Towards Verified Systems

OVERVIEW

Jonathan Bowen (Ed.)

October 7, 1993
IDRAFT CHAPTER BY MJCG]|

Contents

1 State transition assertions: a case study 3
1.1 Anexample: Mult 4
11T Overview o o0 4

1.1.2 Informal specification of Mult 5

1.1.3 MultProg: an implementation of Mult 6

1.2 More detailed specification of Mult 7
1.3 Determining a machine from a program 7
1.4 State transition assertions L oo 10
1.4.1 Holding stateso 11

1.5 Formal specification of Mult 12
1.6 Correctness of MultProg 14
1.7 Generating atomic STAs oL 14
1.8 Laws for combining STAs oo 17
1.8.1 The consequencerule 17

1.8.2 The sequencingrule. L L Lo 17

1.8.3 Casesrules 18

1.8.4 The wait loop rule oo 18

1.8.5 Thewhilerule. oo 20

1.9 Conclusions 22
Bibliography 24

Chapter 1

State transition assertions:
a case study

M.J.C. Gordon

Overview

The temporal behaviour of programs that interact with their environment depends on
the compiler used and the timing characteristics of the host processor. Working out the
details can be messy. As part of the safemos project, an approach to managing this
complexity based on special-purpose theorem proving tools, has been developed. Speci-
fications are written in a state transition notation annotated with real-time constraints.
Implementations are programs coded in a simple imperative language with assignments,
sequencing, conditionals, asynchronous inputs, wait-statements, while-commands and
forever-loops. The meaning of programs is defined by a translation to sequences of ma-
chine instructions, but automated tools can derive behavioural abstractions, called state
transition assertions (or STAs) that enable reasoning to be conducted near the source
program level.

At the core of the approach are a number of ‘laws’ for combining STAs. These are
derived from the definition of state transition assertions and are thus theorems rather than
axioms. These laws combine aspects of Hoare logic [4] and interval temporal logic [3]. A
specialized theorem prover automatically generates STAs that describe the behaviour of
a program considered as a sequence of assignments and jumps (see Section 1.3). Semi-
automatic tools then combine these ‘atomic STAs’ to derive STAs for straight line code
segments and certain looping structures, including wait loops. Finally, a user interactively
combines these derived STAs to establish properties of the candidate implementation.

The machine used in the semantics is idealized: it has an unbounded stack and un-
specified word-size. Some mechanized tools have been implemented to enable the actual
resources required by a given program to be analysed (e.g. to determine the maximum
stack depth). After such an analysis has been carried out, a finite machine customized
to the program and suitable for physical realization can be computed. It is intended that
such machines will implemented directly in hardware (e.g. with field programmable gate

arrays) or via a soltware emulation; in both cases it is necessary to prove that the abstract
machine used as a semantic base is correctly implemented. The physical realization of
abstract machines is not considered here.

1.1. An example: Mult

The example program studied here implements a reactive system which is required to
meet hard real-time constraints. It is also required to be resettable from an arbitrary
processor state within a hard real-time bound; this is intended to support fault recovery
protocols. The approach adopted is to count the number of machine cycles taken by the
compiled code. This very fine-grained kind of analysis may be quite inappropriate in
some situations; intended applications include low-level communication software, critical
systems requiring very rapid responses and the software emulation of hardware functions.
The example in this chapter illustrates aspects of all of these.

Programs use a very simple low-level input/output model. Inputs are ‘asynchronously’
supplied by the environment, outputs are ‘memory mapped’. When an input is read, the
program gets whatever value the environment happens to be offering at the time of the
read. For example, inputs might be provided directly by a sensor. It is assumed inputs are
digitized, but not that they are latched. Outputs, on the other hand, are identified with
particular program variables whose values are assumed to remain stable until changed.
Thus outputs are latched. This particular treatment of input/output was chosen for
two reasons: it corresponds to a simple physical implementation and it can be used to
model more complex regimes. For example, a regime in which inputs are latched would
be modeled by requiring the environment to hold inputs stable between input events.
The example in this chapter may be viewed as a study of the fine detail underlying a
particular kind of synchronized communication. Juanito Camilleri has studied this topic
more generally, with the eventual aim of producing a verified implementation of occam-
style synchronized communication in terms of the simple input/output model described

here [1].

1.1.1. Overview

Mult is a multiplier that reacts with the environment via a four-phase handshake. The
first phase is a request by the environment that two numbers be read from input lines;
the second phase is the reading of these by the program; the third phase is the initiation,
by the environment, of the multiplication of the two numbers read in during the second
phase; the fourth phase is the computation of the product. At the end of such a cycle the
program outputs the computed product whilst awaiting the first phase of a new cycle.
The first three phases all take place within a fixed time bound; the duration of the fourth
phase depends on the size of the numbers being multiplied.

1.1.2. Informal specification of Mult

Mult has two data inputs inl and in2 that carry numbers.! It has two control inputs
req and reset that carry truthvalues (i.e. single bits). It has one numerical data output
out and one boolean? control output avail.

In the normal operation of Mult there are just four possibilities, corresponding to the
four phases of the handshake: (i) it is waiting to engage in a handshake; (ii) it is reading
inputs; (iii) it is waiting to start a multiplication; (iv) it is performing a multiplication.
Both (i) and (iii) are ‘wait states’: the waiting will continue indefinitely until the environ-
ment sends the appropriate signal via the req input (see below). The other possibilities,
(ii) and (iv), are transitions between waiting states.

It is required that no matter what state the host processor is in, if the environment
holds reset at the value 1 continuously for §; cycles, then the system Mult will be reset
to the state (i) of waiting to engage in a handshake. In this state the value output on
avail is 1.

