Commentaries on Viewpoint: Use of mean airspace chord length to assess emphysema

MEAN AIRSPACE CHORD LENGTH IS USEFUL IN ASSESSING EMPHYSEMA

TO THE EDITOR: Although mean airspace chord length \((L_m)\) lacks the elegance of some stereology methods and requires careful attention to technique (4), Mitzner (3) argues that \(L_m\) has utility in studying experimental emphysema.

Clearly, \(L_m\) reflects the dimensions of alveoli but is not a direct estimate of alveolar diameter or mean alveolar size. The functional significance of \(L_m\) lies, however, in its inverse relationship to the surface-to-volume \((S/V)\) ratio of pulmonary airspaces. The \(S/V\) ratio determines the density of elastic recoil forces resulting from surface tension, as well as the surface available for gas exchange per unit volume of ventilated lung (1, 2). These are important correlates of \(L_m\) that are particularly relevant to understanding how emphysema affects lung function.

High correlation \((r^2 > 0.80)\) has been found between \(L_m\) and indexes of lung elasticity in excised non-diseased lungs of humans (1) and several animal species (2) and emphysematous human lungs (1). Fitting an exponential function, \(V = A \cdot Be^{B \cdot P}\) (where \(A, B\), and \(K\) are constants), to static pressure-volume \((P-V)\) curves over the upper half of lung volume allows estimation of the exponential constant \(K\), which is inversely related to the bulk elastic modulus of the lungs (2). Thus \(L_m\) is also inversely related to the bulk elastic modulus.

Whether \(L_m\) is the optimal measure of the \(S/V\) ratio is debatable. The simplicity of its measurement using automated methods and its physiological correlates suggest that \(L_m\) is useful in studying experimental emphysema, provided careful attention is given to preparation of specimens for counting.

REFERENCES

Ian A. Greaves
Professor
University of Minnesota School of Public Health

TO BE OR NOT TO BE—ACCURATE

TO THE EDITOR: The ATS and ERS have commissioned a Joint Task Force to define the “Standards for Quantitative Assessment of Lung Structure”; the author of this Viewpoint article (2) is a member of the Task Force. The Joint Task Force report, currently under review at ATS and ERS, contains a subchapter on the estimation of mean linear intercept length \((L_m)\) discussing the methods of estimation and the pitfalls of this parameter. There are important pitfalls in using \(L_m\) and the meaning of \(L_m\) is often, if not mostly, misinterpreted. The most frequent misinterpretation is that \(L_m\) measures “alveolar size,” which it does not: the intercepts extend from one intersection with the alveolar surface to the next, and often they traverse alveolar ducts between the two alveoli. So the best characterization of \(L_m\) is that it estimates, under a defined inflation state, the mean free path within acinar air spaces, alveoli, and ducts taken together. The information value of \(L_m\) as a parameter of structure is limited because \(L_m\) is strongly affected by the inflation state at which the lung is fixed: in perfusion-fixed rabbit lungs \(L_m\) is nearly twice as large at 80% TLC than at 40% TLC; the difference is larger than one would expect on the basis of the volume difference because lung expansion does not occur isometrically in all parts, with alveolar ducts varying more than alveoli (1). Therefore, to be meaningful, the relationship of \(L_m\) to TLC should be defined for a given experimental model, which is often not done.

The author asks: “If \(L_m\) is indeed so bad that it should be discarded, then what can researchers use to quantify the pathology?” The answer is that better alternatives are available. The sine qua non of emphysema is destruction of alveolar walls with loss of alveolar tissue and surface area, which impairs alveolar gas exchange and distal airway function. Airspace enlargement and increased lung compliance occur secondary to the loss of alveolar tissue, but are not in themselves primary determinants of functional impairment.

