SPECTROPHOTOMETRIC AND SPECTROFLUORIMETRIC DETERMINATION OF OXCARBAZEPINE IN PURE FORM AND PHARMACEUTICAL PREPARATION

Khalid A. Attia, Mohammed W. Nassar, Hamed H. Abou-Seada, Ahmad A. Mohamad and Ragab A. Said*

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

ABSTRACT: Simple and sensitive spectrophotometric Method (A) and spectrofluorimetric Method (B) were described for analysis of oxcarbazepine. The proposed methods were based on oxidation of the drug with cerium (IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 321 nm or the fluorescence intensity of the produced cerous (III) ion at 363 nm emission after excitation at 256 nm. All variables that affect the decrease in absorbance or the fluorescence intensity such as the concentration of cerium (IV), reaction time and temperature and the diluting solvent were studied and optimized. Beer’s law was obeyed in the range of 0.25 – 2.5 µg ml⁻¹ and 80 – 720 ng ml⁻¹. LOD and LOQ were found to be 0.01 and 0.241 µg ml⁻¹ and 17.8 and 59.33 ng ml⁻¹ for method (A) and method (B), respectively. These methods were validated and successfully applied to the determination of oxcarbazepine tablets with an average percent recovery ± RSD% of 100.32 ± 0.283 and 100.03 ± 0.601 for method (A) and method (B), respectively. The obtained results were statistically compared with those of the reported method by applying t-test and F-test at 95% confidence level and no significant difference was observed regarding accuracy and precision.

INTRODUCTION: Oxcarbazepine [Fig.1] is 10,11-Dihydro-10-oxo-5H-dibenzo[b,f]azepine-5-carboxamide which is flake crystals from ethanol with m.p.215 - 216 °C and reported to have an antiepileptic activity. Literature survey shows that several spectrophotometric, capillary zone electrophoresis and chromatographic methods for determination of oxcarbazepine in pure form, pharmaceutical preparation and/or biological fluids have been reported.

Cerium (IV) ion was widely used for the analysis of many pharmaceutical compounds by spectrophotometric, spectrofluorimetric methods or both of them were also reported.
Materials and Reagents: All chemicals and reagents used throughout the work were of analytical grade.

Oxcarbazepine (99.8%) was kindly supplied by Mash Premiere for Pharmaceutical industry Company, Cairo, Egypt.

Trileptal tablets: The product of Novartis Company, Cairo, Egypt. It is labeled to contain 300 mg of oxcarbazepine per tablet (Batch no. T0960). Water used throughout the procedures was freshly double distilled.

Methanol and ethanol all of HPLC grades [Sigma, Germany].

Acetic acid (El-Nasr Pharmaceutical Company, Abu-Zaabal, Egypt).

Ceric ammonium sulphate (BDH Chemicals Ltd Poole, England), (0.1 %, 2.64 X 10⁻⁵ and 2.38 X 10⁻⁵ M) was prepared by dissolving 0.1 gm in 100 ml of 5 % H₂SO₄ and kept in the refrigerator and dissolving 0.0015 gm in 100 ml of 5 % H₂SO₄ and kept in the refrigerator.

Sulphuric acid (Merck, Germany) 5 % aqueous solution.

Standard Solution: Stock solution of oxcarbazepine (0.1 mg ml⁻¹) was prepared by dissolving 10 mg powder in the least amount of acetic acid then diluted with water and filtered into 100 ml volumetric flask, then the volume was adjusted to the mark with water.

The working standard solutions (0.01 mg ml⁻¹) and (0.001 mg ml⁻¹) were prepared by dilution of the stock solution with water.

Procedure:

Construction of the Calibration Curve (General Procedure):

Method (A): into a series of 20 ml test tubes, aliquots of standard drug solution (0.01 mg ml⁻¹) containing (0.0025 – 0.025 mg) of oxcarbazepine were introduced followed by the addition of 3 ml of 0.1 % Ce (IV). The tubes were mixed well and heated in a boiling water bath for 45 minutes. Then cooled, transferred quantitatively into a series of 10 ml volumetric flasks and diluted to volume with 5 % H₂SO₄. Then decrease in absorbance was measured at 321 nm using the experiment a blank then plotted against the final concentration in µg ml⁻¹ to get the calibration graph.

Method (B): into a series of 20 ml test tubes, aliquots of standard drug solution (0.001 mg ml⁻¹) containing (0.8 – 7.2 µg) of oxcarbazepine were introduced. Apply the same procedure as mentioned under method (A) but the relative fluorescence intensity was monitored at λₑm 363 nm after λₓ 256 nm against the reagent blank treated similarly and plotted against the final concentration in ng ml⁻¹ to get the calibration graph.

