Let’s Accept Rejects, But Only After Repairs

Jan van Eijck

Abstract

In the quest for a useful syntax for language definition formalisms
the SDF part of ASD+SDF of Klint and his co-workers — Visser has
proposed to extend context free rules with reject productions. We pro-
pose to modify the definition to ensure modularity of reject grammars.
Next, attention is drawn to the close link between reject grammars (un-
der the modified definition), indexed least fixpoint grammars (Rounds)
and simple literal movement grammars (Groenink). This link indicates
that reject grammars are closely related to the ‘mildly context-sensitive’
grammar formalisms that have been developed for use in natural language
analysis.

1 Reject Grammars

To increase the versatility of the ASD+SDF meta-environment for specification
and syntax definition created by Paul Klint and his co-workers [6], Visser [9]
proposes to add reject rules A —,. Ay --- A, to CF grammars. The recipe for
handling these reject rules is, roughly, the following: if A —, « is a rule of the
grammar, and if a =* w, then A &* w.

The reason why this is only a rough indication of what is meant is the
effect of the rejects rules on the notion of derivability. The familiar =*, the
reflexive transitive closure of one-step derivability, does no longer determine
membership of the yield of a string of symbols of the grammar.

To precisely define the language generated by a CF reject grammar, a CF
grammar with the peculiarity that some of its are marked as reject rules (in-
dicated by A —, a), we have to say the following. The derivable strings of a
CF" grammar G are defined as follows:

1. Every string of symbols derives itself.

2. If A - ain G, and if « derives 3, while for all reject rules A —, v in G
it holds that v does NOT derive 3, then A derives S.

3. If A—, ain G, and « derives 3, then A does NOT derive 3.

Consider example grammar (1).

(1) S — ¢€|AS
A — alb
S =, a



According to the recipe given above, grammar (1) generates the set of all
strings over a,b except for the strings ending with a. In this particular case,
the generated language is regular, but in general the generated language need
not even be CF.

It should be noted that some care is needed to ensure that the format is
well-defined. Observe that the presence of a reject rule of the form A —, A
will immediately lead to a contradiction: according to clause 1, A derives A,
but then, according to clause 3, A does not derive A. We can remedy this
by restricting clause 1 to strings of terminals, but it turns out that this is not
enough, witness the following example.

2) S = a
A — S
S —, A

Does example grammar (2) derive a? Suppose the answer is yes. i.e., suppose a
is derivable from S. Then A — S and S derives a, and moreover, there are no
reject rules with A as LHS. Therefore, according to clause 2 of the definition,
A derives a. Since S —, A is a reject rule of the grammar, according to clause
3, S does not derive a, and contradiction.

Suppose, on the other hand, that S does not derive a. Since A — S is the
only rule with LHS A, it follows that A does not derive a either. According to
clause 1 of the definition, a derives a. Since S — a in G, we can apply clause
2 to conclude that S derives a, and contradiction again.

We get a contradiction either way, even if we restrict clause 1 of the defi-
nition to terminal strings. In this example case, the problem is caused by the
loop S —, A — S. Visser proposes to rule out such loops in the formalism,
by stipulating that a reject grammar should have no loops through a reject
production. If T understand this correctly, Visser wants to rule out grammars
where A derives B, B —, 3 and (3 derives A. This seems to solve the problem,
but at the (considerable) cost of destroying the modularity of the formalism.
CF grammars are modular in the sense that adding extra rules to a CF gram-
mar will always give a CF grammar. CF reject grammars satisfying the loop
constraint are not, for the addition of extra rules may create a vicious loop and
thereby destroy the constraint.

2 A Closer Look at the Definition

Let us see if we can find an alternative definition that preserves modularity.
For that, we need to take a closer look at the definition of derivation paths for
reject grammars. The relations = (for one step derivation), =, (for one step
rejection), and =* (for being on an accept path) are defined as follows:

Definitions of =, =,

A= a A —r &
BAy = Bay BAy =, Bay



Definition of =°* The following rules cover the three clauses from the def-
inition of ‘derivation’ above. To be on the safe side, we restrict 1. to lists of
terminals (strings from V).

1.
- Vi
oz:>'aa€ T
2.
a=p 8= Vo : if @ =, § then § A°
a=*y
3.
a =, [ B=*y
a5y

To be able to establish negative conclusions, we have to add:
4.

