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1 IntroductionThe nature of the representation of the world inside our heads as acquired by visualperception has persisted as a topic of investigation for thousands of years, from the worksof Aristotle to the present [26]. In our day, answers to this question have several practicalconsequences in the �eld of robotics and automation. An arti�cial system equipped withvisual sensors needs to develop representations of its environment in order to interactsuccessfully with it. At the same time, understanding the way space is represented in thebrains of biological systems is key to unraveling the mysteries of perception. We referlater to space represented inside a biological or arti�cial system as perceptual space, asopposed to physical , extra-personal space.Interesting non-computational theories of perceptual space have appeared over theyears in the �elds of philosophy and cognitive science [22]. Computational theories, onthe other hand, developed during the past thirty years in the area of computer vision,have followed a brute-force approach, equating physical space with perceptual space. Eu-clidean geometry involving metric properties has been used very successfully in modelingphysical space. Thus, early attempts at modeling perceptual space concentrated on de-veloping metric three-dimensional descriptions of space, as if it were the same as physicalspace. In other words, perceptual space was modeled by encoding the exact distances offeatures in three dimensions. The apparent ease with which humans perform a plethoraof vision-guided tasks creates the impression that humans, at least, compute representa-tions of space that have a high degree of generality; thus, the conventional wisdom thatthese descriptions are of a Euclidean metric nature was born and has persisted until now[1, 17, 26].Computational considerations, however, can convince us that for a monocular or abinocular system moving in the world it is not possible to estimate an accurate de-scription of three-dimensional metric structure, i.e., the exact distances of points in theenvironment from the nodal point of the eye or camera. This paper explains this in com-putational terms for the case of perceiving the world from multiple views. This includesthe cases of both motion and stereo. Given two views of the world, whether these are theleft and right views of a stereo system or successive views acquired by a moving system,the depth of the scene in view depends on two factors: (a) the three-dimensional rigidtransformation between the views, hereafter called the 3D transformation, and (b) theidenti�cation of image features in the two views that correspond to the same feature inthe 3D world, hereafter called visual correspondence.If there were no errors in the 3D transformation or the visual correspondence, thenclearly the depth of the scene in view could be accurately recovered and thus a metric de-scription could be obtained for perceptual space. Unfortunately, this is never the case. Inthe case of stereo, the 3D transformation amounting to the extrinsic calibration parame-ters of the stereo rig cannot be accurately estimated, only approximated [7]. In the caseof motion, the three-dimensional motion parameters describing rotation and translationare estimated within error bounds [4, 5, 6, 8, 27, 33]. Finally, visual correspondence itselfcannot be obtained perfectly; errors are always present. Thus, because of errors in bothvisual correspondence and 3D transformation, the recovered depth of the scene is alwaysa distorted version of the scene structure. The fundamental contribution of this paper is1



the development of a computational framework showing the geometric laws under whichthe recovered scene shape is distorted. In other words, there is a systematic way in whichvisual space is distorted; the transformation from physical to perceptual space belongsto the family of Cremona transformations [30].1The power of the computational framework we introduce is demonstrated by usingit to explain recent results in psychophysics. A number of recent psychophysical exper-iments have shown that humans make incorrect judgments of depth using either stereo[13, 18] or motion [15, 31]. Our computational theory explains these psychophysicalresults and demonstrates that, in general, perceived space is not describable using a well-established geometry such as hyperbolic, elliptic, a�ne or projective. Understanding theinvariances of distorted perceived space will contribute to the understanding of robustrepresentations of shape and space, with many consequences for the problem of recogni-tion. This work was motivated by our recent work on direct perception and qualitativeshape representation [10, 11] and was inspired by the work of Koenderink and van Doornon pictorial relief [21].In the psychophysical literature it has been argued before for the interpretation ofstereo data that an incorrect estimation of the viewing geometry causes incorrect esti-mation of the depth of the scene. This was �rst hypothesized but not further elaboratedon by Helmholtz [34] and was explained by means of a number of tasks involving depthjudgments from stereo by Foley [13]. In this paper we provide a general framework ofspace distortion on the basis of incorrect estimation of viewing geometry which can beused to explain estimation from motion as well as stereo. In our exposition we con-centrate primarily on the experiments described in [31], which are concerned with bothmotion and stereo, and we use these experiments to explain in detail the utilization ofthe iso-distortion framework. In these experiments Tittle et al. tested how orientations ofobjects in space and absolute distance inuence the judgment of depth, and they foundvery di�erent results from the motion and stereo cues. The experiments were cleverlydesigned so that the underlying geometries of the motion and stereo con�gurations arequalitatively similar. Thus they are of great comparative interest. We also discuss anadditional motion experiment [15] and some well known stereo experiments.The computational arguments presented here are based on two ideas. First, the 2Dimage representation derived for stereo perception is of a di�erent nature than the onederived for motion perception. Second, the only thing assumed about the scene is thatit lies in front of the image plane, and thus all depth estimates have to be positive;therefore, the perceptual system, when estimating 3D motion, minimizes the numberof image points whose corresponding scene points have negative depth values due toerrors in the estimate of the motion. In [9] an error analysis has been performed tostudy the optimal relationship between translational and rotational errors which leadsto this minimization. It has been found that for a general motion imaged on a plane theprojection of the translational error motion vector and the projection of the rotationalerror motion vector must have a particular relationship. Furthermore, the relative amount1In the projective plane, a transformation (x; y; z) ! (x0; y0; z0) with �x0 = �1(x; y; z), �y0 =�2(x; y; z), �z0 = �3(x; y; z) where �1; �2; �3 are homogeneous polynomials and � any scalar, is called arational transformation. A rational transformation whose inverse exists and is also rational is called aCremona transformation. 2