Analysis of Pharmaceutical Preparation: An accurately weighed quantity of the well-mixed powdered Trileptal 300 mg tablets equivalent to 10 mg of oxcarbazepine was shaken with least amount of acetic acid then diluted with water and filtered into 100 ml volumetric flask, then the volume was adjusted to the mark with water. The obtained solution of oxcarbazepine (0.1 mg ml⁻¹) was proceeded as described under “General Procedure”, adopting the methods (A) and (B). Determine the nominal content of the tablets either from the calibration curves or using the corresponding regression equations.

RESULTS AND DISCUSSION:

Cerium (IV) ammonium sulphate being strong oxidizing agent was used for determination of organic compounds. The proposed methods are based on oxidation of the selected drug with excess cerium (IV) ammonium sulphate in acidic medium and subsequent measurement of either the decrease in reagent absorbance at 321 nm, [Fig.2] or the fluorescence intensity of the produced cerous (III) ion at λₑm 363 nm after λₓ 256 nm, [Fig.3]
The general procedure was repeated using a definite concentration of the drug (1.5 µg ml⁻¹ for method A and 0.48 µg ml⁻¹ for method B) for optimizing the heating time by heating the reaction mixture in a boiling water bath at different time intervals (10 - 60 min). [Fig. 5 a & b] declared that, a heating temperature at 100°C (Boiling water bath) for 45 minutes was sufficient to give complete oxidation of the drug.

Effect of diluting solvents:

The general procedure was repeated using a definite concentration of the drug (1.5 µg ml⁻¹ for method A and 0.48 µg ml⁻¹ for method B) and different diluting solvents as 5% H₂SO₄, methanol, water and ethanol. [Fig. 6 a & b] shows that, dilution with 5% H₂SO₄ was optimum to give complete oxidation of the drug.

Determination of Stoichiometry of the Reaction:

In order to ascertain the stoichiometry of the reaction, continuous variation (Job’s) method ³⁰ has been adopted. The results proved that the drug / reagent ratio was found to be 1:2 as shown in [Fig. 7 a & b].
Validation of the Method:

Linearity: Under the described experimental conditions, the calibration graphs for the methods (A & B) were constructed by plotting absorbance difference and fluorescence intensity versus concentration in µg ml⁻¹ and µg ml⁻¹, respectively. The regression plots were found to be linear over the range of 0.25 – 2.5 µg ml⁻¹ and 80 - 720 µg ml⁻¹. The linear regression equations for the graphs are:

\[
\Delta A_{321} = 0.416 C + 0.004 \quad (r= 0.9997)
\]

\[
F_{363} = 0.996 C - 41.24 \quad (r = 0.9998)
\]

Where \(\Delta A\) is the absorbance difference at 321 nm and \(F\) is the fluorescence intensity, \(C\) is the drug concentration in µg ml⁻¹ and ng ml⁻¹ respectively and \(r\) is the correlation coefficient.

Linearity ranges, regression equations, intercepts, slopes and correlation coefficients for the calibration data were presented in **Table 1**.

Table 1: Spectral Data for Determination of Oxcarbazepine by the Proposed Methods

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Proposed Methods</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method (A)</td>
<td>Method (B)</td>
<td></td>
</tr>
<tr>
<td>(\lambda_{\text{max}})</td>
<td>321 nm</td>
<td>(\lambda_{\text{emission (nm)}})</td>
<td>363</td>
</tr>
<tr>
<td>Linearity range (µgml⁻¹) and (ng ml⁻¹)</td>
<td>0.25 – 2.5</td>
<td>(\lambda_{\text{excitation (nm)}})</td>
<td>80 – 720</td>
</tr>
<tr>
<td>LOD (µgml⁻¹) and (ng ml⁻¹)</td>
<td>0.01</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>LOQ (µgml⁻¹) and (ng ml⁻¹)</td>
<td>0.241</td>
<td>59.33</td>
<td></td>
</tr>
<tr>
<td>Regression equation (^\ast)</td>
<td>(\Delta A = 0.416 C + 0.004)</td>
<td>(F = 0.996 C - 41.24)</td>
<td></td>
</tr>
<tr>
<td>Slope ((b))</td>
<td>0.416 ± 0.001</td>
<td>0.996 ± 0.010</td>
<td></td>
</tr>
<tr>
<td>Intercept ((a))</td>
<td>0.004 ± 0.001</td>
<td>-41.24 ± 5.921</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient ((r))</td>
<td>0.9997</td>
<td>0.9998</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\ast}\) \(y = a + bx\) where \(y\) is the absorbance difference and fluorescence intensity and \(x\) is the concentration.
Sensitivity: The limit of detection (LOD) and the limit of quantitation (LOQ) were calculated according to ICH Q2 Recommendation from the following equations:

$$\text{LOD} = 3.3 \frac{S_a}{\text{slope}}$$
$$\text{LOQ} = 10 \frac{S_a}{\text{slope}}$$

Where S_a is the standard deviation of the intercept of regression line.