The environment signals the start of a handhake by changing the input req from 0 to 1.
When this happens, it is required that the system will input the values, m and n say, on
inputs inl and in2 and move to a state in which it is waiting to start the multiplication
of m and n. This inputting transition is required to complete within d; processor cycles.
The system will then wait, outputting 0 on avail, until the environment sets the input
req to 0. When that happens the system will compute m x n, output this value on out,
and then return to the initial state. This multiplication transition is required to take
place within d3(m) cycles. The timing parameters d§; and dy are given numbers and s is
a given function.

This specification requires that if Mult is waiting to engage in a handshake, then the
product m x n can be computed in d2+ 8+ d3(m) machine cycles, where § is the number of
machine cycles taken by the environment to set req to 0 after m and n have been input.
But how can the environment know when Mult is in the state of waiting to engage in a
handshake? It is specified that in this state avail has value 1, but the converse is not
necessarily the case. For example, the value of avail will continue to be 1 for a short time
after the environment sets req to 1, i.e. during the first part of phase (ii) of the handshake.
It is tempting to require in the specification that avail be 1 if and only if the system is
waiting to engage in a handshake, but such a specification would be unimplementable.
This is because there will always be time delays in sensing environmental changes and then
communicating the results to outputs, hence there will always be times at which internal
state changes have occurred, but not yet been signalled on outputs. In general, when
timing is considered, it is not possible to characterize internal states by instantaneous
values on outputs. However, if inputs and outputs are observed over a sequence of cycles,
then conclusions about internal states can be drawn. For example, if the input reset has
been 1 for §; cycles, then the specification requires the system to be waiting to engage in

a handshake.

For simplicity, arbitrary-precision (i.e. ‘mathematical’) numbers are used here but, at the expense of
some arithmetical messiness, finite-precision numbers could have been used instead.

?The truthvalues T and F will be represented by the numbers 1 and 0, respectively, because the program-
ming language used only supports one data type: the natural numbers N.

1.1.3. MultProg: an implementation of Mult
Here is a program that implements Mult.

0: MultProg =

1: FOREVER

2: avail := 1;

3: IF INPUT req

4: THEN avail := 0;

5: x := INPUT ini;

6: y := INPUT in2;

7: AWAIT[NOT(INPUT req); INPUT reset];
8: out := 0;

9: IF (x=0) OR (y=0)

10: THEN SKIP

11: ELSE WHILE (x > 0) AND NOT(INPUT reset)
12: DO out := out + y;

13: X = x -1

14: 0D

15: avail := 1

16: ELSE SKIP

The command FOREVER (' is an abbreviation for WHILE TRUE DO . The command
AWAIT[EY; ... Ey,] loops until one of Ei, ..., F, becomes true (i.e. has the value 1) and
then control moves to the next command. Evaluating an expression INPUT i reads the
current value offered by the environment at input i and returns the result. Outputs
are identified with program variables, so are set by assignment. The other constructs in
MultProg should be self-explanatory.

Note that there is some arbitrariness in the placement of assignments. The occurrence of
avail:=1on line 2 could be moved to before the FOREVER-loop. The assignment avail :=0
is performed before the inputs inl and in2 are read, however the specification only
requires avail to be 0 when Mult is waiting to start the multiplication. The verification
given here also works if avail:=0 is performed after the two reads, or even between them
(perhaps this indicates that the specification is inadequate: maybe it should be required
that the inputs remain stable only as long as avail is 1).

MultProg works as follows: initially it is waiting to engage in a handshake by looping
between lines 2, 3 and 16 in the outer FOREVER-loop. If the input req is 1 then eventually
the test at line 3 will be reached and then lines 4, 5 and 6 will be executed in sequence
resulting in avail being set to 0 and the values at inputs inil and in2 being read into
the variables x and y, respectively. The program will then loop at the AWAIT-command
at line 7. If either req is 0 or reset is 1 this command will terminate, control will move
to line 8 and the multiplication will begin with out being initialized to 0. If either of the
two numbers to be multiplied are 0, then nothing needs to be done (line 10), avail is set
back to 1 (line 15) and the system is ready again to engage in a handshake. However, if
either of x or y is non-zero, then the product is computed in out by repeatedly adding y
to out (lines 11—14). Note that each time around this WHILE-loop, reset is tested and if
found to be 1 the loop is terminated. Once the loop is terminated, which (in the absence
of a 1 at reset) will be in a time proportional to the value read into x, avail is set to
1 (line 15) and control returns to the outer loop (lines 2, 3, and 16) and the system is
ready to engage in another handshake, i.e. is back in phase (i).

It is clear by inspection, that if reset is held at 1 for sufficiently long then control will
eventually move to the outer FOREVER-loop. This is because all loops test reset.

1.2. More detailed specification of Mult

The view of real-time systems taken here is that they are sequential machines. A
specification places requirements on the behaviour of a machine and an implementation
is an actual machine that meets these requirements. The reason for this rather concrete
approach is to try to minimize the gap between abstract models of behaviour and real
machines. The device that ultimately runs programs implements a sequential machine,
so it helps tie the hardware and software verifications together if they both use the same
kind of behavioural model.

A machine is a function M : inputs — (state — state). M should be thought of as
an instruction processor: if the environment offers an array of inputs ¢ and the current
state is o, then executing the next instruction results in the state M ¢ o . The state will
include a program counter and a memory that associates state variables with data values.
This memory is a function from names to values (i.e. numbers). Inputs too are modelled
by functions from names to values. It is assumed that at each moment the environment
specifies a value ¢ 1 for each input i, i.e. it determines a mapping ¢ : name — N, that
varies with time. For any particular system there will only be a small finite number
of inputs (in1, in2, req and reset for Mult), but this fact does not need to be built-
in to the general theory. It will be assumed that some state variables are readable by
the environment (avail and out for Mult). During each cycle of execution of M, an
instruction is selected and executed, resulting in a new state. If the instruction is an
input, then this new state will depend on the inputs supplied by the environment.

