
Let's Accept Rejects, But Only After RepairsJan van EijckAbstractIn the quest for a useful syntax for language de�nition formalisms |the SDF part of ASD+SDF of Klint and his co-workers | Visser hasproposed to extend context free rules with reject productions. We pro-pose to modify the de�nition to ensure modularity of reject grammars.Next, attention is drawn to the close link between reject grammars (un-der the modi�ed de�nition), indexed least �xpoint grammars (Rounds)and simple literal movement grammars (Groenink). This link indicatesthat reject grammars are closely related to the `mildly context-sensitive'grammar formalisms that have been developed for use in natural languageanalysis.1 Reject GrammarsTo increase the versatility of the ASD+SDF meta-environment for speci�cationand syntax de�nition created by Paul Klint and his co-workers [6], Visser [9]proposes to add reject rules A !r A1 � � �An to CF grammars. The recipe forhandling these reject rules is, roughly, the following: if A!r � is a rule of thegrammar, and if �)� w, then A 6)� w.The reason why this is only a rough indication of what is meant is thee�ect of the rejects rules on the notion of derivability. The familiar)�, thereexive transitive closure of one-step derivability, does no longer determinemembership of the yield of a string of symbols of the grammar.To precisely de�ne the language generated by a CF reject grammar, a CFgrammar with the peculiarity that some of its are marked as reject rules (in-dicated by A !r �), we have to say the following. The derivable strings of aCFr grammar G are de�ned as follows:1. Every string of symbols derives itself.2. If A! � in G, and if � derives �, while for all reject rules A!r in Git holds that does NOT derive �, then A derives �.3. If A!r � in G, and � derives �, then A does NOT derive �.Consider example grammar (1).S ! � j AS(1) A ! a j bS !r a 1

According to the recipe given above, grammar (1) generates the set of allstrings over a; b except for the strings ending with a. In this particular case,the generated language is regular, but in general the generated language neednot even be CF.It should be noted that some care is needed to ensure that the format iswell-de�ned. Observe that the presence of a reject rule of the form A !r Awill immediately lead to a contradiction: according to clause 1, A derives A,but then, according to clause 3, A does not derive A. We can remedy thisby restricting clause 1 to strings of terminals, but it turns out that this is notenough, witness the following example.S ! a(2) A ! SS !r ADoes example grammar (2) derive a? Suppose the answer is yes. i.e., suppose ais derivable from S. Then A! S and S derives a, and moreover, there are noreject rules with A as LHS. Therefore, according to clause 2 of the de�nition,A derives a. Since S !r A is a reject rule of the grammar, according to clause3, S does not derive a, and contradiction.Suppose, on the other hand, that S does not derive a. Since A ! S is theonly rule with LHS A, it follows that A does not derive a either. According toclause 1 of the de�nition, a derives a. Since S ! a in G, we can apply clause2 to conclude that S derives a, and contradiction again.We get a contradiction either way, even if we restrict clause 1 of the de�-nition to terminal strings. In this example case, the problem is caused by theloop S !r A ! S. Visser proposes to rule out such loops in the formalism,by stipulating that a reject grammar should have no loops through a rejectproduction. If I understand this correctly, Visser wants to rule out grammarswhere A derives B, B !r � and � derives A. This seems to solve the problem,but at the (considerable) cost of destroying the modularity of the formalism.CF grammars are modular in the sense that adding extra rules to a CF gram-mar will always give a CF grammar. CF reject grammars satisfying the loopconstraint are not, for the addition of extra rules may create a vicious loop andthereby destroy the constraint.2 A Closer Look at the De�nitionLet us see if we can �nd an alternative de�nition that preserves modularity.For that, we need to take a closer look at the de�nition of derivation paths forreject grammars. The relations) (for one step derivation),)r (for one steprejection), and)� (for being on an accept path) are de�ned as follows:De�nitions of);)rA! ��A) �� A!r ��A)r ��2

