
write, an Extended Find-First problem of size m is de�ned: Ac[i] contains processor Pj if Pjattempts to write i into cell c. The space required for the simulating machine is O(Sm). A`write' step of the min-CRCW(S;m) PRAM can be also reduced to S Find-First problemsof size nm. Speci�cally, Ac[< i; j >] contains processor Pj if Pj attempts to write i into cellc (here `lowest number' is with respect to the lexicographic ordering). The space requiredfor the simulating machine here is O(Snm).Chlebus et al. show how to solve the Find-First problem of size m on several machines:Proposition 24 ([CDHR88]) The Find-First problem of size m can be solved as follows:(a) On arbitrary-CRCW PRAM in O(log logm) time; (b) On common-CRCW PRAM inconstant time, provided that each processor has additional logm processors.The algorithms in [CDHR88] solve also the Extended Find-First problem since all proces-sors contained in the same cell act identically (independently of their index). This is enoughwhen using the arbitrary-CRCW and the common-CRCW PRAMs. Using the above wehaveSimulation Result 3 An n-processor min-CRCW(S;m) PRAM can be simulated by ann-processor arbitrary-CRCW PRAM with O(log logm) slow-down, using O(mS) space.Simulation Result 4 An n-processor min-CRCW(S;m) PRAM can be simulated by ann logm-processor common-CRCW PRAM in O(1) time, using O(mS) space.
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4. If for some i, i = 1; ::; l, bi = 1 and 1 < bi�1 < n� 1 then q is \composite".If the q was declared \composite" then it is indeed composite, otherwise q is prime with probability> 1=2 (i.e., the probability that a composite number will be considered as \possibly prime"is < 1=2).The algorithm involves O(log q) modular exponentiations that can all be computed inparallel. Therefore, using O(log q) processors, the O(log q) time (sequential) algorithm forexponentiation can be employed. Since the algorithm for �nding a prime performs in parallelO(logm) primality tests, the time complexity is O(logm) using O(log2m) processors.In Section 3, a parallel time bound of O(log n) dominates all steps, but the one in whicha prime is to be found. Finding a prime in O(logm) expected time meets this time boundonly where m is bounded by a polynomial in n. Finally, we refer the reader to [AK88] forsome further improvements.C Simulation Results 3 and 4Consider some CRCW machine. We say that a memory cell contains a processor if thisprocessor has the address of this cell written in a special local register. Each processoris contained in at most one cell. A cell that contains at least one processor is said to benon-empty, otherwise it is said to be empty. The Find-First problem of size n is de�nedas follows: Given is an array A[1::n], each cell of which is empty or contains exactly oneprocessor, �nd the lowest-numbered non-empty cell of A. We similarly de�ne the ExtendedFind-First problem of size n: Given is an array A[1::n], each cell of which is empty or containsone or more processors, �nd the lowest-numbered non-empty cell of A.Chlebus, Diks, Hagerup and Radzik [CDHR88] show how to simulate priority-CRCWPRAM on weaker CRCW PRAMs. Their simulations are based on solving the Find-Firstproblem2. Speci�cally, a `write' step of n-processor priority-CRCW is done as follows. Foreach memory cell c to which there is at least one processor that attempts to write, a Find-First problem of size n is de�ned: Ac[i] contains processor Pi if Pi attempts to write into cellc. The space required for the simulating machine is O(Sn) where S is the size of memorybeing used by the simulated priority-CRCW PRAM. Time requirements are discussed later.Letmin-CRCW(S;m) be a min-CRCWPRAMwith space S andm being an upper boundon the values that can be written into the memory cells. A `write' step of min-CRCW(S;m)PRAM can be done, similarly to the above, by using S Extended Find-First problems ofsize m. For each memory cell c to which there is at least one processor that attempts to2Fich, Ragde and Wigderson [FRW88] also used the Find-First problem (there called \leftmost prisonerproblem") to simulate priority-CRCW on common-CRCW PRAM.36



Lemma 22 ([RS62]) For all u � 17, ulnu � �(u) � 1:25506 uln u .Corollary 23 For all u � 17 there are at least u2:28368ln(2u) primes in the range [(u+1)::2u].Proof: Let � = 1:25506. Following Lemma 22, �(2u)��(u) � 2uln(2u)�� ulnu = u(2 lnu�� ln(2u))lnu ln(2u) =u(lnu(2��)�� ln 2)lnu ln(2u) � u(lnu(2���� ln 2= ln 17))lnu ln(2u) > 0:43788889uln(2u) > u2:28368ln(2u) .Overview of the algorithm for �nding a prime in the range [(m+1)::2m].Corollary 23 implies that our strategy for �nding p may be as follows. Repeatedly select atrandom a number x from [(m+1)::2m] and test x for primality. By Corollary 23 The expectednumber of x's to be tested is � 2:28368 ln(2m). Thus, O(logm) numbers from [(m+1)::2m]can be randomly selected and independently (in parallel) be tested for primality. With highprobability, at least one of these numbers will be detected prime.Later, we go into some details of primality testing. Below, we backtrack and discuss therelevance of the above algorithm for �nding a prime in the context of Section 3. The primalitytesting algorithm can be of a Monte Carlo type; i.e. we allow the output of the primalitytesting to be incorrect with constant fraction probability. Assume that some primality testingprocedure PT is employed and detects (possibly falsely) a given number p0 to be a prime.We use p0 in our hash function scheme, assuming that it is a prime. If nothing goes wrongthen we are done. (Note that this does not imply that p0 is indeed a prime.) If, on theother hand, the hashing scheme (in some phase) takes longer than some predetermined timelimit, then it is stopped. A new number p00 is then supplied by PT (p00 again is assumed tobe prime), and a new hashing scheme is constructed (for that phase), based on p00 as the`prime'. (Note that a failure in the hashing scheme construction may result from p0 being acomposite number; however, a failure may also occur when p0 is a prime, because a successin the hashing construction depends also on the random choices of the parameters k and k0.)The expected number of times that the hashing scheme is reconstructed for either reason(i.e. selection of a composite number or selection of inappropriate parameters) in each phaseis constant.We show which primality testing algorithms are adequate for our purpose. For theserial algorithm many primality testing algorithms are available, see [AH87] [APR83] [GK86][Mil76] [Rab80] [SS77]. Given an integer q, we give a short description of Rabin's algorithmfor testing whether q is a prime:1. Randomly pick b, 1 < b < q.Let q � 1 = 2lr, where r is odd.2. Compute residues mod q: for i = 0; ::; l, compute bi = b2ir mod q.3. If bq�1 6� 1 mod q then q is \composite". 35



xl[i] 2 Lk and xr[j] 2 Rk0 for some k and k0. If xl[i] was selected into GL, i.e. xl[i] isthe smallest element in Lk SRk, then xr[j] was selected into GR, i.e. xr[j] is the largestelement in Lk0 SRk0. Otherwise, we have from the inductive hypothesis on (a) and (c)that xr[j] < bk0 < xl[i] (before bk0 was changed in set GR) which contradicts the inductivehypothesis on (d). Similarly, if xr[j] was selected into GR then xl[i] was selected into GL,otherwise we have from the inductive hypothesis on (a) and (c) that xr[j] < ak < xl[i], whichcontradicts the inductive hypothesis on (d). If both xl[i] and xr[j] were not selected into GLand GR, respectively, then k = k0 otherwise by the inductive hypothesis on (a) and (c) wehave xr[j] < ak < xl[i] which contradicts the inductive hypothesis on (d). Thus, xl[i] andxr[j] are in GL and GR, respectively, or in Lk and Rk, respectively.(c): Following from the inductive hypothesis on (b), if xl[i] and xr[j] are in Lk and Rk,respectively, then their values are unchanged. If they are in GL and in GR, respectively,then after step 2 xl[i] = k and xr[j] = k0 (where after step 1 xl[i] 2 Lk and xr[j] 2 Rk0).Following from the de�nition of Lk and Rk0 in step 1 and from the inductive hypothesis on(c) we have k < k0.(d): The values of all elements in sets Lk and Rk are unchanged. Thus, following fromthe inductive hypothesis on (b) and (d), if xl[i] 2 Lk and xr[j] 2 Rk then xr[j] is the leftneighbor of xr[j]. We only need to deal with the case that xl[i] 2 GL and xr[j] 2 GR.Assume, by negation, that there is an element y 2 GR such that xr[j] < y < xl[i]. Clearly,after step 1 we had xl[i] 2 Lk, xr[j] 2 Rk0 and y 2 Rk00 with k0 < k00 < k, contradicting theinductive hypothesis on (d).(e): Following from the inductive hypothesis on (e), in step 2 each element xl[i] is eitherin Lk for some k or in GL. Similarly, each element xr[j] is either in Rk0 for some k0 or inGR. Thus, in step 3 each element is represented in exactly one recursive sub-problem.(f): Following from the inductive hypothesis on (b).B Finding a prime in a given rangeIn Section 3 it is assumed that m + 1 is a prime. If we want m to be part of the input(either explicitly or implicitly) then we should give a procedure that, given some m, �nds aprime p > m such that log log p = O(log logm); i.e. p 2 [(m+1)::mlogk m], for some constantk > 0. We show below how to �nd p with an expected number of O(log3m) operations. Theexpected parallel time is O(logm).It is �rst shown that the density of primes in [(m+1)::2m] is asymptotically similar totheir density in [1::m]. Let �(u) denote the number of primes � u. The following lemma isdue to Rosser and Schoenfeld: 34
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done, using Simulation Result 1, in O(log n) expected time and O(n) expected number ofoperations, using O(n) space. There are O(log logm) phases by Lemma 4.For the other implementations we use AlgorithmDNN, where at each phase we implementa step of min-CRCW PRAM with memory size S =O(m), each memory cell containing alogm-bit word. We use Simulations Results 2, 3 and 4 to implement the second, third andforth implementations, respectively.Recall that after running Algorithm DNN, the Sorting algorithm can be �nished byusing the List Ranking procedure. The latter takes O(log n) time, O(n) operations andO(n) space on EREW PRAM. Thus, sorting distinct integers can be implemented with thesame complexities as stated in Corollary 21 except for an increase in time to O(log n) in thelast two cases.In particular, the �rst item in Corollary 21 implies the following parallel sorting result.Theorem 3 Sorting n integers from the range [1::m] can be done on a randomized arbitrary-CRCW in O(log n log logm) expected time, O(n log logm) expected number of operations andO(n) space.We �nally note that the last three items in Corollary 21 can be used to derive deterministicimplementations of the sorting algorithm that use reduced space. The fact that the sortingalgorithm is stable will be used in a way similar to the proof of Theorem 1,5 ConclusionWe gave an o(n log n) time randomized algorithm for sorting integers drawn from a super-polynomial range. Our algorithm takes O(n log logm) expected time and O(n) space. Aparallel version of the algorithm achieves optimal speed up.An open question is whether a space e�cient deterministic integer sorting algorithm ino(n log n) time can be found, for integers drawn from a superpolynomial range [1::npolylog(n)].We presented a parallel hashing technique that achieves optimal speed up and takesexpected logarithmic time. It enables drastic reduction of space requirements for the priceof using randomness and some increase in time, but no change in the expected number ofoperations. The technique was used in the parallel sorting algorithm and in the simulationresults; its applicability to other problems was demonstrated.An open question: design an optimal parallel speed up hashing schemeF : W 7! [1::O(n)]that takes sublogarithmic time. 27