of translational and rotational error can be evaluated as a function of scene structure.These �ndings are utilized in the explanation of the psychophysical experiments.The organization of this paper is as follows. Section 2.1 introduces the concept ofiso-distortion surfaces. Considering two close views, arising from a system in generalrigid motion, we relate image motion measurements to the parameters of the 3D rigidmotion and the depth of the scene. Then, assuming that there is an error in the rigidmotion parameters, we �nd the computed depth as a function of the actual depth andthe parameters of the system. Considering the points in space that are distorted by thesame amount, we �nd them to lie on surfaces that in general are hyperboloids. These arethe iso-distortion surfaces that form the core of our approach. In Section 2.2 we furtherdescribe the iso-distortion surfaces in both 3D and visual space and we introduce theconcept of the holistic or H-surfaces. These are surfaces that describe all iso-distortionsurfaces distorted by the same amount, irrespective of the direction (nx; ny) in the imagein which measurements of visual correspondence are made. The H-surfaces are importantin our analysis of the case of motion since measurements of local image motion can bein any direction and not just along the horizontal direction which is dominant in thecase of stereo. Section 3 describes psychophysical experiments from the recent literatureusing motion and stereo, and Section 4 explains their results using the iso-distortionframework. Section 4.1 describes in detail the coordinate systems and the underlyingrigid transformations for the speci�c experiments. Sections 4.2 and 4.3 explain the ex-perimental results of [31] for motion and stereo respectively, and Section 4.4 discussesthe experimental results of the additional purely motion or stereo experiments using theframework introduced here. Section 5 concludes the paper and discusses the relationshipof this work to other attempts in the literature to capture the essence of perceptual space.2 Distortion of Visual Space2.1 Iso-distortion SurfacesAs an image formation model, we use the standard model of perspective projection onthe plane, with the image plane at a distance f from the nodal point parallel to theXY plane, and the viewing direction along the positive Z axis as illustrated in Figure 1.We want a model that can be used both for motion and stereo. Thus, we consider adi�erential model of rigid motion. This model is valid for stereo, which constitutes aspecial constrained motion, when making the small baseline approximation that is usedwidely in the literature [21].Speci�cally, we model the change of viewing geometry di�erentially through a rigidmotion with translational velocity (U; V;W ) and rotational velocity (�; �; ) of the ob-server in the coordinate system OXY Z. Stereo can be approximated as a constrainedrigid motion with translation (U; 0;W ) and rotation (0; �; 0), as explained in detail inSection 4.1. In the case of stereo the measurements obtained on the image are the so-called disparities which we approximate here through a continuous ow �eld. As, due tothe stereo viewing geometry, the disparities are close to horizontal, in the forthcominganalysis we only employ horizontal image ow measurements. On the other hand, in thecase of continuous motion from local image information only the component of the ow3
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Knowing the parameters of the viewing geometry exactly, the scaled depth can be derivedfrom (2). Since the depth can only be derived up to a scale factor, we set W = 1 andobtain Z = (x� x0)nx + (y � y0)nyun � urotnx � vrotnyIf there is an error in the estimation of the viewing geometry, this will in turn causeerrors in the estimation of the scaled depth, and thus a distorted version of space willbe computed. In order to capture the distortion of the estimated space, we describeit through surfaces in space which are distorted by the same multiplicative factor, theso-called iso-distortion surfaces. To distinguish between the various estimates, we use thehat sign \ ^ " to represent estimated quantities, the unmarked letters to denote the actualquantities, and the subscript \�" to represent errors, where the estimates are related asfollows: (x̂0; ŷ0) = (x0 � x0�; y0 � y0�)(�̂; �̂; ̂) = (�� ��; � � ��;  � �)ûrot = (ûrot; v̂rot) = urot � urot� = (urot � urot�; vrot � vrot�)If we also allow for a noise term N in the estimate ûn of the component ow un, we haveûn = un +N . The estimated depth becomesẐ = (x� x̂0)nx + (y � ŷ0)nyûn � (ûrotnx + v̂rotny) orẐ = Z �  (x� x̂0)nx + (y � ŷ0)ny(x� x0)nx + (y � y0)ny + Z(urot�nx + vrot�ny) +NZ! (3)From (3) we can see that Ẑ is obtained from Z through multiplication by a factor givenby the term inside the brackets, which we denote by D and call the distortion factor. Inthe forthcoming analysis we do not attempt to model the statistics of the noise and wewill therefore ignore the noise term. Thus, the distortion factor takes the formD = (x� x̂0)nx + (y � ŷ0)ny(x� x0)nx + (y � y0)ny+Z h���xyf � �� �x2f + f�+ �y�nx + ��� �y2f + f�� �� xyf � �x�nyi (4)or, in a more compact formD = (x� x̂0)nx + (y � ŷ0) ny(x� x0 + Zurot�)nx + (y � y0 + Zvrot�) nyEquation (4) describes, for any �xed direction (nx; ny) and any �xed distortion factorD, asurface f(x; y; Z) = 0 in space, which we call an iso-distortion surface. For speci�c valuesof the parameters x0; y0; x̂0; ŷ0; ��; ��; � and (nx; ny), this iso-distortion surface has theobvious property that points lying on it are distorted in depth by the same multiplicativefactor D. Also, from (3) it follows that the transformation from perceptual to physicalspace is a Cremona transformation. 5



