be represented by the numbers 1 and 0, respectively, because the program-ming language used only supports one data type: the natural numbers N.

6 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.1.3. MultProg: an implementation of MultHere is a program that implements Mult.0: MultProg =1: FOREVER2: avail := 1;3: IF INPUT req4: THEN avail := 0;5: x := INPUT in1;6: y := INPUT in2;7: AWAIT[NOT(INPUT req); INPUT reset];8: out := 0;9: IF (x=0) OR (y=0)10: THEN SKIP11: ELSE WHILE (x > 0) AND NOT(INPUT reset)12: DO out := out + y;13: x := x - 114: OD15: avail := 116: ELSE SKIPThe command FOREVER C is an abbreviation for WHILE TRUE DO C . The commandAWAIT[E1; : : : ; En] loops until one of E1, : : :, En becomes true (i.e. has the value 1) andthen control moves to the next command. Evaluating an expression INPUT i reads thecurrent value o�ered by the environment at input i and returns the result. Outputsare identi�ed with program variables, so are set by assignment. The other constructs inMultProg should be self-explanatory.Note that there is some arbitrariness in the placement of assignments. The occurrence ofavail:=1 on line 2 could be moved to before the FOREVER-loop. The assignment avail:=0is performed before the inputs in1 and in2 are read, however the speci�cation onlyrequires avail to be 0 when Mult is waiting to start the multiplication. The veri�cationgiven here also works if avail:=0 is performed after the two reads, or even between them(perhaps this indicates that the speci�cation is inadequate: maybe it should be requiredthat the inputs remain stable only as long as avail is 1).MultProg works as follows: initially it is waiting to engage in a handshake by loopingbetween lines 2, 3 and 16 in the outer FOREVER-loop. If the input req is 1 then eventuallythe test at line 3 will be reached and then lines 4, 5 and 6 will be executed in sequenceresulting in avail being set to 0 and the values at inputs in1 and in2 being read intothe variables x and y, respectively. The program will then loop at the AWAIT-commandat line 7. If either req is 0 or reset is 1 this command will terminate, control will moveto line 8 and the multiplication will begin with out being initialized to 0. If either of thetwo numbers to be multiplied are 0, then nothing needs to be done (line 10), avail is setback to 1 (line 15) and the system is ready again to engage in a handshake. However, ifeither of x or y is non-zero, then the product is computed in out by repeatedly adding yto out (lines 11|14). Note that each time around this WHILE-loop, reset is tested and iffound to be 1 the loop is terminated. Once the loop is terminated, which (in the absenceof a 1 at reset) will be in a time proportional to the value read into x, avail is set to1 (line 15) and control returns to the outer loop (lines 2, 3, and 16) and the system isready to engage in another handshake, i.e. is back in phase (i).It is clear by inspection, that if reset is held at 1 for su�ciently long then control willeventually move to the outer FOREVER-loop. This is because all loops test reset.

1.2. MORE DETAILED SPECIFICATION OF MULT 71.2. More detailed speci�cation of MultThe view of real-time systems taken here is that they are sequential machines. Aspeci�cation places requirements on the behaviour of a machine and an implementationis an actual machine that meets these requirements. The reason for this rather concreteapproach is to try to minimize the gap between abstract models of behaviour and realmachines. The device that ultimately runs programs implements a sequential machine,so it helps tie the hardware and software veri�cations together if they both use the samekind of behavioural model.A machine is a function M : inputs ! (state ! state). M should be thought of asan instruction processor: if the environment o�ers an array of inputs � and the currentstate is �, then executing the next instruction results in the state M � � . The state willinclude a program counter and a memory that associates state variables with data values.This memory is a function from names to values (i.e. numbers). Inputs too are modelledby functions from names to values. It is assumed that at each moment the environmentspeci�es a value � i for each input i, i.e. it determines a mapping � : name ! N, thatvaries with time. For any particular system there will only be a small �nite numberof inputs (in1, in2, req and reset for Mult), but this fact does not need to be built-in to the general theory. It will be assumed that some state variables are readable bythe environment (avail and out for Mult). During each cycle of execution of M, aninstruction is selected and executed, resulting in a new state. If the instruction is aninput, then this new state will depend on the inputs supplied by the environment.In what follows, it is �rst shown how the program MultProg in Section 1.1.3 determinesa machine and then how the informal speci�cation Mult in Section 1.1.2 can be expressedas a predicate on machines. Finally, a method is outlined for proving that programs meetspeci�cations and it is illustrated using MultProg and Mult.1.3. Determining a machine from a programIt is straightforward to de�ne a function that recursively translates a program to asequence of assignments and conditional jumps. For example, one particular algorithmtranslates MultProg to:0: avail := 11: IF INPUT req THEN SKIP ELSE GOTO 182: avail := 03: x := INPUT in14: y := INPUT in25: IF NOT(INPUT req) THEN SKIP ELSE GOTO 76: GOTO 107: IF INPUT reset THEN SKIP ELSE GOTO 98: GOTO 109: GOTO 510: out := 011: IF NOT x OR NOT y THEN SKIP ELSE GOTO 1312: GOTO 1713: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 1714: out := out + y15: x := x - 116: GOTO 1317: avail := 118: GOTO 0