Chlebus, Diks, Hagerup and Radzik [CDHR88] show how to simulate an n-processorpriority-CRCW by an n-processor arbitrary-CRCW PRAM with O(log log n) slow-down.They also show how to simulate an n-processor priority-CRCW by an n log n-processorcommon-CRCWPRAM in O(1) time. Both simulations use O(nS) space, where S is the sizeof memory being used by the simulated priority-CRCW PRAM. Using similar techniques wehave the following simulations (proofs can be found in Appendix C).Simulation Result 3 An n-processor min-CRCW that uses memory of size S, where eachmemory cell contains a logm-bit word, can be simulated by an n-processor arbitrary-CRCWPRAM with a slow-down of O(log logm), using O(mS) space.Simulation Result 4 An n-processor min-CRCW that uses memory of size S, where eachmemory cell contains a logm-bit word, can be simulated by an n logm-processor common-CRCW PRAM in O(1) time, using O(mS) space.4.1 ApplicationsIn this section we apply some of the simulations to the parallel DNN and Sorting algorithmsand derive complexity results for standard CRCW PRAM models.Recall that in Algorithm DNN there are O(log logm) phases. Each phase takes O(1)time for n min-CRCW processors. Following Simulation Results 1, 2, 3 and 4 we haveCorollary 21 Let the input consist of n distinct integers from the range [1::m], then Algo-rithm DNN can be implemented as follows:� On arbitrary-CRCW in O(log n log logm) expected time, O(n log logm) expected num-ber of operations and O(n) space.� On priority-CRCW in O(log n log logm) time, O(n log logm log log n) operations andO(m+ n1+�) space, for any �xed � > 0.� On arbitrary-CRCW in O((log logm)2) time, O(n(log logm)2) operations and O(m2)space.� On common-CRCW in O(log logm) time, O(n logm log logm) operations and O(m2)space.Proof: The �rst implementation is as follows. At each phase of Algorithm DNN, Theorem2 is used to map O(n) variables (from O(m) range) into O(n) space in O(log n) expectedtime and O(n) expected number of operations. The step of the min-CRCW PRAM is then26



the pre�x [1::l] provides the minimum needed for Step (c). For �nding pre�x minima inO(log log n) time using n=log log n processors, see [BSV88], or [Sch87].The space complexity is dominated by the array BB whose size is m. The values writtenin the memory locations BB[ti] in Step (a) are from the range [1::n]. Therefore, the sortingproblem of Step (b) is indeed of elements from this range only. The Lemma follows.A major drawback of the above reduction is the potentially large space that it mightrequire. (Recall that this space is in addition to the memory which is as in the simulatedmin-CRCW.) However, the space consuming array BB is only used in Step (a). It is easyto see that the parallel hashing scheme from Section 3 can be applied here. As a result theadditional space which is used by the reduction is reduced to O(n) while the time complexitybecomes expected O(log n), using the same number of operations (up to a constant factor).We are ready to derive Simulation Result 1: It follows from Lemma 19, Lemma 9 andTheorem 2.Comments:1. Simulation Result 1 improves a similar theorem in the survey of Eppstein and Galil[EG88] (the min-CRCW is called there strong-CRCW), where it is assumed that addressescan be written in at most O(log n) bits. Recall that Simulation Result 1 does not imposeany size restriction on the memory to be used by the simulated machine.2. Lemma 19 can be extended to hold in O(log n= log log n) time for a fetch&add step ofa fetch&add-CRCW PRAM. This extension, Lemma 9 and Theorem 2 imply the followingextensions of Simulation Result 1: A single fetch&add step of n processors on a fetch&add-CRCW PRAM can be simulated by nlogn arbitrary-CRCW PRAM processors in O(log n)expected time (optimal speed-up) and O(n) additional space.Simulation Result 1 states that a single step of an n-processor min-CRCW can be simu-lated with �(n) expected number of operations by an arbitrary-CRCW PRAM. To see whatcan be done deterministically we �rst state the following lemma due to Hagerup:Lemma 20 ([Hag87]) For any �xed � > 0, n integers of size polynomial in n can be sorted inO(log n) time by a priority-CRCW PRAM using O(n log lognlogn ) processors and O(n1+�) space.Following Lemma 19 and Lemma 20 we haveSimulation Result 2 A single step of n processors on a min-CRCW PRAM with memorysize S can be simulated by n log lognlogn priority-CRCW PRAM processors in O(log n) time andO(S + n1+�) space (for any �xed � > 0).Comment 3. Simulation Result 2 can be extended for a fetch&add-CRCW PRAM similarlyto Comment 2 above. 25



Lemma 19 Consider the problem of simulating a single `write' stage of an n-processor min-CRCW PRAM on an arbitrary-CRCW PRAM. This problem can be reduced in O(log log n)time and O(n) operations (on an arbitrary-CRCW PRAM), to the problem of sorting nintegers from the range [1::n]. The reduction uses O(m) space, where m is the size of thememory in the simulated min-CRCW PRAM.Proof: Suppose the memory of the min-CRCW PRAM is an array M [1::m] of size m.We denote the processors of the simulated min-CRCW PRAM by MPi; 1 � i � n. Asusual we will refer to the computation on the simulating arbitrary-CRCW PRAM in termsof operations, and suppress the issue of allocation of these operations to processors of thesimulating machine. We will make one exception to this, in a case where such allocationrequires special care. A typical `write' stage of n min-CRCW PRAM processors can beviewed as follows. Processor MPi; 1 � i � n, attempts to write value vi into target addressM [ti]. Let Si be the set of elements j such that tj = ti. The de�nition of the min-CRCWPRAM implies that vi is written into M [ti] if vi = minfvj : j 2 Sig.The simulation makes use of a bulletin boardBB[1::m] that enables direct communicationbetween all elements with the same target address. It works as follows:a. For each processor MPi, write its index i into memory location BB[ti]. Arbitrarily, someindex i0 2 Si, succeeds and i0 is written into BB[ti].The main idea is to \label" each processor in Si by the same label i0 and group allprocessors in Si together into a successive subarray (Step (b)). The simulation of themin-CRCW PRAM is carried out by determining the minimumvalue vi over each suchsuccessive subarray (Step (c)).b. Sort the list BB[t1]; ::; BB[tn] into an array G[1::n].We view each entry of G as a pair <BB[ti]; vi>. The pairs are sorted by their �rstcomponent; namely, identical BB[ti] values occupy successive subarrays of G. Thebeginning and end of each such subarray can be easily determined.c. For each such successive subarray in G, �nd the minimum vi over fvj : BB[tj] is in thesubarrayg, and write vi into memory location M [ti].Step (a) can be done in O(1) time and O(n) operations using the arbitrary-CRCWPRAM. Step (c) can be done in time O(log log n) and O(n) operations.We commenton how to implement Step (c) using n=log log n processors withinO(log log n)time. The idea is to perform a pre�x minima computation with respect to the vector of pairsG. That is, for each pre�x [1::i] we �nd the lexicographic minimum over its pairs. Givena successive subarray [k::l] of identical BB[ti] values, we observe that the minimum over24