LOD was found to be $0.01 \mu g ml^{-1}$ and $17.8 ng ml^{-1}$, while LOQ was found to be $0.241 \mu g ml^{-1}$ and $59.33 ng ml^{-1}$ for methods (A & B), respectively. The small values of LOD and LOQ indicate good sensitivity.

Accuracy and Precision: Three replicate determinations of three different concentrations of oxcarbazepine in pure form within linearity range were performed in the same day (intra-day) and in three successive days (inter-day). Accuracy as recovery percent (R%) and precision as percentage relative standard deviation (RSD%) were calculated and results are listed in Table 2. The small values of RSD% indicate high precision of the method. Moreover, the good R% confirms excellent accuracy.

Table 2: Intraday and Interdays Accuracy and Precision for the Determination of Oxcarbazepine by the Proposed Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Taken Conc.</th>
<th>Intra-day Found Conc. ± SD</th>
<th>(Accuracy)</th>
<th>(Precision) (RSD %)</th>
<th>Inter-days Found Conc. ± SD</th>
<th>Accuracy (R %)</th>
<th>Precision (RSD %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Conc. µg ml⁻¹</td>
<td>0.5</td>
<td>0.49±0.005</td>
<td>98.56</td>
<td>0.976</td>
<td>0.49±0.005</td>
<td>99.84</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.49±0.004</td>
<td>99.57</td>
<td>0.246</td>
<td>1.51±0.008</td>
<td>100.37</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.51±0.019</td>
<td>100.42</td>
<td>0.774</td>
<td>2.49±0.008</td>
<td>99.94</td>
<td>0.338</td>
</tr>
<tr>
<td>Method</td>
<td>160</td>
<td>161.89±1.004</td>
<td>101.18</td>
<td>0.620</td>
<td>158.71±0.767</td>
<td>99.19</td>
<td>0.483</td>
</tr>
<tr>
<td>B Conc. µg ml⁻¹</td>
<td>360</td>
<td>359.34±0.580</td>
<td>99.82</td>
<td>0.161</td>
<td>362.69±1.004</td>
<td>100.75</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>599.64±1.004</td>
<td>99.94</td>
<td>0.167</td>
<td>602.07±0.763</td>
<td>100.34</td>
<td>0.127</td>
</tr>
</tbody>
</table>

Pharmaceutical Applications: The proposed method was applied to the determination of the studied drug in its tablet preparation. The results were validated by comparison to a previously reported method. No significant difference was found by applying t-test and F-test at 95% confidence level, indicating good accuracy and precision of the proposed method for the analysis of the studied drug in its pharmaceutical dosage form (Table 3).

Table 3: Determination of Oxcarbazepine in Trileptal Tablets (300 mg) by the Proposed and Reported Methods:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Proposed Methods</th>
<th>Reported method (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method A</td>
<td>Method B</td>
</tr>
<tr>
<td>N*</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>100.32</td>
<td>100.03</td>
</tr>
<tr>
<td>SD</td>
<td>0.283</td>
<td>0.602</td>
</tr>
<tr>
<td>RSD%</td>
<td>0.283</td>
<td>0.601</td>
</tr>
<tr>
<td>t**</td>
<td>1.731</td>
<td>0.751</td>
</tr>
<tr>
<td>(1.833)</td>
<td>(1.813)</td>
<td>———</td>
</tr>
<tr>
<td>F**</td>
<td>5.999</td>
<td>1.331</td>
</tr>
<tr>
<td>(6.256)</td>
<td>(6.163)</td>
<td>———</td>
</tr>
</tbody>
</table>

* No. of experimental.
** The values in the parenthesis are tabulated values of t and F at (p= 0.05).

CONCLUSION: The proposed method is simple, rapid and inexpensive. So, it is good alternative to the other few reported methods and to the high cost HPLC methods.

ACKNOWLEDGMENT: The authors thank Mash Premiere for Pharmaceutical industry Company, Cairo, Egypt for providing pure oxcarbazepine to develop these methods of analysis and also thanks are due to our college at pharmaceutical analytical chemistry department at faculty of Pharmacy Al-Azhar University for their continuous prayers to complete this work.

REFERENCES:
1. The Merck Index: Published by Merck and CO. INC., Rahway, USA, 14th Ed. 2006.

How to cite this article

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)

All © 2014 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.