8 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAssignments and conditional jumps require the evaluation of an expression, which maybe arbitrarily large, and thus take an arbitrary amount of time to evaluate. It is thusnot immediately clear how a sequence of assignments or jumps can be directly repre-sented by a machine. Another tricky issue concerns input. Consider the conditionaljump on line 13: the exact time at which reset is read depends on how the expressionx > 0 AND NOT(INPUT reset) is evaluated.To specify the detailed semantics of expression evaluation, programs will be furthertranslated to sequences of instructions for a simple stack machine with the followinginstruction set.JMP n unconditional jump to instruction nJMZ n pop stack then jump to instruction n if the result is zeroJMN n pop stack then jump to instruction n if the result is non-zeroPOP pop the top of the stackOP0 v push v onto the stackOP1 op1 pop one value from stack, perform unary operation op1, push resultOP2 op2 pop two values from stack, perform binary operation op2, push resultGET x push the contents of memory location x onto the stackINP i push the input from i onto the stackPUT x pop the top of the stack and store the result in memory location xIt is straightforward to de�ne a translation of assignments and jumps to sequences ofmachine instructions. For example, the conditional jump at line 13 is translated to thefollowing sequence of stack machine instructions:GET xOP0 0OP2 >INP resetOP1 NOTOP2 ANDJMZ ...It will be assumed that the operations >, NOT and AND can be performed in one machinecycle, thus the stack machine code determines that x > 0 AND NOT(INPUT reset) takes7 cycles, and the input occurs on the 4th cycle.The state of the stack machine is a triple (pc; stk ;mem) consisting of a program counterpc : N, a stack stk : seqN and a memorymem : name ! N. The model given here does notspecify an upper bound on the length of the stack or size of data. Of course, real machinesare �nite so any actual implementation will have a bounded stack and a particular wordsize. The intension is to provide tools that `�t' a given program into a �nite re�nementof the machine; this will not be discussed in detail here (though see the example statetransition assertion in Section 1.4).The semantics of the instructions of the stack machine is de�ned by a function Step. Be-fore de�ning Step, some auxiliary notation is required. A conditional `if b then e1 else e2'will be written as (b ! e1 j e2). The empty sequence is denoted by h i, hx i denotesthe sequence with one member, x and hx1; x2; : : : ; xni denotes the sequence (of length n)containing x1, x2, : : :, xn . The length of a sequence s is denoted by #s. The nth element

1.3. DETERMINING A MACHINE FROM A PROGRAM 9of a sequence s will be denoted by s n and the tail of s will be denoted by ys . Thetail of h i is de�ned to be h i (sequences will be used to represent stacks and the stackmanipulating instructions are speci�ed so that popping an empty stack leaves an emptystack). The concatenation of sequences s1 and s2 will be denoted by s1 a s2. Note thatthe result of `consing' x onto a sequence s is hx ia s. If mem is a function representing amemory (i.e. a function from names to values), then Store v x mem denotes the memoryidentical to mem except on argument x , which it maps to v , i.e. the memory updatedwith value v at x .The function Step can now be de�ned. Its type is:Step : instruction ! (inputs ! state ! state)where:inputs = name ! Nstate = program�counter � stack � memoryprogram�counter = Nstack = seq Nmemory = name ! NStep is de�ned by:Step (JMP n) � (pc; stk ;mem) = (n; stk ;mem)Step (JMZ n) � (pc; stk ;mem) = ((stk 1 = 0 ! n j pc+1); ystk ;mem)Step (JMN n) � (pc; stk ;mem) = ((stk 1 = 1 ! n j pc+1); ystk ;mem))Step (POP) � (pc; stk ;mem) = (pc+1; ystk ;mem)Step (OP0 v) � (pc; stk ;mem) = (pc+1; hvi a stk ;mem)Step (OP1 op1) � (pc; stk ;mem) = (pc+1; hop1(stk 1)i a ystk ;mem)Step (OP2 op2) � (pc; stk ;mem) = (pc+1; hop2(stk 2; stk 1)i a yystk ;mem)Step (GET x) � (pc; stk ;mem) = (pc+1; hmem x i a stk ;mem)Step (INP i) � (pc; stk ;mem) = (pc+1; h� iia stk ;mem)Step (PUT x) � (pc; stk ;mem) = (pc+1; ystk ;Store (stk 1) x mem)The machine Machine instrs determined by a sequence of instructions instrs is de�nedby:Machine instrs � (pc; stk ;mem) =(pc < #instrs ! Step (instrs(pc+1)) � (pc; stk ;mem) j (0; stk ;mem))The reason for pc+1 is because the program counter starts at 0 not 1. Note that if theprogram counter pc points outside the program (i.e. pc � #instrs) then the machinejumps to 0.If P is a program, let Compile P denote the translation of P to stack machine in-structions; this is the composition of the translation to assignments and jumps withthe translation of these to machine instructions. The machine determined by P is thusMachine(Compile P). For example, the machine corresponding to MultProg is denoted byMachine(Compile MultProg); this will be called MultMachine.