Hagerup's algorithm for sorting integers from polynomial range [Hag87] has the drawbackof using O(n1+�) space (for any �xed � > 0). By using the parallel hashing scheme its spacecomplexity decreases to O(n). The expected number of operations remains the same andthe time increases from O(log n) to expected O(log n log log n).Finally, the parallel hashing scheme is used to get a space e�cient optimal randomizedsimulation of the min-CRCW PRAM by arbitrary-CRCW PRAM, as given in Section 4.Comment on �nding a prime in a given range.We assumed above that m + 1 is a prime. To withdraw this assumption we should give aprocedure that, given some m, �nds a prime p > m such that log log p = O(log logm). Wehave some preliminary results on this. Appendix B shows how to �nd a prime p in the range[(m+1)::2m] in O(logm) expected time; the expected number of operations is proportionalto a polynomial in logm. To see the signi�cance of such a procedure we should refer to theway in which the sorting algorithm is viewed. If the algorithm is for a �xed range [1::m]then �nding p is just a preprocessing which may be done only once (p can then be partof the input). We may, however, use the sorting algorithm as an input sensitive algorithmwith no a priori knowledge about the range. Speci�cally, after reading the input values theactual range may be found by using a maximum �nding procedure. In this case, an e�cientprocedure for �nding a prime p is desired.4 Simulating the min-CRCW PRAMIn this section we deal with simulations of the min-CRCW PRAM by weaker (and more ac-ceptable) models of parallel computation. We show applications of some of these simulationsfor the parallel sorting algorithms.Our most interesting simulation result is the following:Simulation Result 1 One step of an n-processor min-CRCW PRAM can be simulatedby an nlogn -processor arbitrary-CRCW PRAM in O(log n) expected time (optimal speed-up)and O(n) additional space.Before proceeding to prove this simulation result, we make some general comments onhow the result should be read and what has to be proved. These comments apply to othersimulation results below, as well. The di�erence between the min-CRCW PRAM, beingsimulated, and the simulating arbitrary-CRCW PRAM lies in the way write con
icts areresolved. For this reason our proof needs to be concerned only with a `write' stage ofthe min-CRCW PRAM on the arbitrary-CRCW PRAM. The space requirements for thesimulating arbitrary-CRCW PRAM should be read as follows: (1) it needs as much spaceas the min-CRCW PRAM; in addition, (2) O(n) space is needed.23



space. Using the parallel hashing scheme, the space requirement decreases to O(n log n), thetime increases to expected O(log n logm) and the (expected) number of operations remainsO(n logm).An important technique for string matching algorithms was introduced by Karp, Millerand Rosenberg [KMR72]. Suppose an input string of length m is given. For each i; 0 �i � logm, the input string has m successive substrings of length 2i. (Actually, there areonly m� 2i +1 such substrings.) The technique partitions these substrings into equivalenceclasses where the substrings in each class are identical; furthermore, for each i separately,the technique labels each of the equivalence classes by a distinct integer between 1 andm. The main tool that was developed in [AIL+88] was to parallelize this technique inO(logm) parallel time, O(m logm) work and O(m1+�) space for � > 0. In [KP88], Kedemand Palem showed how to elegantly enhance this technique into O(logm) parallel time, andonly O(m) work (optimal) parallel algorithms for labeling equivalence classes of paths inlabeled forests. However, the space remains superlinear. They applied this technique to solveterm matching and related problems. Further advancements were given in [KLP89], whereKedem, Landau, and Palem present parallel algorithms for solving a variety of problemsfrom pattern matching including multidimensional matching. Using our parallel hashingtechnique, the space requirements in each of these algorithms can be reduced to linear, inexchange for randomization and increase in time by a logarithmic factor, but with no changein the number of operations.Section 2 in the approximate string matching survey of [GG88] discusses various ways forhashing many di�erent substrings of a certain string. This is a fundamental problem thatarises in some string matching automaton-like algorithms. They consider both serial andparallel computation. Given a string x, the size of the alphabet is relevant to the assignmentof names to di�erent substrings of x. In principle, di�erent names should be assigned todi�erent substrings of a given string x. In cases where the number of di�erent substrings isn, a name should be a number from [1::n]. Name assignment is a mapping from a possiblylarge domain into [1::n]. Galil and Giancarlo propose in [GG88] an assignment procedurethat takes O(n log n) operations where jxj = n; subsequently, it takes O(log n) time to �ndthe name of a substring. Using our parallel hashing scheme, the assignment procedure takesO(n) expected number of operations and O(log n) expected time; �nding a name for a givensubstring takes O(1) worst-case (!) time.Following Kalvin, Schonberg, Schwartz and Sharir [KSSS86], Lamdan andWolfson [LW88]use hashing for object recognition. Their method is parallel in a straightforward manner,except for their hash table construction. The parallel hashing scheme can be useful there.Hashing is used in implementations of the Hough Transform (HT) computations (cf. [IK88]).The HT technique has become important for many computer vision and pattern recognitionapplications. Parallel implementations of this technique can be e�ciently done by using theparallel hashing scheme. 22



most 2k. Part 1 ends before the log log n'th success, hence the expected number of phasesin part 1 is O(log log n). Part 2 ends before the log n'th success, and the expected numberof phases in part 2 is O(log n).Using Brent's theorem [Bre74] as part of the WT suppression level methodology, part 1can be implemented in O(log n) expected time, using nlogn processors.Each phase of part 2 takes O(1) time using nlogn processors. Part 2 takes a total ofO(log n) expected time using nlogn processors.3.2 ApplicationsAs a motivation for the previous subsection we stated Corollary 6.Proof of Corollary 6: In algorithm DNN there are log logm phases. In each phase, thereare O(n) variables ak and bk, each from the range [1::nm]. Separately for each phase we hashthese variables into O(n) space, using Theorem 2. Part A of Corollary 6 follows. Part B istrivial.We mention here some examples of algorithms for which the parallel hashing scheme canbe used.One application relates to the construction of su�x trees. Consider a string S of lengthn and all its n su�xes. A su�x tree is: (1) A rooted tree with n leaves. (2) Each edge ofthe tree is labeled by a successive substring of S. (3) Consider a path from the root to aleaf and concatenate the substrings along the path: each such path equals a di�erent su�xof S. (4) Given any two su�xes, consider their longest common pre�x. The su�x tree willhave an internal node u such that the path from the root to u de�nes exactly this pre�x.Actually, the lowest common ancestor of two leaves is the node de�ning the longest commonpre�x of their two su�xes. The ability to construct e�ciently su�x trees and performlowest common ancestor computations made su�x trees become the most important datastructure for algorithms on strings. Applications of this data structure are reviewed in[Apo84]. [GG88] indicate that the space requirement of the su�x tree construction is thesource of ine�ciency in quite a few parallel preprocessing algorithms. The parallel algorithmby [AIL+88] for constructing su�x tree requires O(log n) time, O(n log n) operations andO(n1+�) space (for any 0 < � � 1), where n is the length of the input string. Using theparallel hashing scheme, the space requirement decreases to O(n), while the time increasesto expected O(log2 n) and the number of operations remains O(n log n) (as expected valuerather than worst case). Suppose we have a relatively short string, whose length is m, and along string, whose length is n. [GG88] considered instances where su�x trees are needed onlyfor supporting queries requesting comparison among substrings of the short string and thelong string. Their algorithm takes O(logm) time,O(n logm) operations and O(n log n+m2)21



The following lemma will lead to the proof of Lemma 15.Lemma 16 Consider an active element x 2 W prior to some phase i. A representative forx will be found in phase i with probability � 12 .Proof: Let W 0 be the set de�ned by the multiset W , i.e., W 0 = fx : x = ai for someai 2 Wg (we will refer to the elements of W 0 as keys). The collision set of an elementx 2 W consists of the keys y 2 W 0, y 6= x, such that gk1;k2(y) = gk1;k2(x). In Step (3) arepresentative is found for every element inW whose collision set is of size at most s�1. Weshow that setting s = 3 su�ces for proving Lemma 16. The following de�nition and lemmasare due to Carter and Wegman [CW79]:De�nition A class H of functions from domain U to range R is universal2 if for each pairof distinct elements x; y in U and randomly chosen h 2 H Prob (h(x) = h(y)) � 1=jRj.Lemma 17 (Proposition 2 in [CW79]) Given an element x in U , a subset S of U , anda function chosen randomly from a universal2 class of functions, the expected number ofelements in S that are in the collision set of x is at most jSj=jRj.Lemma 18 (Proposition 7 in [CW79]) The class of functions G = fgk1;k2 : k1; k2 2 [1::m]gis universal2.Following Lemmas 17 and 18, for each element ai in W , the expected size of its collisionset is at most jW j=n = 1. Since the size of the collision set is non-negative, the probabilityof being at least twice the expected value is at most 1=2. Therefore, the size of ai's collisionset is at most 2 with probability � 1=2. By setting s = 3, Lemma 16 follows.Proof of Lemma 15: Let tk be the phase number in which element ak becomes inactive, for1 � k � n. Following Lemma 16, E[tk] � 2 for each k (same proof as for Lemma 14). Thetotal work in all phases of part 1 (where Ni > n= log n) is proportional to PiNi � Pnk=1 tk.Therefore, the expected total work in all phases of part 1 is proportional to Pnk=1 E[tk] � 2n.The time in each phase in part 1 is dominated by the compaction procedure (Step 5).Using the Pre�x Sums algorithm each phase takes O( lognlog logn) time.We show that the expected number of phases in part 1 is O(log log n) and in part 2 isO(log n). Consider the following Bernoulli trials: A success in the i'th trial is de�ned tobe the case that at least half of the active elements become inactive in phase i; that is, asuccess is when Ni+1 � Ni2 . Following Lemma 16, the probability for success in each phase is� 12 . Therefore, as in the proof of Lemma 14, the expected number of phases before a �rstsuccess occurs is at most 2, and the expected number of phases before the k'th success is at20