De�nition of)� The following rules cover the three clauses from the def-inition of `derivation' above. To be on the safe side, we restrict 1. to lists ofterminals (strings from V �T).1. �)� � � 2 V �T2. �) � �)� 8� : if �)r � then � 6)� �)� 3. �)r � �)� � 6)� To be able to establish negative conclusions, we have to add:4. 8� : if �) � then � 6)� � 6)� The following expresses that we have derived a contradiction:5. �)� � � 6)� �?We can now formalize our reasoning about grammar (2) as follows:S)r A A) S S)� a 8� : A 6)r �A)� aS 6)� a S)� a?S) A a)� a S 6)� a8� : if A) � then � 6)� aA 6)� a8� : if S)r � then � 6)� aS)� a S 6)� a?Looking at the rules 1{4, it seems that 3 and 4 deserve closer scrutiny,for they yield negative conclusions. But rule 4 is harmless. It just expressesthe fact that)� is the smallest relation satisfying 2 and 3. It argues from anegative premise about)� to a negative conclusion about)�, so it does notinvolve a polarity switch. However, the other rule with a negative conclusionis vicious, for rule 3 switches polarity between premise and conclusion. In thenext section we will see that this may destroy the monotonicity of the yieldfunction of a grammar. 3

3 Denotational Semantics for Grammar RulesTo see the e�ect of rule 3, we consider the behaviour of the parallel single stepyield function [G] associated with a grammar G. To de�ne [G], we proceed asfollows. Let VN be the non-terminals of G, and VT the terminals. Then anassignment for G is a function i : VN ! P(V �T). Let I be the set of assignmentsfor G. Associate a language with every member of VT , by mapping everyterminal to the singleton containing that terminal: Gt := ftg. To determineGA, for A 2 VN , we proceed as follows. Every assignment i can be extended in aunique way to a function i0 : (VN [VT)� ! P(V �T) by means of the stipulations:� i0(x) := i(x) if x 2 VN ,� i0(x) := Gx if x 2 VT ,� i0(x�) := i0(x)i0(�).The �nal step in the de�nition uses language concatenation.Now if G is a standard CF grammar, then one parallel rewriting step ac-cording to G can be viewed as a function [G] : I ! I , given by [G](i) = j,where j is the assignment given by:j(A) := [fi0(�) j A! � a rule of GgS ! ab j aSb(3)For example, if G is grammar (3), and i is the assignment which maps S to ;,then [G](i) is the assignment which maps S to fabg.The assignments have an obvious partial order on them: i v j i� for all A 2VN , i(A) � j(A). The minimal assignment in this ordering is the assignmentthat assigns ; to any non-terminal. Call this assignment ?. If [G] is monotonic,as it always is if G is a CF grammar, we can iterate the process of applying[G], starting with ?, and we are bound to arrive at a �xpoint: an assignment jwith the property that [G](j) = j. It is easy to see that [G] also is continuous,in the sense that it preserves limits of chains. Therefore the smallest �xpointof [G] equals Fk2Nf[G]k?g. If j is the smallest �xpoint of [G] and S is thestart symbol of G, then j(S) is the language generated by G. (See Rounds [8]for more information on this perspective on grammar formalisms.)In the example case of G equal to grammar (3), the �xpoint is only reachedat in�nity, and we have:([G]?)(S) = fabg([G]2?)(S) = fab; aabbg([G]3?)(S) = fab; aabb; aaabbbg...Fk2Nf([G]k?)g(S) = fanbn j 0 < n <1gLet us apply this to the case of reject grammars. Here we have to slightlyrede�ne the operation [G], in order to take the reject productions into account.4

The function [G] : I ! I is now given by [G](i) = j, where j is the assignmentde�ned as:j(A) := [fw 2 i0(�) j A! � a rule of G;and for all A!r � rules of G;w =2 i0(�)g:If we take G to be grammar (1) we get the following:([G]?)(S) = f�g ([G]?)(A) = fa; bg([G]2?)(S) = fb; �g ([G]2?)(A) = fa; bg([G]3?)(S) = fab; bb; b�g ([G]3?)(A) = fa; bg([G]4?)(S) = faab; bbb; ab; bb; b; �g ([G]4?)(A) = fa; bg... ...Fk2Nf[G]k?g(S) = fa; bg�b+ � Fk2Nf[G]k?g(A) = fa; bgNow let G be grammar (2). We get:([G]?)(S) = fag ([G]?)(A) = ;([G]2?)(S) = ; ([G]2?)(A) = fag([G]3?)(S) = fag ([G]3?)(A) = ;... ...It turns out that the function [G] for this grammar is not monotonic, so itdoes not have a �xpoint, so G does not generate a well-de�ned language.4 AMonotonic Semantics for Reject GrammarsThe trouble with the de�nition of)� for reject grammars is that it involvesreasoning from premises where)� occurs negatively to a conclusion where itoccurs positively, and vice versa. We can avoid this by switching to a simulta-neous de�nition of two relations)�a ((for acceptance) and)�r (for rejection),while taking care that the de�nition does not involve polarity switches betweenpremises and conclusion.1'. �)�a � � 2 V �T2'. �) � �)�a 8� : if �)r � then �)�r �)�a 3'. �)r � �)�a �)�r 4'. 8� : if �) � then �)�r �)�r 5