The most direct structural measurement under light microscopy that targets the primary defect in emphysema is total alveolar surface area \((SA)\). In the first morphometric studies of normal and emphysematous lungs (5–7), \(L_m\) was used as a tool to derive the internal lung surface area and not as a primary structural characteristic. But the estimate of \(SA\) no longer needs to take this detour, because more robust techniques have evolved that obviate the need for estimating \(SA\) via \(L_m\). The correlate to \(L_m\), the surface area-to-lung ratio \((SA/VL)\), can be easily and accurately quantified by standard intersection counting, and used to estimate absolute \(SA\) when \(VL\) is known, a very efficient and unbiased technique based on sound stereological principles (4, 8). A decline in absolute \(SA\) indicates functional parenchyma loss regardless of airspace size or shape or lung compliance. If targeting the alveoli, the unbiased parameters are total alveolar number (obtained by counting the number of alveolar openings using the disector technique) together with estimates of mean alveolar size and their variation (obtained by point counting and point-sampled intercepts, respectively; Ref. 4).

Two statements on sampling strategies need discussion.

1) “Without using proper uniform sampling procedures, selecting as few as 100 alveolar chords for measurement…may introduce substantial bias into the \(L_m\) measurement…a safer approach would be to sample every alveolus in each of the sections, with a total number of chords per lung in the range of 10–15,000 (11).” 2) “If one effectively samples all the alveoli in a particular section, any possible selection bias in that section is thereby eliminated.”

These statements confuse precision (reproducibility) with accuracy (unbiasedness). Bias refers to systematic errors that cause the data to be inaccurate; inaccurate data cannot be saved by more measurements. Even in mouse lung, a few selected
microscopic sections represent such a minuscule fraction of total lung structure that variability among lung regions and among experimental animals overwhelms the variability within any section, or between test lines along which intercepts are measured. Indeed, Fig. 4 of Ref. 3, which was used by the author to support his statements, proves that it is senseless to measure intercepts on a high-density set of test lines because the variation in L_m among sections is ~ 50 times greater than the variation among a few lines and all possible lines generated by digitizing the image.

The author finally recommends to “use low-power, high-resolution images to obtain relatively large numbers of chords,” an oxymoron that can easily be avoided by using sound stereologic principles and sampling strategies that allow measurements to be obtained at adequate resolution on a manageable number of sections.

In summary, using brute force to exhaustively measure a limited and flawed parameter (L_m) makes little sense, especially when more rigorous alternatives are readily available.

REFERENCES

Connie C. W. Hsia
Dallas M. Hyde
Matthias Ochs
Ewald R. Weibel
University of Texas Southwestern Medical Center

PURISTS VERSUS PRAGMATISTS

TO THE EDITOR: Mitziner’s Viewpoint (2) provides us with a pragmatic counterpoint to the morphometric purists who worry that bias may render L_m useless as a measure of the alveolar volume-to-surface area ratio (3). If, indeed, one’s goal is to determine accurate measures of lung geometric structure then the purists may well have cause to worry. However, Mitziner’s Viewpoint has merit because the utility of L_m for many studies stems simply from its ability to detect whether lung structure is abnormal. Here what really matters is that L_m can reliably separate normal parenchymal architecture from that which has been altered by disease, and so bias is irrelevant so long as L_m is robust, sensitive, and reproducible. Of course, experimental conditions must be precisely controlled to achieve this, and actually I would favor registering lungs to transpulmonary pressure rather than volume as Mitziner insists. At a given inflation pressure, the airspaces in an emphysematous lung are more dilated than normal because there are fewer alveolar walls in parallel to bear transpulmonary stress. This further increases L_m over that due to alveolar sparcity alone, so L_m should be more sensitive to tissue damage when determined at a fixed pressure than at a fixed volume. I would also add that while Mitziner correctly asserts that distributions of L_m are weighted by area rather than linear airspace dimension, it is a simple matter to obtain a distribution that is weighted by chord length by multiplying chord length frequency by chord length itself (1).

