write, an Extended Find-First problem of size m is defined: A.[¢] contains processor P; if P,
attempts to write ¢ into cell ¢. The space required for the simulating machine is O(Sm). A
‘write’ step of the min-CRCW(.S;m) PRAM can be also reduced to S Find-First problems
of size nm. Specifically, A.[< i,7 >] contains processor P; if P; attempts to write ¢ into cell
¢ (here ‘lowest number’ is with respect to the lexicographic ordering). The space required
for the simulating machine here is O(Snm).

Chlebus et al. show how to solve the Find-First problem of size m on several machines:

Proposition 24 ([CDHRS88]) The Find-First problem of size m can be solved as follows:
(a) On arbitrary-CRCW PRAM in O(loglogm) time; (b) On common-CRCW PRAM in

constant time, provided that each processor has additional logm processors.

The algorithms in [CDHRS88] solve also the Extended Find-First problem since all proces-
sors contained in the same cell act identically (independently of their index). This is enough
when using the arbitrary-CRCW and the common-CRCW PRAMs. Using the above we

have

Simulation Result 3 An n-processor min-CRCW(S;m) PRAM can be simulated by an
n-processor arbitrary-CRCW PRAM with O(loglog m) slow-down, using O(mS) space.

Simulation Result 4 An n-processor min-CRCW(S;m) PRAM can be simulated by an
n log m-processor common-CRCW PRAM in O(1) time, using O(m.S) space.
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4. If for some ¢,z = 1,..,[,b; = 1 and 1 < b;_1 < n— 1 then ¢ is “composite”.

If the ¢ was declared “composite” then it is indeed composite, otherwise ¢ is prime with probability
> 1/2 (i.e., the probability that a composite number will be considered as “possibly prime”
is < 1/2).

The algorithm involves O(log ¢) modular exponentiations that can all be computed in
parallel. Therefore, using O(log ¢) processors, the O(log ¢) time (sequential) algorithm for
exponentiation can be employed. Since the algorithm for finding a prime performs in parallel
O(log m) primality tests, the time complexity is O(log m) using O(log® m) processors.

In Section 3, a parallel time bound of O(logn) dominates all steps, but the one in which
a prime is to be found. Finding a prime in O(log m) expected time meets this time bound
only where m is bounded by a polynomial in n. Finally, we refer the reader to [AKS88] for
some further improvements.

C Simulation Results 3 and 4

Consider some CRCW machine. We say that a memory cell contains a processor if this
processor has the address of this cell written in a special local register. Each processor
is contained in at most one cell. A cell that contains at least one processor is said to be
non-empty, otherwise it is said to be empty. The Find-First problem of size n is defined
as follows: Given is an array A[l..n], each cell of which is empty or contains exactly one
processor, find the lowest-numbered non-empty cell of A. We similarly define the Ertended
Find-First problem of size n: Given is an array A[l..n], each cell of which is empty or contains
one or more processors, find the lowest-numbered non-empty cell of A.

Chlebus, Diks, Hagerup and Radzik [CDHRS88] show how to simulate priority-CRCW
PRAM on weaker CRCW PRAMs. Their simulations are based on solving the Find-First
problem?. Specifically, a ‘write’ step of n-processor priority-CRCW is done as follows. For
each memory cell ¢ to which there is at least one processor that attempts to write, a Find-
First problem of size n is defined: A.[7] contains processor P; if P; attempts to write into cell
c. The space required for the simulating machine is O(Sn) where S is the size of memory
being used by the simulated priority-CRCW PRAM. Time requirements are discussed later.

Let min-CRCW(S, m) be a min-CRCW PRAM with space S and m being an upper bound
on the values that can be written into the memory cells. A ‘write’ step of min-CRCW (S, m)
PRAM can be done, similarly to the above, by using S Extended Find-First problems of
size m. For each memory cell ¢ to which there is at least one processor that attempts to

Fich, Ragde and Wigderson [FRW88] also used the Find-First problem (there called “leftmost prisoner
problem”) to simulate priority-CRCW on common-CRCW PRAM.
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Lemma 22 ([RS62]) For all u > 17, = < m(u) < 1.25506 .

Corollary 23 For all u > 17 there are at least Wln(%) primes in the range [(u+1)..2u].

Proof: Let g = 1.25506. Following Lemma 22, 7 (2u)—7(u) > hj—;‘u)—ﬂﬁ = Y2nu=Fin(u)) _

In u In(2w)
u(lnu(2—5)—FIn2) > u(lnu(2—4—FIn2/In17))
In wIn(2u) = In v In(2u)

0.43788889%u
In(2w)

> >

U
2.283681n(2u) " B

Overview of the algorithm for finding a prime in the range [(m+1)..2m].

Corollary 23 implies that our strategy for finding p may be as follows. Repeatedly select at
random a number x from [(m+1)..2m] and test « for primality. By Corollary 23 The expected
number of #’s to be tested is < 2.28368 In(2m). Thus, O(log m) numbers from [(m + 1)..2m]
can be randomly selected and independently (in parallel) be tested for primality. With high
probability, at least one of these numbers will be detected prime.

Later, we go into some details of primality testing. Below, we backtrack and discuss the
relevance of the above algorithm for finding a prime in the context of Section 3. The primality
testing algorithm can be of a Monte Carlo type; i.e. we allow the output of the primality
testing to be incorrect with constant fraction probability. Assume that some primality testing
procedure PT is employed and detects (possibly falsely) a given number p’ to be a prime.
We use p’ in our hash function scheme, assuming that it is a prime. If nothing goes wrong
then we are done. (Note that this does not imply that p’ is indeed a prime.) If, on the
other hand, the hashing scheme (in some phase) takes longer than some predetermined time
limit, then it is stopped. A new number p” is then supplied by PT (p” again is assumed to
be prime), and a new hashing scheme is constructed (for that phase), based on p” as the
‘prime’. (Note that a failure in the hashing scheme construction may result from p’ being a
composite number; however, a failure may also occur when p’ is a prime, because a success
in the hashing construction depends also on the random choices of the parameters k and &'.)
The expected number of times that the hashing scheme is reconstructed for either reason
(i.e. selection of a composite number or selection of inappropriate parameters) in each phase
is constant.

We show which primality testing algorithms are adequate for our purpose. For the
serial algorithm many primality testing algorithms are available, see [AH87] [APR83] [GK86]
[Mil76] [Rab80] [SST77]. Given an integer ¢, we give a short description of Rabin’s algorithm
for testing whether ¢ is a prime:

1. Randomly pick b, 1 < b < g¢.
Let ¢ — 1 = 27, where r is odd.

2. Compute residues mod ¢: for i = 0,..,[, compute b; = b2 mod q.

3. If =1 # 1 mod ¢ then ¢ is “composite”.
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zt] € Ly and z,[j] € R for some k and k. If x/[i] was selected into GL, i.e. x[7] is
the smallest element in Ly Ry, then z,[j] was selected into G'R, i.e. x,[j] is the largest
element in Ly U Rp. Otherwise, we have from the inductive hypothesis on (a) and (¢)
that «,[j] < b < x[t] (before by was changed in set GGR) which contradicts the inductive
hypothesis on (d). Similarly, if z,[j] was selected into GR then x/[1] was selected into G'L,
otherwise we have from the inductive hypothesis on (a) and (¢) that z,[j] < ar < x[¢], which
contradicts the inductive hypothesis on (d). If both x[i] and x,[j] were not selected into G'L
and G'R, respectively, then k = k' otherwise by the inductive hypothesis on (@) and (¢) we
have x,[j] < ar < x;[¢] which contradicts the inductive hypothesis on (d). Thus, 2;[¢] and
z,.[j] are in GL and GR, respectively, or in Ly and Ry, respectively.

(¢): Following from the inductive hypothesis on (b), if @/[¢] and ,[j] are in L and Ry,
respectively, then their values are unchanged. If they are in GL and in G'R, respectively,
then after step 2 x;[7] = k and x,[j] = k' (where after step 1 x[¢] € Ly and z,[j] € Rp).
Following from the definition of L and Ry in step 1 and from the inductive hypothesis on
(¢) we have k < k.

(d): The values of all elements in sets Ly and Ry are unchanged. Thus, following from
the inductive hypothesis on (b) and (d), if x/[t] € Ly and z,[j] € Ri then x,[j] is the left
neighbor of x,[j]. We only need to deal with the case that x;[¢{] € GL and z.[j] € GR.
Assume, by negation, that there is an element y € G R such that x,[j] < y < 2;[¢]. Clearly,
after step 1 we had x[¢] € Ly, z,[j] € Ry and y € Rypn with &' < k” < k, contradicting the
inductive hypothesis on (d).

(e): Following from the inductive hypothesis on (e), in step 2 each element xz[¢] is either
in L for some k or in GL. Similarly, each element z,[j] is either in Ry for some k" or in
G R. Thus, in step 3 each element is represented in exactly one recursive sub-problem.

(f): Following from the inductive hypothesis on (b). g

B Finding a prime in a given range

In Section 3 it is assumed that m + 1 is a prime. If we want m to be part of the input
(either explicitly or implicitly) then we should give a procedure that, given some m, finds a
prime p > m such that loglog p = O(loglogm); i.e. p € [(m—l—l)..mlogk ™], for some constant
k > 0. We show below how to find p with an expected number of O(log® m) operations. The
expected parallel time is O(log m).