active element is found, with probability at least 1=2. The situation with implementing andanalyzing the representative selection algorithm is analogous to Step (b) above. The onlysigni�cant di�erence between the implementations is in Steps (1-3) (where elements becomeinactive). Lemma 16 below plays an analogous role to Lemma 8. Lemma 15 follows bysimply being the analogous of Lemma 12. Details follow.The representative selection algorithmi := 1; Ni := n.while Ni > n= log n do(All active elements in W are in array ACTIVE[1::Ni])Phase i1. Select at random two independent values k1 and k2 from the range [1::m] (samerange from which the elements of W are drawn). Let gk1;k2(x) = 1 + ((k1x + k2)mod p) mod n be a function from [1::m] to [1::n] (recall that p = m+1 is prime).2. For each active element aj compute gk1;k2(aj).3. Repeat substeps (i� iii) below s times (the proof of Lemma 16 below shows thattaking s = 3 is �ne):(i) For each active element aj, write < aj; j > into cell gk1;k2(aj).(ii) If < aj; j > is actually written then index j is selected to be the `represen-tative' of the elements al = aj, 1 � l � n.(iii) Each element that has a representative becomes inactive.4. Elements which are still active participate in phase number i+1. Their number isNi+1.5. Using a pre�x sums algorithm, compact the active elements into arrayACTIVE[1::Ni+1].6. i := i+ 1.end whileDenote i0 = i. Ni0 is at most n= log n.while there is an active element do(All active elements in W are in array ACTIVE[1::Ni0])Phase iDo Steps 1-4 and 6 as above.end while 19



similar to those in Lemma 13, E[i0] � 2 log log n where i0 is the number of phases in the �rstpart. The expected number of phases for Part 2 is O(log n) based on Lemma 13.Using Brent's theorem [Bre74] as part of the WT suppression level methodology, Step (b)can be implemented in O(log n) expected time, using nlogn processors on an arbitrary-CRCWPRAM. This concludes the proof of Lemma 12.Withdrawing the distinctness assumption.Above, we made the simplifying assumption that W = fa1; a2 : : : ang is a set. However, forproving Theorem 2, we must assume that W is a multiset, that is, several elements of Wmay have the same value.Consider the representative selection problem, which is de�ned as follows.Input: Multiset W = fa1; a2; : : : ang.Problem: For each element ai inW , 1 � i � n, select a \representative" index j ; 1 � j � n,such that: (1) aj = ai, and (2) the representative index of every element ak = ai; 1 � k � n,is also j.Lemma 15 The parallel algorithm below solves the representative selection problem. Usingn= log n processors and O(n) space on arbitrary-CRCW, its expected running time is O(log n).Below, we do things in the following order: (1) �nish with the proof of Theorem 2,(2) comment on an interesting corollary of Lemma 15, and (3) give an algorithm for therepresentative selection problem, and thereby prove Lemma 15.For proving Theorem 2, we apply the representative selection algorithm to the multisetW , and \delete" from W each element whose index was not selected as a representative ofits value. Finally, we apply the above construction of a parallel perfect hash function withrespect to the set of representatives. Theorem 2 follows from Lemmas 10, 12 and 15.Comment: Consider the following element multiplicity (EM) problem. Given a multiset W ,as above, �nd for each element inW how many other elements inW have the same value. Wenote that the most e�cient algorithms known for this problem are based on general sortingalgorithms, and need a total of O(n log n) operations and O(n) space. The representativeselection algorithm can be used to achieve results similar to Lemma 15, for the EM problem,as follows. Replace each element of W by its representative index, and apply Rajasekaran-Reif's parallel integer sorting algorithm. We �nish this comment by noting that the EMproblem is more general than two known problems: element distinctness (see [Bop89]) andelement uniqueness (see [Bea89]).An element ai 2 W is called active until its representative is found and inactive later.The representative selection algorithm works in phases. In a phase, a representative for each18



some abstract model of parallel computation, that is only remotedly related to any PRAMmodel.) This methodology is called the Work-Time (WT) suppression level (Work-Time,in short) methodology in [Vis90]. The second stage, i.e., application of Brent's theorem, istrivial for our algorithm.Speci�cally, let VAL[1::10n] be an array. The perfect hash function F , being constructed,will map each element of the input set W into array VAL.Less informal implementation of Step (b).i := 1; N 0i := n.while N 0i > n= log n do(All active elements in W are in array ACTIVE[1::N 0i] sorted by the B(k; j) to whichthey belong)Phase i1. The �rst element in an active B(k; j) selects at random a k0(j) value.2. Each active element x evaluates its hashing value F (x) using fk0(j) and writes itsoriginal value x into VAL[F (x)] (using the arbitrary CRCW convention).3. Each active element x checks whether its value is written in VAL[F (x)]. If not it\disquali�es" the k0(j) for its B(k; j) set.4. All active elements belonging to B(k; j) sets whose k0(j) was disquali�ed remainactive in phase number i+ 1. Their number is N 0i+1.5. Using a pre�x sums algorithm, compact them into array ACTIVE[1::N 0i+1]6. i := i+ 1.end whileDenote i0 = i. N 0i0 is at most n= log n.while there is j for which good k0(j) has not been found do(All active elements in W are in array ACTIVE[1::N 0i0], sorted by the B(k; j) to whichthey belong)Do Steps 1-4 and 6 as above.end whileComplexity. Following Lemma 8, E[N 0i ] � n2i�1 . Therefore, the expected total work isPiE[N 0i ] � 2n. The time in each phase in part 1 is dominated by the compaction procedure(Step 5). Using the Pre�x Sums algorithm each phase takesO( lognlog logn ) time. Using arguments17



Lemma 13 E[t] � 2(dlog ne+ 1):Proof: Let Ni be the number of js for which a good k0 was not found in the �rst i trials;i.e. Ni = jfj : tj > igj. Consider the following Bernoulli trials: A success in the i'th trial isde�ned to be the case that the number of good k0s found in the i'th trial is at least Ni2 ; thatis, a success is when Ni+1 � Ni2 . Following Lemma 8, Prob[success] � 12.Let x be the number of trials until the (dlog ne + 1)'st successful trial. It is easy to seethat t is bounded by x and therefore E[t] � E[x] � 2(dlog ne + 1).Lemma 13 proves Fact (I). To prove Fact (II) we �rst showLemma 14 E[tj] � 2 for each j.Proof: E[tj] = 1Xi=1 i � Prob[tj = i] � 1Xi=1 i2i = 1Xi=1 iXk=1 12ichanging the order of summation, we get= 1Xi=1 1Xk=i 12k = 1Xi=1 12i�1 = 2:Let opj be the number of operations required for selecting a good k0 for j. Since opj =tjb(k; j) we have E[opj ] = E[tj]b(k; j) � 2b(k; j) and the total number of operations isexpected to be E[Pnj=1 opj ] � 2Pnj=1 b(k; j) = 2n.It remains to give an implementation for the processors allocation. The selection of thenumbers k0(j) is done in phases. A set B(k; j) and its elements are called active if a goodk0(j) has not yet been found. In each phase a new number k0(j) is selected and tested, forevery active B(k; j). Let N 0i be the number of active elements in phase i.We use a standard idea. Initially, N 01 is n. As long as N 0i > n=log n, we simply compactall N 0i active elements of phase i into an array of length N 0i prior to the phase. Consider the�rst phase i0 for which N 0i0 � n=log n. The compacted array of size N 0i0, will be used for allsubsequent phases.Our presentation of the parallel algorithm follows a methodology that was introducedin [SV82b] and became standard since then, see [KR88]: First, the algorithm is describedin terms of work and time only, as was done above. Second, a theorem by Brent [Bre74] isused to guide actual assignment of processors to jobs. (The theorem formally holds only in16



