
User Level IPC and Device Management in the Raven KernelD. Stuart Ritchie and Gerald W. Neufeldfsritchie,neufeldg@cs.ubc.caDepartment of Computer ScienceUniversity of British ColumbiaVancouver, B.C. V6T 1Z2CanadaAbstractThe increasing bandwidth of networks and storage devices in recent years has placedgreater emphasis on the performance of low level operating system services. Data mustbe delivered between hardware devices and user applications in an e�cient matter.Motivated by the need for low overhead operating system services, the Raven kernelutilizes user level implementation techniques to reduce kernel intervention for manycommon services. In particular, our user level send/receive/reply communication im-plementation generates no kernel interactions per iteration in the best case, and twokernel interactions in the worst case. In more general cases, we observe approximatelyone kernel interaction for every two send/receive/reply iterations. Device driver supportis also done entirely at the user level reducing copy costs and context switching.1 IntroductionThe speed of network channels and storage devices has increased by an order of magnitudein recent years (10Mbps Ethernet to 100Mbps FDDI and 140Mbps ATM). This increasedbandwidth places additional burden on the operating system to deliver data between hard-ware devices and user applications. In order to sustain such speeds, device drivers must beinvoked with low latency and be able to communicate high volumes of data to and fromapplications. We believe that pure kernel mediated architectures such as Mach [ABB+86]and V [Che88], even optimized using continuations [DBRD91], involve signi�cant overhead.Motivated by the need for low overhead operating system services in high speed proto-col processing applications, we have implemented a lightweight kernel for shared memorymultiprocessors. Threads, IPC, and device management are implemented at the user level,while task and virtual memory management are implemented in the supervisor kernel.Existing systems such as URPC [BALL90], and the \continuous media" system [GA91]demonstrate the viability of this approach. Our current implementation is based on theMotorola MVME188 Hypermodule, a 25MHz quad-processor 88100 machine [Gro90].Our goal with the Raven kernel is to provide a lightweight environment for multithreadedparallel applications. The applications that we are currently investigating are high-speednetworking and disk activities. In an environment based on threaded parallelism and highdevice interrupt rates, a great deal of context switching is to be expected when runningsuch applications. We have designed and implemented our system accordingly.



By moving several of the high-use kernel services into user space, less time is spentinvoking operations. The general motivation is to reduce the overall number of user/kernelinteractions. Several techniques are employed by Raven to do this:� User level thread scheduling. Rather scheduling threads in the kernel, move thescheduling code into the user space.� User level interrupt handling. Allow interrupt handlers to upcall directly into the userspace. Device drivers can be implemented completely in user space, eliminating thecosts of moving device data between the user and kernel.� User level interprocess communication. By making extensive use of shared memorybetween client and server address spaces, data copying through the kernel is elimi-nated.� Low level synchronization primitives. Provide a simple mechanism to allow an eventto be passed from one address space to another. With appropriate hardware, remoteprocessor interrupts can be implemented completely at the user level.This paper discusses the design and performance of our user level IPC implementationand device driver management. We introduce the design of the overall system, and thendiscuss the IPC and device management facilities and how they interact. The paper followswith a performance evaluation of our current implementation.2 Overall kernel designThe Raven kernel is small, lightweight microkernel operating system for shared memorymultiprocessors consisting of a supervisor kernel and user level library. The supervisorkernel and user level library (Figure 1 compiles into 52K of executable code and 72KBof data. The size and scope of the Raven kernel is roughly similar to the QNX [Hil92]operating system: the supervisor kernel provides a simple set of abstractions, from which aset of more complex services may be constructed. Unlike QNX, however, the Raven kerneltakes advantage of symmetric multiprocessing and user level design techniques.Two main abstractions are provided by the supervisor kernel: tasks and virtual memory.Task creation, destruction, and scheduling (address space switching), are implemented insidethe kernel. A task consists of an address space that is scheduled for execution by the kernelon one or more processors. The kernel also maintains strict control over page tables andfree memory lists, so all virtual memory allocations and mapping are provided by systemcalls.All other services are provided by the user level: threads, semaphore synchronization,interprocess communication, and device management. These features are accessible to ap-plication programs via inline macros or procedure calls, rather than more expensive kerneltraps. Threads are preemptively scheduled from processor to processor in an e�ort to bal-ance work load. Semaphores can be used to coordinate threads in local and remote addressspaces. Extensive use of shared memory allows disjoint address spaces to e�ciently com-municate scheduling information and interprocess communication data. Figure 1 shows thesupervisor kernel in relation with the user level library.