It is first shown that the density of primes in [(m+1)..2m] is asymptotically similar to
their density in [1..m]. Let 7(u) denote the number of primes < u. The following lemma is
due to Rosser and Schoenfeld:
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A Proof of Proposition 1

Proposition 1 Let z[j] be the left neighbor of z[i]. Then for each level of the recursion the
following properties hold:

(a) The values of all elements in L are distinct and the values of all elements in R are
distinct.

e) Each element is represented in exactly one recursive sub-problem.

(

(

(d) x,[j] is the left neighbor of z[].

(e)

(f) Set L is nonempty if and only if set R is nonempty.

The proof is by induction on the level of the recursion.
Inductive Base: Trivial.
Induction step:

(a): After step 2 the values of elements in Lj and in Ry are unchanged and therefore, by
the inductive hypothesis on (@), we only need to look at the sets GL and G'R. In step 2, for
each k at most one element from Lj is selected into G L, and at most one element from Ry
is selected into GGR. These (possibly) selected elements are the only ones that are assigned
with the value k.

(b): Following from the inductive hypothesis on (b), before step 1 elements x;[7] and
z,[j] are both represented in the same recursive sub-problem. Assume that after step 1
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A third topic of independent interest is the efficient simulations of strong models of
CRCW PRAM by more acceptable ones, and the methodology of designing parallel algo-
rithms for the strong models with automatic simulations on acceptable models. We expect
to see more applications of this approach in the design of parallel algorithms.
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done, using Simulation Result 1, in O(logn) expected time and O(n) expected number of
operations, using O(n) space. There are O(loglogm) phases by Lemma 4.

For the other implementations we use Algorithm DNN, where at each phase we implement
a step of min-CRCW PRAM with memory size S =O(m), each memory cell containing a
log m-bit word. We use Simulations Results 2, 3 and 4 to implement the second, third and
forth implementations, respectively. g

Recall that after running Algorithm DNN, the Sorting algorithm can be finished by
using the List Ranking procedure. The latter takes O(logn) time, O(n) operations and
O(n) space on EREW PRAM. Thus, sorting distinct integers can be implemented with the
same complexities as stated in Corollary 21 except for an increase in time to O(logn) in the
last two cases.

In particular, the first item in Corollary 21 implies the following parallel sorting result.

Theorem 3 Sorting n integers from the range [1..m] can be done on a randomized arbitrary-
CRCW in O(log nloglogm) expected time, O(nloglogm) expected number of operations and
O(n) space.

We finally note that the last three items in Corollary 21 can be used to derive deterministic
implementations of the sorting algorithm that use reduced space. The fact that the sorting
algorithm is stable will be used in a way similar to the proof of Theorem 1,

5 Conclusion

We gave an o(nlogn) time randomized algorithm for sorting integers drawn from a super-
polynomial range. Our algorithm takes O(nloglogm) expected time and O(n) space. A
parallel version of the algorithm achieves optimal speed up.

An open question is whether a space efficient deterministic integer sorting algorithm in
o(nlogn) time can be found, for integers drawn from a superpolynomial range [1..nros(?)],

We presented a parallel hashing technique that achieves optimal speed up and takes
expected logarithmic time. It enables drastic reduction of space requirements for the price
of using randomness and some increase in time, but no change in the expected number of
operations. The technique was used in the parallel sorting algorithm and in the simulation
results; its applicability to other problems was demonstrated.

An open question: design an optimal parallel speed up hashing scheme F': W — [1..0(n)]
that takes sublogarithmic time.
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Chlebus, Diks, Hagerup and Radzik [CDHRS88] show how to simulate an n-processor
priority-CRCW by an n-processor arbitrary-CRCW PRAM with O(loglogn) slow-down.
They also show how to simulate an n-processor priority-CRCW by an nlog n-processor
common-CRCW PRAM in O(1) time. Both simulations use O(n.S) space, where S is the size
of memory being used by the simulated priority-CRCW PRAM. Using similar techniques we
have the following simulations (proofs can be found in Appendix C).

Simulation Result 3 An n-processor min-CRCW that uses memory of size S, where each
memory cell contains a log m-bit word, can be simulated by an n-processor arbitrary-CRCW

PRAM with a slow-down of O(loglogm), using O(m.S) space.

Simulation Result 4 An n-processor min-CRCW that uses memory of size S, where each
memory cell contains a log m-bit word, can be simulated by an nlog m-processor common-

CRCW PRAM in O(1) time, using O(m.S') space.

4.1 Applications

In this section we apply some of the simulations to the parallel DNN and Sorting algorithms
and derive complexity results for standard CRCW PRAM models.

Recall that in Algorithm DNN there are O(loglogm) phases. Each phase takes O(1)

time for n min-CRCW processors. Following Simulation Results 1, 2, 3 and 4 we have

Corollary 21 Let the input consist of n distinct integers from the range [1..m], then Algo-
rithm DNN can be implemented as follows:

e On arbitrary-CRCW in O(log nloglogm) expected time, O(nloglogm) expected num-
ber of operations and O(n) space.

e On priority-CRCW in O(log nloglogm) time, O(nloglogmloglogn) operations and
O(m + n'*e) space, for any fived € > 0.

e On arbitrary-CRCW in O((loglogm)?) time, O(n(loglogm)?*) operations and O(m?*)

space.
e On common-CRCW in O(loglogm) time, O(nlog mloglogm) operations and O(m?)

space.

Proof: The first implementation is as follows. At each phase of Algorithm DNN, Theorem
2 is used to map O(n) variables (from O(m) range) into O(n) space in O(logn) expected
time and O(n) expected number of operations. The step of the min-CRCW PRAM is then
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the prefix [1..]] provides the minimum needed for Step (c). For finding prefix minima in
O(loglogn) time using n/log log n processors, see [BSV8], or [Sch87].

The space complexity is dominated by the array BB whose size is m. The values written
in the memory locations BBI[t;] in Step (a) are from the range [1..n]. Therefore, the sorting
problem of Step (b) is indeed of elements from this range only. The Lemma follows. g

A major drawback of the above reduction is the potentially large space that it might
require. (Recall that this space is in addition to the memory which is as in the simulated
min-CRCW.) However, the space consuming array BB is only used in Step (a). It is easy
to see that the parallel hashing scheme from Section 3 can be applied here. As a result the
additional space which is used by the reduction is reduced to O(n) while the time complexity
becomes expected O(logn), using the same number of operations (up to a constant factor).

We are ready to derive Simulation Result 1: It follows from Lemma 19, Lemma 9 and
Theorem 2.

Comments:

1. Simulation Result 1 improves a similar theorem in the survey of Eppstein and Galil
[EG88] (the min-CRCW is called there strong-CRCW), where it is assumed that addresses
can be written in at most O(logn) bits. Recall that Simulation Result 1 does not impose
any size restriction on the memory to be used by the simulated machine.

2. Lemma 19 can be extended to hold in O(logn/loglogn) time for a fetch&add step of
a fetch&add-CRCW PRAM. This extension, Lemma 9 and Theorem 2 imply the following
extensions of Simulation Result 1: A single fetch&add step of n processors on a fetch&add-
CRCW PRAM can be simulated by ﬁ arbitrary-CRCW PRAM processors in O(logn)

expected time (optimal speed-up) and O(n) additional space.

Simulation Result 1 states that a single step of an n-processor min-CRCW can be simu-
lated with O(n) expected number of operations by an arbitrary-CRCW PRAM. To see what
can be done deterministically we first state the following lemma due to Hagerup:

Lemma 20 ([Hag87]) For any fized € > 0, n integers of size polynomial in n can be sorted in
O(logn) time by a priority-CRCW PRAM using O(™SERE") yyrocessors and O(n'*¢) space.

logn

Following Lemma 19 and Lemma 20 we have

Simulation Result 2 A single step of n processors on a min-CRCW PRAM with memory
size S can be simulated by % priority-CRCW PRAM processors in O(logn) time and

O(S + n'*e) space (for any fixed € > 0).

Comment 3. Simulation Result 2 can be extended for a fetch&add-CRCW PRAM similarly

to Comment 2 above.
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Lemma 19 Consider the problem of simulating a single ‘write’ stage of an n-processor min-
CRCW PRAM on an arbitrary-CRCW PRAM. This problem can be reduced in O(loglogn)
time and O(n) operations (on an arbitrary-CRCW PRAM), to the problem of sorting n
integers from the range [1..n]. The reduction uses O(m) space, where m is the size of the

memory in the simulated min-CRCW PRAM.

Proof: Suppose the memory of the min-CRCW PRAM is an array M[l..m] of size m.
We denote the processors of the simulated min-CRCW PRAM by MP;;1 < ¢ < n. As
usual we will refer to the computation on the simulating arbitrary-CRCW PRAM in terms
of operations, and suppress the issue of allocation of these operations to processors of the
simulating machine. We will make one exception to this, in a case where such allocation
requires special care. A typical ‘write’ stage of n min-CRCW PRAM processors can be
viewed as follows. Processor M P;,;1 <1 < n, attempts to write value v; into target address
M]t;]. Let S; be the set of elements j such that ¢; = ¢;. The definition of the min-CRCW
PRAM implies that v; is written into M[t,] if v; = min{v; : j € S;}.

The simulation makes use of a bulletin board BB[1..m] that enables direct communication
between all elements with the same target address. It works as follows:

a. For each processor M P;, write its index ¢ into memory location BB[t;]. Arbitrarily, some
index ¢/ € S}, succeeds and ¢’ is written into BB[t;].