It is important to realize that, on the basis of the preceding analysis, the distortionof depth also depends upon the direction (nx; ny) and is therefore di�erent for di�erentdirections of ow in the image plane. This means simply that if one estimates depthfrom optical ow in the presence of errors, the results can be very di�erent depending onwhether the horizontal, vertical, or any other component is used; depending on the direc-tion, any value between �1 and +1 can be obtained! It is therefore imperative that agood understanding of the distortion function be obtained, before visual correspondencesare used to recover the depth or structure of the scene.In order to derive the iso-distortion surfaces in 3D space we substitute x = fXZ andy = fYZ in (4), which gives the following equation:D ����XY � �� �X2 + Z2�+ �Y Z�nx + ��� �Y 2 + Z2�� ��XY � �XZ�ny��  X � x̂0Zf �D  X � x0Zf !!nx �  Y � ŷ0Zf �D  Y � y0Zf !!ny = 0describing the iso-distortion surfaces as quadratic surfaces|in the general case, as hy-perboloids. One such surface is depicted in Figure 2. Throughout the paper we will needaccess to the iso-distortion surfaces from two points of view. On the one hand we wantto compare surfaces corresponding to the same D, but di�erent gradient directions; thuswe are interested in the families of D iso-distortion surfaces (see Figure 3a). On theother hand we want to look at surfaces corresponding to the same gradient direction n,but di�erent D's, the families of n iso-distortion surfaces (see Figure 3b). We will alsobe interested in the intersections of the surfaces with planes parallel to the XZ, Y Z,and XY planes. These intersections give rise to families of iso-distortion contours; foran example see Figure 4.
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close to planar, as can be seen from Figure 5b.
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It must be stressed at this point that the iso-distortion surfaces should not be confusedwith the H-surfaces. Whereas a D iso-distortion surface for a direction n represents allpoints in space distorted by the same multiplicative factor D for image measurements indirection n, the holistic surfaces do not represent any actually existing physical quantity;they serve merely as a tool for visualizing the family of D iso-distortion surfaces as nvaries, and will be needed in explaining the distortion of space due to motion.The H-surfaces for the families of iso-distortion surfaces vary continuously as we varyD. For D = 0 we obtain a cylinder with the Z axis and the line x = x̂0 as diametricallyopposite rulings. For D = 1 we obtain a plane parallel to the xy plane given by Z = �xo���f ;the cone for D =1 and the cone for D = �1 coincide. Thus we can divide the spaceinto three areas: the areas between the D = 0 cylinder and the D = �1 cone, whichonly contain cones of negative distortion factor; the area between the D = 1 cone andthe D = 1 plane, with cones of decreasing distortion factor; and the area between theD = 0 cylinder and the D = 1 plane, with cones of increasing distortion factor. Allthe holistic surfaces intersect in the same circle, which is the intersection of the D = 0cylinder and the D = 1 plane (see Figure 7a). Since the holistic surfaces intersect in oneplane, any family of n iso-distortion surfaces intersects in a line in that plane.
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3 Psychophysical Experiments on Depth PerceptionIn the psychophysical literature a number of experiments has been reported that docu-ment a perception of depth which does not coincide with the actual situation. Most ofthe experiments were devoted to stereoscopic depth perception, using tasks that involvedthe judgment of depth at di�erent distances. The conclusion usually obtained was thatthere is an expansion in the perception of depth of near distances and a contraction ofdepth at far distances. However, most of the studies did not explicitly measure perceivedviewing distance, but asked for relative distance judgments instead. Recently a few ex-periments have been conducted by Tittle et al. [31] comparing aspects of depth judgmentdue to stereoscopic and monocular motion perception. The experiments were designedto test how the orientations of objects in space and their absolute distances inuence theperceptual judgment. It was found that the stereoscopic cue and the motion cue givevery di�erent results.The literature has presented a variety of explanations and proposed a number ofmodels explaining di�erent aspects of depth perception. Recently, great interest hasarisen in attempts to explain the perception of visual space using well-de�ned geometries,such as similarity, conformal, a�ne, or projective transformations mapping physical spaceinto perceived space, and it has been debated whether perceptual space is Euclidean,hyperbolic, or elliptic [35]. Our analysis shows that these models do not provide ageneral explanation for depth perception, and proposes that much of the data can beexplained by the fact that the underlying 3D transformation is estimated incorrectly.Thus the transformation between physical and perceptual space is more complicatedthan previously thought. For the case of motion or stereo it is rational and belongs tothe family of Cremona transformations [30].We next describe a number of experiments and show that their results can be ex-plained on the basis of imprecise estimation of the 3D transformation and thus can bepredicted by the iso-distortion framework introduced here. Our primary focus in Sec-tion 3.1 is on the experiments testing the di�erence between motion and stereo performedby Tittle et al. [31]. In addition, in Section 3.2 we describe two well-known stereoscopicexperiments, and in Section 3.3 a motion experiment.3.1 Distance Judgment from Motion and Binocular StereopsisIn the �rst experiment [31] that we discuss, observers were required to adjust the ec-centricity of a cylindrical surface until its cross-section in depth appeared to be circular.The observers could manipulate the cylindrical surface (shown in Figure 8) by rescalingit along its depth extent b (which was aligned with the Z axis of the viewing geometrywhen the cylinder was in a fronto-parallel orientation) with the workstation mouse. Sucha task requires judgment of relative distance. In order for the cross-section to appearcircular, the vertical extent and the extent in depth of the cylinder, a and b, have toappear equal.The experiments were performed for static binocular stereoscopic perception, formonocular motion, and for combined motion and stereopsis. The stereoscopic stimuliconsisted of stereograms, and the monocular ones were created by images of cylinders11