10 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.4. State transition assertionsSpeci�cations are formalized as predicates on machines. The informal speci�cation ofMult given in Section 1.1 involved a number of transitions between wait states. Thesecan be represented using a kind of assertion, called a state transition assertion (or STA),that combines aspects of the `leads-to' and `until' operators of temporal logic and alsoresembles a state delta [5]. The general form of an STA is:M j= A QP > Bwhere:� M : inputs ! state ! state is a machine;� A : state ! B is called the state precondition;� B : state ! B is called the state postcondition;� P : seq inputs ! B is called the input precondition;� Q : seq state ! B is called the output postcondition.The intuition behind state transition assertions is straightforward: if M is in a statesatisfying A and a sequence of inputs arrives that satis�es P , then a state satisfying B willbe reached and the sequence of intermediate states will satisfy Q . The formal de�nitionis slightly delicate as it has to cover the possibility that inputs start to arrive satisfyingP , but then stop satisfying it before a state satisfying B is reached. A trace of machineM is an in�nite sequence h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i such that �m+1 = M �m �mfor all m. It is an A-trace i� A �0. Observe that the state entered byM after a sequence�0, : : : , �n of inputs have arrived is �n+1. Thus the machine generates the sequenceh�1; : : : ; �n ; �n+1i of states from the inputs �0, : : : , �n . With this observation in mind, thefollowing auxiliary concepts are de�ned.� B succeeds at n in trace h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� B �n+1.� P fails at n in trace h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� :Ph�0; : : : ; �ni.� Q holds until n in trace h(�0; �0); (�1; �1); : : : ; (�n ; �n); : : :i i� Qh�1; : : : ; �mifor all m such that 1 � m � n+1.The state transition assertion:M j= A QP > Bholds i� for every A-trace � of M there exists an n such that (i) either B succeeds at nin � or P fails at n in � and (ii) Q holds until the �rst such n in � .An example of a state transition assertion is shown below using a number of notationalconventions that are explained immediately afterwards. It is true of a machine M if

1.4. STATE TRANSITION ASSERTIONS 11whenever the predicate Available is true and the variables x, y, z have the values x , y, zrespectively, then as long as the reset line keeps at 0, a sequence of steps of length lessthan � x will be traversed in which y remains stable with value y, Available is false andthe length of the stack is less than d. Furthermore, the sequence ends in a state in whichAvailable is false, x is 0, y is y and z is x � y.M j= Availablex � xy � yz � z By(� x)264 y � y:AvailableStackMax d 375[reset � 0] > :Availablex � 0y � yz � x � yVertical stacking means conjunction. The notation v � x (where v is a name and x avalue) is overloaded; it is used both for predicates on states and for predicates on inputs:(v � x)(pc; stk ;mem) =def mem(v) = x(v � x)� =def �(v) = xStackMax m is true of a state if the length of the stack is less than m.StackMax m (pc; stk ;mem) =def #stk � mIf � is either a state or an input,M is either a predicate on states or a predicate on inputs,then:(:M)� =def :(M �)[M]h�1; : : : ; �ni =def M �1 ^ : : : ^M �n(By m)h�1; : : : ; �ni =def n � mThe notation [M] asserts that M holds at all points in a sequence, so it is analogous tothe modal formula 2M . As a mnemonic, think of sawing the box operator 2 in two andwriting the �rst half before M and the other half after M .1.4.1. Holding statesPart of the speci�cation of Mult is that it remain waiting to engage in a handshake aslong as the request line req is 0. If `waiting to engage in a handshake' is represented bythe predicate Available, then this part of the speci�cation can be represented by:Mult j= Available By 1[req � 0]> Availablewhich will be abbreviated to:Mult j= req � 0 Holds Availablenotice that \By 1" means \1 host machine cycle" not \1 program step" (whatever thatmight mean).