The main idea is to “label” each processor in S; by the same label ¢/ and group all
processors in 5; together into a successive subarray (Step (b)). The simulation of the
min-CRCW PRAM is carried out by determining the minimum value v; over each such
successive subarray (Step (c)).

b. Sort the list BB[t1], .., BB[t,] into an array G/[l..n].

We view each entry of GG as a pair < BBJ[t;],v; >. The pairs are sorted by their first
component; namely, identical BB[t;] values occupy successive subarrays of G. The
beginning and end of each such subarray can be easily determined.

c. For each such successive subarray in G, find the minimum v; over {v; : BB[t;] is in the
subarray}, and write v; into memory location M[t;].

Step (a) can be done in O(1) time and O(n) operations using the arbitrary-CRCW
PRAM. Step (c) can be done in time O(loglogn) and O(n) operations.

We comment on how to implement Step (c) using n/log log n processors within O(log log n)
time. The idea is to perform a prefix minima computation with respect to the vector of pairs
(. That is, for each prefix [1..i] we find the lexicographic minimum over its pairs. Given
a successive subarray [k..[] of identical BB[t;] values, we observe that the minimum over
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Hagerup’s algorithm for sorting integers from polynomial range [Hag87] has the drawback
of using O(n'*¢) space (for any fixed ¢ > 0). By using the parallel hashing scheme its space
complexity decreases to O(n). The expected number of operations remains the same and
the time increases from O(logn) to expected O(lognloglogn).

Finally, the parallel hashing scheme is used to get a space efficient optimal randomized

simulation of the min-CRCW PRAM by arbitrary-CRCW PRAM, as given in Section 4.

Comment on finding a prime in a given range.

We assumed above that m 4+ 1 is a prime. To withdraw this assumption we should give a
procedure that, given some m, finds a prime p > m such that loglogp = O(loglogm). We
have some preliminary results on this. Appendix B shows how to find a prime p in the range
[(m+1)..2m] in O(logm) expected time; the expected number of operations is proportional
to a polynomial in log m. To see the significance of such a procedure we should refer to the
way in which the sorting algorithm is viewed. If the algorithm is for a fixed range [1..m]
then finding p is just a preprocessing which may be done only once (p can then be part
of the input). We may, however, use the sorting algorithm as an input sensitive algorithm
with no a priori knowledge about the range. Specifically, after reading the input values the
actual range may be found by using a maximum finding procedure. In this case, an efficient
procedure for finding a prime p is desired.

4 Simulating the min-CRCW PRAM

In this section we deal with simulations of the min-CRCW PRAM by weaker (and more ac-
ceptable) models of parallel computation. We show applications of some of these simulations
for the parallel sorting algorithms.

Our most interesting simulation result is the following:

Simulation Result 1 One step of an n-processor min-CRCW PRAM can be simulated
by an Togn-Processor arbitrary-CRCW PRAM in O(log n) expected time (optimal speed-up)
and O(n) additional space.

Before proceeding to prove this simulation result, we make some general comments on
how the result should be read and what has to be proved. These comments apply to other
simulation results below, as well. The difference between the min-CRCW PRAM, being
simulated, and the simulating arbitrary-CRCW PRAM lies in the way write conflicts are
resolved. For this reason our proof needs to be concerned only with a ‘write’ stage of
the min-CRCW PRAM on the arbitrary-CRCW PRAM. The space requirements for the
simulating arbitrary-CRCW PRAM should be read as follows: (1) it needs as much space
as the min-CRCW PRAM; in addition, (2) O(n) space is needed.
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space. Using the parallel hashing scheme, the space requirement decreases to O(nlogn), the
time increases to expected O(log nlogm) and the (expected) number of operations remains

O(nlogm).

An important technique for string matching algorithms was introduced by Karp, Miller
and Rosenberg [KMR72]. Suppose an input string of length m is given. For each i, 0 <
i < logm, the input string has m successive substrings of length 2°. (Actually, there are
only m — 2° + 1 such substrings.) The technique partitions these substrings into equivalence
classes where the substrings in each class are identical; furthermore, for each ¢ separately,
the technique labels each of the equivalence classes by a distinct integer between 1 and
m. The main tool that was developed in [AIL*88] was to parallelize this technique in
O(log m) parallel time, O(mlogm) work and O(m'*¢) space for ¢ > 0. In [KP88], Kedem
and Palem showed how to elegantly enhance this technique into O(log m) parallel time, and
only O(m) work (optimal) parallel algorithms for labeling equivalence classes of paths in
labeled forests. However, the space remains superlinear. They applied this technique to solve
term matching and related problems. Further advancements were given in [KLP89], where
Kedem, Landau, and Palem present parallel algorithms for solving a variety of problems
from pattern matching including multidimensional matching. Using our parallel hashing
technique, the space requirements in each of these algorithms can be reduced to linear, in
exchange for randomization and increase in time by a logarithmic factor, but with no change
in the number of operations.

Section 2 in the approximate string matching survey of [GG88] discusses various ways for
hashing many different substrings of a certain string. This is a fundamental problem that
arises in some string matching automaton-like algorithms. They consider both serial and
parallel computation. Given a string x, the size of the alphabet is relevant to the assignment
of names to different substrings of x. In principle, different names should be assigned to
different substrings of a given string x. In cases where the number of different substrings is
n, a name should be a number from [1..n]. Name assignment is a mapping from a possibly
large domain into [1..n]. Galil and Giancarlo propose in [GG88] an assignment procedure
that takes O(nlogn) operations where |x| = n; subsequently, it takes O(logn) time to find
the name of a substring. Using our parallel hashing scheme, the assignment procedure takes
O(n) expected number of operations and O(log n) expected time; finding a name for a given
substring takes O(1) worst-case (!) time.

Following Kalvin, Schonberg, Schwartz and Sharir [KSSS86], Lamdan and Wolfson [LW88]
use hashing for object recognition. Their method is parallel in a straightforward manner,
except for their hash table construction. The parallel hashing scheme can be useful there.
Hashing is used in implementations of the Hough Transform (HT) computations (cf. [IK88]).
The HT technique has become important for many computer vision and pattern recognition
applications. Parallel implementations of this technique can be efficiently done by using the
parallel hashing scheme.
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most 2k. Part 1 ends before the loglog n’th success, hence the expected number of phases
in part 1 is O(loglogn). Part 2 ends before the logn’th success, and the expected number
of phases in part 2 is O(logn).

Using Brent’s theorem [Bre74] as part of the WT suppression level methodology, part 1
can be implemented in O(logn) expected time, using ﬁ processors.

FEach phase of part 2 takes O(1) time using & processors. Part 2 takes a total of

O(log n) expected time using Togn Processors. g

3.2 Applications

As a motivation for the previous subsection we stated Corollary 6.

Proof of Corollary 6: In algorithm DNN there are loglog m phases. In each phase, there
are O(n) variables a; and by, each from the range [1..nm]. Separately for each phase we hash
these variables into O(n) space, using Theorem 2. Part A of Corollary 6 follows. Part B is
trivial. g

We mention here some examples of algorithms for which the parallel hashing scheme can
be used.

One application relates to the construction of suffiz trees. Consider a string 5 of length
n and all its n suffixes. A suffix tree is: (1) A rooted tree with n leaves. (2) Each edge of
the tree is labeled by a successive substring of 5. (3) Consider a path from the root to a
leaf and concatenate the substrings along the path: each such path equals a different suffix
of S. (4) Given any two suffixes, consider their longest common prefix. The suffix tree will
have an internal node u such that the path from the root to u defines exactly this prefix.
Actually, the lowest common ancestor of two leaves is the node defining the longest common
prefix of their two suffixes. The ability to construct efficiently suffix trees and perform
lowest common ancestor computations made suffix trees become the most important data
structure for algorithms on strings. Applications of this data structure are reviewed in
[Apo84]. [GG8Y] indicate that the space requirement of the suffix tree construction is the
source of inefficiency in quite a few parallel preprocessing algorithms. The parallel algorithm
by [AIL*88] for constructing suffix tree requires O(logn) time, O(nlogn) operations and
O(n'*¢) space (for any 0 < e < 1), where n is the length of the input string. Using the
parallel hashing scheme, the space requirement decreases to O(n), while the time increases
to expected O(log®n) and the number of operations remains O(nlogn) (as expected value
rather than worst case). Suppose we have a relatively short string, whose length is m, and a
long string, whose length is n. [GG88] considered instances where suffix trees are needed only
for supporting queries requesting comparison among substrings of the short string and the
long string. Their algorithm takes O(log m) time, O(n log m) operations and O(n log n+m?)
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The following lemma will lead to the proof of Lemma 15.

Lemma 16 Consider an active element x € W prior to some phase 1. A representative for
x will be found in phase 1 with probability > %

Proof: Let W' be the set defined by the multiset W, i.e., W' = {z : 2z = a; for some
a; € W} (we will refer to the elements of W’ as keys). The collision set of an element
x € W consists of the keys y € W', y # =, such that g, x,(y) = gr, 5, (2). In Step (3) a
representative is found for every element in W whose collision set is of size at most s —1. We
show that setting s = 3 suffices for proving Lemma 16. The following definition and lemmas

are due to Carter and Wegman [CWT9]:

Definition A class H of functions from domain U to range R is universaly if for each pair
of distinct elements «,y in U and randomly chosen h € H Prob (h(z) = h(y)) < 1/|R|.