rotating about a vertical axis (see Figure 8). In all the experiments the observers hadto �xate on the front of the surface where it intersected the axis of rotation, and thecylindrical surfaces were composed of bright dots.The e�ect of the slant and distance of the cylinder on the subjective depth judgmentwas tested. In particular, the cylinder had a slant in the range 0� to 30�, with 0� corre-sponding to a fronto-parallel cylinder as shown in Figure 8, and the distance ranged from70 to 170 cm. Figure 9 displays the experimental results in the form of two graphs, withthe x axis showing either the slant or distance and the y axis the adjusted eccentricity.An adjusted eccentricity of 1.0 corresponds to a veridical judgment, values less than thisindicate an overestimate of b relative to a, and values greater than 1.0 indicate an under-estimate. As can be seen from the graphs, whereas the perception of depth from motiononly does not depend on the viewing distance, the extent b is overestimated for near dis-tances and underestimated for far distances under stereoscopic perception. On the otherhand, the slant of the surface has a signi�cant inuence on the perception of motion|at0� b is overestimated and at 30� underestimated|and has hardly any inuence on per-ception from stereo. The results obtained from the combined stereo and motion displaysshowed an overall pattern similar to those of the purely stereoscopic experiments.
Figure 8: From [31]: a schematic view of the cylinder stimulus used in Experiment 1.For stereoscopic perception only, a very similar experiment, known as apparentlycircular cylinder (ACC) judgment, was performed in [13, 18], and the same pattern ofresults was reported there.In a second experiment performed by Tittle et al. [31], the task was to adjust the anglebetween two connected planes until they appeared to be perpendicular to one another(see Figure 10).Again the surfaces were covered with dots and the �xation point was at the intersec-tion of the two planes and the rotation axis. As in the �rst experiment the inuencesof the cue (stereo, motion, or combined motion and stereo), the slant and the viewingdistance on the depth judgment were evaluated. This task again requires a judgment ofrelative distance, that is, the depth extent b relative to the vertical extent a (as shown inFigure 10). The results displayed in Figure 11 are qualitatively similar to those obtainedfrom the �rst experiment. An adjusted angle greater than the standard 90� correspondsto an overestimation of the extent in depth, and one less than 90� represents underesti-mation. 12



Figure 9: From [31]: Average adjusted cylinder eccentricity for the stereo, motion, andcombined conditions as a function of simulated viewing distance and surface slant. Anadjusted eccentricity of 1.0 indicates veridical performance.
a

bFigure 10: From [31]: a schematic view of the dihedral angle stimulus used in Experi-ment 2.3.2 Stereoscopic Experiments: Apparent Fronto-parallel Plane/ApparentDistance BisectionA classic test of depth perception for stereoscopic vision is the apparent fronto-parallelplane (AFPP) experiment [13, 29]. In this experiment, an observer views a horizontalarray of targets. One target is �xed, usually in the median plane (Y Z plane). Theother targets are �xed in direction but are variable in radial distance under control ofthe subject. The subject sets these targets so that all of the targets appear to lie ina fronto-parallel plane. Care is taken so that �xation is maintained at one point. Theresults are illustrated in Figure 12.The AFPP corresponds to a physical plane only at one distance, usually between 1 mand 4 m [13]. At far distances, the targets are set on a surface convex to the observer; atnear distances they are set on a surface increasingly concave to the observer. Generally,the AFPP locus is skewed somewhat, that is, one side is farther away than the other.13



Figure 11: From [31]: Adjusted dihedral angle as a function of surface slant and simulatedviewing distance. An adjusted angle of 90� indicates veridical performance.
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Figure 12: Data for the apparent fronto-parallel plane for di�erent observation distances.In each case, F is the point of �xation. The visual �eld of the target extends from �16�to 16�. From [29].In another classic experiment, instead of instructing a subject to set targets in anapparent fronto-parallel plane, the subjects are asked to set one target at half of theperceived distance of another target, placed in the same direction. This is known as theapparent distance bisection task or the ADB task [12]. In practice the targets wouldinterfere with each other if they were in exactly the same direction, so they are displaced14



a few degrees. The task and the results are illustrated in Figure 13. These results wereobtained with free eye movements, but the author claimed that the e�ect has also beenreplicated with �xation on one point.
Performance