REFERENCES

Jason H. T. Bates
Professor
University of Vermont College of Medicine

ASSESSMENT OF EMPHYSEMA BENEFITS FROM QUANTIFICATION OF HETEROGENEITY

TO THE EDITOR: We enjoyed Mitziner’s Viewpoint (2) on the use of mean airspace chord length (L_m) and agree that—provided the appropriate conditions are carefully met—L_m gives an important proxy of the paramount functional impairment in emphysema: the reduction in parenchymal surface area. In addition, this measure benefits from the consideration of its distribution characteristics (variance, skewness, etc; 1, 4). This largely overcomes the concern that the cutting of a large alveolus near its periphery would give rise to a low chord length (5), as such events would be approximately random. In emphysema, where heterogeneity is a prominent feature, an increase in L_m variance is, we believe, a sensitive and meaningful measurement (4).

Weibel et al.’s (5) recent reminder that extreme care in tissue preparation should be a precondition for the study of lung morphometry is well made. In this regard in vivo imaging may allow quantification of the spatially heterogeneous remodeling observed throughout an emphysematous lung. At the present time magnetic resonance (MR) imaging does not have a resolution adequate to estimate L_m in small animals. However, quantitative 3D renderings to an isotropic resolution of $<80 \mu m$ are currently possible (3), and technological developments promise further advances. Such measures are sensitive to lung tissue-volume changes, in even the smallest of murine lungs, and can be repeated in the same animal over the progression of age, disease, or treatment. MR, therefore, has the potential to provide knowledge (2) of heterogeneity and anisotropy in normal and pathologic lungs.

REFERENCES

relations in the destruction pattern is certainly key to unraveling the underlying mechanisms behind the progressive nature of this disease. By studying the problem from both angles, it may be possible to better understand the relationship among the mechanism of destruction, changes in structure, and loss of function in emphysema.

REFERENCES

WHAT DOES Lm TELL US ABOUT LUNG PATHOLOGY?

TO THE EDITOR: The Viewpoint article on the use of mean airspace chord length to assess emphysema (3) tries to purport the notion that “Lm is not that bad” as considered by others (5). Other than methodological issues discussed earlier in this journal, the major point is: what does Lm tell us about lung pathology?

As correctly emphasized by the author, Lm cannot be equated with alveolar diameter (3). Lm is not even a measure of alveolar size but can only be considered as a measure of mean free pathway within acinar airspaces, i.e. alveoli plus alveolar ducts (5). Hence, Lm is at best a structural correlate to diffusion rates measured by functional MRI (6). Lm is linked to alveolar surface area (Sa = 4V/Lm). However, the term V is not total lung volume as stated by the author (3), but total volume of lung parenchyma (excluding major airways and blood vessels; Ref. 4), which is solely but easily obtained by stereology (2). Thus Lm (alone or in conjunction with total lung volume) does not allow drawing a reliable conclusion about loss of alveolar walls or change in alveolar size, the key criteria of emphysema.

“What can researchers use to quantify the pathology?” (3): various stereological tools are available, e.g., number- and volume-weighted mean alveolar volume to quantify alveolar size (1), point/intersection and dissector counting to determine alveolar surface area, and alveolar numbers (5). Using appropriate parameters and methods is a matter of scientific accuracy, not of pragmatism or purism.

REFERENCES

MEAN AIRSPACE CHORD LENGTH AND HYPERPOLARIZED GAS MAGNETIC-RESONANCE MEASUREMENTS

TO THE EDITOR: With ADC (apparent diffusion coefficient) magnetic-resonance measurements using hyperpolarized helium-3 and xenon-129 gases, one can effectively obtain microstructural information on the in vivo airspaces as a whole (2). Such measurements can be repeated in the same animal over multiple time points and without side effects. Histology measurements performed with the mean airspace chord length (L_m) technique (1) in normal animals and emphysema disease models showed good correlations ($r = 0.78$) with ADC (2), as mentioned by Mitzner (3). Although better results may have been achieved with stereology (4), the L_m showed the ability to clearly differentiate and quantify the differences from normal to emphysema in a simple way and without adding substantial time or costs. L_m may not be the perfect tool, but it is a useful technique in assessing emphysema.

REFERENCES

Jaime F. Mata
Assistant Professor
University of Virginia, Radiology Department