Lemma 17 (Proposition 2 in [CW79]) Given an element x in U, a subset S of U, and
a function chosen randomly from a universaly class of functions, the expected number of
elements in S that are in the collision set of x is at most |S|/|R|.

Lemma 18 (Proposition 7 in [CW79]) The class of functions G = {gx, k, : k1, k2 € [1..m]}

15 universaly.

Following Lemmas 17 and 18, for each element a; in W, the expected size of its collision
set is at most |W|/n = 1. Since the size of the collision set is non-negative, the probability
of being at least twice the expected value is at most 1/2. Therefore, the size of a;’s collision
set is at most 2 with probability > 1/2. By setting s = 3, Lemma 16 follows. g

Proof of Lemma 15: Let ¢, be the phase number in which element a; becomes inactive, for
1 <k < n. Following Lemma 16, E[t;] < 2 for each k (same proof as for Lemma 14). The
total work in all phases of part 1 (where N; > n/logn) is proportional to >>; N; < Y7, k.
Therefore, the expected total work in all phases of part 1 is proportional to Y_7_, E[tx] < 2n.

The time in each phase in part 1 is dominated by the compaction procedure (Step 5).

Using the Prefix Sums algorithm each phase takes O(lolgol%gn) time.

We show that the expected number of phases in part 1 is O(loglogn) and in part 2 is
O(logn). Consider the following Bernoulli trials: A success in the ’th trial is defined to
be the case that at least half of the active elements become inactive in phase ¢; that is, a
success is when N;1; < % Following Lemma 16, the probability for success in each phase is
> % Therefore, as in the proof of Lemma 14, the expected number of phases before a first

success occurs is at most 2, and the expected number of phases before the £’th success is at
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active element is found, with probability at least 1/2. The situation with implementing and
analyzing the representative selection algorithm is analogous to Step (b) above. The only
significant difference between the implementations is in Steps (1-3) (where elements become
inactive). Lemma 16 below plays an analogous role to Lemma 8. Lemma 15 follows by
simply being the analogous of Lemma 12. Details follow.

The representative selection algorithm

v:=1; N; :==n.

while N; > n/logn do
(All active elements in W are in array ACTIVE[1..N}])

Phase 2

1. Select at random two independent values ky and ky from the range [1..m] (same
range from which the elements of W are drawn). Let gi, p,(2) = 1 + (k1 + k2)
mod p) mod n be a function from [1..m] to [1..n] (recall that p = m + 1 is prime).

2. For each active element a; compute g, x,(a;).

3. Repeat substeps (¢ — uit) below s times (the proof of Lemma 16 below shows that
taking s = 3 is fine):

(i) For each active element a;, write < a;,j > into cell g, x,(a;).

(ii) If < a;,5 > is actually written then index j is selected to be the ‘represen-
tative’ of the elements a; = a;, 1 <[ < n.

(iii) Each element that has a representative becomes inactive.

4. Elements which are still active participate in phase number 2 + 1. Their number is

Nii1.
5. Using a prefix sums algorithm, compact the active elementsinto array ACT TV E[1..N;11].
6. 1:=1+ 1.
end while
Denote ¢/ = ¢. Ny is at most n/logn.

while there is an active element do

(All active elements in W are in array ACTIVE[1..Ny])

Phase 2

Do Steps 1-4 and 6 as above.

end while
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similar to those in Lemma 13, E['] < 2loglogn where ¢’ is the number of phases in the first
part. The expected number of phases for Part 2 is O(log n) based on Lemma 13.

Using Brent’s theorem [Bre74] as part of the WT suppression level methodology, Step (b)
can be implemented in O(log n) expected time, using ﬁ processors on an arbitrary-CRCW
PRAM. This concludes the proof of Lemma 12. g

Withdrawing the distinctness assumption.

Above, we made the simplifying assumption that W = {ay,a3...4a,} is a set. However, for
proving Theorem 2, we must assume that W is a multiset, that is, several elements of W
may have the same value.

Consider the representative selection problem, which is defined as follows.

Input: Multiset W = {aq,a4,...a,}.

Problem: For each element a; in W, 1 < ¢ < n, select a “representative” index j, 1 <j <
such that: (1) a; = a;, and (2) the representative index of every element ay = a;, 1 < k <
is also j.

Lemma 15 The parallel algorithm below solves the representative selection problem. Using
n/logn processors and O(n) space on arbitrary-CRCW, its expected running time is O(logn).

Below, we do things in the following order: (1) finish with the proof of Theorem 2,
(2) comment on an interesting corollary of Lemma 15, and (3) give an algorithm for the
representative selection problem, and thereby prove Lemma 15.

For proving Theorem 2, we apply the representative selection algorithm to the multiset
W, and “delete” from W each element whose index was not selected as a representative of
its value. Finally, we apply the above construction of a parallel perfect hash function with
respect to the set of representatives. Theorem 2 follows from Lemmas 10, 12 and 15.

Comment: Consider the following element multiplicity (EM) problem. Given a multiset W,
as above, find for each element in W how many other elementsin W have the same value. We
note that the most efficient algorithms known for this problem are based on general sorting
algorithms, and need a total of O(nlogn) operations and O(n) space. The representative
selection algorithm can be used to achieve results similar to Lemma 15, for the EM problem,
as follows. Replace each element of W by its representative index, and apply Rajasekaran-
Reif’s parallel integer sorting algorithm. We finish this comment by noting that the EM
problem is more general than two known problems: element distinctness (see [Bop89]) and
element uniqueness (see [Bea89]).

An element a; € W is called active until its representative is found and inactive later.
The representative selection algorithm works in phases. In a phase, a representative for each
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some abstract model of parallel computation, that is only remotedly related to any PRAM
model.) This methodology is called the Work-Time (WT) suppression level (Work-Time,
in short) methodology in [Vis90]. The second stage, i.e., application of Brent’s theorem, is
trivial for our algorithm.

Specifically, let VAL[1..10n] be an array. The perfect hash function F', being constructed,
will map each element of the input set W into array VAL.

Less informal implementation of Step (b).

1:=1; N/ :=n.

while N/ > n/logn do
(All active elements in W are in array ACTIVE[1..N/] sorted by the B(k,j) to which
they belong)

Phase 1
1. The first element in an active B(k,j) selects at random a k'(j) value.

2. Each active element x evaluates its hashing value F'(x) using fy ;) and writes its
original value & into VAL[F'(x)] (using the arbitrary CRCW convention).

3. Each active element x checks whether its value is written in VAL[F'(2)]. If not it
“disqualifies” the k'(j) for its B(k,j) set.

4. All active elements belonging to B(k,j) sets whose k'(j) was disqualified remain
active in phase number ¢ + 1. Their number is N/_;.

5. Using a prefix sums algorithm, compact them into array ACTIVE[1..N/ 4]
6. 1:=1+ 1.
end while

Denote ¢/ = ¢. N}, is at most n/logn.

while there is j for which good &'(j) has not been found do
(All active elements in W are in array ACTIVE[1..N/], sorted by the B(k, ) to which
they belong)

Do Steps 1-4 and 6 as above.

end while

i

Complexity. Following Lemma 8, E[N/] < zZ. Therefore, the expected total work is
> E[N!] < 2n. The time in each phase in part 1 is dominated by the compaction procedure

(Step 5). Using the Prefix Sums algorithm each phase takes O(blgol%) time. Using arguments
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Lemma 13 E[t] < 2([logn] + 1).

Proof: Let N; be the number of js for which a good k" was not found in the first ¢ trials;
ie. N; = [{j:t; > ¢}|. Consider the following Bernoulli trials: A success in the i’th trial is
defined to be the case that the number of good £&’s found in the 7’th trial is at least %; that
is, a success is when N;;; < % Following Lemma 8, Prob[success| > %

Let 2 be the number of trials until the ([logn] 4 1)’st successful trial. It is easy to see
that ¢ is bounded by x and therefore E[t] < E[x] < 2([logn] +1). u

Lemma 13 proves Fact (I). To prove Fact (1) we first show

Lemma 14 Et;] <2 for each j.

Proof: '
o0 o0 N o0 K3 1
Elt] =i Probft; =i] <3 ~ =53 =
=1 =1 ‘ =1 k=1 2
changing the order of summation, we get
D ) IE T I
1=1 k=¢ 2% =1 2

Let op; be the number of operations required for selecting a good k' for j. Since op; =
t;b(k,j) we have Elop;] = E[t;]b(k,j) < 2b(k,j5) and the total number of operations is
expected to be E[3"7_ op;] < 230_, b(k,j) = 2n.

It remains to give an implementation for the processors allocation. The selection of the
numbers k’(j) is done in phases. A set B(k,j) and its elements are called active if a good
K'(j) has not yet been found. In each phase a new number k(j) is selected and tested, for
every active B(k, 7). Let N/ be the number of active elements in phase 1.

We use a standard idea. Initially, N{ is n. Aslong as N/ > n/logn, we simply compact
all N! active elements of phase ¢ into an array of length N/ prior to the phase. Consider the
first phase ¢’ for which N/, < n/logn. The compacted array of size N/, will be used for all
subsequent phases.

Our presentation of the parallel algorithm follows a methodology that was introduced
in [SV82b] and became standard since then, see [KR88]: First, the algorithm is described
in terms of work and time only, as was done above. Second, a theorem by Brent [Bre74] is
used to guide actual assignment of processors to jobs. (The theorem formally holds only in
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(1) Sort the n numbers in {fy(x): 2 € W} into an array C[l..n].