12 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYWhilst Mult is waiting to engage in a handshake it should be outputting the resultof the previous handshake on out and outputting 1 on avail. Therefore in the actualspeci�cation given in Section 1.5, instead of the predicate Available, a parameterizedpredicate Ready z is used, with the interpretation \ready to engage in a handshake whilstoutputting z on out and 1 on avail". In general, waiting states are characterized by aparameterized predicate (e.g. Ready z , see Section 1.8.4), an invariant (e.g. avail � 1 andout � z) and a holding condition (e.g. req � 0). In the diagram representing the formalspeci�cation of Mult, the existence of such a waiting state is represented graphically by:Ready zavail � 1out � zreq � 0This abbreviates the conjunction of an STA representing the holding condition and aformula expressing the invariant (which uses the logical operators ^ and =) which areexplained below).Mult j= req � 0 Holds (Ready z) ^ Ready z =) avail � 1 ^ out � zwhere, letting � range over states or inputs as before:(M1 ^ M2)� =def (M1 �) ^ (M2 �)(M1 =) M2) =def 8� : (M1 �)) (M2 �)Other similar notation used later includes:True � =def T(M1) M2)� =def M1 �) M2 �(M1 _ M2)� =def M1 � _ M2 �(9x : M x)� =def 9 x : (M x)�(P1 ^ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni ^ P2h�1; : : : ; �ni(P1 _ P2)h�1; : : : ; �ni =def P1h�1; : : : ; �ni _ P2h�1; : : : ; �niNotice that there are three di�erent kinds of implication: ordinary logical implication)and two relations between predicates) and =). The relations between predicates areconnected by M1 =) M2 = 8� : (M1) M2)�.1.5. Formal speci�cation of MultA program implementing Mult must be able to cycle within two sets of states repre-senting waiting to engage in a handshake and waiting to start a multiplication. Thusthe formal speci�cation asserts the existence of two predicates representing these sets ofstates. In addition, an implementation must support various invariants and transitions,which can be expressed using STAs. The complete speci�cation can be represented bythe following diagram, which represents a conjunction of STAs (details below).

1.5. FORMAL SPECIFICATION OF MULT 13True By �1[reset � 1]> Ready zavail � 1out � zreq � 0 By �2[out � z]2664 req � 1reset � 0in1 � xin2 � y 3775> Ack x y zavail � 0x � xy � yout � zreq � 1 By(�3 x)� req � 0reset � 0 �> Ready(x � y)avail � 1out � x � yreq � 0The predicate Ready z is true of states that are passed through whilst waiting to engagein a handshake. During this waiting, out has value z . The predicate Ack x y z is trueof states that are passed through whilst waiting to start a multiplication. During thiswaiting x, y, z have the values x , y, z , respectively. This diagram de�nes a predicateMultSpec(�1; �2; �3) on machines M by the following formula (the abbreviations Reset,ReadyInv, ReadyHold, ReadyToAck, AckInv, AckHold, AckToReady are explained later).MultSpec (�1; �2; �3) M =9Ready Ack :(M j= Reset(�1;Ready)) ^(8 z : ReadyInv(Ready; z)) ^(8 z : M j= ReadyHold(Ready; z)) ^(8 x y z : M j= ReadyToAck(�2;Ready;Ack ; x ; y; z)) ^(8 x y z : AckInv(Ack ; x ; y; z)) ^(8 x y z : M j= AckHold(Ack ; x ; y; z)) ^(8 x y z : M j= AckToReady(�3;Ready;Ack ; x ; y; z))The reset condition Reset(�1;Ready) asserts that if reset is held equal to 1 for at least�1 then the system will be in a state satisfying Ready z , for some z .Reset(�1;Ready) =def True By �1[reset � 1]> 9z : Ready zStates satisfying Ready z should output 1 on avail and z on out.ReadyInv(Ready; z) =def Ready z =) avail � 1 ^ out � zStates continue to satisfy Ready z as long as req is 0.ReadyHold(Ready; z) =def req � 0 Holds (Ready z)If the system is in a state satisfying Ready z and for at least �2 cycles req is held at 1,reset at 0, in1 at x and in2 at y, then the system will be in a state satisfying Ack x y z .ReadyToAck(�2;Ready;Ack ; x ; y; z) =def Ready z By �2" req � 1 ^ reset � 0in1 � x ^ in2 � y #> Ack x y z