Perceptual Task

(a) (b) (c)Figure 13: Apparent distance bisection task: (a) Far �xation point. (b) Correct distancejudgment at intermediate �xation point. (c) Near �xation point.3.3 Motion ExperimentsIn [15], Gogel tested the distance perceived under monocular motion when �xating onpoints at di�erent distances. In one of his experiments he relates motion to depth in ahighly original way. The resulting task can be performed on the basis of scaled depth.The experimental set-up is shown in Figure 14. The subjects sitting in the observationbooth moved their heads horizontally while �xating on a point on either a near or farobject. Between the two �xation points was a bright, moving point. Imagine the pointto be moving vertically. If the distance to the point is estimated correctly the observerexperiences a vertical motion. If it is estimated incorrectly the point is perceived as mov-ing diagonally, with a horizontal component either in the direction of the head movementif there is an underestimation of depth, or in the opposite direction if there is an over-estimation. In the experiment the subjects controlled the point's movement and wereasked to move it in such a way that they experienced a purely vertical movement. Tocompensate for the additional motion component perceived, subjects moved the pointdiagonally with a horizontal component in the direction opposite. From the amount ofhorizontal movement, the estimated depth could be reconstructed. The exact dimensionsof the set-up are described in Figure 14. The results of the experiments are displayed inTable 1. As can be seen, overestimation of depth occurs with both �xation points, andit is larger for the far �xation point than for the near one.4 Explanation of Psychophysical Results4.1 The Viewing Geometry(a) Stereo The geometry of binocular projection for an observer �xating on an envi-ronmental point is illustrated in Figure 15. We �x a coordinate system (LXY Z) on the15



Figure 14: A schematic drawing of the observation booth (from [15]). The observationbooth was 50 cm wide and extending optically 194 cm in front of the observer (actuallya mirror was used in the display as can be seen). The near �xation object was 15.3 cmfrom the right edge of the visual alley and 37 cm from the observer. The far �xationobject was 2 cm from the left edge of the alley and optically 168 cm from the observer.The moving dot was between the two walls at a distance of 97.5 cm and the observercould move horizontally left and right, in one movement, 17.5 cm. The oor and the twosides of the booth were covered with white dots. All other surfaces were black.Table 1: Results in centimeters from the experiment shown in Figure 14. W is thephysical horizontal motion required for the point of light physically moving with a verticalcomponent to appear to move vertically and D0 is the perceived distance of the point oflight as derived using the measurementW .Fixation Near Fixation FarW D0 W D0Mean 1.51 117 7.08 164Geometric Mean | 112 7.04 164Median 2.42 113 7.13 165SD 5.10 34 0.70 11left eye with the Z axis aligned with the optical axis and the Y axis perpendicular to the�xation plane. In this system the transformation relating the right eye to the left eye isa rotation around the Y axis and a translation in the XZ plane. If we make the smallbaseline assumption, we can approximate the disparity measurements through a con-tinuous ow �eld. The translational and rotational velocities are (U; 0;W ) and (0; �; 0)respectively, and therefore the horizontal h and vertical v disparities are given byh = WZ (x� x0) ��  x2f + f!v = WZ y ��xyf16



In the coordinate system thus de�ned (Figure 15), � is negative and x0 is positive, andfor a typical viewing situation very large. Therefore the epipole is far outside the imageplane, which causes the disparity to be close to horizontal.
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Figure 15: Binocular viewing geometry. LK = U dt (translation along the X axis),KR = W dt (translation along the Z axis), LFR = � dt = convergence angle (resultingfrom rotation around the Y axis). L, K, R, F are in the �xation plane and dt is ahypothetical small time interval during which the motion bringing XLYLZL to XRYRZRtakes place.(b) Motion In the experiments described in Section 3.1 the motion of the objectconsists of a rotation around a vertical axis in space.We �x a coordinate system to a point S = (Xs; Ys; Zs) on the object in the Y Z planethrough which the rotation axis passes. At the time of observation it is parallel to thereference coordinate system (OXY Z) on the eye of the observer (see Figure 16). In thenew coordinate system on the object, the motion is purely rotational, and is given by thevelocity (0; wy; 0). If we express this motion in the reference system as a motion of theobserver we obtain a rotation around the Y axis and an additional translation in the XZplane given by the velocity (wyZs; 0;�wyXs). Thus in the notation used before, there isa rotation with velocity � = �wy, and a translation with epipole (x0; 0) = ��ZsfXs ; 0� or(1; 0) if Xs = 0. The value un of the ow component un along a direction n = (nx; ny)is given by un = wy  XsZ �x+ ZsXs f�+  f + x2f !! nx + wy  yXsZ + xyf !nySince Xs is close to zero, x0 again takes on very large values. In our coordinate system(see Figure 16) � is positive and x0 is positive, since the circular cross-section is to theright of the Y Z plane, and thus the locus of the �xation point most probably is biasedtoward the cross-section.Although the motion in the stereo and motion con�gurations is qualitatively similar,the psychophysical experimental results show that the system's perception of depth is not.17
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Figure 16:This demonstrates that the two mechanisms of shape perception from motion and stereowork di�erently. We account for this by the fact that the 2D disparity representationused in stereo is of a di�erent nature than the 2D velocity representation computed forfurther motion processing.It is widely accepted that horizontal disparities are the primary input in stereoscopicdepth perception although there have been many debates as to whether vertical disparitiesplay a role in the understanding of shape [19, 28]. The fact is that for any human stereocon�guration, even with �xation at nearby points, the horizontal disparities are muchlarger than the vertical ones. Thus, for the purpose of the forthcoming analysis, in thecase of stereo we only consider horizontal disparities, although a small amount of verticaldisparity would not inuence the results.On the other hand, for a general motion situation the actual 2D image displacementsare in many directions. Due to computational considerations from local image measure-ments, only the component of ow perpendicular to edges can be computed reliably. Thisis the so-called aperture problem. In order to derive the optical ow, further processingbased on smoothing and optimization procedures has to be performed, which implicitlyrequires some assumptions about the smoothness of the scene. For this reason we ex-pect the 2D image velocity measurements used by the system to be distributed in manydirections, although the optical ow in the experimental motion is mostly horizontal.Based on these assumptions about the velocity representations used, in the next twosections the experimental data|�rst the data from motion perception, then the datafrom stereo perception|are explained through the iso-distortion framework.18