(2) Find for each j the rightmost (resp. leftmost) index u; (resp. ¢3) for which C[i1] = j
(resp. Cliz) = 7). Let b(k,j) be i1 — iz + 1.

Step (2) can be trivially done in O(1) time using n processors. To do Step (1), note first
that the range of fy is the integer interval [1..n]. Thus, we may employ the integer sorting
algorithm due to Rajasekaran and Reif:

Lemma 9 ([RR89]) n keys from the range [1..n] can be sorted using Togn arbitrary-CRCW
PRAM processors in O(logn) time, with probability > 1 — n%, for any constant o > 0.

Following the above we have that each iteration in Step (a) of the construction of F' takes
O(n) expected number of operations and logarithmic expected time. We conclude

Lemma 10 Given is a set W of n numbers from the range [1..m] and some k € [l..m].
Checking whether S, < 5n can be done in O(logn) expected time, using ﬁ arbitrary-CRCW
ProOCEessSoTs.

n
logn

Corollary 11 Step (a) in the construction of F takes O(logn) expected time, using
arbitrary-CRCW processors.

Implementation of Step (b).

In Step (b) the procedure to check whether k" is good for j is easy when using the arbitrary-
CRCW PRAM. Our goal is to select a good k' for each j within a total of O(n) operations
and logarithmic time. The difficulty is that Step (b) should be done independently for each
J(J=1,...,n). We prove

Lemma 12 A good k' = k'(j) can be found for all j, j = 1,..,n, in O(logn) expected time,
using & PTOCESSOTS.

Proof: To prove the lemma we show three facts: (I) the expected maximum number of
trials in selecting a good k' for j (over j = 1,..,n) is O(logn); (II) the expected total work
of selecting good ks for all j (7 = 1,..,n) is O(n); and (I11) the processors can be allocated
according to (I) and (II) to yield an O(logn) expected time parallel procedure for Step (b)
in the construction of I, using @ processors.

Let ¢; be the number of trials before a good k' is found for j, and let ¢ = max{t; : j =
L,...,n}.
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W fi(z) = j}. Also, let b(k,j) = |B(k,j)| and Sy = >7_; b(k,j)*. For each j =1,...,n,
define fi, . : B(k,j) — [L.2r*] as fi, (z) =14 (K2 mod p) mod 2r* where &' = k'(j) is
a parameter from [l..m] and r = b(k,j). Define &' = (k'(j)) to be good if f,’g,(j%b(k’j) is a
one-to-one function (over B(k,j)). Construction of the hash function F' will be based on
two steps:

(Step a) Repeatedly select k at random until Sy < 5n.

(Step b) For each j, repeatedly select &' = k'(j) at random until & is good.

After all parameters k and k'(j) (for all j = 1,...,n) are appropriately selected, the
one-to-one function F'is derived by first applying fi and then fu ;s ) for a proper j.
Specifically, F' is constructed as follows. For each set of elements B(k,j), b(k,)? space is
assigned. Let M; be the prefix sum 2;21 2b(k,7)*. Then [1..M;] is an array assigned to
the first 7 sets B(k,1),..., B(k,¢). The function fi ;) s(x,;) maps each element in B(k, j) into
[(M;_1 + 1)..M;]. F(x) is evaluated as follows:

(1) Evaluate j = fi(x).

Step (a) guarantees that the overall space M,, = 25} is linear (< 10n). Step (b) guarantees
that the mapping is one-to-one. It remains to show how to implement steps (a) and (b).
The following lemmas are due to Fredman, Komlds and Szemerédi (Corollaries 3 and 4

in [FKS84]).

Lemma 7 ([FKS84]) For at least one-half of the values k in [1..m], Sy < 5n. Thus, for a
randomly selected k, Sy < dn with probability > %

Lemma 8 ([FKS8/]) For each j in [1..n], at least one-half of the k's in the range [1..m] are
good.

Implementation of Step (a).

Following Lemma 7, the expected number of iterations in (a) is < 2. We first show how
to check whether S; < 5n. Given b(k,j) for all j, the evaluation of the prefix sums M; =
22;:1 b(k,7)* (for ¢ = 1,....,n) and of Sy = M, can be done by using the Prefix Sums
algorithm of Cole and Vishkin [CV86] [CV89] in O(log n/loglog n) time and O(n) operations.

The evaluation of b(k, j) for each j is done as follows:
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given level denote by W the set of a), and by, variables that are being used (|W| = O(n)). The
deterministic implementation in Section 2 requires O(m) space for the aj; and by variables.
The key idea here is to randomly select a hash function for mapping the set W into O(n)
space. In order to avoid collisions, we shall use a perfect hash function (which is a one-to-one
function).

Remark. For the serial algorithm, simpler hash functions would suffice in order to reduce
the space to O(n). From now on we concentrate on the parallel algorithm. Based on this,
the implementation for the serial algorithm will be straightforward.

A basic procedure for constructing a perfect hash function is presented. Its expected
running time is logarithmic and its expected number of operations is linear. Specifically, we
prove in Section 3.1 the following theorem:

Theorem 2 Let W be a multiset of n numbers from the range [1..m], where m +1 = p

is prime. Suppose we have ﬁ processors on an arbitrary-CRCW PRAM. A one-to-one

function F:W— [1..0(n)] can be found in O(logn) expected time. The evaluation of F(x),
for each x € W, takes O(1) arithmetic operations (using numbers from [1..m]).

We show later that Theorem 2 leads to the following:

Corollary 6 A. Algorithm DNN takes O(lognloglogm) expected time and O(n) space, us-
ing = processors on a min-CRCW PRAM. B. The same performance is oblained for the

log
problem of sorting n integers drawn from a domain of size m.

By using the optimal simulation results of Section 4, the same bounds will be shown to
hold also when using the standard arbitrary-CRCW model.

3.1 Constructing a Perfect Hash Function in Palallel

In this subsection we prove Theorem 2.

Given is a multiset W of n numbers from the range [1..m], where p = m + 1 is prime. It
is first assumed that W is a set, i.e. that the numbers in W are distinct. At the end of this
subsection, it is shown how to withdraw this assumption. We construct in parallel a hash
function F' which maps W into the range [1..10n]. We use the fundamental perfect hash
function F' that was suggested by Fredman, Komlds and Szemerédi [FKS84], as described
below. An efficient parallel construction of £ is presented.

Define fi : W= [l.n] as fi(x) =14 (kx mod p) mod n where k is a parameter from
[1..m]. Let B(k,j) be the set of values in W that are mapped by f; into j,i.e. B(k,j)={x €

13



Proof: The output of the DNN algorithm (without the distinctness assumption) gives a
linked list of the elements, where the links in the list are defined by the right neighbor
relation. This linked list is stable in the following sense: if z[:] = x[j] for some i < j
then element ¢ precedes element j in the linked list. A consequence is that an iterative
procedure, in the spirit of Radix Sort, can be applied. Specifically, each logm-bit input
word is partitioned into ¢ blocks of (logm)/e bits each. The blocks are numbered from right
to left (i.e., from the the least significant bits to the most significant ones). We proceed in ¢
phases. The input to the first phase is the original input array for the sorting problem. The
input to phase k, 2 < k < ¢, is the output array of phase k — 1. In phase k, 1 < k < ¢, only
the k’th block of each input word is considered as the value of the word. The phase has two
steps: (1) The DNN algorithm is applied to sort these values into a linked list. (2) A list
ranking algorithm is applied to transform the list into an input array for the next phase; in
phase ¢, however, this gives the output for the sorting problem.

Recall that we use the DNN algorithm for non-distinct input elements in each phase, and
therefore the space needed is O(nm!/¢).

Correctness of this iterative procedure follows from the following Inductive claim: The
output array of phase k, 1 <k < ¢, gives a stable sorting of the (original) input elements if
blocks 1,.., k together are considered as the value of each element. The theorem follows by
taking k= c. g

It the input is from a range polynomial in n then we have the same complexities as in
Hagerup’s algorithm [Hag87]. The range for which our algorithm gives better results than the
best known algorithms is for n'°8l°¢" <« m <« 2”0(1), where < denotes smaller asymptotically.
Thus, for example, for m = n??¥09(") we have:

Corollary 5 n integers from the range [1..nlogk " (for every constant k > 0) can be sorted

in: (1) O(nloglogn) serial time and O(nl"'(logk”)/c) space, for any constant ¢ > 1; and
nloglogn

2) O(logn) parallel time and O pli+(og" n)/e space, for any constant ¢ > 1, using
g logn

processors on a min-CRCW PRAM.

3 Trading Space for Randomness

In this section we show how to use randomization in order to reduce the space complexity
of the algorithms to O(n). The randomization is of the “Las-Vegas” type algorithm. That
is, some of the steps of the space reducing algorithm are based on randomized moves and it
never errs.

Recall that in each recursive level of algorithm DNN, there are O(m) variables a; and by.
However, in each level of the algorithm only O(n) of these variables are actually used. For a

12



2.3 Complexity and implementation
We start by discussing the complexity of algorithm DNN and later state the sorting results.

Lemma 4 Given aren elements with distinct values from the interval of integers [1..m]. (1)
Algorithm DNN works serially in O(nloglogm) time and O(m) space. (2) Algorithm DNN
works in O(loglogm) time and O(m) space, using n processors on a min-CRCW PRAM.