In what follows, it is first shown how the program MultProgin Section 1.1.3 determines
a machine and then how the informal specification Mult in Section 1.1.2 can be expressed
as a predicate on machines. Finally, a method is outlined for proving that programs meet
specifications and it is illustrated using MultProg and Mult.

1.3. Determining a machine from a program

It is straightforward to define a function that recursively translates a program to a
sequence of assignments and conditional jumps. For example, one particular algorithm
translates MultProg to:

0: avail = 1

1: IF INPUT req THEN SKIP ELSE GOTO 18

2: avail (= 0

3: x := INPUT inl

4: y := INPUT in2

5: IF NOT(INPUT req) THEN SKIP ELSE GOTO 7
6: GOTO 10

7: IF INPUT reset THEN SKIP ELSE GOTO 9

8: GOTO 10

9: GOTO 5

10: out := 0

11: IF NOT x OR NOT y THEN SKIP ELSE GOTO 13
12: GOTO 17

13: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17
14: out := out + y

15: x :=x -1

16: GOTO 13

17: avail = 1

18: GOTO 0

Assignments and conditional jumps require the evaluation of an expression, which may
be arbitrarily large, and thus take an arbitrary amount of time to evaluate. It is thus
not immediately clear how a sequence of assignments or jumps can be directly repre-
sented by a machine. Another tricky issue concerns input. Consider the conditional
jump on line 13: the exact time at which reset is read depends on how the expression
x > 0 AND NOT(INPUT reset) is evaluated.

To specify the detailed semantics of expression evaluation, programs will be further
translated to sequences of instructions for a simple stack machine with the following
instruction set.

JMP n unconditional jump to instruction n

JMZ n pop stack then jump to instruction n if the result is zero

JMN n pop stack then jump to instruction n if the result is non-zero
POP pop the top of the stack

0PO v push v onto the stack
0P1 op; pop one value from stack, perform unary operation op;, push result
0P2 opy pop two values from stack, perform binary operation ops, push result

GET x push the contents of memory location & onto the stack
INP ¢ push the input from ¢ onto the stack
PUT x pop the top of the stack and store the result in memory location «

It is straightforward to define a translation of assignments and jumps to sequences of
machine instructions. For example, the conditional jump at line 13 is translated to the
following sequence of stack machine instructions:

GET x

OPO O

0P2 >

INP reset
OP1 NOT
OP2 AND
JMZ ...

It will be assumed that the operations >, NOT and AND can be performed in one machine
cycle, thus the stack machine code determines that x > 0 AND NOT(INPUT reset) takes
7 cycles, and the input occurs on the 4th cycle.

The state of the stack machine is a triple (pc, stk, mem) consisting of a program counter
pe : N, a stack stk : seq N and a memory mem : name — N. The model given here does not
specify an upper bound on the length of the stack or size of data. Of course, real machines
are finite so any actual implementation will have a bounded stack and a particular word
size. The intension is to provide tools that ‘fit’ a given program into a finite refinement
of the machine; this will not be discussed in detail here (though see the example state
transition assertion in Section 1.4).

The semantics of the instructions of the stack machine is defined by a function Step. Be-
fore defining Step, some auxiliary notation is required. A conditional ‘if b then ¢ else e’
will be written as (b — € | e3). The empty sequence is denoted by (), (z) denotes
the sequence with one member, # and (2, 22, ..., ,) denotes the sequence (of length n)
containing y, %3, ..., ,. The length of a sequence s is denoted by #s. The nth element

of a sequence s will be denoted by s n and the tail of s will be denoted by 7s. The
tail of () is defined to be () (sequences will be used to represent stacks and the stack
manipulating instructions are specified so that popping an empty stack leaves an empty
stack). The concatenation of sequences s; and s; will be denoted by s; 7 s;. Note that

the result of ‘consing’ # onto a sequence s is () " s. If mem is a function representing a
memory (i.e. a function from names to values), then Store v @ mem denotes the memory
identical to mem except on argument z, which it maps to v, i.e. the memory updated
with value v at z.

The function Step can now be defined. Its type is:

Step : instruction — (inputs — state — state)

where:
inputs = name — N
state = program—counter X stack X memory
program—counter = N
stack = seq N
memory = name — N

Step is defined by:

Step (JMP n) ¢ (pc, stk, mem)
Step (JMZ n) ¢ (pc, stk, mem)
Step (JMN n) ¢ (pc, stk, mem)
Step (POP) ¢ (pc, stk, mem)
Step (OPO v) ¢ (pe, stk, mem)
Step (OP1 opy) ¢ (pc, stk, mem) =
(
(
(
(

(stk1 = 0 — n| petl),isth, mem)
(stk1 = 1 — n| pc+l),isth, mem))
pe+1, tstk, mem)

,(v) 7 sth, mem)

op1(stk 1)) ™ Tstk, mem)

p2(stk 2, stk 1)) 7 7istk, mem)

0
mem x) stk, mem)

I
AAAA%\/-\/-\/—\/-\
o)
|
—

Step (OP2 ops) ¢ (pc, stk, mem) =
Step (GET) ¢ (pe, stk,mem) = (pe+1,
Step (INP i) ¢ (pe, stk, mem) = (pe+1,(c 0) 7 stk,mem)

Step (PUT) ¢ (pe, stk,mem) = (pc+1,Tstk,Store (stk 1) & mem)

{
pet1,(
{

The machine Machine instrs determined by a sequence of instructions instrs is defined

by:

Machine instrs ¢ (pe, stk, mem) =
(pe < #instrs — Step (instrs(pc+1)) ¢ (pe, stk,mem) | (0, stk, mem))

The reason for pc+1 is because the program counter starts at 0 not 1. Note that if the
program counter pc points outside the program (i.e. pc > #instrs) then the machine
jumps to 0.