4.2 MotionTo visualize this and later explanations let us look at the possible distortions of space forthe motion and stereo con�gurations considered here. Figure 17a gives a sketch of theholistic surfaces (third-order surfaces) for negative rotational errors (��) and Figure 17bshows the surfaces for positive rotational errors. In both cases x0 is positive. A changeof the error in translation leaves the structure qualitatively the same; it only a�ects thesizes of the surfaces. In the overall pattern we observe a shift in the location of theintersection of the holistic surface. Since the intersection is in the D = 1 plane given bythe equation Z = � x0���f , an increase in x0� causes the intersection to have a smaller Zcoordinate in Figure 17a and a larger one in Figure 17b. For both the motion and thestereo experiments, the FOE lies far outside the image plane. Therefore only a small partof the illustrated iso-distortion space actually lies in the observer's �eld of view. Thispart is centered around the Z axis as schematically illustrated in Figure 17.
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scene(a) (b)Figure 17: Holistic third-order surfaces for the geometric con�gurations described in theexperiments. (a) Positive ��. (b) Negative ��.The guiding principle in our explanation of the motion experiments lies in the min-imization of negative depth estimates. We do not assume any scene interpretation; theonly thing we know about the scene is that it lies in front of the image plane, and thusall depth estimates have to be positive. Therefore, we want to keep the number of im-age points, whose corresponding scene points would yield negative depth values due toerroneous estimation of the 3D transformation, as small as possible.To represent the negative depth values we use a geometric statistical model: Thescene in view lies within a certain range of depths between Zmin and Zmax. The owmeasurement vectors on the image are distributed in many directions; we assume thatthey follow some distribution. We are interested in the points in space for which wewould estimate negative depth values.For every direction n the points with negative depths lie between the D = 0 andD = �1 distortion surfaces within the range of depths covered by the scene. Thus, forevery gradient direction we obtain a 3D subspace, covering a certain volume. The sumof all volumes for all gradient directions, normalized by the ow distribution consideredhere, represents a measure of the likelihood of negative depth estimates being derived19