Proof: The size of interval I for each recursive sub-problem is bounded by y/m. Therefore,
D(m), the depth of the recursion, satisfies D(m) < D(y/m) + O(1), implying D(m) =
O(loglogm). For each level of the recursion we need to perform at most O(n) operations
and therefore the total number of operations is O(n loglogm).

To finish deriving the serial result we “remember” for each element in each level of the
recursion its original index in the initial sets L and R. The space needed for all subproblems
together in each level of the recursion is O(m). Since we can reuse the space for the highest
level of the recursion, we get a total of O(m) space, as well. Item 1 of the lemma follows.

We proceed to the parallel result. Initially, we assign one processor to each copy of
each element (i.e., each element of the original sets L and R). This assignment remains
throughout the entire algorithm.

For Step 2, we need to have in ay (resp. by), for k& = 0,..,¢ — 1, the minimum (resp.
maximum) element’s value over all the elements that belong to Ly (resp. Ry); where, aj
(resp. by) is the kth cell in some predesignated array a[0..g — 1] (resp. b[0..q — 1]). We already
argued (implicitly Item 1 of the lemma) that sequentially computatio of a; (resp. by), for
k =0,...,q — 1, can be trivially done in O(n) time. In parallel, Step 2 can be done in
O(1) time, using n processors. Here is where we take advantage of the min-CRCW PRAM,
where if several processors try to write into the same memory location, only the one with
the minimal value succeeds. Item 2 of Lemma 4 follows. g

Withdrawing the distinctness assumption. We assumed that all elements in the input
sequence are distinct. It is trivial to achieve distinctness by replacing each input element z[¢]
by the pair <[i],¢>. This increases the required space to O(nm). However, the randomized
sorting results in Section 4.1 will not be affected.

The space requirements of the sorting algorithm can be reduced deterministically, as
shown in the following theorem:

Theorem 1 Given are n elements with values from the interval of integers [1..m], our sort-
ing algorithms achieve the following results: (1) O(nloglogm) serial time and O(nm!/°)
space, where ¢ > 1 is any fired constant. (2) O(logn +loglogm) parallel time and O(nm!/¢)
space (for any constant ¢ > 1), using % processors on a min-CRCW PRAM.

11



e If the smallest (resp. largest) element of LU R in [ is in L (resp. in R) then its left
(resp. right) neighbor is not in I,. We collect the elements from L (resp. from R) whose
left (resp. right) neighbor is not in I into the global set G'L (resp. set G'R).

e The algorithm advances to the deepest level of recursion and simply terminates (with-
out any backtracking).

o All recursive calls of the algorithm are performed simultaneously in parallel.

2.2 Correctness

Proposition 1 Let x[j] be the left neighbor of x[i]. Then for each level of the recursion the
following properties hold:

(a) The values of all elements in L are distinct and the values of all elements in R are
distinct.

(b) x[i] and x,[j] are both represented in the same recursive sub-problem.
(c) w.li] < i)

(d) x.[j] is the left neighbor of x[1].

(e) Each element is represented in exactly one recursive sub-problem.

(f) Set L is nonempty if and only if set R is nonempty.
The proof of Proposition 1 is given in Appendix A.

Corollary 2 [If a problem with input L, R and I is of size 2 then |L| = |R| = 1 and the
element in R ts the left neighbor of the element in L.

Proof: Assume that x;[7] € L and that x[j] is the left neighbor of «[¢]. Let I = [d,d + 1] for
some integer d. Following from property () in Proposition 1, ,[j] € R. Thus, from property
(¢) we have x,[j] = d and x/[t] =d + 1. If L > 1 then by property (a) a second element can
only be z[¢'] = d (for some ¢’ # i). However, following property (c) its left neighbor must
be < d, contradicting property (b). Similarly, R may contain only one element. g

Corollary 3 Suppose that initially m, the size of the interval from which the input elements
are drawn, is 2 for some integer t > 1 (and t =loglogm). Consider a recursive problem
at recursion level t. The interval I from which the input elements for such recursive problem
are drawn consists of two successive integers. That is, for some integer d, I = [d,d + 1].

Furthermore, L = {d 4+ 1} and R = {d} and d 4+ 1 is the right neighbor of d.
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a and m’. Set L will always represent a non-empty subset of the left copies and set R will
always represent a non-empty subset of the right copies. Each element in set L searches for
its left neighbor within set R. This left neighbor is defined as the largest element in R which
is smaller than it. Similarly, each element in set R searches for its right neighbor defined as
the smallest element in L which is larger than it.

Initially, the interval [ is [1..m] (i.e., « = 0 and m’ = m), L is {z/[1], ...,z [n + 1]} and R
is {x,[1],..., 2, [n + 1]}.

The recursive algorithm DNN

Input: L, R and I, where L and R are nonempty sets and I = a+ [1..m] is an interval of integers. We refer

to m = |I| as the size of the problem.

A processor stands by each element in L. and each element in R.

ifm=2 (comment: the situation for a recursive problem for which m = 2 is characterized in Corollary

2.)

then Declare the element in L to be the right neighbor of the element in R and the element
in R to be the left neighbor of the element in L.

else

(1) Partition set L into ¢ = \/m subsets Lg, L1, ..., L,_1 where Lj contains elements (of L)
from the interval I = a4+ k-q+[l..¢], for k = 0,...,¢ — 1. Similarly, partition set
R into ¢ = y/m subsets Ry, Ry, ..., R,_1 where Ry contains elements (of R) from the
interval I, =a+k-q+[l..q], for k=0,....q— 1.

(2) Let ay, be the smallest element in Ly. If ay is less than or equal to the smallest element
in Ry then: (a) Select the integer k into the new set G/ (integer k represents element
ar and will be referred to as ay). (b) Remove a; from Ly.

Similarly, let b, be the largest element in Ry. If b is greater than or equal to the
largest element in L, then: (a) Select the integer k into the new set GR (integer k
represents element by and will be referred to as by). (b) Remove by, from Ry.

(3) Do the following recursive calls: (a) For each pair of nonempty (local) subsets L, and
Ry, solve the problem for an input consisting of Ly, Ry and [;. (b) If (global) sets
G L and GR are nonempty then solve the problem for an input consisting of a + G'L,
a+ GR, and J = a4+ [0..¢ — 1], where the set « + GR is defined as {a + k: k € GL}.

Comments:



We solve the sorting problem in two steps:

(a) Compute the domain right neighbor of each index 1.

(b) For each element x[¢], compute its rank r in the linked list defined by the drn, and let
7(r) be 1.

Step (b) can be (trivially) done in O(n) time or in parallel time O(log n) and optimal speed-
up using a List Ranking algorithm ([AMSS], [CV86], [CV88], [CV89]). Therefore, our main
concern is solving the domain right neighbor problem. For simplicity we assume that m = 2%
for some integer ¢ > 1. The domain right neighbor, as defined above, is the nearest neighbor
from the right. We will also need a definition of the domain left neighbor, din[], of element
z[i]: the element z[j] = max{z[k] : z[k] < z[1]}.

2.1 Algorithm for finding Domain Nearest Neighbors

The algorithm is recursive. The main effort is in defining precisely the problem that is being
solved recursively. The recursive algorithm will provide solutions for the problems of finding
left and right domain nearest neighbors. For each element the recursive algorithm separately
treats the domain right neighbor and the domain left neighbor computations. This is done
by duplicating each element z[i] into a left copy x[¢] and a right copy x,.[i]. Intuitively,
copy z,[t] is “responsible” for finding the domain right neighbor and z[z] is “responsible”
for finding the domain left neighbor. Initially, z;[¢] = z[¢] and z,[]] = z[¢].

In addition, two auxiliary copies are added: x,[n + 1] and a[n + 1]. Copy z,[n+ 1] =1
is the domain left neighbor of the smallest input element. Similarly, copy x;[n + 1] = m is
the domain right neighbor of the largest input element. (Note that at this stage only for
i =n+1, x.[¢ is not equal x;[7]].) We assume, without loss of generality, that the input
elements are from [2..m — 1].

Informally, our algorithm works as follows: The input elements are from an interval
1. Interval [ is partitioned into small intervals, defining local problems of domain nearest
neighbors searches. For each subinterval [, at most two elements (smallest left copy and
largest right copy) might not have their neighbors in ;. Such elements are collected into the
global sets GR and G'L. Thus, a problem on interval [ is reduced recursively into several
local problems on subintervals [}, and one global problem. By choosing [} to be of size /||
(for all k), we have that all local problems and the global problem are with intervals of size

|7].

The input for the recursive algorithm includes two sets L and R, whose values belong to
an interval [ of integers. [ is of the form a+[1..m/],i.e., [ = {a+1,a+2,...,a+m'} for some
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within the CRCW PRAM. (2) At the same time, a dialogue between more pragmatic re-
searchers and theoreticians should continue in order to investigate “free” strengthenings of
the PRAM model; specifically, collective wisdom on what are the best approaches for var-
ious machine technologies ought to be developed. The existence of operations such as the
addition of n numbers by n processors as primitive operations contradicts some fundamen-
tal intuition about what is computationally feasible in one parallel step versus what needs
a more substantial computational effort. (Formally, an Q(logn/loglogn) time separation
between the priority- and fetch&add-CRCW PRAMs can be derived from the lower bound
of [Has86] and the simulation result of [SV84], or directly from the lower bound of [BH8T7].)
Recognizing such partition into two separate, but related, approaches justifies studying the
feasibility and power of such operations as a pragmatic line of investigation.