User program

Task management
and scheduler

10KB

Memory
management

8KB

Exception and interrupt handling
4KB

upcall and interupt handling
3KB

upcall
events

Interprocess
communication

10KB

shared memory
region

system
calls

thread
scheduling

12KB

support
functions

7KB User level
library

Supervisor kernel

User level task

Figure 1: High level system organization.The user level thread scheduler communicates and coordinates scheduling activities withthe supervisor kernel using a per-task shared data structure and system calls. The shareddata structure maintains several �elds which allow the user level scheduler and supervisorkernel to make scheduling decisions without crossing user/kernel address space boundaries.Under ideal conditions, threads can migrate amongst processors without kernel intervention.However, certain cases exist where kernel assistance is required. One such case occurs whenan address space switch is required.The MVME188 hardware provides a simple and e�cient means to deliver interruptsto remote processors in the system. We use this feature throughout the system to aidin the thread and task scheduling decisions required for IPC interactions and thread/taskmanagement. For example, when a new thread is created, an interrupt is delivered to thenext available idle processor to run that thread. Similarly, invoking the IPC mechanism tosend a message results in an interrupt delivered to the processor that is currently executingthe desired destination task. Idle processors never scan lists searching for work to do { workis delivered to idle processors in the form of interrupt noti�cations.Built on top of this interrupt mechanism is an asynchronous task signalling facility.The task signalling facility provides a mechanism to asynchronously send signal messagesfrom one task to another. This software implementation is roughly similar to Cheriton'shardware work with \address-valued signals" [CK93]. A signal message is a simple twoword structure which identi�es the signal type and message data. Each user level schedulermaintains a FIFO queue to store signal messages, and implements a set of signal handlers,one for each type. Signal handlers are invoked on the receipt of each signal message. Task



signals are the the basis for IPC and semaphore operation throughout the kernel.A task is delivered a signal by a non-blocking user level library function, task signal().This function avoids system calls on the local processor by using the remote software inter-rupt facility to notify destination tasks of the arrival of signal messages. There are threepossible ways that signals are delivered:1. If the destination task is currently executing on a remote processor, an interrupt isissued to that processor.2. If the destination task is not executing on a remote processor, then issue an interruptto an idle processor.3. If there are no idle processors and the destination task is not active, perform a systemcall to the local processor to initiate a task switch.Only the last item (3) produces an explicit system call by the local processor. The otheritems avoid a system call locally, allowing the processor to proceed with its own work. Workis distributed to remote processors in this fashion.3 Interprocess communicationThe user level IPC library provides a port-based synchronous send/receive/reply1 inter-face as well as asynchronous send/receive. Both of these interfaces utilize user level sharedmemory and the task signalling facility described above to reduce the frequency of kernel in-teractions. Systems such as Mach and Chorus, extend their IPC models across the network.We only consider the inter-machine case.The port-based approach to interprocess communication uses a port number as themailbox address for reliable message delivery. Rather than implementing send/receive/replyin terms of two send/receive ports, we have implemented the two models separately. Thereare several reasons for doing this, one being performance.Figure 2 shows a high level view of how the main IPC data structures are organized. Twoport descriptor tables are allocated by the initial task at boot time, one maintaining entriesfor synchronous ports, the other maintaining entries for asynchronous ports. The tables areshared amongst all user level tasks in the system. A port descriptor contains informationpertaining to the state of the port queue, and a set of semaphores to coordinate client andserver operations. At port creation time, the IPC library searches the appropriate tablefor a free entry and allocates an associated FIFO message queue. The number of messagesin this queue and their size is speci�ed at port creation time. The send/receive/replyimplementation uses the same queue for storing both send and reply messages { a secondqueue is not required. After a port is successfully created, the resulting descriptor index isused throughout the system as a port identi�er.The port's message queue is shared in a region of virtual memory between the serverand each of the clients involved in the communication. Clients wishing to communicate toa server over a port must initially \establish a connection" to the server by calling a libraryfunction that performs the message queue mapping and registration functions.1Our send/receive/reply implementation permits the reply stage to be deferred until a later time, out ofsequence with the arrival of messages similar to the V System[Che88].