(1) Sort the n numbers in ffk(x) : x 2 Wg into an array C[1::n].(2) Find for each j the rightmost (resp. leftmost) index i1 (resp. i2) for which C[i1] = j(resp. C[i2] = j). Let b(k; j) be i1 � i2 + 1.Step (2) can be trivially done in O(1) time using n processors. To do Step (1), note �rstthat the range of fk is the integer interval [1::n]. Thus, we may employ the integer sortingalgorithm due to Rajasekaran and Reif:Lemma 9 ([RR89]) n keys from the range [1::n] can be sorted using nlogn arbitrary-CRCWPRAM processors in O(log n) time, with probability � 1� 1n� , for any constant � > 0.Following the above we have that each iteration in Step (a) of the construction of F takesO(n) expected number of operations and logarithmic expected time. We concludeLemma 10 Given is a set W of n numbers from the range [1::m] and some k 2 [1::m].Checking whether Sk < 5n can be done in O(log n) expected time, using nlogn arbitrary-CRCWprocessors.Corollary 11 Step (a) in the construction of F takes O(log n) expected time, using nlognarbitrary-CRCW processors.Implementation of Step (b).In Step (b) the procedure to check whether k0 is good for j is easy when using the arbitrary-CRCW PRAM. Our goal is to select a good k0 for each j within a total of O(n) operationsand logarithmic time. The di�culty is that Step (b) should be done independently for eachj (j = 1; :::; n). We proveLemma 12 A good k0 = k0(j) can be found for all j, j = 1; ::; n, in O(log n) expected time,using nlogn processors.Proof: To prove the lemma we show three facts: (I) the expected maximum number oftrials in selecting a good k0 for j (over j = 1; ::; n) is O(log n); (II) the expected total workof selecting good k0s for all j (j = 1; ::; n) is O(n); and (III) the processors can be allocatedaccording to (I) and (II) to yield an O(log n) expected time parallel procedure for Step (b)in the construction of F , using nlogn processors.Let tj be the number of trials before a good k0 is found for j, and let t = maxftj : j =1; : : : ; ng. 15



W : fk(x) = jg. Also, let b(k; j) = jB(k; j)j and Sk = Pnj=1 b(k; j)2. For each j = 1; : : : ; n,de�ne f 0k0 ;r : B(k; j) 7! [1::2r2] as f 0k0;r(x) = 1+ (k0x mod p) mod 2r2 where k0 = k0(j) isa parameter from [1::m] and r = b(k; j). De�ne k0 = (k0(j)) to be good if f 0k0(j);b(k;j) is aone-to-one function (over B(k; j)). Construction of the hash function F will be based ontwo steps:(Step a) Repeatedly select k at random until Sk < 5n.(Step b) For each j, repeatedly select k0 = k0(j) at random until k0 is good.After all parameters k and k0(j) (for all j = 1; :::; n) are appropriately selected, theone-to-one function F is derived by �rst applying fk and then fk0(j);b(k;j) for a proper j.Speci�cally, F is constructed as follows. For each set of elements B(k; j), b(k; j)2 space isassigned. Let Mi be the pre�x sum Pij=1 2b(k; j)2. Then [1::Mi] is an array assigned tothe �rst i sets B(k; 1); :::; B(k; i). The function fk0(j);b(k;j) maps each element in B(k; j) into[(Mj�1 + 1)::Mj]. F (x) is evaluated as follows:(1) Evaluate j = fk(x).(2) F (x) = Mj�1 + f 0k0(j);b(k;j)(x).Step (a) guarantees that the overall spaceMn = 2Sk is linear (< 10n). Step (b) guaranteesthat the mapping is one-to-one. It remains to show how to implement steps (a) and (b).The following lemmas are due to Fredman, Koml�os and Szemer�edi (Corollaries 3 and 4in [FKS84]).Lemma 7 ([FKS84]) For at least one-half of the values k in [1::m], Sk < 5n. Thus, for arandomly selected k, Sk < 5n with probability � 12.Lemma 8 ([FKS84]) For each j in [1::n], at least one-half of the k0s in the range [1::m] aregood.Implementation of Step (a).Following Lemma 7, the expected number of iterations in (a) is � 2. We �rst show howto check whether Sk < 5n. Given b(k; j) for all j, the evaluation of the pre�x sums Mi =2Pij=1 b(k; j)2 (for i = 1; :::; n) and of Sk = Mn can be done by using the Pre�x Sumsalgorithm of Cole and Vishkin [CV86] [CV89] inO(log n= log log n) time and O(n) operations.The evaluation of b(k; j) for each j is done as follows:14



given level denote byW the set of ak and bk variables that are being used (jW j = O(n)). Thedeterministic implementation in Section 2 requires O(m) space for the ak and bk variables.The key idea here is to randomly select a hash function for mapping the set W into O(n)space. In order to avoid collisions, we shall use a perfect hash function (which is a one-to-onefunction).Remark. For the serial algorithm, simpler hash functions would su�ce in order to reducethe space to O(n). From now on we concentrate on the parallel algorithm. Based on this,the implementation for the serial algorithm will be straightforward.A basic procedure for constructing a perfect hash function is presented. Its expectedrunning time is logarithmic and its expected number of operations is linear. Speci�cally, weprove in Section 3.1 the following theorem:Theorem 2 Let W be a multiset of n numbers from the range [1::m], where m + 1 = pis prime. Suppose we have nlogn processors on an arbitrary-CRCW PRAM. A one-to-onefunction F :W 7! [1::O(n)] can be found in O(log n) expected time. The evaluation of F (x),for each x 2 W , takes O(1) arithmetic operations (using numbers from [1::m]).We show later that Theorem 2 leads to the following:Corollary 6 A. Algorithm DNN takes O(log n log logm) expected time and O(n) space, us-ing nlogn processors on a min-CRCW PRAM. B. The same performance is obtained for theproblem of sorting n integers drawn from a domain of size m.By using the optimal simulation results of Section 4, the same bounds will be shown tohold also when using the standard arbitrary-CRCW model.3.1 Constructing a Perfect Hash Function in PalallelIn this subsection we prove Theorem 2.Given is a multisetW of n numbers from the range [1::m], where p = m+ 1 is prime. Itis �rst assumed that W is a set, i.e. that the numbers in W are distinct. At the end of thissubsection, it is shown how to withdraw this assumption. We construct in parallel a hashfunction F which maps W into the range [1::10n]. We use the fundamental perfect hashfunction F that was suggested by Fredman, Koml�os and Szemer�edi [FKS84], as describedbelow. An e�cient parallel construction of F is presented.De�ne fk :W 7! [1::n] as fk(x) = 1+ (kx mod p) mod n where k is a parameter from[1::m]. Let B(k; j) be the set of values inW that are mapped by fk into j, i.e. B(k; j) =fx 213



Proof: The output of the DNN algorithm (without the distinctness assumption) gives alinked list of the elements, where the links in the list are de�ned by the right neighborrelation. This linked list is stable in the following sense: if x[i] = x[j] for some i < jthen element i precedes element j in the linked list. A consequence is that an iterativeprocedure, in the spirit of Radix Sort, can be applied. Speci�cally, each logm-bit inputword is partitioned into c blocks of (logm)=c bits each. The blocks are numbered from rightto left (i.e., from the the least signi�cant bits to the most signi�cant ones). We proceed in cphases. The input to the �rst phase is the original input array for the sorting problem. Theinput to phase k; 2 � k � c, is the output array of phase k� 1. In phase k; 1 � k � c, onlythe k'th block of each input word is considered as the value of the word. The phase has twosteps: (1) The DNN algorithm is applied to sort these values into a linked list. (2) A listranking algorithm is applied to transform the list into an input array for the next phase; inphase c, however, this gives the output for the sorting problem.Recall that we use the DNN algorithm for non-distinct input elements in each phase, andtherefore the space needed is O(nm1=c).Correctness of this iterative procedure follows from the following Inductive claim: Theoutput array of phase k; 1 � k � c, gives a stable sorting of the (original) input elements ifblocks 1; ::; k together are considered as the value of each element. The theorem follows bytaking k = c.If the input is from a range polynomial in n then we have the same complexities as inHagerup's algorithm [Hag87]. The range for which our algorithm gives better results than thebest known algorithms is for nlog logn � m� 2no(1) , where� denotes smaller asymptotically.Thus, for example, for m = npolylog(n) we have:Corollary 5 n integers from the range [1::nlogk n] (for every constant k > 0) can be sortedin: (1) O(n log log n) serial time and O(n1+(logk n)=c) space, for any constant c � 1; and(2) O(log n) parallel time and O(n1+(logk n)=c) space, for any constant c � 1, using n log lognlognprocessors on a min-CRCW PRAM.3 Trading Space for RandomnessIn this section we show how to use randomization in order to reduce the space complexityof the algorithms to O(n). The randomization is of the \Las-Vegas" type algorithm. Thatis, some of the steps of the space reducing algorithm are based on randomized moves and itnever errs.Recall that in each recursive level of algorithm DNN, there are O(m) variables ak and bk.However, in each level of the algorithm only O(n) of these variables are actually used. For a12