The contributions of the present paper fall within the first approach in the above com-
ment.

Postscript. Recently Bhatt et al. [ BDH189] designed independently a parallel deterministic
integer sorting algorithm which is related (though, not identical) to the basic construction
of Section 2.1 below. Using a new list ranking algorithm they were even able to reduce the
time to O(log n/loglogn + loglog m) maintaining optimal speed-up. However, none of the
randomized space reductions ideas of the present paper appear there.

2 The Deterministic Algorithm

We consider the following problem:

Input: Sequence x[l],...,x[n] of distinct integers drawn from the domain [1..m], for some
integer m. Problem: Sort the sequence. (Formally, compute the permutation 7 of {1,...,n}
such that z[x(1)],...,z[m(n)] is sorted in non-decreasing order.)

In Section 2.3 we discuss a way for withdrawing the distinctness assumption.

For presentation purposes, we falsely assume that the sequence x[1], ..., 2[n] is given in
the following redundant form. There is a domain array of bits D[l..m] so that D[i] = 1 if
the value of some element x[j] is ¢ and D[i] = 0 otherwise. Given bit D[;] = 1 we define the
smallest ¢; > ¢ such that D[i;] = 1 as the right neighbor of x[i].

This neighborhood relation translates easily to the values of the input sequence: the
domain right neighbor drnli] of x[i] is the element x[j] = min{z[k] : z[k] > z[¢]}. The array
drn defines a linked list, where the elements preceding z[¢] in the linked list are smaller than
z[i] and the elements succeeding x[i] are larger. The distance from the beginning of the list
is the rank of z[i] relative to the input elements.

7



exchange for randomization and increase in time by a logarithmic factor, but with no change
in the number of operations. The parallel hashing technique yields similar results when
applied to parallel algorithms that build on suffix trees. Section 3.2 lists many examples,
including the parallel approximate string matching algorithms mentioned in [GG88].

Parallel hashing can be useful for parallel object recognition algorithms. Hashing is used
in [LW88], following [KSSS86], for object recognition. It is also used in computations of
the Hough Transform (cf. [IK88]). The parallel hashing technique enables efficient parallel
implementations of these algorithms.

The parallel hashing scheme may be used to reduce the space in Hagerup’s sorting al-
gorithm [Hag87] from O(n'*®) to O(n) in exchange for randomization and an O(loglogn)
increase in time (but no change in number of operations). The parallel hashing scheme is
also used in the optimal simulation in Section 4.

Recall that we use the non standard min-CRCW model in Section 2. Note that we do
not advocate this model as an alternative for existing “acceptable” theoretical models for
parallel computation (see also comment below). The methodological attitude here is: (1)
design the algorithm on the min-CRCW model, and (2) show later how to simulate this
model on more acceptable ones.

Comment. Since this paper refers to standard versus non standard models of parallel com-
putation, we were asked to present our views on the following basic question. Which model
should be considered as the fundamental model for parallel computation? A position on
this issue is presented in the survey paper [Vis83b]. In that paper, two separate lines of
justification for an answer to this question are suggested. (1) The first line of justifica-
tion is technology independent and is based on computational equivalence among models of
parallel computation. Computational equivalence among the priority-CRCW PRAM and
the unbounded fan-in circuits (see Stockmeyer and Vishkin [SV84]) is used to support the
choice of the priority-CRCW PRAM (and not other PRAM models) as the fundamental
theoretical model for parallel computation. (2) The second line of justification is technol-
ogy dependent. Assume that any parallel machine that conforms with some technological
restrictions is given. [GGK*83], [Vis83a] and [Vis84], jointly advocate the choice of a most
permissive abstract model of computation that can be simulated by such a parallel machine
without increasing the cost of implementation (by more than a constant factor). [Vis83a]
demonstrated this principle by proving (under some assumptions) the following. Consider
any parallel machine which consists of processors that are connected in a fixed pattern. Then
the time for simulating a step of a priority-CRCW PRAM is going to be asymptotically the
same as simulating a step of a fetch&add-CRCW PRAM (and since finding the minimum
is an associative and commutative binary operation, also of a min-CRCW PRAM). [Vis83b]
implies also the following way for how research on parallel algorithms (and architectures)
can reconcile the two approaches: (1) Theoretical computer scientists (primarily designers
of parallel algorithms) should continue and search for new algorithmic patterns and ideas



Combining the optimal simulation from Section 4, the parallel hashing scheme in Section
3 and the algorithm in Section 2 we derive a randomized parallel algorithm for sorting
n integers from the range [l..m] on an arbitrary-CRCW that achieves O(logn loglogm)
expected time, O(n loglog m) expected number of operations and O(n) space.

Not only the space efficient parallel sorting result can benefit from the simulations. Recall
the original min-CRCW PRAM sorting algorithm of Section 2. Together with some of these
simulations, we get the following deterministic sorting results on standard PRAM models:
(1) O(log nloglog m) time and O(nm¢) space (with any fixed € > 0) using %ggl—zgﬂ priority-

CRCW processors; and (2) O(logn + (loglogm)?) time and O(n*m®) space (¢ > 0) using
n(loglogm)® arbitrary-CRCW processors.

logn

Some of the ideas we use in the deterministic algorithms of Section 2 go back to [vKZT77].
These ideas were inspired also by the algorithms of [Hag87] and [Joh82]. Johnson’s algo-
rithm has the same complexity as our deterministic serial algorithm. However, our sorting
algorithm has two advantages: it is simpler and parallelizable.

The so called DNN algorithm of Section 2 implies efficient algorithms for the ordered
chaining and for the ordered compaction problems, which are defined as follows. Given an
array of size m, in which n entries are marked, the (unordered) chaining problem is to put
the marked entries into a linked list. Assume that a processor is standing by each marked
entry. The (unordered) compaction problem is the problem of moving the marked entries
into consecutive memory locations. If the marked entries are required to remain in the same
order, then the problems are called ordered chaining and ordered compaction, respectively.
In [Spi88], [RS85], and [HN89] algorithms are given for the unordered chaining and the

unordered compaction problems only.

The proposed parallel hashing scheme may be a usetul tool for parallel algorithms that
use large space. We demonstrate this with several algorithms (in addition to our sorting
algorithm) for which the space requirement is large. By using the proposed parallel hashing
scheme, they become efficient and possibly practical.

There are applications that relate to combinatorial algorithms on strings. If the alphabet
is large then a naming assignment procedure for substrings is essential to avoid large space.
Such deterministic procedure, due to [GG88], takes O(nlogn) operations and evaluation of
a name takes O(log n) time. (We actually referred earlier to the same procedure.) Using our
parallel hashing scheme, the naming assignment takes O(n) expected number of operations
and evaluation of a name takes O(1) time in the worst case.

An important technique for string matching algorithms was introduced by Karp, Miller
and Rosenberg [KMRT72]. Suppose an input string of length m is given. [AIL*88] showed how
to parallelize this technique and used it for parallel construction of a suffix tree in O(logm)
parallel time, O(mlogm) work and O(m'*®) space for ¢ > 0. Using our parallel hashing
technique, the space requirements in each of these algorithms can be reduced to linear, in



A parallel version of this deterministic algorithm takes O(logn) time and O(nm!/¢) space,
for any fixed ¢ > 1, using nloglog m/logn processors (optimal speed-up). This parallel
algorithm is designed for the nonstandard min-CRCW PRAM.

The second element in our presentation is described in Section 3. A randomized parallel
hashing scheme is presented. It is optimal and takes logarithmic time. Specifically, let W
be a given set of n numbers from an arbitrary large domain [1..m]. We show how to find
a one-to-one mapping F' : W — R, where |R| = O(n), by a randomized algorithm on the
arbitrary-CRCW PRAM. This mapping is computed in O(logn) expected time, using logn
processors. Evaluation of F'(x), for each @ € W, takes O(1) worst case time. The connection
to the sorting results is as follows. We show how to use these hash functions in order to reduce

the space requirements in both the serial and parallel algorithms to only O(n) space. The
penalty is that now we have randomized algorithms rather than deterministic algorithms. For
the parallel algorithm, the parallel time increases to O(log nloglog m) while, the operation
count does not increase (asymptotically) on the min-CRCW model. Thus, our parallel
randomized sorting algorithm is slower by an O(loglogm) factor than standard PRAM
comparison sorting algorithms; however, it is more efficient by a factor of O(log n/loglogm).

The third element in our presentation is described in Section 4. Simulations of the
min-CRCW PRAM model by weaker models are presented. Some of the simulations are
randomized. Some simulations apply also to the fetch&add-CRCW model.

Denote a CRCW PRAM with a shared memory of size S as CRCW(S) PRAM. In the
following, we list some upper bounds for simulating one step of an n-processor min-CRCW(.5)

PRAM:

o O(logn) expected time on an —"—-processor arbitrary-CRCW(S + O(n)) PRAM (op-

ogn
timal speed-up).

e O(logn) time on an %ggl—zgﬂ—processor priority-CRCW(O(S 4+ n'*t¢)) PRAM (e > 0).
e O(loglogm) time on an n-processor arbitrary-CRCW(O(m.S)) PRAM, where m is an

upper bound for the value that can be written to a memory cell by the min-CRCW
PRAM.