If P is a program, let Compile P denote the translation of P to stack machine in-
structions; this is the composition of the translation to assignments and jumps with
the translation of these to machine instructions. The machine determined by P is thus
Machine(Compile P). For example, the machine corresponding to MultProg is denoted by
Machine(Compile MultProg); this will be called MultMachine.

1.4. State transition assertions

Specifications are formalized as predicates on machines. The informal specification of
Mult given in Section 1.1 involved a number of transitions between wait states. These
can be represented using a kind of assertion, called a state transition assertion (or STA),
that combines aspects of the ‘leads-to’ and ‘until’ operators of temporal logic and also
resembles a state delta [5]. The general form of an STA is:

Q
ME A—>8B
P

where:
o M :inputs — state — state is a machine;
o A: state — B is called the state precondition;
o B :state — B is called the state postcondition;
o P :seqinputs — B is called the input precondition;
o () :seqstate — B is called the output postcondition.

The intuition behind state transition assertions is straightforward: if M is in a state
satisfying A and a sequence of inputs arrives that satisfies P, then a state satisfying B will
be reached and the sequence of intermediate states will satisfy (). The formal definition
is slightly delicate as it has to cover the possibility that inputs start to arrive satisfying
P, but then stop satisfying it before a state satisfying B is reached. A trace of machine
M is an infinite sequence ((co,00), (¢1,01), -, (tn,0n),...) such that o1 = M 1, 04
for all m. It is an A-trace iff A 09. Observe that the state entered by M after a sequence
Lo, --- 5 L, of inputs have arrived is o,4;. Thus the machine generates the sequence
(01,...,04,0,41) of states from the inputs ¢, ..., ¢,. With this observation in mind, the
following auxiliary concepts are defined.

o B succeeds at n in trace ((to,00), (t1,01)y. .oy (tny04),...) iff B o,41.
o P fails at n in trace ((to,00),(t1,01)s. s (tny0n)y ..y iff 2P0, ... tn).

o () holds until n in trace ((to,00),(t1,01)y oy (tny0n),.) iff Qlor,....0m)
for all m such that 1 < m < n41.

The state transition assertion:

Q

ME A———>8B
P
holds iff for every A-trace 7 of M there exists an n such that (i) either B succeeds at n
in 7 or P fails at n in 7 and (ii) @ holds until the first such n in 7.
An example of a state transition assertion is shown below using a number of notational
conventions that are explained immediately afterwards. It is true of a machine M if

whenever the predicate Available is true and the variables x, y, z have the values z, y, 2
respectively, then as long as the reset line keeps at 0, a sequence of steps of length less
than ¢ « will be traversed in which y remains stable with value y, Available is false and
the length of the stack is less than d. Furthermore, the sequence ends in a state in which
Avallable is false, x 1s 0, y is y and z is = X y.

By(d)
y=y
Available —Available —Available
M % i . StackMax d X i 0
y=1y [reset = 0] y=9
zZ=z z=x Xy

Vertical stacking means conjunction. The notation v = & (where v is a name and = a
value) is overloaded; it is used both for predicates on states and for predicates on inputs:

(v = x)(pc, stky,mem) =45 mem(v) =z
(v

StackMax m is true of a state if the length of the stack is less than m.

T =4ef (v)=u

StackMax m (pc, stk, mem) =4 Hsth < m

If ¢ is either a state or an input, M is either a predicate on states or a predicate on inputs,
then:

(=M) =des (M p)
(M (pey, o) =gef M p, N...AM p,
(By m){pys - py) =def NS M

The notation [M] asserts that M holds at all points in a sequence, so it is analogous to
the modal formula OM. As a mnemonic, think of sawing the box operator 00 in two and

writing the first half before M and the other half after M.

1.4.1. Holding states

Part of the specification of Mult is that it remain waiting to engage in a handshake as
long as the request line req is 0. If ‘waiting to engage in a handshake’ is represented by
the predicate Available, then this part of the specification can be represented by:

By 1
Mult [Available y% Available
[req = 0]
which will be abbreviated to:
Mult = req= 0 Holds Available

notice that “By 1”7 means “1 host machine cycle” not “1 program step” (whatever that
might mean).

Whilst Mult is waiting to engage in a handshake it should be outputting the result
of the previous handshake on out and outputting 1 on avail. Therefore in the actual
specification given in Section 1.5, instead of the predicate Available, a parameterized
predicate Ready z is used, with the interpretation “ready to engage in a handshake whilst
outputting z on out and 1 on avail”. In general, waiting states are characterized by a
parameterized predicate (e.g. Ready z, see Section 1.8.4), an invariant (e.g. avail = 1 and
out = z) and a holding condition (e.g. req = 0). In the diagram representing the formal
specification of Mult, the existence of such a waiting state is represented graphically by:

Ready z

avail=1

out = z
req =0

This abbreviates the conjunction of an STA representing the holding condition and a
formula expressing the invariant (which uses the logical operators /A and == which are
explained below).

Mult req =0 Holds (Ready z) A Ready z = avail=1 A out =z

where, letting p range over states or inputs as before:
(My N My =aep (My p) N (My p)
(My == My) =ay Yp. (M p) = (M p)
Other similar notation used later includes:
True p =aes T
M, = M) p =as; My p = My p
My V M) p =as My p vV My p
de. M 2)p =4 dx. (M ax)p
PrN Po)pys-eostty) =ag Py, A Polpg,eoopy,)
(Pr NV Po)(pyssiy) =ar Prlugseoop,) V Polpgsony,)

Notice that there are three different kinds of implication: ordinary logical implication =
and two relations between predicates = and ==>. The relations between predicates are

connected by My == M, = VYu. (M, = M)p.