No further principles for handling negation are necessary, since there are nopolarity switches in the rules.To de�ne a denotational semantics for this format, let an assignment forgrammar G with nonterminal set VN be a pair of functions ia : VN ! V �T ,ir : VN ! V �T . Extension to i0a : (VN [VT)� ! P(V �T), i0r : (VN [VT)� ! P(V �T)as before. Let [G] : I2 ! I2 now be given by [G](ia; ir) = (ja; jr), where ja; jrare the assignments given by:ja(A) := [fw 2 i0a(�) j A! � a rule of G;and for all A!r � rules of G;w 2 i0r(�)g;jr(A) := [fw 2 i0a(�) j A!r � a rule of Gg[\fw 2 i0r(�) j A! � j A! � a rule of Gg:De�ning v on I2 pointwise in terms of v on I , we see that (?;?) is thebottom element of I2 and that the function [G] : I2 ! I2 is monotonic andcontinuous. This means [G] has a �xpoint for every reject grammar G, andwe can de�ne the language generated by G as ia(S), where (ia; ir) is the least�xpoint of G. We may conclude that our alternative de�nition of the languageworks for any reject grammar. What this means is that we have succeeded ingiving a modular de�nition of reject grammars. Moreover, it is not di�cultto check that the new de�nition coincides with the original de�nition in allnon-vicious cases.5 A Logic Programming PerspectiveA slightly di�erent way to look at the rules of a context free grammar is asconstraints on the interpretation of the grammar, where the interpretation of a(terminal or non-terminal) A is the language GA. The rule A! A1 � � �An givesrise to the constraint GA � GA1 : : :GAn . The interpretation of the grammar Gis the `smallest' assignment to the non-terminals for which all the constraintsare satis�ed.To specify the constraints imposed by CF rules, we can use a translation into�rst order logic, by considering every non-terminal symbol A as a one-placedpredicate over strings, and every terminal symbol a as a string. Then the ruleS ! ab gives rise to the �rst order formula S(ab), and the rule S ! aSb to the�rst order formula 8x(S(x)! S(axb)) (read this as: `if x is a string of type S,then axb is a string of type S as well'), and so on.Leaving out the universal quanti�ers and writing A ! B as B :� A, wearrive at the following logic programming style notation for grammar (3):S(axb) :� S(x);S(ab):Thus, CF rules correspond to de�nite clauses of a logic programming languagewith built-in concatenation. Now, how to extend this perspective to reject6

grammars? According to the original de�nition, we should translate everyaccept rule A! A1 � � �An as:A(x1 � � �xn) :� A1(x1); : : : ; An(xn);:Ar(x1 � � �xn);and every reject rule A!r B1 � � �Bm as:Ar(x1 � � �xm) :� B1(x1); : : : ; Bm(xm):The logic programming interpretation of this translation will run into troublein all cases where the negation as failure computation for negated atoms leadsto oundering. (See Apt and Bol [1] or Doets [2].) Presumably, these areprecisely the cases where the reject language de�nition gives rise to a viciouscircle.According to the modi�ed de�nition, we should proceed as follows. First,for every terminal a of the grammar, put the following clauses:a(x) :� x = a;ar(x) :� x 6= a:Next, add the following epsilon rules:�(x) :� x = �;�r(x) :� x 6= �:If A is a non-terminal, assume that the list of accept rules for A looks like this:A ! A11 � � �A1n1A ! A21 � � �A2n2...A ! Ap1 � � �Apnp :Pick new predicate symbols Ar1; : : : ; Arp, and add the following clauses:Ar1(x1 � � �xn1) :� Ar11(x1); : : : ; Ar1n1(xn1);Ar2(x1 � � �xn2) :� Ar21(x1); : : : ; Ar2n1(xn2);...Arp(x1 � � �xnp) :� Arp1(x1); : : : ; Arpn1(xnp);Ar(w) :� Ar1(w); : : : ; Arp(w):In case there are no reject rules for A, translate every accept rule A! A1 � � �Anas: A(x1 � � �xn) :� A1(x1); : : : ; An(xn):If there are reject rules for A, we may assume the set of reject rules for A tolook like this:A !r B11 � � �B1m1A !r B21 � � �B2m2...A !r Bk1 � � �Bkmk ; 7