from the image ow on the basis of some motion estimate. We call this sum the negativedepth volume.Let us assume there is some error in the estimate of the rotation, ��. We are interestedin the translation error x0� that will minimize the negative depth volume. Under theassumption that the distribution of ow directions is uniform (that is, the ow directionsare uniformly distributed in every direction and at every depth within the range betweenZmin and Zmax), and that the simpli�ed model is used (i.e., quadratic terms are ignored)and the computations are performed in visual space, the minimum occurs when theintersection of the iso-distortion cones is at the middle of the depth range of the scene.That is, the D = 1 plane is given as Z = � x0���f = Zmin+Zmax2 , and x0� = ���f Zmin+Zmax2 [3].Of course, we do not know the exact ow distribution, or the exact scene depthdistribution, nor do we expect the system to optimally solve a minimization problem.We do, however, expect that the estimation of motion is such that the negative depthvolume is kept rather small and thus that x0� and �� are of opposite sign and the D = 1plane is between the smallest and largest depth of the object observed.In the following explanation we concentrate on the �rst experiment, which was con-cerned with the judgment about the circular cylinder.We assume that the system underestimates the value of x0, because the observer is�xating at the rotation axis in the image center while judging measurements to the rightof the center. As this does not correspond to a natural situation (�xation center andobject of attention coinciding), the observer should perceive the �xation center closerto the object resulting in an underestimation in the value of x0. Thus, x0� > 0 whichimplies �� < 0 and the distortion space of Figure 17b becomes applicable.The holistic surfaces corresponding to negative iso-distortion surfaces in the �eld ofview are very large in their circular extent, and thus the ow vectors leading to negativedepth estimates are of large slope, close to the vertical direction. Figure 18 shows a cross-section through the negative iso-distortion surfaces and the negative holistic surfaces fora value Z in front of the D = 1 plane.The rotating cylinder constitutes the visible scene. Its vertical cross-section alongthe axis of rotation lies in the space where x is positive. The most frontal points of thecross-section always lie in front of the D = 1 plane, and as the slant of the cylinderincreases, the part of the cross-section which lies in front of the D = 1 plane increasesas well.The minimization of the negative depth volume and thus the estimation of the motionis independent of the absolute depth of the scene. Therefore a change in viewing distanceshould not have any e�ect on the depth perceived by the observer, which explains the�rst experimental observation.The explanation of the second result lies in a comparison of the estimated verticalextent, â, and the extent in depth, b̂.Figures 19a{c illustrate the position of the circular cross-section in the distortionspace for the fronto-parallel position of the cylinder. Section a = (AC) lies at onedepth and intersects the cross section of the holistic surface as shown in Figure 19b.Section b = (BC) lies within a depth interval between depth values ZB and ZC . Thecross-sections of the holistic surfaces are illustrated in Figure 19c. To make quantitativestatements about the distortion D at any depth value, we assume that at any point P ,20
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Figure 18: Cross-sections through negative iso-distortion surfaces and negative holisticsurfaces. The ow vectors yielding negative depth values have large slopes.D is the average value of all the iso-distortion surfaces passing through P . With thismodel we derive â and b̂ as follows: â = Da (5)where D is the average distortion at the depth of section AC. The estimate b̂ is derivedas the di�erence of the depth estimate at points B and C. We denote by � the di�erencebetween the average distortion factor of extent a and the distortion at point C, and weuse � to describe the change in the distortion factor from point C to point B. Thusb̂ = ẐC � ẐB= (D + �)ZC � (D + � + �)(ZC � b)= (D + �)b� �(ZC � b) (6)ZC is much larger than b and thus (ZC � b) is always positive. Comparing equations (5)and (6) we see that for a = b the factor determining the relative perceived length of aand b depends primarily on � and �.For the case of a fronto-parallel cylinder, where extent a appears behind the D = 1plane, � is positive (see Figure 19b) and � is negative (see Figure 19c), which means thatb will be perceived to be greater than a.As the cylinder is slanted (see Figures 19d{f), the circular cross-section also becomesslanted. As a consequence the cylinder covers a larger depth range and extent a appearscloser to or even in front of the D = 1 plane (see Figure 19e). Points on section b haveincreasing X-coordinates as Z increases (see Figure 19f). As the slant becomes largeenough � reaches a negative value, � reaches a positive value and b is perceived to besmaller than a. Therefore the results for the experiments involving the cylindrical surfacefor the case of motion can be explained in terms of the iso-distortion diagrams with Dthat decreases or increases with Z. 21
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The second experiment, concerned with the judgment of right angles, can be explainedby the same principle. The estimate is again based on judgment of the vertical extenta relative to the extent in depth b (see Figure 10). Either we encounter the situationwhere the sign of x0 is positive, so that a and b are measured mostly to the right of theY Z plane, and Figure 17b explains the iso-distortion space; or x0 is negative, so that aand b are mostly to the left of the Y Z plane, and the iso-distortion space is obtained byreecting the space of Figure 17b in the Y Z plane. In both cases the explanation givenfor the �rst experiment still applies. Due to the changes of position of the two planes iniso-distortion space with a change in slant, the extent in depth will be overestimated forthe fronto-parallel position and underestimated for larger slants.4.3 StereoIn the case of stereoscopic perception the primary 2D image input is horizontal disparity.Due to the far-o� location of the epipole the negative part of the distortion space forhorizontal vectors does not lie within the �eld of view, as can be seen from Figure 17.Since depth estimation in stereo vision has long been of concern to researchers in psy-chophysics, a large amount of experimental data has been published, and the parametersof the human viewing geometry are well documented. In [13] Foley studied the relation-ship between viewing distance and error in the estimation of convergence angle (� inour notation). From experimental data he obtained the relationship between perceivedconvergence angle and actual convergence angle shown in Figure 20.
P

er
ce

iv
ed

 C
on

ve
rg

en
ce

 A
ng

le
(d

eg
)

10

5

15

10

5 15

Convergence Angle (deg)Figure 20: Perceived convergence angle as a function of convergence angle.According to his data, the convergence angle is overestimated at far distances andunderestimated at near distances. Foley expressed the data through the following rela-tionship: ��̂ = E +G(��)with E and G in the vicinity of 0:5; in the �gures displayed here the following parametersbased on data of Ogle [29] have been chosen: E = 0:91� and G = 0:66�.On the basis of these data, models have been proposed [12, 13, 29] that explain theperception of concavity and convexity for objects in a fronto-parallel plane. To account23