(
(
(
(

1.5. Formal specification of Mult

A program implementing Mult must be able to cycle within two sets of states repre-
senting waiting to engage in a handshake and waiting to start a multiplication. Thus
the formal specification asserts the existence of two predicates representing these sets of
states. In addition, an implementation must support various invariants and transitions,
which can be expressed using STAs. The complete specification can be represented by
the following diagram, which represents a conjunction of STAs (details below).

Ack x y 2
Ready z By d avail =0 Ready(z x y)
True By d1 avail=1 [out = 7] X==z By(ds z) avail=1
[reset = 1] out :_z req=1 y=v req =0 out = f X Y
req =0 reset =0 out :_zl [reset =0] req =0
ini==x red=
in2=y

The predicate Ready z is true of states that are passed through whilst waiting to engage
in a handshake. During this waiting, out has value z. The predicate Ack = y z is true
of states that are passed through whilst waiting to start a multiplication. During this
waiting x, y, z have the values z, y, z, respectively. This diagram defines a predicate
MultSpec(d1, dq,d5) on machines M by the following formula (the abbreviations Reset,
Readylnv, ReadyHold, ReadyToAck, Acklnv, AckHold, AckToReady are explained later).

MultSpec (61, d2,d3) M =
1 Ready Ack.

(M | Reset(dy, Ready))

(V z. Readylnv(Ready, z))

(Vz. M | ReadyHold(Ready, z))

(Vo y 2. M | ReadyToAck(ds2, Ready, Ack, x,y, z))
(Va y z. Ackinv(Ack, z, y, 2))
(
(

> > > > > >

Veyz M |E AckHold(Ack, z,y, z))
Vayz. M E AckToReady(ds, Ready, Ack,x,y, z))

The reset condition Reset(dq, Ready) asserts that if reset is held equal to 1 for at least
41 then the system will be in a state satisfying Ready z, for some z.

By ¢
Reset(d1, Ready) =45 True # 2. Ready =
[reset = 1]

States satisfying Ready z should output 1 on avail and z on out.
Readylnv(Ready, z) =4 Ready - = avail=1 A out =z
States continue to satisfy Ready z as long as reqis 0.
ReadyHold(Ready, z) =4 req =0 Holds (Ready z)

If the system is in a state satisfying Ready z and for at least d; cycles req is held at 1,
reset at 0, inl at # and in2 at y, then the system will be in a state satisfying Ack z y z.

By &
ReadyToAck(dy, Ready, Ack,x,y,z) =45 Ready z y % Ack z y 2
req=1 A reset =0
int=2 A in2=y

otates satistying Ack = y z should output 0 on avail and z, y, 2 on x, y, out, respectively.
Ackinv(Ack,x,y,z) =qg Ack zyz = avail=0Azx=z Ay=y N\ out =z
States continue to satisfy Ack v y z as long as req is 1 and reset is 0.
AckHold(Ack, x,y,z) =4 (req=1 A reset =0) Holds (Ack = y z)

If the system is in a state satisfying Ack = y z and then for at least d3 x, req is held at
0 and reset at 0 then the system will be in a state satisfying Ready(zxy).

By(ds x)
AckToReady(ds, Ready, Ack,x,y,z) =aq Ack x y 2 Ready(xxy)

[req =0 A reset = 0]

1.6. Correctness of MultProg

The program MultProg is correct if the machine, MultMachine, that it defines satisfies
the predicate MultSpec(d1, d2,d3). In fact, it follows that:

MultSpec (43, 13, A2. 30+ (15 x «)) MultMachine

which establishes correctness with the timing parameters §; = 43, 4, = 13 and the function
3 defined by d3 « =30 4 (15 x).

The rest of this chapter is devoted to outlining how such correctness results can be
proved. Mechanized theorem proving tools are used since there is a large amount of detail
in even small examples.®

1.7. Generating atomic STAs

The program is translated to a sequence of intermediate commands that are either as-
signments or jumps and then two STAs are generated for each intermediate command.
The first of these describes transitions from the beginning of a comand to its end; the sec-
ond describes transitions from anywhere inside the command to its end. Before explaining
this the formalization of “beginning”, “inside” and “end” must be given.

Figure 1.1 shows both the intermediate commands and the final machine instructions
for MultProg. Consider the intermediate command with number 13: the beginning of
this is the machine instruction numbered 27 (i.e. GET x) and the end of it is after the
machine instruction numbered 33 (i.e. JMP 42). The execution of MultProg is said to be
inside intermediate command number 13 if it is executing a machine instruction whose
number is in the set {27,28,29,30,31,32,33}. Both intermediate commands and ma-
chine instructions will be indexed by their position. A program P defines, via the com-
piler, a mapping Positions(P) from command numbers to instruction numbers in which
each command number is mapped to the number of its first instruction. For example,
Positions(MultProg) is the following mapping.

3383,547 primitive inference steps were performed, mostly automatically, to verify MultProg.