2.3 Complexity and implementationWe start by discussing the complexity of algorithm DNN and later state the sorting results.Lemma 4 Given are n elements with distinct values from the interval of integers [1::m]. (1)Algorithm DNN works serially in O(n log logm) time and O(m) space. (2) Algorithm DNNworks in O(log logm) time and O(m) space, using n processors on a min-CRCW PRAM.Proof: The size of interval I for each recursive sub-problem is bounded by pm. Therefore,D(m), the depth of the recursion, satis�es D(m) � D(pm) + O(1), implying D(m) =O(log logm). For each level of the recursion we need to perform at most O(n) operationsand therefore the total number of operations is O(n log logm).To �nish deriving the serial result we \remember" for each element in each level of therecursion its original index in the initial sets L and R. The space needed for all subproblemstogether in each level of the recursion is O(m). Since we can reuse the space for the highestlevel of the recursion, we get a total of O(m) space, as well. Item 1 of the lemma follows.We proceed to the parallel result. Initially, we assign one processor to each copy ofeach element (i.e., each element of the original sets L and R). This assignment remainsthroughout the entire algorithm.For Step 2, we need to have in ak (resp. bk), for k = 0; ::; q � 1, the minimum (resp.maximum) element's value over all the elements that belong to Lk (resp. Rk); where, ak(resp. bk) is the kth cell in some predesignated array a[0::q�1] (resp. b[0::q�1]). We alreadyargued (implicitly Item 1 of the lemma) that sequentially computatio of ak (resp. bk), fork = 0; : : : ; q � 1, can be trivially done in O(n) time. In parallel, Step 2 can be done inO(1) time, using n processors. Here is where we take advantage of the min-CRCW PRAM,where if several processors try to write into the same memory location, only the one withthe minimal value succeeds. Item 2 of Lemma 4 follows.Withdrawing the distinctness assumption. We assumed that all elements in the inputsequence are distinct. It is trivial to achieve distinctness by replacing each input element x[i]by the pair <x[i]; i>. This increases the required space to O(nm). However, the randomizedsorting results in Section 4.1 will not be a�ected.The space requirements of the sorting algorithm can be reduced deterministically, asshown in the following theorem:Theorem 1 Given are n elements with values from the interval of integers [1::m], our sort-ing algorithms achieve the following results: (1) O(n log logm) serial time and O(nm1=c)space, where c � 1 is any �xed constant. (2) O(log n+log logm) parallel time and O(nm1=c)space (for any constant c � 1), using n log logmlogn processors on a min-CRCW PRAM.11



� If the smallest (resp. largest) element of LSR in Ik is in L (resp. in R) then its left(resp. right) neighbor is not in Ik. We collect the elements from L (resp. from R) whoseleft (resp. right) neighbor is not in Ik into the global set GL (resp. set GR).� The algorithm advances to the deepest level of recursion and simply terminates (with-out any backtracking).� All recursive calls of the algorithm are performed simultaneously in parallel.2.2 CorrectnessProposition 1 Let x[j] be the left neighbor of x[i]. Then for each level of the recursion thefollowing properties hold:(a) The values of all elements in L are distinct and the values of all elements in R aredistinct.(b) xl[i] and xr[j] are both represented in the same recursive sub-problem.(c) xr[j] < xl[i].(d) xr[j] is the left neighbor of xl[i].(e) Each element is represented in exactly one recursive sub-problem.(f) Set L is nonempty if and only if set R is nonempty.The proof of Proposition 1 is given in Appendix A.Corollary 2 If a problem with input L, R and I is of size 2 then jLj = jRj = 1 and theelement in R is the left neighbor of the element in L.Proof: Assume that xl[i] 2 L and that x[j] is the left neighbor of x[i]. Let I = [d; d+1] forsome integer d. Following from property (b) in Proposition 1, xr[j] 2 R. Thus, from property(c) we have xr[j] = d and xl[i] = d + 1. If L > 1 then by property (a) a second element canonly be xl[i0] = d (for some i0 6= i). However, following property (c) its left neighbor mustbe < d, contradicting property (b). Similarly, R may contain only one element.Corollary 3 Suppose that initially m, the size of the interval from which the input elementsare drawn, is 22t for some integer t � 1 (and t = log logm). Consider a recursive problemat recursion level t. The interval I from which the input elements for such recursive problemare drawn consists of two successive integers. That is, for some integer d, I = [d; d + 1].Furthermore, L = fd + 1g and R = fdg and d + 1 is the right neighbor of d.10



a and m0. Set L will always represent a non-empty subset of the left copies and set R willalways represent a non-empty subset of the right copies. Each element in set L searches forits left neighbor within set R. This left neighbor is de�ned as the largest element in R whichis smaller than it. Similarly, each element in set R searches for its right neighbor de�ned asthe smallest element in L which is larger than it.Initially, the interval I is [1::m] (i.e., a = 0 and m0 = m), L is fxl[1]; :::; xl[n+ 1]g and Ris fxr[1]; :::; xr[n+ 1]g.The recursive algorithm DNNInput: L, R and I, where L and R are nonempty sets and I = a+ [1::m] is an interval of integers. We referto m = jIj as the size of the problem.A processor stands by each element in L and each element in R.if m = 2 (comment: the situation for a recursive problem for which m = 2 is characterized in Corollary2.)then Declare the element in L to be the right neighbor of the element in R and the elementin R to be the left neighbor of the element in L.else(1) Partition set L into q = pm subsets L0; L1; :::; Lq�1 where Lk contains elements (of L)from the interval Ik = a + k � q + [1::q], for k = 0; :::; q � 1. Similarly, partition setR into q = pm subsets R0; R1; :::; Rq�1 where Rk contains elements (of R) from theinterval Ik = a+ k � q + [1::q], for k = 0; :::; q� 1.(2) Let ak be the smallest element in Lk. If ak is less than or equal to the smallest elementin Rk then: (a) Select the integer k into the new set GL (integer k represents elementak and will be referred to as ak). (b) Remove ak from Lk.Similarly, let bk be the largest element in Rk. If bk is greater than or equal to thelargest element in Lk then: (a) Select the integer k into the new set GR (integer krepresents element bk and will be referred to as bk). (b) Remove bk from Rk.(3) Do the following recursive calls: (a) For each pair of nonempty (local) subsets Lk andRk solve the problem for an input consisting of Lk, Rk and Ik. (b) If (global) setsGL and GR are nonempty then solve the problem for an input consisting of a+ GL,a+GR, and J = a+ [0::q � 1], where the set a+GR is de�ned as fa+ k : k 2 GLg.Comments: 9



We solve the sorting problem in two steps:(a) Compute the domain right neighbor of each index i.(b) For each element x[i], compute its rank r in the linked list de�ned by the drn, and let�(r) be i.Step (b) can be (trivially) done in O(n) time or in parallel time O(log n) and optimal speed-up using a List Ranking algorithm ([AM88], [CV86], [CV88], [CV89]). Therefore, our mainconcern is solving the domain right neighbor problem. For simplicity we assume that m = 22tfor some integer t � 1. The domain right neighbor, as de�ned above, is the nearest neighborfrom the right. We will also need a de�nition of the domain left neighbor, dln[i], of elementx[i]: the element x[j] = maxfx[k] : x[k] < x[i]g.2.1 Algorithm for �nding Domain Nearest NeighborsThe algorithm is recursive. The main e�ort is in de�ning precisely the problem that is beingsolved recursively. The recursive algorithm will provide solutions for the problems of �ndingleft and right domain nearest neighbors. For each element the recursive algorithm separatelytreats the domain right neighbor and the domain left neighbor computations. This is doneby duplicating each element x[i] into a left copy xl[i] and a right copy xr[i]. Intuitively,copy xr[i] is \responsible" for �nding the domain right neighbor and xl[i] is \responsible"for �nding the domain left neighbor. Initially, xl[i] = x[i] and xr[i] = x[i].In addition, two auxiliary copies are added: xr[n+ 1] and xl[n+ 1]. Copy xr[n+ 1] = 1is the domain left neighbor of the smallest input element. Similarly, copy xl[n + 1] = m isthe domain right neighbor of the largest input element. (Note that at this stage only fori = n + 1, xr[i] is not equal xl[i].) We assume, without loss of generality, that the inputelements are from [2::m� 1].Informally, our algorithm works as follows: The input elements are from an intervalI. Interval I is partitioned into small intervals, de�ning local problems of domain nearestneighbors searches. For each subinterval Ik, at most two elements (smallest left copy andlargest right copy) might not have their neighbors in Ik. Such elements are collected into theglobal sets GR and GL. Thus, a problem on interval I is reduced recursively into severallocal problems on subintervals Ik and one global problem. By choosing Ik to be of size qjIj(for all k), we have that all local problems and the global problem are with intervals of sizeqjIj.The input for the recursive algorithm includes two sets L and R, whose values belong toan interval I of integers. I is of the form a+[1::m0], i.e., I = fa+1; a+2; :::; a+m0g for some8