In that case, �rst add the following clauses:Ar(x1 � � �xm1) :� B11(x1); : : : ; B1m1(xm1)Ar(x1 � � �xm2) :� B21(x1); : : : ; B2m2(xm2)...Ar(x1 � � �xmk) :� Bk1(x1); : : : ; Bkmk (xmk):Next, pick new predicate names Br1 ; : : : ; Brk, and add:Br1(x1 � � �xm1) :� Br11(x1); : : : ; Br1m1(xm1)Br2(x1 � � �xm2) :� Br21(x1); : : : ; Br2m2(xm2)...Brk(x1 � � �xmk) :� Brk1(x1); : : : ; Brkm1(xmk)Finally, translate every accept rule A! A1 � � �An as:A(x1 � � �xn) :� A1(x1); : : : ; An(xn); Br1(x1 � � �xn); : : : ; Brk(x1 � � �xn):Let us check how this recipe works out for example grammars (1) and (2). Thelogic program corresponding to grammar (1), after removal of some redundan-cies: S(�) :� ar(�):S(xy) :� A(x); S(y); ar(xy):Sr(a):ar(x) :� x 6= a:A(a):A(b):The logic program corresponding to grammar (2):S(x) :� a(x); Ar(x):Sr(x) :� ar(x):A(x) :� S(x):a(x) :� x = a:ar(x) :� x 6= a:6 Rejects Versus Simple MovementThe clauses resulting from the translation instruction of the last section satisfysome special properties:� Every variable occurring in the RHS of a clause occurs in the LHS,� No variable occurs more than once in the LHS of a clause.8

Moreover, the following property is easy to achieve by adding extra predicatesymbols:� Arguments in the RHSs of clauses are always single variables.To impose this third constraint, the only thing we have to do is replace everyclause of the formA(x1 � � �xn) :� A1(x1); : : : ; An(xn); Br1(x1 � � �xn); : : : ; Brk(x1 � � �xn)by a suitable clause set, employing new predicate symbols C1; C2:C1(x1 � � �xn) :� A1(x1); : : : ; An(xn);C2(w) :� Br1(w); : : : ; Brk(w);A(w) :� C1(w); C2(w):In Groenink [5] a grammar satisfying the three just mentioned constraintsis called a simple literal movement grammar (SLMG). Groenink proves thatthe simple literal movement grammars correspond precisely with the indexleast �xpoint grammars (ILFPs) of Rounds [8], which in turn are precisely thegrammars that can be parsed in polynomial time (in O(nc), where n is the sizeof the input string, and c is some constant).Now it turns out that our de�nite clause translations of reject grammarscan be massaged to satisfy a fourth constraint:� all predicates are unary.The only predicates that do not satisfy this constraint are the predicates forstring equality and string inequality employed in the clauses for the terminalpredicates a; ar; �; �r. These can be replaced by the following:a(a);ar(�);ar(bx) for all b 2 VT with b 6= a;�(�);�r(ax) for all b 2 VT :A �nal simpli�cation is to replace every clause of the formA(x1 � � �xn) :� A1(x1); : : : ; An(xn)by a set of clauses employing fresh predicate letters A02; : : : ; A0n�1, as follows:A(xy) :� A1(x); A02(y);A02(xy) :� A2(x); A03(y);...A0n�1(xy) :� An�1(x); An(y);and every clause of the formA(w) :� B1(w); : : : ; Bm(w) 9