O: avail 1= 1 e e e e e e 0: O0PO 1
1: PUT avail

1: 1IF INPUT req THEN SKIP ELSE GOTO 18 2: 1INP req
3: JMZ 44
2 avail 1T 0 L e e e e e e 4: (0PO O
5: PUT avail
3: x = INPUT dnl ...ttt i et e et e e et e e 6: INP ini
7: PUT x
4: 3 = INPUT In2 ... ittt 8: INP in2
9: PUT y
5: IF NOT(INPUT req) THEN SKIP ELSE GOTO 7 10: INP req
11: OP1 NOT
12: JMZ 14
B: GOTO 10 .. e e e e e 13: JMP 18
7: IF INPUT reset THEN SKIP ELSE GOTO 9 14: INP reset
15: JMZ 17
8 GOTO 10 .. e e e e e 16: JMP 18
9. GOTO B i e e e e e e 17: JMP 10
10: 0ut 1= 0 Lo e e e e e e e e e e 18: OPO O
19: PUT out
11: IF NOT x OR NOT y THEN SKIP ELSE GOTO 13 20: GET x
21: 0OP1 NOT
22: GET y
23: 0P1 NOT
24: 0P2 OR
25: JMZ 27
12 GOTO 17 oottt e e et e et e e e e e e e e e 26: JMP 42
13: IF x > 0 AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x
28: 0OPO 0O
29: 0P2 >

30: INP reset
31: OP1 NOT
32: 0P2 AND
33: JMZ 42
14: out (= out + § ... e e 34: GET out
35: GET y
36: 0P2 +
37: PUT out
T e 38: GET x
39: OP1 pre
40: PUT x
16: GOTO 13 Lottt i it et et et e et e et e e e e 41: JMP27
17 avail (= 1 e e e e e e e e e 42: 0PO 1
43: PUT avail
18: GOTO O ittt it i e et et et e e et e e e e e 44: JMP O

Figure 1.1. Intermediate commands and machine instructions for MultProg

{00, 12, 24, 3—6, 48, 5— 10, 6+~ 13,
T— 14, 8—16, 9—17, 10—~18, 11— 20, 12~ 26, 13— 27,
14+ 34, 15+ 38, 1641, 17+ 42, 18+ 44}

Recall that the state of the stack machine is a triple (pe, stk, mem) consisting of a program
counter pec : N, a stack stk : seq N and a memory mem : name — N. Define:

At(P) n (pc, stk,mem) = (pc = Positions(P)(n))

In(P) n (pc, stk,mem) = (Positions(P)(n) < pc < Positions(P)(n + 1))
Then At(P)n is the predicate on states that is true of o iff o is at the beginning of the
intermediate command numbered n in program P and In(P)n is the predicate on states

that is true of o iff ¢ is inside command n.
Consider a program P containing an assignment at position ny:

ng:
ng: x := ((INPUT in) + y)
ns:

Given a list of significant state variables (e.g. x, y and z), the STA generator will auto-
matically deduce two STAs for the command at n,:

By 4
|n(77) o
At(P) oy y % Yy At(P) N3
- - X=z 2=~ X =ity
Machine(Compile P) = ~ ~
y - 4 [in = in] y - Y
z ==z z ==z
By 4
|n(77) o
In(P y=1Y
X"(: ; P z= At(P) ns
Machine(Compile P) = ~ y=y
y=19 True z = ~
zZ=7z

The first of these asserts that if the input in is held stable with value in, then there
is a transition taking at most four cycles from the beginning of the comand at ny to the
beginning of the command at n3. During this transition only states in n, are passed
through and the values of y and z are unchanged, but the value of x changes to in+y,
where y is the value of the variable y.

The second of these asserts that under arbitary input conditions, there is a transition
from anywhere in ny to the begining of n3. This transition takes at most four cycles, only
passes through states in ny and doesn’t change the values of x and y.

The implemented tool also automatically proves that the stack will grow by at most
two during the transition, but because this feature is not used in the Mult example the
details are not discussed here.

The first stage in verifying MultProg is to generate two STAs for each of the nineteen
intermediate commands. The result of this will not be shown here due to lack of space.
Note, however, that users of the verification tool are not expected to have to study these
atomic STAs in detail; they are fed into other tools that derive higher level results. These
tools combine the atomic STAs using various derived laws.

1.8. Laws for combining STAs

Some of the laws for combining STAs are analogous to rules of Hoare logic. In what fol-
lows P, () etc. will range over predicates on sequences, p, ¢ etc. will range over predicates
on the elements of sequences and A, B etc. will range over predicates on states.

Each law applies to an arbitrary machine. For conciseness, “M =" has been omitted
from STAs in the hypothesis and conclusion of the laws.

1.8.1. The consequence rule
The following is similar to the rule of consequence of Hoare logic. It allows preconditions
to be strengthened and postconditions to be weakened

A= A Pl= P A%Q B B = B Q= ¢

P
/ Q/ /
AAl———> B
P!

1.8.2. The sequencing rule
The sequencing rule allows sequences of transitions to be combined into a single long
transition.

By 4, A [Ch] By 4, A [612]
B B

[p1] [p2]
2 By(d1492) A (1 V]

[pl A pz]

This rule requires that the input preconditions [p;] and [p,] are conjoined in the conclusion,
so that both p; and p, are required to hold throughout the combined transition. This
is sufficient for the Mult example, but a stronger rule would have [p];[p2] as the input
precondition of the conclusion, where ; is a chop operator of interval temporal logic [3].

1.8.3. Cases rules
There are two cases rules. One for case analysis of state preconditions:

Q Q

A ——> B Ay ——> B
P P

Q

AtV Ay ——> B
P

and the other for case analysis of input preconditions:

P,V P

A combination of sequencing and cases can be used to establish the resetting behaviour:

. By 43
MultMachine = True —————> At(MultProg) 0

[reset = 1]

The argument proceeds by first splitting the universally true predicate True into a
20-way disjunction asserting that control is either outside the program or is inside one
of the intermediate commands. For each case, the sequencing rule applied to atomic
STAs can be used to show that under the assumption of reset = 1 the postcondition
At(MultProg) 0 is eventually achieved. Showing these amounts to symbolic execution
from an arbitrary starting position. The results of each of these cases are combined using
a cases rule. Although there is a substantial amount of detail, a reset-analysis tool has
been implemented that performs the proof automatically.