Server
task

Client
task

Port descriptor
table

FIFO message queue
Queue memory
mapped between
server and clients

port 0

port 1

port 2

port 3

port 4

port 5

port 6

port 8

.

.

.

port 7Figure 2: Port descriptor table and message queue mapped into a client and server.3.1 IPC algorithmThe work performed by an interprocess communication facility can be divided into twoparts. The �rst part manages the movement of message data between the sender andreceiver, usually by means of a message queue. Traditional kernel based systems maintainmessage queues inside the kernel: message data must be marshaled in and out of the kernelon each invocation. Raven's exposure of message bu�ers to user space allows user code todirectly marshal message data. This can save a data copy operation on the receiver sidebecause the receiver has direct access to the message bu�ers. A second \user level" copyneed not be made.Once message data is queued for delivery, the second part of an IPC transaction involvesnoti�cation to the recipient that a message has arrived. The noti�cation step passes controlto tasks where blocked recipient threads wait, often involving a processor allocation decision(a client task may be switched out so that a server task can run). For example, when aclient thread sends a message to a server, the server must be noti�ed. In traditional kernelbased systems, this noti�cation step normally requires kernel support. In the Raven kernel,the task signalling mechanism is used as the low level noti�cation system. As noted above,this mechanism avoids kernel intervention in two out of three cases.Synchronous send/receive/reply transactions are inherently more complex than asyn-chronous send/receive. The synchronous case requires the client senders to block and waitfor a reply from the servers. In the best case, no noti�cations are required for either syn-chronous or asynchronous IPC. In the worst case, two noti�cation steps are required forsynchronous IPC: the client noti�es the server that a message awaits, and the server noti�esthe client that a reply awaits. For the asynchronous case, only one noti�cation is required:the client noti�es the server that a message awaits.In best case, the IPC library can use properties of the FIFO message queues and multi-processing to avoid the noti�cation step, and ultimately avoid kernel intervention altogether.Looking at the simpler asynchronous case, we can see how this is accomplished:



1. If a server thread is not currently blocked waiting for a message when a client performsa send, no noti�cation by the client is necessary. When the server thread eventuallyperforms a receive operation, it will notice a message waiting and immediately pull itfrom the queue without blocking.2. A non-empty message queue indicates to the client that the server has already beennoti�ed that a message awaits. Thus, noti�cation to a server only occurs when aserver thread is blocked and does not already have messages waiting for it.3. However, if a message queue is full, and cannot accept additional client messages, thesending client must block. As the server eventually empties the message queue, itmust send noti�cation to the blocked clients indicating that more room exists in thequeue.The use of these properties are summarized by the following algorithms used to imple-ment the asynchronous send and receive primitives. We �rst examine the send primitive.The send primitive generates at most one noti�cation per invocation:1. If there are no free message bu�ers available, block on a a free-list semaphore.2. Claim the next free message bu�er and copy in the message.3. Deliver a noti�cation signal to the destination server task only if the send queue waspreviously empty and a server thread is blocked. Otherwise, do not send a noti�cationsignal.The receive primitive generates at most one noti�cation per invocation also:1. Block the calling thread if there are no messages waiting. Continue otherwise.2. Dequeue the next message and copy it into the calling thread's bu�er.3. Return the message bu�er to the queue and increment the free-list semaphore. If aclient is blocked waiting for a free message bu�er, deliver a noti�cation signal to theclient, indicating that a free message bu�er exists.As noted above, the send/receive/reply mechanism is more complex than send/receivebecause the sender must always block and wait for a reply. This can result in two noti�cationsignals per interaction in the worst case. However, as seen in the asynchronous send analysisabove, it is possible to eliminate noti�cation signals. We can apply the same principles toboth the send stage and reply stage. This allows send/receive/reply to operate withoutnoti�cation (and therefore without kernel intervention) in the best case. The algorithms forthe send/receive/reply primitives are summarized below.The send operation requires at most one system call per invocation, or possibly a tasksignal invocation:1. If there are no free message bu�ers available, block on a a free-list semaphore.2. Copy the user's message into the bu�er.3. If the send queue is empty, and a server thread is blocked waiting for a message,deliver a noti�cation signal to the destination server indicating that a message awaits.