by a set of clausesA(w) :� B1(w); B02(w);B02(w) :� B2(w); B03(w);...B0m�1(w) :� Bm�1(w); Bm(w):As Groenink remarks, it is not di�cult to translate SLMG clauses with monadicpredicates into CFr format, the key being that reject rules can be used to de�neintersections (Groenink [4]). Indeed, all clauses except for the intersection rulestranslate into CF rules. An intersection rule S(w) :� A(w); B(w) translatesinto the following reject grammar (assuming a terminal set fa; bg, and takingcare to employ fresh rewrite symbols where appropriate):S ! A j B(4) S !r CC ! A0C ! B0A0 !r AB0 !r BA0 ! � j aA0 j bA0B0 ! � j aB0 j bB0Here A0 generates the complement of LA, B0 the complement of LB . C gen-erates the union of those complements, and S, �nally, the complement of thisunion.It should be noted that the correspondence between reject grammars andunary SLMGs only holds under the modi�ed de�nition of reject grammarsproposed above.The correspondence between reject grammars and unary simple literal move-ment grammars shows that reject languages are among the tractable languages,i.e., the languages that can be parsed in polynomial time. Next on the agendashould be the attempt to put a reasonable bound on the constant c in O(nc)(see Groenink [5] for some hints), the de�nition of suitable partitions of theclass of CFr languages, and an attempt to get still more precise bounds forCFr grammars satisfying appropriate extra constraints. For instance, if a re-ject grammar has the property that its reject rules cannot occur nested, whatdoes this tell us about the value of c in O(nc)? And what if the grammar issuch that its reject chains have a bound k?An example of a reject grammar generating the non-CF language anbncnwas given in Van Eijck [3] (see Visser [9]). The example can easily be extendedto show that all n-counting languages (languages of the form anbn � � � kn, foran arbitrary list of terminals a; : : : ; k) are in CFr.
10

An example of a very simple language that can be generated by a binarySLMG is a2n :S(xy) :� S(x); x = y;S(a):This uses the binary equality predicate. It seems a reasonable conjecture thatthis language cannot be de�ned without the equality predicate (or anotherbinary predicate that serves essentially the same purpose), but I have no formalproof of this. To prove such a negative claim one needs a pumping lemma forreject grammars (or equivalently, for unary SLMGs), and such a lemma is stilllacking. So let's put that also on our research agenda.At present, to my knowledge, we do not have examples of languages that arein binary SLML but not in unary SLML (or CFr), nor do we have examplesof languages in CS, but not in CFr. A CS grammar for a2n is part of theformal language folklore (see R�ev�esz [7], exercise 1.5), but we have no proofthat a2n =2 CF r. The di�culty here is that it is not completely clear how theChomsky hierarchy relates to the complexity hierarchy proposed in Rounds [8]and Groenink [5].The following closure properties of CFr languages are easy to establish:closure properties of CFr languagesclosed under union yesclosed under concatenation yesclosed under Kleene-star yesclosed under + yesclosed under homomorphic image noclosed under reversal yesclosed under intersection with CF language yesclosed under intersection yesclosed under complement yes.The reason for the single `no' in the table is the classical result that a formalismthat can generate homomorphic images of intersections of CF languages cangenerate every r.e. language.7 Reject Rules for Natural Language AnalysisGroenink shows in his thesis that SLMG (but with binary predicates) is asuitable formalism for tackling some hairy constructs in natural language syn-tax, such as cross-serial dependencies in Dutch. It remains an open questionwhether such natural language constructs can also be tackled with reject rules,as proposed by Visser. To settle that question, we have to know whether theinclusion between reject languages and binary SLM languages is proper or not.My conjecture is that it is, and that it will turn out that reject rules are notpowerful enough for handling the full complexity of natural language syntax.Still, I hope to have illustrated that the two PhD theses resulting from thedual SION project Visser/Groenink, the �rst supervised by Paul Klint and the11

second by myself, are closely related. Paul and I were quite right, �ve years ago,when we told the Dutch computer science funding agency SION that parsing ofnatural languages and parsing of programming languages have a lot in common,and that money to explore those common aspects would be well spent. I amvery glad we did get that grant.References[1] Krzysztof Apt and Roland Bol. Logic programming and negation: a survey.Journal of Logic Programming, 19-20:9{71, 1994.[2] Kees Doets. From Logic to Logic Programming. MIT Press, 1994.[3] Jan van Eijck. Email correspondence with Eelco Visser. CWI, July 1997.[4] Annius Groenink. Stellingen. PhD thesis, 1997.[5] Annius Groenink. Surface Without Structure. PhD thesis, Utrecht Univer-sity, November 1997.[6] Paul Klint and co workers. The ASF+SDF Meta-environment User's Guide.CWI, 1995.[7] G. E. R�ev�esz. Introduction to Formal Languages. Dover, 1991. Reprint of1983 publication by McGraw-Hill.[8] Bill Rounds. LFP: A logic for linguistic descriptions and an analysis of itscomplexity. Computational Linguistics, 14(4):1{9, 1988.[9] Eelco Visser. Syntax De�nition for Language Prototyping. PhD thesis,University of Amsterdam, September 1997.

12