14 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYStates satisfying Ack x y z should output 0 on avail and x , y, z on x, y, out, respectively.AckInv(Ack ; x ; y; z) =def Ack x y z =) avail � 0 ^ x � x ^ y � y ^ out � zStates continue to satisfy Ack x y z as long as req is 1 and reset is 0.AckHold(Ack ; x ; y; z) =def (req � 1 ^ reset � 0) Holds (Ack x y z)If the system is in a state satisfying Ack x y z and then for at least �3 x , req is held at0 and reset at 0 then the system will be in a state satisfying Ready(x�y).AckToReady(�3;Ready;Ack ; x ; y; z) =def Ack x y z By(�3 x)[req � 0 ^ reset � 0]> Ready(x�y)1.6. Correctness of MultProgThe program MultProg is correct if the machine, MultMachine, that it de�nes satis�esthe predicate MultSpec(�1; �2; �3). In fact, it follows that:MultSpec (43; 13; � x : 30 + (15 � x)) MultMachinewhich establishes correctness with the timing parameters �1 = 43, �2 = 13 and the function�3 de�ned by �3 x = 30 + (15 � x).The rest of this chapter is devoted to outlining how such correctness results can beproved. Mechanized theorem proving tools are used since there is a large amount of detailin even small examples.31.7. Generating atomic STAsThe program is translated to a sequence of intermediate commands that are either as-signments or jumps and then two STAs are generated for each intermediate command.The �rst of these describes transitions from the beginning of a comand to its end; the sec-ond describes transitions from anywhere inside the command to its end. Before explainingthis the formalization of \beginning", \inside" and \end" must be given.Figure 1.1 shows both the intermediate commands and the �nal machine instructionsfor MultProg. Consider the intermediate command with number 13: the beginning ofthis is the machine instruction numbered 27 (i.e. GET x) and the end of it is after themachine instruction numbered 33 (i.e. JMP 42). The execution of MultProg is said to beinside intermediate command number 13 if it is executing a machine instruction whosenumber is in the set f27; 28; 29; 30;31; 32; 33g. Both intermediate commands and ma-chine instructions will be indexed by their position. A program P de�nes, via the com-piler, a mapping Positions(P) from command numbers to instruction numbers in whicheach command number is mapped to the number of its �rst instruction. For example,Positions(MultProg) is the following mapping.3383,547 primitive inference steps were performed, mostly automatically, to verify MultProg.

1.7. GENERATING ATOMIC STAS 15
0: avail := 1 .. 0: OP0 11: PUT avail1: IF INPUT req THEN SKIP ELSE GOTO 18 2: INP req3: JMZ 442: avail := 0 .. 4: OP0 05: PUT avail3: x := INPUT in1 .. 6: INP in17: PUT x4: y := INPUT in2 .. 8: INP in29: PUT y5: IF NOT(INPUT req) THEN SKIP ELSE GOTO 7 10: INP req11: OP1 NOT12: JMZ 146: GOTO 10 ... 13: JMP 187: IF INPUT reset THEN SKIP ELSE GOTO 9 14: INP reset15: JMZ 178: GOTO 10 ... 16: JMP 189: GOTO 5 .. 17: JMP 1010: out := 0 .. 18: OP0 019: PUT out11: IF NOT x OR NOT y THEN SKIP ELSE GOTO 13 20: GET x21: OP1 NOT22: GET y23: OP1 NOT24: OP2 OR25: JMZ 2712: GOTO 17 ... 26: JMP 4213: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP2717: avail := 1 .. 42: OP0 143: PUT avail18: GOTO 0 .. 44: JMP 0Figure 1.1. Intermediate commands and machine instructions for MultProg

16 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYf0 7! 0; 1 7! 2; 2 7! 4; 3 7! 6; 4 7! 8; 5 7! 10; 6 7! 13;7 7! 14; 8 7! 16; 9 7! 17; 10 7! 18; 11 7! 20; 12 7! 26; 13 7! 27;14 7! 34; 15 7! 38; 16 7! 41; 17 7! 42; 18 7! 44gRecall that the state of the stack machine is a triple (pc; stk ;mem) consisting of a programcounter pc : N, a stack stk : seqN and a memory mem : name ! N. De�ne:At(P) n (pc; stk ;mem) = (pc = Positions(P)(n))In(P) n (pc; stk ;mem) = (Positions(P)(n) � pc < Positions(P)(n + 1)) .Then At(P)n is the predicate on states that is true of � i� � is at the beginning of theintermediate command numbered n in program P and In(P)n is the predicate on statesthat is true of � i� � is inside command n.Consider a program P containing an assignment at position n2::n1: : : :n2: x := ((INPUT in) + y)n3: : : ::Given a list of signi�cant state variables (e.g. x, y and z), the STA generator will auto-matically deduce two STAs for the command at n2:Machine(Compile P) j= At(P) n2x � xy � yz � z By 4264 In(P) n2y � yz � z 375[in � in] > At(P) n3x � in+yy � yz � zMachine(Compile P) j= In(P) n2x � xy � yz � z By 4264 In(P) n2y � yz � z 375True > At(P) n3y � yz � zThe �rst of these asserts that if the input in is held stable with value in, then thereis a transition taking at most four cycles from the beginning of the comand at n2 to thebeginning of the command at n3. During this transition only states in n2 are passedthrough and the values of y and z are unchanged, but the value of x changes to in+y,where y is the value of the variable y.The second of these asserts that under arbitary input conditions, there is a transitionfrom anywhere in n2 to the begining of n3. This transition takes at most four cycles, onlypasses through states in n2 and doesn't change the values of x and y.The implemented tool also automatically proves that the stack will grow by at mosttwo during the transition, but because this feature is not used in the Mult example thedetails are not discussed here.