4. Block the sending thread and wait for a reply.5. Wake up when the reply comes and copy the reply message to the user's bu�er.6. Return the message bu�er to the queue and increment the free-list semaphore. If aclient is blocked waiting for a free message bu�er, deliver a noti�cation signal to theclient, indicating that a free message bu�er exists.The receive operation does not require any kernel interaction at all.1. If a message awaits in the port queue, return a pointer to the received message bu�erto the user.2. Otherwise, if the port queue is empty, block the calling thread and wait for a message.3. Wake up when a message arrives and return a pointer to the message bu�er to theuser.The reply operation requires a noti�cation signal only when there are no reply messagesqueued for the client task. This case is analogous to the sender's situation, except that herea reply is being delivered:1. Enqueue the reply message.2. If there are existing reply messages in the queue for the client, simply return.3. Otherwise, deliver a noti�cation signal to the client to indicate that a reply awaits.It should be noted that all access a FIFO queues and port descriptors require synchro-nization. This is accomplished using spin-locks. Spin-locks are e�ciently implemented byutilizing the Motorola 88200 cache coherency mechanism. No kernel intervention is requiredto implement the locks.4 Device driver managementHardware device drivers are implemented completely in user space. User level applicationsregister hardware device handlers through the kernel interrupt dispatch mechanism andmap in the device registers to their address space. When a device interrupt occurs, anupcall [Cla85] is issued to the task which contains a handler for the interrupt. The handleris executed to satisfy the device and processing resumes.Each interrupt generated by a device causes an upcall into user space. On the surface, theadditional cost of traversing from kernel to user space compared to a pure kernel interrupthandler would appear prohibitive. However, we observe the following advantages with thistechnique:� There is no need to copy or map data between the kernel and user level.� Execution can continue in user space after processing the interrupt. A kernel levelhandler eventually requires an upcall into user space to allow applications to processdata.



� Device drivers can be dynamically loaded and unloaded without the complexity ofdynamic linking.� Device drivers can be implemented directly in the application that uses the device,reducing communication costs and latency.4.1 Interrupt managementThe MVME188 interrupt management hardware is fully symmetric. Any processor in thesystem can respond to any particular interrupt by setting appropriate bits in the processor'sinterrupt enable register. In our system with four processors, there are four interrupt enableregisters. The kernel manages these registers in an e�ort to position device interrupts tominimize invocation latency of user level interrupt handlers. The interrupt enable bitsfollow the migration of their associated application programs.For example, the Ethernet interrupt handler function is implemented within a userlevel task. An upcall event is dispatched into this task to execute the handler wheneverthe Ethernet interrupt occurs. If the Ethernet task address space is not enabled on theprocessor where the interrupt occurs, the task must be switched in. If the interruptedprocessor is currently running a di�erent task, then it must be switched out before theEthernet task can be switched in. This sequence of steps involve address space changes anddata structure manipulation that greatly increases interrupt handler latency. The kernelattempts to avoid this situation by positioning interrupt enable bits on processors that arecurrently executing the associated task.This interrupt management scheme also allows devices to operate in parallel. For ex-ample, one processor can enable its Ethernet bit and another processor can enable its diskor serial port bit. Figure 3 demonstrates this distribution of interrupt handling chores.Processor 1 is currently running the �le system server, and thus has the SCSI disk interruptset. Processor 2 and 3 are running the TCP networking software, and thus are sharing theserial port and Ethernet interrupt.
Processor 0