1.8.4. The wait loop rule

The next STA rule enables the existence of wait states to be deduced. Unfortunately the
rule is rather complicated and contains a number of hypotheses that are hard to motivate
in a general way (their necessity only becomes apparent when the detailed derivation of
the rule is considered, which is not done here).

To see why waiting states can be rather subtle consider MultSpec. To meet this speci-
fication it is necessary to have a predicate, Ready z say, that satisfies both

Ready - = (avail =1 A out = z)

and

req = 0 Holds (Ready z2)

Consider now the execution of MultProg when it is waiting to start a handshake. It will
be cycling between intermediate commands 0, 1 and 18 waiting for req to become 1 (see
Figure 1.1). Abbreviate In(MultProg) to In. Perhaps Ready z could be defined by:

Ready 2 =442 (In0ViIn1V In18) A (avail=1 A out = 2)

Unfortunately this definition will not ensure req = 0 Holds (Ready z). To see this
suppose control is at machine instruction 3 (JMZ 44), avail is 1 and out is z. The
predicate In 1 will be true (since machine instruction 3 is part of intermediate command
1) and hence Ready z is true. Suppose now that the environment makes input req be 0. If
req = 0 Holds (Ready z) then the next state of the machine (i.e. the one after executing
JMZ 44) must satisfy Ready z, however this will only be the case if the top of the stack
contains 0, which will only be the case if req were true on the previous cycle (i.e. when
INP req was executed). Thus req being 0 at instruction 3 does not ensure that Ready z
is held. It is necessary to assume that the top of the stack is 0 rather than that the input
req is 0. Thus the definition of Ready given above will not work. The solution used by
the wait loop rule is to define Ready z to be true of a state o if o is reachable from a
state satisfying At 1 via a trace in which all the intermediate states satisfy the invariant
avail =1 A out = z and all the intermediate inputs satisfy req = 0. If this is the case
then machine instruction 3 will have been reached from a preceding state in which 0 was
read onto the top of the stack.

In the complicated looking rule that follows, the predicate A characterizes the top of
a wait loop. If the environment maintains the holding condition p;, then the waiting
is maintained and A is true each time the loop starts a new iteration. The invariant ¢
holds during the wait loop. The predicate B is true of the first state not in the loop; it
is reached if the environment maintains the breakout condition p, for at least §; machine
cycles. The first and last hypotheses of the rule are necessary technical conditions. The
first hypothesis says that the breakout state is not passed though during the wait loop.
The last hypothesis says that if the loop is started then no matter what inputs arrive,
within 0, cycles control will either return to the top of the loop or have left the loop.

(q:ﬁB)/\ A—= A A A———>8B AN|lA——>AVB

[p1] [p2] True
By(d1405)
P2

The application of this rule to MultProg is now shown. The hypotheses of the applica-
tion are the following four facts. The first one follows directly from definitions; the other
three can be deduced from automatically generated atomic STAs.

(IN0ViInltViIni8) A (avail=1 A out =z) = —(At2 A avail=1 A out = z2)

InoVini1Vinis

At 1 avail=1 A out =z At 1
avail =1 avail =1
out = 2 [req = 0] out = 2
At 1 By 9 At 2

avail=1 —> avail=1
out = 2 [req=1] out==z

At 1 Bv 5 At 1 At 2

y
avail=1 ——= | avail=1 V avail=1
out = =2 True out = 2 out = 2

From these hypotheses, the wait loop rule directly yields the existence of a predicate W z
such that:

(req =0) Holds (W z)
and

By 7 At 2
Wz ——> avail=1
[req=1] out ==z

and
At 1 A avail=1 Aout=2z = W 2
and
Wz=—= (In0ViIn1ViIni18) A (avail=1 A out = z2)

The desired result is obtained by defining Ready to be W. The application of the wait
loop rule has been fully automated and so most of the details just shown are generated
by a procedure and need not concern the user. The existence of a predicate Ack x y =
can be deduced similarly.

1.8.5. The while rule

The while rule for STAs is analogous to the while rule of a Hoare logic of total correct-
ness. It is formulated here in terms of predicates on stack machine states, though it could
be expressed abstractly in terms of arbitrary predicates as was done for the wait loop rule.

First some notation. A vector of names (x1,...,x,) will be abbreviated to X and similarly
a vector (a1,...,x,) of values will be abbreviated to #. The predicate X = ¥ abbreviates
the conjunction of predicates x;y = 2; A ... A x, = x,. The predicate v < z is true of

a state (pe, stk, mem) iff mem v < z. If f is a function from vectors of values to vectors
of values and A, B are predicates on vectors of values, then the Hoare logic like notation
{A}f{B} means Vi. A ¥ = B(f ¥).

In the while rule for STAs that follows, Inv and B are arbitrary predicates on vectors
of values called the invariant and test, respectively. The function f specified the state-
change each time around the loop (i.e. the ‘meaning’ of the body of the ‘while loop’).
The first hypothesis of the rule says that Inv is an invariant and the value of x; decreases
each time around the loop (i.e. x; is a variant). The second hypothesis is that the loop
starts with the values 7 of X in the memory satisfying Inv. It is assumed that the top
of a while loop is at itermediate command n. If the test B fails, the loop exits to the
command numbered ny, without change of memory and taking é; cycles. If B succeeds
then control transfers to ny, without changing the memory and taking d; cycles, and then
back to n with the memory changed by f and taking another d3 cycles.

Thus while B remains true the program loops from n to n; then back to n taking
01+ 02 cycles and transforming the values of the vector of variables X by f each time. The
conclusion of the rule is that the loop will terminate within d§; 4 (6;40d2) x #; cycles, where

x; 1s the value of the variant x; when the loop started. On termination the invariant still
holds, but the test B is false. Here is the while rule for STAs.