1.8. LAWS FOR COMBINING STAS 17The �rst stage in verifying MultProg is to generate two STAs for each of the nineteenintermediate commands. The result of this will not be shown here due to lack of space.Note, however, that users of the veri�cation tool are not expected to have to study theseatomic STAs in detail; they are fed into other tools that derive higher level results. Thesetools combine the atomic STAs using various derived laws.1.8. Laws for combining STAsSome of the laws for combining STAs are analogous to rules of Hoare logic. In what fol-lows P , Q etc. will range over predicates on sequences, p, q etc. will range over predicateson the elements of sequences and A, B etc. will range over predicates on states.Each law applies to an arbitrary machine. For conciseness, \M j=" has been omittedfrom STAs in the hypothesis and conclusion of the laws.1.8.1. The consequence ruleThe following is similar to the rule of consequence of Hoare logic. It allows preconditionsto be strengthened and postconditions to be weakenedA0 =) A P 0 =) P A QP > B B =) B 0 Q =) Q 0A0 Q 0P 0 > B 01.8.2. The sequencing ruleThe sequencing rule allows sequences of transitions to be combined into a single longtransition. A By �1 ^ [q1][p1] > B B By �2 ^ [q2][p2] > CA By(�1+�2) ^ [q1 _ q2][p1 ^ p2] > CThis rule requires that the input preconditions [p1] and [p2] are conjoined in the conclusion,so that both p1 and p2 are required to hold throughout the combined transition. Thisis su�cient for the Mult example, but a stronger rule would have [p1];[p2] as the inputprecondition of the conclusion, where ; is a chop operator of interval temporal logic [3].

18 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY1.8.3. Cases rulesThere are two cases rules. One for case analysis of state preconditions:A1 QP > B A2 QP > BA1 _ A2 QP > Band the other for case analysis of input preconditions:A QP1 > B A QP2 > BA QP1 _ P2> BA combination of sequencing and cases can be used to establish the resetting behaviour:MultMachine j= True By 43[reset � 1]> At(MultProg) 0The argument proceeds by �rst splitting the universally true predicate True into a20-way disjunction asserting that control is either outside the program or is inside oneof the intermediate commands. For each case, the sequencing rule applied to atomicSTAs can be used to show that under the assumption of reset � 1 the postconditionAt(MultProg) 0 is eventually achieved. Showing these amounts to symbolic executionfrom an arbitrary starting position. The results of each of these cases are combined usinga cases rule. Although there is a substantial amount of detail, a reset-analysis tool hasbeen implemented that performs the proof automatically.1.8.4. The wait loop ruleThe next STA rule enables the existence of wait states to be deduced. Unfortunately therule is rather complicated and contains a number of hypotheses that are hard to motivatein a general way (their necessity only becomes apparent when the detailed derivation ofthe rule is considered, which is not done here).To see why waiting states can be rather subtle consider MultSpec. To meet this speci-�cation it is necessary to have a predicate, Ready z say, that satis�es bothReady z =) (avail � 1 ^ out � z)and req � 0 Holds (Ready z)Consider now the execution of MultProg when it is waiting to start a handshake. It willbe cycling between intermediate commands 0, 1 and 18 waiting for req to become 1 (seeFigure 1.1). Abbreviate In(MultProg) to In. Perhaps Ready z could be de�ned by:Ready z =def ? (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)

1.8. LAWS FOR COMBINING STAS 19Unfortunately this de�nition will not ensure req � 0 Holds (Ready z). To see thissuppose control is at machine instruction 3 (JMZ 44), avail is 1 and out is z . Thepredicate In 1 will be true (since machine instruction 3 is part of intermediate command1) and hence Ready z is true. Suppose now that the environment makes input req be 0. Ifreq � 0 Holds (Ready z) then the next state of the machine (i.e. the one after executingJMZ 44) must satisfy Ready z , however this will only be the case if the top of the stackcontains 0, which will only be the case if req were true on the previous cycle (i.e. whenINP req was executed). Thus req being 0 at instruction 3 does not ensure that Ready zis held. It is necessary to assume that the top of the stack is 0 rather than that the inputreq is 0. Thus the de�nition of Ready given above will not work. The solution used bythe wait loop rule is to de�ne Ready z to be true of a state � if � is reachable from astate satisfying At 1 via a trace in which all the intermediate states satisfy the invariantavail � 1 ^ out � z and all the intermediate inputs satisfy req � 0. If this is the casethen machine instruction 3 will have been reached from a preceding state in which 0 wasread onto the top of the stack.In the complicated looking rule that follows, the predicate A characterizes the top ofa wait loop. If the environment maintains the holding condition p1, then the waitingis maintained and A is true each time the loop starts a new iteration. The invariant qholds during the wait loop. The predicate B is true of the �rst state not in the loop; itis reached if the environment maintains the breakout condition p2 for at least �1 machinecycles. The �rst and last hypotheses of the rule are necessary technical conditions. The�rst hypothesis says that the breakout state is not passed though during the wait loop.The last hypothesis says that if the loop is started then no matter what inputs arrive,within �2 cycles control will either return to the top of the loop or have left the loop.(q =) :B) ^ 0B@A [q][p1] > A1CA ^ 0@A By �1[p2] > B1A ^ 0@A By �2True> A _ B1A9W : (p1 Holds W) ^ 0B@W By(�1+�2)[p2] > B1CA ^ (A =) W) ^ (W =) q)The application of this rule to MultProg is now shown. The hypotheses of the applica-tion are the following four facts. The �rst one follows directly from de�nitions; the otherthree can be deduced from automatically generated atomic STAs.(In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z) =) :(At 2 ^ avail � 1 ^ out � z)At 1avail � 1out � z " In 0 _ In 1 _ In 18avail � 1 ^ out � z #[req � 0] > At 1avail � 1out � zAt 1avail � 1out � z By 2[req � 1]> At 2avail � 1out � z