(Idle)
Processor 1 Processor 2 Processor 3

Filesystem
driver

Ethernet driver
and TCP stack

Serial port
interrupt

VMEbus
Ethernet
interrupt

Interrupt
handler

Interrupt
handler

Interrupt
handler

VMEbus
SCSI
interruptFigure 3: Interrupt management across three busy processors.



4.2 User level preemptionInterrupts preempt user level threads and cause scheduling events to occur. For example,if a timer interrupt occurs, an upcall event is sent to the user level to indicate that it'stime to schedule the next ready thread. In a multiprocessor environment, special care mustbe taken to ensure that the rescheduling of threads in the presence of spin-locks does notadversely a�ect performance. A naive approach would allow interrupts to occur at anypoint during user level execution. This can result in very poor performance if threads areusing spin-locks for concurrency protection. If a thread is preempted while holding a spinlock, then all other threads that try to access the lock must wait until the original threadis rescheduled and releases its lock. The original thread may not be rescheduled for sometime, causing all other threads to waste CPU time, uselessly spinning.The solution implemented in the Raven kernel involves close participation between theuser level and kernel. Whenever the user level acquires a spin lock, a global lock countvariable is incremented. Whenever an interrupt occurs that would cause an upcall eventinto user space, the interrupt handler checks the lock count variable. A non-zero valueindicates that a critical section is currently being executed, and control must be returnedto the critical section. Before the interrupt handler restores user registers and returnscontrol to the critical section, it sets the upcall pending variable to indicate that aninterrupt occurred. When the user level regains control and �nishes its critical section, theupcall pending variable is checked, and if set, the thread will save its context and handlethe original reason for preemption.As implemented on the 88100, the two variables lock count and upcall pending arenot stored as conventional variables at all. Rather, each of them share the processor's r28register. This is done to ensure that access to the variables is atomic. For example, toincrement lock count, a single addu r28,r28,1 instruction is performed. If lock countwere a conventional variable, then incrementing it would require the use of a spin lock {which would be recursive, since lock count itself is used within the locking routines.4.3 Dispatching interruptsDispatching interrupts in the Raven kernel is a two-level process. Interrupt dispatchersare implemented at both the supervisor and user level. When a device interrupt occurson a processor, the register context is saved into the user's thread control block, and thesupervisor kernel interrupt dispatcher is called to begin processing the interrupt. If theinterrupt is intended for a user level handler, an upcall is generated into the appropriatetask where the handler is implemented, and the user level dispatcher takes over. The userlevel dispatcher calls the appropriate handler. Figure 4 shows the interrupt execution pathfrom the supervisor dispatcher to the interrupt handlers.The supervisor interrupt dispatcher maintains a table of all the possible interrupt sourcesand the location of the handler functions. Some handler functions are implemented directlyin the kernel, such as the system clock tick. To handle a kernel level interrupt serviceroutine, the dispatcher simply makes a function call to the service routine.For user level handlers, the procedure is more complicated. The supervisor dispatcherchecks the appropriate interrupt entry, and if the currently executing task is registered tohandle that interrupt, an interrupt upcall event is delivered to the task. The particularinterrupt vector bit that caused the interrupt is passed with the upcall event so the user