The first result is an improvement over a previously known result [FXG88] where there
was a restriction that the memory addresses being used by the simulated min-CRCW are of
at most O(log n)-bit size. The result can be extended to simulating one step of a fetch&add-
CRCW PRAM. We are not aware of similar (i.e., optimal simulation) results even for sim-
ulation of the (relatively weaker) priority-CRCW PRAM by an arbitrary-CRCW PRAM.
The last two simulations are deterministic. The third result is based on the simulation of

priority-CRCW by arbitrary-CRCW in [CDHRSS].
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O([(log S(n) + 1)/log B(n)]). For B(n) = 2 the space is reduced to O(P(n)T'(n)) while the
time (and therefore the number of operations) is increased by a factor of O(log S(n)). Note
that the 2-3 tree parallel algorithm of [PVW83] can be used to get a factor of O(log(P(n)T'(n))).
Recently, [DM89] described a dynamic data structure (dictionary) that using randomization
supports the instructions insert, delete and lookup, and can be implemented in parallel.
Their implementation preserves optimal speed-up with time bounds of the form O(n°) using
< n'~¢ processors, for any fixed ¢ > 0. However, no time bounds of the form O(polylog(n))
are claimed.

Several works have been previously done on relations between PRAM models. The
interested reader is referred to the surveys of [EG88] [KR88] [Vis83b]. Randomization was
previously used in the context of parallel simulations by [KU86] [KRS88] [MV84] [Ran87].

1.2 More on our results

As model of computation for the parallel algorithms, we use mostly the concurrent-read
concurrent-write parallel random access machine (CRCW PRAM) family. The members
of this family differ by outcome of the event where several processors attempt to write
simultaneously into the same shared memory location. In the common-CRCW ([SV81]) all
these processors must attempt to write the same value (and this value is written). In the
arbitrary-CRCW ([SV82a]) one of the processors succeeds, but we do not know in advance
which one. In the priority-CRCW ([Gol82]) the smallest numbered among the processors
succeeds. The above three CRCW models are considered standard. Next we mention two non
standard models. In the min-CRCW PRAM ([AS83]) the processor that tries to write the
minimum value succeeds. In the fetch&add-CRCW PRAM ([Vis83a]) the values are added
to the value already written in the shared memory location and all sums obtained in the
(virtual) serial process are recorded. Finally, in an exclusive-read exclusive-write (EREW)
PRAM simultaneous access of more than one processor into the same shared memory location
is not allowed.

A parallel algorithm achieves optimal speed-up if its time x processor product matches the
number of operations of the fastest serial algorithm for the problem. Typically, we will state
our parallel results in the following form: “z operations and ¢ time”. Throughout this paper,
this will always translate into “¢ time using x /¢ processors”. The papers [EG88], [KRS8g],
[KR88] and [Vis83b] overview research directions on parallel algorithms. All of them concede
that achieving optimal speed-up, or at least approaching this goal, is a crucial property for
parallel algorithms that are intended to be practical. A secondary (but very important) goal
is to minimize parallel time. Another critical practical concern is space requirements. These
guidelines led us in designing the algorithms of the present paper.

Our algorithms are presented as follows. We first present in Section 2 a deterministic
algorithm that takes O(nloglogm) time and uses O(nm'/¢) space, for any fixed ¢ > 1.
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problem, where the input consists of integers drawn from a restricted interval [1..m]. For
m = O(n) the known Bucket Sort algorithm applies. It solves the problem in O(n) time. For
m = poly(n)' the variant of the Bucket Sort algorithm, called Radix Sort, runs in O(n) time
[Knu73]. More precisely, Radix Sort runs in O(nlog, m) time. Thus, a natural extension of

the Radix Sort would result with an o(n logn) time algorithm for m < n°(eg™)
Q(logn)

. However, for

m=n Radix Sort does not improve on the O(nlogn) time bound.

The second approach was studied for parallel computation as well. Rajasekaran and
Reif gave an optimal randomized parallel algorithm in logarithmic time on an arbitrary-
CRCW for m = nlog®n, for any constant ¢ > 1 [RR89]. The integer sorting algorithm of
Rajasekaran and Reif cannot be extended for m polynomial in n. For m = poly(n), Hagerup
provided an O(log n) time and O(n'*¢) space (for any fixed € > 0) parallel algorithm, using
nloglogn/logn priority-CRCW processors [Hag87]. No optimal parallel algorithm is known
for this range. Our sorting algorithm clearly belongs in the second approach.

Using data structures presented by van Emde Boas, Kaas and Zijlstra [vKZ77], Johnson
[Joh82] dealt with priority queues problems, where the priorities are drawn from the integer
domain [1..m]. A corollary of his result is an O(n log log m) time and O(m'/¢) space algorithm
for sorting, where ¢ > 0 is a constant. Johnson recognizes the problem with the space
requirements of the algorithm, and writes that the algorithm is not practical and only of
theoretical interest.

Kirkpatrick and Reisch [KR84] presented an algorithm, based on a range reduction tech-
nique, that has the same complexity bounds as Johnson’s algorithm. They state that the
algorithm 1s of little practical value due to both large constants, that are hidden in the
asymptotic bounds, and storage requirements.

The following open question, quoted from Kirkpatrick and Reisch ([KR84]), captures
an important aspect of our sorting results: “For what ranges of inputs can we construct
practical o(nlogn) integer sorting algorithms?”. The present paper provides only partial
answers to this question, and more work is still needed in order to resolve this question.

The issue of trading space for randomness using random hash functions belongs in the
folklore of serial algorithms. For instance, the survey paper [GG88] demonstrates such
considerations for hashing large alphabets for string algorithms such as the suffix tree data
structure. However, for parallel algorithms this survey mentions only deterministic methods.
This immediately suggests an implicit open problem.

Hagerup considered algorithms in which the space requirement S(n) is larger than the
number of operations P(n)T'(n) [Hag88]. He provided a deterministic modification algorithm
that reduces the space to O(P(n)T(n)B(n)), for any function B(n) > 2. In the modified
algorithm the number of processors remains P(n), while the time increases by a factor of

'We use poly(n) to denote “polynomial in n”, and polylog(n) to denote “polynomial in logn”.



1 Introduction

Consider the problem of sorting n integers drawn from a given range [1..m]. A new ran-
domized algorithm for the problem is presented. Its expected running time is O(n loglogm)
using O(n) space. The algorithm is parallelizable. The resulting parallel algorithm achieves
optimal speed-up. The result implies o(n log n) expected time and linear space for m < on
More specifically, for m = nl°8" " (for any constant k > 1) we have O(nloglogn) expected
time and O(n) space. No such result is known for deterministic sorting, suggesting the follow-
ing fundamental open problem : Is this an instance where randomization defeats determinism

for sorting?
The paper employs two Algorithmic techniques:

1. A first randomized parallel hashing technique, which achieves optimal speed-up and takes
expected logarithmic time, is presented. The parallel hashing technique enables drastic
reduction of space requirements in quite a few parallel algorithms for the price of using
randomness. The technique is used in the parallel sorting algorithm. Such (serial) technique
is also demonstrated in the serial sorting algorithm. The new parallel hashing technique,
that results in trading space for randomness, is likely to have additional applications. We
actually demonstrate it with a few examples.

2. The parallel sorting algorithm is designed for a strong and non standard model of parallel
computation. New simulations of the strong model on a CRCW PRAM are introduced.
Using one of the simulations the parallel sorting algorithm runs in optimal speed-up also on
a CRCW PRAM. Designing algorithms for strong and non standard models of computation
and then translate them into standard models is a traditional methodology in computer
science. We expect our parallel simulations to be helpful in this respect. The simulations
are efficient: one of them even preserves optimal speed-up.

1.1 Extant work

Sorting is a fundamental problem that has received much attention. [Knu73] gives several
algorithms for sorting n objects drawn from an arbitrary totally ordered domain in O(n log n)
time. There are also optimal parallel sorting algorithms in logarithmic time [AKS83] [Col86].
For the decision-tree model the O(n log n) time serial upper bound is best possible [AHUT74].

Because of the central role that the sorting problem plays in computer science, numerous
papers are devoted to study opportunities for improving this time bound to o(nlogn). One
approach is to consider idealized (and non standard) versions of the RAM model; as, for
instance, in [KR84] and [PS80], where very large words are assumed. The practicality of
such an assumption is unclear. Another approach is to focus on instances of the sorting
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Abstract

The problem of sorting n integers from a restricted range [1..m], where
m is superpolynomial in n, is considered. An o(nlogn) randomized algo-
rithm is given. Our algorithm takes O(nloglog m) expected time and O(n)
space. (Thus, for m = nP?¥29(") we have an O(nloglogn) algorithm.) The
algorithm is parallelizable. The resulting parallel algorithm achieves opti-
mal speed up. Some features of the algorithm make us believe that it is
relevant for practical applications.

A result of independent interest is a parallel hashing technique. The
expected construction time is logarithmic using an optimal number of pro-
cessors, and searching for a value takes O(1) time in the worst case. This
technique enables drastic reduction of space requirements for the price of
using randomness. Applicability of the technique is demonstrated for the
parallel sorting algorithm, and for some parallel string matching algorithms.

The parallel sorting algorithm is designed for a strong and non standard
model of parallel computation. Efficient simulations of the strong model
on a CRCW PRAM are introduced. One of the simulations even achieves
optimal speed up. This is probably a first optimal speed up simulation of a
certain kind.
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