20 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYAt 1avail � 1out � z By 5True> 0B@ At 1avail � 1out � z _ At 2avail � 1out � z 1CAFrom these hypotheses, the wait loop rule directly yields the existence of a predicateW zsuch that:(req � 0) Holds (W z)andW z By 7[req � 1]> At 2avail � 1out � zandAt 1 ^ avail � 1 ^ out � z =) W zandW z =) (In 0 _ In 1 _ In 18) ^ (avail � 1 ^ out � z)The desired result is obtained by de�ning Ready to be W . The application of the waitloop rule has been fully automated and so most of the details just shown are generatedby a procedure and need not concern the user. The existence of a predicate Ack x y zcan be deduced similarly.1.8.5. The while ruleThe while rule for STAs is analogous to the while rule of a Hoare logic of total correct-ness. It is formulated here in terms of predicates on stack machine states, though it couldbe expressed abstractly in terms of arbitrary predicates as was done for the wait loop rule.First some notation. A vector of names hx1; : : : ; xni will be abbreviated to ~x and similarlya vector hx1; : : : ; xni of values will be abbreviated to ~x . The predicate ~x � ~x abbreviatesthe conjunction of predicates x1 � x1 ^ : : : ^ xn � xn . The predicate v � x is true ofa state (pc; stk ;mem) i� mem v < x . If f is a function from vectors of values to vectorsof values and A, B are predicates on vectors of values, then the Hoare logic like notationfAgf fBg means 8~x : A ~x) B(f ~x).In the while rule for STAs that follows, Inv and B are arbitrary predicates on vectorsof values called the invariant and test , respectively. The function f speci�ed the state-change each time around the loop (i.e. the `meaning' of the body of the `while loop').The �rst hypothesis of the rule says that Inv is an invariant and the value of xi decreaseseach time around the loop (i.e. xi is a variant). The second hypothesis is that the loopstarts with the values ~x of ~x in the memory satisfying Inv . It is assumed that the topof a while loop is at itermediate command n. If the test B fails, the loop exits to thecommand numbered n2, without change of memory and taking �1 cycles. If B succeedsthen control transfers to n1, without changing the memory and taking �1 cycles, and thenback to n with the memory changed by f and taking another �2 cycles.Thus while B remains true the program loops from n to n1 then back to n taking�1+ �2 cycles and transforming the values of the vector of variables ~x by f each time. Theconclusion of the rule is that the loop will terminate within �1+(�1+�2)�xi cycles, where

1.8. LAWS FOR COMBINING STAS 21xi is the value of the variant xi when the loop started. On termination the invariant stillholds, but the test B is false. Here is the while rule for STAs.fInv ^ B ^ xi � xig f fInv ^ xi � xigInv ~x8~x : 0@ At n~x � ~x By �1[p1]> At(B ~x ! n1 j n2)~x � ~x 1A8~x : 0@ At n1~x � ~x By �2[p2]> At n~x � f ~x 1A9~x 0: 0B@ At n~x � ~x By(�1 + (�1+�2)� xi)[p1 ^ p2] > At n2~x � ~x 0 1CA ^ Inv ~x 0 ^ :(B ~x 0)As an example of the STA while rule consider the iteration:WHILE (x > O) AND NOT(INPUT reset)DO out := out + y;x := x - 1ODThis translates to the following intermediate form (see Figure 1.1).13: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x28: OP0 029: OP2 >30: INP reset31: OP1 NOT32: OP2 AND33: JMZ 4214: out := out + y .. 34: GET out35: GET y36: OP2 +37: PUT out15: x := x - 1 .. 38: GET x39: OP1 pre40: PUT x16: GOTO 13 ... 41: JMP27From which the following two STAs can be generated (the free variables reset , x , y andout are assumed to be universally quanti�ed).At 13x � xy � yout � out By 7[reset � reset]> At(x > 0 ^ :(reset = 1) ! 14 j 17)x � xy � yout � outAt 14x � xy � yout � out By 8True> At 13x � x � 1y � yout � out + y