user level
upcall

dispatcher

interrupt
dispatcher

Ethernet
handler

Serial
handler

signal
dispatcher

synch. reply
handler

User level task

Supervisor kernel

asynch send
handler

synch. send
handler

supervisor
interrupt

dispatcherFigure 4: Interrupt execution path from supervisor dispatcher to the user level, includingtwo interrupt handlers and IPC signal handlers.level dispatcher can identify the proper handler.If the currently executing task does not handle the interrupt, but another task does, thenthe current task must be switched out and the interrupt handling task must be switchedin. Before the current task is placed back onto the task ready queue, the thread which wasinterrupted must be cleaned up so that it can be rescheduled. While the register contextfor the thread has been properly saved by the initial interrupt trap function, the user levelthread kernel must be noti�ed that one of its threads has been preempted, so the threadcan be placed back on the user level thread ready queue. To do this, the current task isissued an upcall event so that the thread scheduler can place the interrupted thread backonto the thread ready queue. The thread scheduler then immediately returns to the kernel,where the interrupt handling task is �nally activated.4.4 Handler functions and device accessBefore an interrupt handler can be invoked, the device register set must be mapped intothe application address space and the handler function must be registered with the kernel.This is done during the initialization phase of the device driver. When the device driverterminates, the handler function must be removed and the device register set must beunmapped from the application.



The virtual memory module exports a function to the user level called vm map device()which allows applications to map device registers into user space. At initialization time, thedevice driver supplies the physical address and size of the device registers, and a virtual ad-dress is returned pointing to the mapped device registers. The function vm unmap device()allows the device driver to later remove the mapped memory from its address space.A user level library routine manages the registration of interrupt handlers for devicedrivers. The caller speci�es the function address and the associated interrupt vector. Theregistration routine then performs a system call into the kernel to notify the supervisor dis-patcher of the new interrupt handler, and the appropriate interrupt enable bit for speci�eddevice is set. Once this is done, interrupts occurring on the device will be vectored to theuser level handler.User level interrupt handlers are executed within a controlled environment. Preemptionis disabled during this time, so the handler is guaranteed uninterrupted access to the deviceregisters. However, handler must not spend more time than is necessary to service theinterrupt, or time will be taken away from other system activities. Additionally, the handlermust be careful not to execute any library functions that perform thread or task contextswitching.Interrupt handler functions typically coordinate their events with user threads using asemaphore and a shared data structure. When an event occurs in the handler that must becommunicated to a thread, the event is recorded and the semaphore is signalled. A threadblocked on this semaphore will awake and be able to examine the event information. Whena handler function is �nished accessing the device, it returns to the dispatch routine wherethe thread scheduler takes over.5 PerformanceThis section presents some simple benchmark results to demonstrate our implementation.We have constructed several test cases that exercise the interprocess communication prim-itives and interrupt handling features. To summarize:� A single send/receive/reply interaction occurring between two tasks with no kernelinteractions can complete in 42 microseconds. This represents the best case scenario.� Average send/receive/reply times between several communicating threads over a pe-riod of time is measured at 90 microseconds. This represents approximately one kernelinteraction per transaction.� Worst case send/receive/reply of 145 microseconds is achieved by limiting two com-municating threads to a single processor.� User level interrupt handler invocation latency is 14.0 microseconds.5.1 Interprocess communicationThis section measures the performance throughput of the IPC library. The benchmarkcombines many of the primitive system services: remote interrupt dispatching, task signalnoti�cation, semaphores, and task and thread scheduling.