for the skewing described in the AFPP task an additional model has been employedwhich assumes the ocular images are of di�erent sizes.In our explanation we use the experimental data of Figure 20 to explain ��. Aswill be shown, the iso-distortion framework alone allows us to explain all aspects of theexperimental �ndings. For far �xation points �� is positive (since � < 0) and the iso-distortion space of Figure 17a applies. If we also take into account the quadratic term inthe horizontal disparity formula of Section 4.1(a) (that is, the rotational part ��(x2f +f)),we obtain an iso-distortion con�guration for horizontal vectors as shown in Figure 21.In particular Figure 21a shows the contours obtained by intersecting the iso-distortionsurfaces with planes parallel to the xZ plane in visual space, and Figure 21b shows thesame contours in actual 3D space. Irrespective of x0� the iso-distortion factor decreaseswith depth Z. The sign of x0� determines whether the D = 1 contour (the intersectionof the D = 1 surface with the xZ plane) is in front of or behind the image plane, andthe exact position of the object with regard to the D = 1 contour determines whetherthe object's overall size is over- or underestimated.For near �xation points, �� is negative and the iso-distortion space appears as inFigure 17b. The corresponding iso-distortion contours derived by including the quadraticterm are illustrated in Figure 21c and d.The perceived estimates â and b̂ are modeled as before. However, this time it is notnecessary to refer to an average distortion D, since only one ow direction is considered.Section a lies in the yZ plane and â is estimated as aD, with D the distortion factor atpoint C. The estimate for b is b̂ = Db � �(ZC � b)As can be seen from Figures 21a and c, � is increasing if the �xation point is distant anddecreasing if the �xation point is close, and we thus obtain the under- and overestimationof b̂ as experimentally observed. A slanting of the object has very little e�ect on thedistortion pattern because the �xation point is not a�ected by it. As long as the slant isnot too large, causing � to change sign, the qualitative estimation of depth should not bea�ected by a change in slant. The slant might, however, inuence the amount of over-and underestimation. There should be a decrease in the estimation error as the slantincreases, since section b covers a smaller range of the distortion space. This can actuallybe observed from the experimental data in Figure 9.The same explanation covers the second experiment related to the judgment of angles.4.4 Explanation of Purely Stereoscopic and Purely Motion ExperimentsThe iso-distortion patterns outlined in Section 4.3 also explain the purely stereoscopicexperiments. With regard to the AFPP task it can be readily veri�ed that the iso-distortion diagram of Figure 21a (far �xation point) causes a fronto-parallel plane toappear on a concave surface, and thus inuences the observer to set them at a convexAFPP locus, whereas the diagram of Figure 21c (near �xation point) inuences theobserver to set them on a concave AFPP locus. In addition, the skewing of the AFPPloci is also predicted by the iso-distortion framework.24
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(due to �xation) is around the y axis, and the vertical motion component of the point isparallel to the y axis. The scene in view is the observation booth covered with dots.When the observer �xates on the near point x0 > 0. As in the experiments inSection 4.2, it is assumed that the value of x0 is underestimated, that is, x̂0 < x0, and�� < 0. The resulting distortion space corresponds to the one sketched in Figure 17b.The moving point appears to the left of the Y Z plane, and since the observer �xates ona point in the front part of the scene, it should be behind the D = 1 plane. The owvectors originating from the movement of the point are in a diagonal direction. As canbe seen, in the area of the moving point the distortion for that direction is greater thanone, and thus the distance of the point is overestimated. When the observer �xates onthe far point x0 < 0. If again the absolute value of x0 is underestimated, x̂0 > x0 and�� > 0. The distortion space is the one we obtain by reecting the space of Figure 17a inthe Y Z plane. In this reected space the moving point appears to the right of the Y Zplane and since the observer �xates on a point in the back of the scene, it should be infront of the D = 1 plane. In this area too there occurs an overestimation of distances.This explains the general overestimation found in [15].In order to assess the exact amount of overestimation we would need to know anumber of parameters exactly. The estimated motion, the exact position of the point inthe distortion space, and the estimated ow directions determine the distortion factor.Our intuitive argument is as follows. It can be seen that the negative distortion spacein Figure 17b behind the D = 1 plane increases very quickly with the distance from theplane. It is therefore assumed that the moving point lies closer to the D = 1 plane forthe near �xation than for the far �xation, and thus the distortion should be smaller forthe near �xation than for the far one, as observed in the experiment.5 ConclusionsThe geometric structure of the visual space perceived by humans has been a subjectof great interest in philosophy and perceptual psychology for a long time [2, 23, 24, 29].With the advent of digital computers and the possibility of constructing anthropomorphicrobotic devices that perceive the world in a way similar to the way humans and animalsperceive it, computational studies are beginning to be devoted to this problem [20].Many synthetic models have been proposed over the years in an attempt to accountfor the systematic distortion between physical and perceptual space. These range fromEuclidean geometry [14] to hyperbolic [24] and a�ne [32, 35] geometry. Many otherinteresting approaches have also been proposed, such as the Lie group theoretical studiesof Ho�man [16] and the work of Koenderink and van Doorn [21], that are characterizedby a deep geometric analysis concerned with the invariant quantities of the distortedperceptual space. It is generally believed in the biological sciences that a large numberof shape representations are computed in our heads and di�erent cues are processed withdi�erent algorithms. For the case of motion and/or stereo, there might exist more thanone process performing local analysis of motion or stereo disparity, that might work atseveral levels of resolution [25]. The analysis proposed here has concentrated on a globalexamination of motion or disparity �elds to explain a number of psychological resultsabout the distortion of visual space that takes place over an extended �eld of view.26
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