{Inv AN BANx;=a} f{Inv N\ x; < 2}

Inv 7
(At n Byd At(B ¥ — np | ny))
\V/f‘ - _ = % - _ =
X =2 X=X
[pl]
. At n; By d2 Atn
Vio| z=z 7 2= f7
[pz]
Atn By(di+ (61+62) x 7)) At n,
35/. - _ = = =y /\]nv fi)/ /\ _‘(B f’)
X=X X=X

[p1 A po
As an example of the STA while rule consider the iteration:

WHILE (x > 0) AND NOT(INPUT reset)
DO out := out + y;

X
0D

x -1

This translates to the following intermediate form (see Figure 1.1).

13: IF x > O AND NOT(INPUT reset) THEN SKIP ELSE GOTO 17 .. 27: GET x
28: OPO O
29: 0P2 >
30: INP reset
31: OP1 NOT
32: 0P2 AND
33: JMZ 42
14: out (= out + § ... e e 34: GET out
35: GET y
36: 0P2 +
37: PUT out
15: X 1= X = 1 e e e e e 38: GET x
39: OP1 pre
40: PUT x
16: GOTO 13 L.t it it ittt ettt et e, 41: JMP27

From which the following two STAs can be generated (the free variables reset, x, y and
outl are assumed to be universally quantified).

At 13 At(z >0 A —(reset =1) — 14| 17)
X=z By 7 X=x
y=1Y [reset = reset] Y =Y
out = out out = out
At 14 At 13
X=z By8 x=s-1
_ —> _
y=4Y True Y=Y

out = out out = oul + vy

For arbitary r take:

Inv.(z,y,out) = (out+(xxy)=r)
B{x,y, out) = & >0A ~(reset = 1)
[a,y,out) = (2=1,y, oul+y)

It follows that {Inv, A B A x = m} f {Inv, N\ x < m} and hence by the while rule, if
oult+(xxy) = r then there exists «’, 3 and out’ such that:

out = out

At 13 (()) At 17
_ By(7 + (74+8) x « =g
S, 2| n ety ow) By out)

[reset = reset]

out = out’

Hence out’+(a'xy') = r (the invariant still holds) and (2’ > 0 A —(reset = 1)) (the test
is false). If reset = 0 then it follows from the test being false that «’ = 0 and then if r is
taken to be & x y it follows from the invariant still holding that out’ = x x y. Hence:

At 13 At 17
X=z By(7+15xa) yx =

— — !
y=1y [reset=0] Y=Y
out =0 out = Xy

By choosing a slightly more complex invariant it could also be shown that the value of y
is unchanged by the iteration.

1.9. Conclusions

The analysis of real-time programs is notoriously complex. The approach outlined here
tightly couples the formalism used (STAs) with theorem proving tools, the aim being to
automate away as much detail as possible. The current mechanization requires the user
to invoke tools, such as the wait loop synthesizer and the while rule, on an intermediate
representation of the high-level program consisting of sequences of assignments and jumps.
In the future, it is hoped to try to hide this level completely by guiding the verification
via annotations in the program. The goal, only partially achieved so far, is to require
the user to manually prove ‘mathematical’ verification conditions, but to have all STA
manipulations performed automatically. Progress towards this goal appears in the paper
entitled ‘A Hoare logic of state transitions’ included in the Festschrift for Professor Hoare,
edited by Bill Roscoe and published by Prentice-Hall in 1994. In that paper it is shown
how the while rule for STAs can be automatically invoked via annotations in the high-level
program. This is achieved by defining a Hoare logic of state transitions.

The approach taken here can be viewed as lying somewhere in the middle of a spectrum
with conventional verification plus a verified compiler at one end, and pure machine code
verification at the other. Conventional verification using a high-level semantics has many
advantages: properties of programs can be proved that are independent of the compiler
used. If a verified compiler is available, then analysis can be conducted within an abstract
semantics and then applied, via a compiler correctness statement, to machine code [2].

At the other extreme, one can model the host machine semantics and then verify machine
code programs (got, for example, by running production Ada compilers) by reasoning
about processor transitions. Impressive work of this sort has been done by Yuan and
Boyer [6]. Between these two extremes lies the work presented here. The techniques
are in the spirit of Yuan and Boyer in that they are based on a semantics derived from
the execution of machine instructions (though Yuan and Boyer use a real machine in the
68000 family, whereas an enormously simpler abstract machine is used here). However, the
reasoning is conducted through an abstract view of the machine code provided by a high
level programming language. Proofs are conducted using Hoare-style proof rules normally
associated with high-level languages; but the interpretation of the Hoare-sentences is low-

level.

Bibliography

REFERENCES

1

J. A. Camilleri. Symbolic compilation and execution of programs by proof: A case
study in HOL. Technical Report 240, Computer Laboratory, University of Cambridge,
UK, December 1991.

P. Curzon. Deriving correctness properties of compiled code. In L. Claesen and
M. Gordon, editors, Proceedings of the International Workshop on Higher Order Logic
Theorem Proving and its Applications. North-Holland, 1992.

J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on tempo-
ral intervals. In Proc. 10th International Colloguium on Automata, Languages and
Programming, Barcelona, Spain, 1983.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12:576-583, October 1969.

B. Levy, 1. Filippenko, L. Marcus, and T. Menas. Using the state delta verification
system. In Proc. IFIP TC10/WG 10.2 International Conference on Theorem Provers
in Clrceuit Design, pages 337-360. North-Holland, June 1992.

Y. Yu. Automated Proofs of Object Code for a Widely Used Microprocessor. PhD
thesis, The University of Texas at Austin, yuanyu@com.dec.src, 1992.

25