within the CRCW PRAM. (2) At the same time, a dialogue between more pragmatic re-searchers and theoreticians should continue in order to investigate \free" strengthenings ofthe PRAM model; speci�cally, collective wisdom on what are the best approaches for var-ious machine technologies ought to be developed. The existence of operations such as theaddition of n numbers by n processors as primitive operations contradicts some fundamen-tal intuition about what is computationally feasible in one parallel step versus what needsa more substantial computational e�ort. (Formally, an 
(log n= log log n) time separationbetween the priority- and fetch&add-CRCW PRAMs can be derived from the lower boundof [Has86] and the simulation result of [SV84], or directly from the lower bound of [BH87].)Recognizing such partition into two separate, but related, approaches justi�es studying thefeasibility and power of such operations as a pragmatic line of investigation.The contributions of the present paper fall within the �rst approach in the above com-ment.Postscript. Recently Bhatt et al. [BDH+89] designed independently a parallel deterministicinteger sorting algorithm which is related (though, not identical) to the basic constructionof Section 2.1 below. Using a new list ranking algorithm they were even able to reduce thetime to O(log n= log log n + log logm) maintaining optimal speed-up. However, none of therandomized space reductions ideas of the present paper appear there.2 The Deterministic AlgorithmWe consider the following problem:Input: Sequence x[1]; :::; x[n] of distinct integers drawn from the domain [1::m], for someintegerm. Problem: Sort the sequence. (Formally, compute the permutation � of f1; :::; ngsuch that x[�(1)]; :::; x[�(n)] is sorted in non-decreasing order.)In Section 2.3 we discuss a way for withdrawing the distinctness assumption.For presentation purposes, we falsely assume that the sequence x[1]; :::; x[n] is given inthe following redundant form. There is a domain array of bits D[1::m] so that D[i] = 1 ifthe value of some element x[j] is i and D[i] = 0 otherwise. Given bit D[i] = 1 we de�ne thesmallest i1 > i such that D[i1] = 1 as the right neighbor of x[i].This neighborhood relation translates easily to the values of the input sequence: thedomain right neighbor drn[i] of x[i] is the element x[j] = minfx[k] : x[k] > x[i]g. The arraydrn de�nes a linked list, where the elements preceding x[i] in the linked list are smaller thanx[i] and the elements succeeding x[i] are larger. The distance from the beginning of the listis the rank of x[i] relative to the input elements.7



exchange for randomization and increase in time by a logarithmic factor, but with no changein the number of operations. The parallel hashing technique yields similar results whenapplied to parallel algorithms that build on su�x trees. Section 3.2 lists many examples,including the parallel approximate string matching algorithms mentioned in [GG88].Parallel hashing can be useful for parallel object recognition algorithms. Hashing is usedin [LW88], following [KSSS86], for object recognition. It is also used in computations ofthe Hough Transform (cf. [IK88]). The parallel hashing technique enables e�cient parallelimplementations of these algorithms.The parallel hashing scheme may be used to reduce the space in Hagerup's sorting al-gorithm [Hag87] from O(n1+�) to O(n) in exchange for randomization and an O(log log n)increase in time (but no change in number of operations). The parallel hashing scheme isalso used in the optimal simulation in Section 4.Recall that we use the non standard min-CRCW model in Section 2. Note that we donot advocate this model as an alternative for existing \acceptable" theoretical models forparallel computation (see also comment below). The methodological attitude here is: (1)design the algorithm on the min-CRCW model, and (2) show later how to simulate thismodel on more acceptable ones.Comment. Since this paper refers to standard versus non standard models of parallel com-putation, we were asked to present our views on the following basic question. Which modelshould be considered as the fundamental model for parallel computation? A position onthis issue is presented in the survey paper [Vis83b]. In that paper, two separate lines ofjusti�cation for an answer to this question are suggested. (1) The �rst line of justi�ca-tion is technology independent and is based on computational equivalence among models ofparallel computation. Computational equivalence among the priority-CRCW PRAM andthe unbounded fan-in circuits (see Stockmeyer and Vishkin [SV84]) is used to support thechoice of the priority-CRCW PRAM (and not other PRAM models) as the fundamentaltheoretical model for parallel computation. (2) The second line of justi�cation is technol-ogy dependent. Assume that any parallel machine that conforms with some technologicalrestrictions is given. [GGK+83], [Vis83a] and [Vis84], jointly advocate the choice of a mostpermissive abstract model of computation that can be simulated by such a parallel machinewithout increasing the cost of implementation (by more than a constant factor). [Vis83a]demonstrated this principle by proving (under some assumptions) the following. Considerany parallel machine which consists of processors that are connected in a �xed pattern. Thenthe time for simulating a step of a priority-CRCW PRAM is going to be asymptotically thesame as simulating a step of a fetch&add-CRCW PRAM (and since �nding the minimumis an associative and commutative binary operation, also of a min-CRCW PRAM). [Vis83b]implies also the following way for how research on parallel algorithms (and architectures)can reconcile the two approaches: (1) Theoretical computer scientists (primarily designersof parallel algorithms) should continue and search for new algorithmic patterns and ideas6



Combining the optimal simulation from Section 4, the parallel hashing scheme in Section3 and the algorithm in Section 2 we derive a randomized parallel algorithm for sortingn integers from the range [1::m] on an arbitrary-CRCW that achieves O(log n log logm)expected time, O(n log logm) expected number of operations and O(n) space.Not only the space e�cient parallel sorting result can bene�t from the simulations. Recallthe original min-CRCW PRAM sorting algorithm of Section 2. Together with some of thesesimulations, we get the following deterministic sorting results on standard PRAM models:(1) O(log n log logm) time and O(nm�) space (with any �xed � > 0) using n log lognlogn priority-CRCW processors; and (2) O(log n + (log logm)2) time and O(n2m�) space (� > 0) usingn(log logm)2logn arbitrary-CRCW processors.Some of the ideas we use in the deterministic algorithms of Section 2 go back to [vKZ77].These ideas were inspired also by the algorithms of [Hag87] and [Joh82]. Johnson's algo-rithm has the same complexity as our deterministic serial algorithm. However, our sortingalgorithm has two advantages: it is simpler and parallelizable.The so called DNN algorithm of Section 2 implies e�cient algorithms for the orderedchaining and for the ordered compaction problems, which are de�ned as follows. Given anarray of size m, in which n entries are marked, the (unordered) chaining problem is to putthe marked entries into a linked list. Assume that a processor is standing by each markedentry. The (unordered) compaction problem is the problem of moving the marked entriesinto consecutive memory locations. If the marked entries are required to remain in the sameorder, then the problems are called ordered chaining and ordered compaction, respectively.In [Spi88], [RS85], and [HN89] algorithms are given for the unordered chaining and theunordered compaction problems only.The proposed parallel hashing scheme may be a useful tool for parallel algorithms thatuse large space. We demonstrate this with several algorithms (in addition to our sortingalgorithm) for which the space requirement is large. By using the proposed parallel hashingscheme, they become e�cient and possibly practical.There are applications that relate to combinatorial algorithms on strings. If the alphabetis large then a naming assignment procedure for substrings is essential to avoid large space.Such deterministic procedure, due to [GG88], takes O(n log n) operations and evaluation ofa name takes O(log n) time. (We actually referred earlier to the same procedure.) Using ourparallel hashing scheme, the naming assignment takes O(n) expected number of operationsand evaluation of a name takes O(1) time in the worst case.An important technique for string matching algorithms was introduced by Karp, Millerand Rosenberg [KMR72]. Suppose an input string of lengthm is given. [AIL+88] showed howto parallelize this technique and used it for parallel construction of a su�x tree in O(logm)parallel time, O(m logm) work and O(m1+�) space for � > 0. Using our parallel hashingtechnique, the space requirements in each of these algorithms can be reduced to linear, in5



A parallel version of this deterministic algorithm takes O(log n) time and O(nm1=c) space,for any �xed c � 1, using n log logm=log n processors (optimal speed-up). This parallelalgorithm is designed for the nonstandard min-CRCW PRAM.The second element in our presentation is described in Section 3. A randomized parallelhashing scheme is presented. It is optimal and takes logarithmic time. Speci�cally, let Wbe a given set of n numbers from an arbitrary large domain [1::m]. We show how to �nda one-to-one mapping F : W 7! R, where jRj = O(n), by a randomized algorithm on thearbitrary-CRCW PRAM. This mapping is computed in O(log n) expected time, using nlognprocessors. Evaluation of F (x), for each x 2 W , takes O(1) worst case time. The connectionto the sorting results is as follows. We show how to use these hash functions in order to reducethe space requirements in both the serial and parallel algorithms to only O(n) space. Thepenalty is that now we have randomized algorithms rather than deterministic algorithms. Forthe parallel algorithm, the parallel time increases to O(log n log logm) while, the operationcount does not increase (asymptotically) on the min-CRCW model. Thus, our parallelrandomized sorting algorithm is slower by an O(log logm) factor than standard PRAMcomparison sorting algorithms; however, it is more e�cient by a factor of O(log n= log logm).The third element in our presentation is described in Section 4. Simulations of themin-CRCW PRAM model by weaker models are presented. Some of the simulations arerandomized. Some simulations apply also to the fetch&add-CRCW model.Denote a CRCW PRAM with a shared memory of size S as CRCW(S) PRAM. In thefollowing, we list some upper bounds for simulating one step of an n-processor min-CRCW(S)PRAM:� O(log n) expected time on an nlogn -processor arbitrary-CRCW(S +O(n)) PRAM (op-timal speed-up).� O(log n) time on an n log lognlogn -processor priority-CRCW(O(S + n1+�)) PRAM (� > 0).� O(log logm) time on an n-processor arbitrary-CRCW(O(mS)) PRAM, where m is anupper bound for the value that can be written to a memory cell by the min-CRCWPRAM.The �rst result is an improvement over a previously known result [EG88] where therewas a restriction that the memory addresses being used by the simulated min-CRCW are ofat most O(log n)-bit size. The result can be extended to simulating one step of a fetch&add-CRCW PRAM. We are not aware of similar (i.e., optimal simulation) results even for sim-ulation of the (relatively weaker) priority-CRCW PRAM by an arbitrary-CRCW PRAM.The last two simulations are deterministic. The third result is based on the simulation ofpriority-CRCW by arbitrary-CRCW in [CDHR88].4