1 CPU 2 CPU 3 CPU 4 CPU1-send/1-recv/reply 145 usec 105 usec 105 usec 105 usec2-send/2-recv/reply 108 95.3 90.3 89.610-send/10-recv/reply 89.3 92.5 94.9 95.6Table 1: IPC performance for synchronous ports, 4 byte data message, 20 element messagequeue.The global IPC test cases create two address spaces: a server task, and a client task.The server task allocates a port with a queue containing 20 message bu�ers. A numberof server threads are created to listen for messages on the port. The client task creates anumber of client threads and bombards the server with messages.5.1.1 Synchronous IPC performanceTable 1 contains performance results for synchronous IPC using various combinations ofprocessors and threads. The simple case of 1-send thread and 1-receive thread on a singleprocessor demonstrates the worst case performance of 145 microseconds per interaction.Each iteration requires two address space changes. This performance is improved upon bythe addition of multiple processors. In the two processor case, the client and server reside ondi�erent processors and can therefore avoid address space switching. Instead, noti�cationsignals are delivered via the remote interrupt mechanism. Additional processors do not helpimprove this case because there is no parallel computation involved.Synchronous IPC performance increases slightly when more client and server threadsare added. In the uniprocessor case, this is because clients and servers can copy messages inand out of the queues at once without switching tasks. For example, the 10 client threadscan each copy their messages into the send queue before the task switches. Likewise, the 10server threads can stack up their reply messages. This has the e�ect of reducing the overallnumber of task switches per IPC interaction.An interesting case appears when 10 client threads and 10 server threads communicateusing multiple processors. The IPC interactions actually get slower. We believe that thisis a combination of spin-lock contention and poor scheduling decisions by the task andthread schedulers. Rather than balance the client and server threads on an even numberof processors, the schedulers position tasks and threads naively. Thus a great deal of taskswitching results as client and server threads rapidly migrate amongst processors. A betterscheduler might be able to recognize communicating tasks and position them on processorsaccordingly.The �gures in Table 1 are averages over large number of iterations. We modi�ed the dualprocessor test case above to measure the quickest and slowest send/receive/reply transactionout of all these iterations as 42 microseconds and 120 microseconds, respectively. We believethis discrepancy to be caused by the overlapping of execution within the IPC primitives.The quickest iteration occurs when the client sends a message exactly at the same time asthe server enters the receive primitive.



1 CPU 2 CPU 3 CPU 4 CPU1-send/1-recv 43.2 usec 33.9 usec 32.1 usec 32.0 usec2-send/2-recv 44.5 32.2 31.8 31.010-send/10-recv 44.3 33.9 32.0 32.5Table 2: IPC performance for asynchronous ports, 4 byte data message, 20 element messagequeue.5.1.2 Asynchronous IPC performanceTable 2 summarizes the results for several asynchronous IPC test cases. The asynchronousmessage transfers are much faster overall because of the reduced context switching require-ments between the client and server. Client threads have no problem keeping the port queuefull of data for the server threads. A client can simply loop forever, assuming the serverkeeps up.Increasing the number of threads results in a slight performance hit. We believe this isdue to the increased number of thread descriptors being managed by the thread scheduler.The thread scheduler is very simplistic, and may position threads on processors in a non-optimal fashion. Also, increasing the number of threads increases the number of stacks anddata structures to manage while context switching, possibly a�ecting cache performance.As seen in the synchronous case, performance improvements decline as more processorsare added to the system. We believe the reason for this is spin-lock contention. Theworkload performed by the client and server threads is null, so all their e�ort is spenttrying to access shared data structures such as port descriptors and queue. If the client andservers performed some amount of work, as in a real application, most of their time wouldbe spent outside of the IPC primitives, leaving less opportunity for lock contention.5.2 Interrupt handling performanceThe performance of interrupt handling is a critical concern for high speed device driversand scheduling performance. Interrupt handling must be as lightweight as possible toensure low latency dispatch times to device drivers. Interrupt handling and dispatching ina monolithic kernel is fairly straightforward: trap the interrupt, save context, and call theinterrupt service routine. In the Raven kernel, since device drivers are implemented at theuser level, device interrupts must take the journey up into the user level for processing.However, once at the user level, execution can continue with application processing.An experiment was constructed to measure the execution latency time to dispatch aninterrupt to a handler routine. Three di�erent interrupt handler scenarios were measured:1. A supervisor kernel interrupt handler. Invoking this handler requires a local functioncall from the supervisor dispatcher.2. A user level interrupt handler in a task that is activated on the interrupted processor.Invoking this handler requires an interrupt upcall event to be dispatched into the userspace.