22 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDYFor arbitary r take:Invr hx ; y; outi = (out+(x�y) = r)Bhx ; y; outi = x > 0 ^ :(reset = 1)f hx ; y; outi = hx�1; y; out+yiIt follows that fInvr ^ B ^ x � mg f fInvr ^ x < mg and hence by the while rule, ifout+(x�y) = r then there exists x 0, y 0 and out 0 such that:0BBB@ At 13x � xy � yout � out By(7 + (7+8)� x)[reset � reset] > At 17x � x 0y � y 0out � out 0 1CCCA ^ Invr hx 0; y 0; out 0i ^ :Bhx 0; y 0; out 0iHence out 0+(x 0�y 0) = r (the invariant still holds) and :(x 0 > 0 ^ :(reset = 1)) (the testis false). If reset = 0 then it follows from the test being false that x 0 = 0 and then if r istaken to be x � y it follows from the invariant still holding that out 0 = x � y. Hence:At 13x � xy � yout � 0 By(7+15�x)[reset� 0]> At 17x � 0y � y 0out � x�yBy choosing a slightly more complex invariant it could also be shown that the value of yis unchanged by the iteration.1.9. ConclusionsThe analysis of real-time programs is notoriously complex. The approach outlined heretightly couples the formalism used (STAs) with theorem proving tools, the aim being toautomate away as much detail as possible. The current mechanization requires the userto invoke tools, such as the wait loop synthesizer and the while rule, on an intermediaterepresentation of the high-level program consisting of sequences of assignments and jumps.In the future, it is hoped to try to hide this level completely by guiding the veri�cationvia annotations in the program. The goal, only partially achieved so far, is to requirethe user to manually prove `mathematical' veri�cation conditions, but to have all STAmanipulations performed automatically. Progress towards this goal appears in the paperentitled `A Hoare logic of state transitions' included in the Festschrift for Professor Hoare,edited by Bill Roscoe and published by Prentice-Hall in 1994. In that paper it is shownhow the while rule for STAs can be automatically invoked via annotations in the high-levelprogram. This is achieved by de�ning a Hoare logic of state transitions.The approach taken here can be viewed as lying somewhere in the middle of a spectrumwith conventional veri�cation plus a veri�ed compiler at one end, and pure machine codeveri�cation at the other. Conventional veri�cation using a high-level semantics has manyadvantages: properties of programs can be proved that are independent of the compilerused. If a veri�ed compiler is available, then analysis can be conducted within an abstractsemantics and then applied, via a compiler correctness statement, to machine code [2].

1.9. CONCLUSIONS 23At the other extreme, one can model the host machine semantics and then verify machinecode programs (got, for example, by running production Ada compilers) by reasoningabout processor transitions. Impressive work of this sort has been done by Yuan andBoyer [6]. Between these two extremes lies the work presented here. The techniquesare in the spirit of Yuan and Boyer in that they are based on a semantics derived fromthe execution of machine instructions (though Yuan and Boyer use a real machine in the68000 family, whereas an enormously simpler abstract machine is used here). However, thereasoning is conducted through an abstract view of the machine code provided by a highlevel programming language. Proofs are conducted using Hoare-style proof rules normallyassociated with high-level languages; but the interpretation of the Hoare-sentences is low-level.

24 CHAPTER 1. STATE TRANSITION ASSERTIONS: A CASE STUDY

BibliographyREFERENCES1 J. A. Camilleri. Symbolic compilation and execution of programs by proof: A casestudy in HOL. Technical Report 240, Computer Laboratory, University of Cambridge,UK, December 1991.2 P. Curzon. Deriving correctness properties of compiled code. In L. Claesen andM. Gordon, editors, Proceedings of the International Workshop on Higher Order LogicTheorem Proving and its Applications. North-Holland, 1992.3 J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on tempo-ral intervals. In Proc. 10th International Colloquium on Automata, Languages andProgramming, Barcelona, Spain, 1983.4 C. A. R. Hoare. An axiomatic basis for computer programming. Communications ofthe ACM, 12:576{583, October 1969.5 B. Levy, I. Filippenko, L. Marcus, and T. Menas. Using the state delta veri�cationsystem. In Proc. IFIP TC10/WG 10.2 International Conference on Theorem Proversin Circuit Design, pages 337{360. North-Holland, June 1992.6 Y. Yu. Automated Proofs of Object Code for a Widely Used Microprocessor. PhDthesis, The University of Texas at Austin, yuanyu@com.dec.src, 1992.
25