O(d(log S(n) + 1)=logB(n)e). For B(n) = 2 the space is reduced to O(P (n)T (n)) while thetime (and therefore the number of operations) is increased by a factor of O(logS(n)). Notethat the 2-3 tree parallel algorithm of [PVW83] can be used to get a factor ofO(log(P (n)T (n))).Recently, [DM89] described a dynamic data structure (dictionary) that using randomizationsupports the instructions insert, delete and lookup, and can be implemented in parallel.Their implementation preserves optimal speed-up with time bounds of the form O(n�) using� n1�� processors, for any �xed � > 0. However, no time bounds of the form O(polylog(n))are claimed.Several works have been previously done on relations between PRAM models. Theinterested reader is referred to the surveys of [EG88] [KR88] [Vis83b]. Randomization waspreviously used in the context of parallel simulations by [KU86] [KRS88] [MV84] [Ran87].1.2 More on our resultsAs model of computation for the parallel algorithms, we use mostly the concurrent-readconcurrent-write parallel random access machine (CRCW PRAM) family. The membersof this family di�er by outcome of the event where several processors attempt to writesimultaneously into the same shared memory location. In the common-CRCW ([SV81]) allthese processors must attempt to write the same value (and this value is written). In thearbitrary-CRCW ([SV82a]) one of the processors succeeds, but we do not know in advancewhich one. In the priority-CRCW ([Gol82]) the smallest numbered among the processorssucceeds. The above three CRCWmodels are considered standard. Next we mention two nonstandard models. In the min-CRCW PRAM ([AS83]) the processor that tries to write theminimum value succeeds. In the fetch&add-CRCW PRAM ([Vis83a]) the values are addedto the value already written in the shared memory location and all sums obtained in the(virtual) serial process are recorded. Finally, in an exclusive-read exclusive-write (EREW)PRAM simultaneous access of more than one processor into the same shared memory locationis not allowed.A parallel algorithm achieves optimal speed-up if its time�processor product matches thenumber of operations of the fastest serial algorithm for the problem. Typically, we will stateour parallel results in the following form: \x operations and t time". Throughout this paper,this will always translate into \t time using x=t processors". The papers [EG88], [KRS88],[KR88] and [Vis83b] overview research directions on parallel algorithms. All of them concedethat achieving optimal speed-up, or at least approaching this goal, is a crucial property forparallel algorithms that are intended to be practical. A secondary (but very important) goalis to minimize parallel time. Another critical practical concern is space requirements. Theseguidelines led us in designing the algorithms of the present paper.Our algorithms are presented as follows. We �rst present in Section 2 a deterministicalgorithm that takes O(n log logm) time and uses O(nm1=c) space, for any �xed c � 1.3



problem, where the input consists of integers drawn from a restricted interval [1::m]. Form = O(n) the known Bucket Sort algorithm applies. It solves the problem in O(n) time. Form = poly(n)1 the variant of the Bucket Sort algorithm, called Radix Sort, runs in O(n) time[Knu73]. More precisely, Radix Sort runs in O(n lognm) time. Thus, a natural extension ofthe Radix Sort would result with an o(n log n) time algorithm for m � no(logn). However, form = n
(logn) Radix Sort does not improve on the O(n log n) time bound.The second approach was studied for parallel computation as well. Rajasekaran andReif gave an optimal randomized parallel algorithm in logarithmic time on an arbitrary-CRCW for m = n logc n, for any constant c � 1 [RR89]. The integer sorting algorithm ofRajasekaran and Reif cannot be extended for m polynomial in n. For m = poly(n), Hagerupprovided an O(log n) time and O(n1+�) space (for any �xed � > 0) parallel algorithm, usingn log log n= log n priority-CRCW processors [Hag87]. No optimal parallel algorithm is knownfor this range. Our sorting algorithm clearly belongs in the second approach.Using data structures presented by van Emde Boas, Kaas and Zijlstra [vKZ77], Johnson[Joh82] dealt with priority queues problems, where the priorities are drawn from the integerdomain [1::m]. A corollary of his result is an O(n log logm) time and O(m1=c) space algorithmfor sorting, where c > 0 is a constant. Johnson recognizes the problem with the spacerequirements of the algorithm, and writes that the algorithm is not practical and only oftheoretical interest.Kirkpatrick and Reisch [KR84] presented an algorithm, based on a range reduction tech-nique, that has the same complexity bounds as Johnson's algorithm. They state that thealgorithm is of little practical value due to both large constants, that are hidden in theasymptotic bounds, and storage requirements.The following open question, quoted from Kirkpatrick and Reisch ([KR84]), capturesan important aspect of our sorting results: \For what ranges of inputs can we constructpractical o(n log n) integer sorting algorithms?". The present paper provides only partialanswers to this question, and more work is still needed in order to resolve this question.The issue of trading space for randomness using random hash functions belongs in thefolklore of serial algorithms. For instance, the survey paper [GG88] demonstrates suchconsiderations for hashing large alphabets for string algorithms such as the su�x tree datastructure. However, for parallel algorithms this survey mentions only deterministic methods.This immediately suggests an implicit open problem.Hagerup considered algorithms in which the space requirement S(n) is larger than thenumber of operations P (n)T (n) [Hag88]. He provided a deterministic modi�cation algorithmthat reduces the space to O(P (n)T (n)B(n)), for any function B(n) � 2. In the modi�edalgorithm the number of processors remains P (n), while the time increases by a factor of1We use poly(n) to denote \polynomial in n", and polylog(n) to denote \polynomial in logn".2



1 IntroductionConsider the problem of sorting n integers drawn from a given range [1::m]. A new ran-domized algorithm for the problem is presented. Its expected running time is O(n log logm)using O(n) space. The algorithm is parallelizable. The resulting parallel algorithm achievesoptimal speed-up. The result implies o(n log n) expected time and linear space form � 2no(1) .More speci�cally, for m = nlogk n (for any constant k � 1) we have O(n log log n) expectedtime and O(n) space. No such result is known for deterministic sorting, suggesting the follow-ing fundamental open problem : Is this an instance where randomization defeats determinismfor sorting?The paper employs two Algorithmic techniques:1. A �rst randomized parallel hashing technique, which achieves optimal speed-up and takesexpected logarithmic time, is presented. The parallel hashing technique enables drasticreduction of space requirements in quite a few parallel algorithms for the price of usingrandomness. The technique is used in the parallel sorting algorithm. Such (serial) techniqueis also demonstrated in the serial sorting algorithm. The new parallel hashing technique,that results in trading space for randomness, is likely to have additional applications. Weactually demonstrate it with a few examples.2. The parallel sorting algorithm is designed for a strong and non standard model of parallelcomputation. New simulations of the strong model on a CRCW PRAM are introduced.Using one of the simulations the parallel sorting algorithm runs in optimal speed-up also ona CRCW PRAM. Designing algorithms for strong and non standard models of computationand then translate them into standard models is a traditional methodology in computerscience. We expect our parallel simulations to be helpful in this respect. The simulationsare e�cient: one of them even preserves optimal speed-up.1.1 Extant workSorting is a fundamental problem that has received much attention. [Knu73] gives severalalgorithms for sorting n objects drawn from an arbitrary totally ordered domain in O(n log n)time. There are also optimal parallel sorting algorithms in logarithmic time [AKS83] [Col86].For the decision-tree model the O(n log n) time serial upper bound is best possible [AHU74].Because of the central role that the sorting problem plays in computer science, numerouspapers are devoted to study opportunities for improving this time bound to o(n log n). Oneapproach is to consider idealized (and non standard) versions of the RAM model; as, forinstance, in [KR84] and [PS80], where very large words are assumed. The practicality ofsuch an assumption is unclear. Another approach is to focus on instances of the sorting1



On Parallel Hashing and Integer Sorting�Yossi Matias Uzi VishkinyTel-Aviv University &University of Maryland(December 1989. Revised: August 1990)AbstractThe problem of sorting n integers from a restricted range [1::m], wherem is superpolynomial in n, is considered. An o(n logn) randomized algo-rithm is given. Our algorithm takes O(n log logm) expected time and O(n)space. (Thus, for m = npolylog(n) we have an O(n log log n) algorithm.) Thealgorithm is parallelizable. The resulting parallel algorithm achieves opti-mal speed up. Some features of the algorithm make us believe that it isrelevant for practical applications.A result of independent interest is a parallel hashing technique. Theexpected construction time is logarithmic using an optimal number of pro-cessors, and searching for a value takes O(1) time in the worst case. Thistechnique enables drastic reduction of space requirements for the price ofusing randomness. Applicability of the technique is demonstrated for theparallel sorting algorithm, and for some parallel string matching algorithms.The parallel sorting algorithm is designed for a strong and non standardmodel of parallel computation. E�cient simulations of the strong modelon a CRCW PRAM are introduced. One of the simulations even achievesoptimal speed up. This is probably a �rst optimal speed up simulation of acertain kind.�Appeared in Journal of Algorithms 12, 573{606 (1991). A preliminary version of this paper was pre-sented at the 17th International Colloquiumon Automata, Languages and Programming (ICALP), Warwick,England 1990.yPartially supported by NSF grant CCR-890649 and ONR grant N00014-85-0046.