Time (usec) Instructionskernel invoke 7.21 86user invoke 14.0 194user switch/invoke 30.6 421Table 3: Interrupt service routine invocation latencies.3. A user level interrupt handler in a task that is not currently activated on the inter-rupted processor. Invoking this handler requires that the current task be switchedout and the interrupt handler task be switched in. Then an interrupt upcall eventcan �nally be dispatched into the interrupt handler task.Table 3 summarizes the average times, in microseconds, to invoke each service routine.Also, the number of instructions per invocation is shown. The cheapest invocation timeof 7.21 microseconds is naturally inside the supervisor kernel. No upcall into user space isrequired. Also, the user register context can be saved in a cheaper fashion, since it will bedirectly restored by the supervisor kernel at the end of the interrupt.Invoking a user space handler is about twice as expensive. The user level register contextmust be properly saved into the thread's context save area, and an interrupt event mustbe upcalled to the user level. Once at the user level, the upcall dispatcher must place thepreviously executing thread on the ready queue, and �nally call the handler routine.Switching address spaces before calling the service routine is the most expensive invoca-tion operation. The old address space must be upcalled to handle any cleanup and placedon the task ready queue before the new address space can be invoked.At �rst glance, this benchmark appears to show that user level device drivers are muchmore expensive than kernel device drivers because of the interrupt dispatching overhead.However, one must also consider that even a kernel device driver needs to communicatewith the user level at some point. User level code must eventually be executed to operateon the data provided by the device driver. Depending on the device, this may involvean extra data copy operation to move the data between the user application and kerneldevice driver. Moreover, there is the additional costs of scheduling and activating the userapplication when the device driver is ready for more. All of these costs are automaticallytaken care of by the interrupt dispatcher and upcall mechanism.6 ConclusionWe have implemented a lightweight multiprocessor microkernel to investigate the bene�tsof parallel processing in multithreaded applications. This system implements many tradi-tional kernel level abstractions at the user level to decrease the overhead involved in kernelinteractions. The system is currently being used in developing a high-performance �le serverconnected to an ATM local area network[NIG+93]Work is continuing to improve the performance of the Raven kernel and add function-ality. One area where performance could especially be improved is the thread and taskschedulers. While the current simple and e�cient implementation is bene�cial for rapid



context switch times, it su�ers from rapid thread migration in certain cases. This behaviourcan result in poor utilization of per-processor caches.Source code is freely available from the authors upon request.References[ABB+86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, andM. Young. Mach: A new kernel foundation for UNIX development. In SummerConference Proceedings. USENIX Association, 1986.[BALL90] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.Levy. User-level interprocess communication for shared memory multiproces-sors. Tr-90-05-07, University of Washington, July 1990.[Che88] D.R. Cheriton. The V distributed system. Communications of the ACM,31(3):314{333, March 1988.[CK93] David R. Cheriton and Robert A. Kutter. Optimizing memory-based messag-ing for scalable shared memory multiprocessor architectures. Technical report,Computer Science Department, Stanford University, 1993.[Cla85] D. D. Clark. The structuring of systems using upcalls. In Proceedings of the 10thACM Symposium on Operating System Principles, pages 171{180, December1985.[DBRD91] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean.Using continuations to implement thread management and communication inoperating systems. In Proc. 13th SOSP., 1991.[GA91] Ramesh Govindan and David P. Anderson. Scheduling and IPC mechanisms forcontinuous media. In Proc. 13th SOSP., pages 68{80, Asilomar, Paci�c Grove,CA, 13 Oct. 1991. Published as ACM. SIGOPS.[Gro90] Motorola Computer Group. MVME188 VMEmodule RISC MicrocomputerUser's Manual. Motorola, 1990.[Hil92] Dan Hildebrand. An architectural overview of QNX. In The Proceedings ofthe Usenix Workshop on Micro-kernels and Other Kernel Architectures, Seattle,April 1992.[NIG+93] G. Neufeld, M. Ito, M. Goldberg, M. McCutcheon, and S. Ritchie. A parallelhost interface for an ATM network. IEEE Network Magazine, 1993.