V3 : if a = 0 then % v
a5y
The following expresses that we have derived a contradiction:
5.

a=*p a?* B
1

We can now formalize our reasoning about grammar (2) as follows:

A= S S=%a VB:AA,. B
S=, A A=%a
S#A%a S=%a
1

S#A%a
VB: if A= B then 8 #A°%a

A#A%a
S=A a=*a V3 : if S =, B then 8 A°a

S=%a S A°%a
1

Looking at the rules 1-4, it seems that 3 and 4 deserve closer scrutiny,
for they yield negative conclusions. But rule 4 is harmless. It just expresses
the fact that =° is the smallest relation satisfying 2 and 3. It argues from a
negative premise about =* to a negative conclusion about =*, so it does not
involve a polarity switch. However, the other rule with a negative conclusion
is vicious, for rule 3 switches polarity between premise and conclusion. In the
next section we will see that this may destroy the monotonicity of the yield
function of a grammar.



3 Denotational Semantics for Grammar Rules

To see the effect of rule 3, we consider the behaviour of the parallel single step
yield function [G] associated with a grammar G. To define [G], we proceed as
follows. Let Vi be the non-terminals of G, and Vi the terminals. Then an
assignment for G is a function i : Viy — P(V}). Let I be the set of assignments
for G. Associate a language with every member of Vi, by mapping every
terminal to the singleton containing that terminal: G; := {t}. To determine
G 4, for A € Vi, we proceed as follows. Every assignment i can be extended in a
unique way to a function i’ : (Viy UVyr)* — P(V5) by means of the stipulations:

o i'(z) :=i(x) if x € Vy,
o i'(z) =G, if x € Vp,
o i'(za) :=i'(x)i' ().

The final step in the definition uses language concatenation.

Now if G is a standard CF grammar, then one parallel rewriting step ac-
cording to G can be viewed as a function [G] : I — I, given by [G](i) = j,
where j is the assignment given by:

Jj4) = U{i'(a) | A — «a arule of G}

3) S — ablaSh

For example, if G is grammar (3), and i is the assignment which maps S to §,
then [G](i) is the assignment which maps S to {ab}.

The assignments have an obvious partial order on them: ¢ C j iff for all A €
Vn, i(A) C j(A). The minimal assignment in this ordering is the assignment
that assigns @) to any non-terminal. Call this assignment L. If [G] is monotonic,
as it always is if G is a CF grammar, we can iterate the process of applying
[G], starting with L, and we are bound to arrive at a fixpoint: an assignment j
with the property that [G](j) = j. It is easy to see that [G] also is continuous,
in the sense that it preserves limits of chains. Therefore the smallest fixpoint
of [G] equals | |,{[G]*L}. If j is the smallest fixpoint of [G] and S is the
start symbol of G, then j(S) is the language generated by G. (See Rounds [8]
for more information on this perspective on grammar formalisms.)

In the example case of G equal to grammar (3), the fixpoint is only reached
at infinity, and we have:

(G 1)(5) ~  {ab}
([G]?L)(S) —  {ab, aabb}

(G2 L)(S) = {ab, aabb, aaabbb}
kel (GIEL)}(S) = {a™" [0 < n < oo}

Let us apply this to the case of reject grammars. Here we have to slightly
redefine the operation [(], in order to take the reject productions into account.



The function [G] : I — I is now given by [G](i) = j, where j is the assignment
defined as:

U{w€1 )| A— aaruleof G,
and for all A —, 8 rules of G,w ¢ i'(8)}.

If we take G to be grammar (1) we get the following:

(IG1L)(S) = {e ([G]1L)(A) = {a,b}
([G]*L)(5) = {be} ([G]* L) (4) = {a,b}
(GP1)(S) — {ab, b, be} (GP1)(4) ~ ab}
([G)*L)(S) = {aab,bbb,ab,bb,b,e} ([G]*L)(A) = {a,b}
Uken{IG1FL}(S) = {ab)ybie Urend[G1*L}(A) = {a,b}
Now let G be grammar (2). We get:

([G1L)(S) = A{a} (GIDH(A) = D

(GPLS) = 0 (GPLA) = {a}

(GPLS) = {a} (GFPLA) = 0

It turns out that the function [G] for this grammar is not monotonic, so it
does not have a fixpoint, so G does not generate a well-defined language.

4 A Monotonic Semantics for Reject Grammars

The trouble with the definition of =, for reject grammars is that it involves
reasoning from premises where =, occurs negatively to a conclusion where it
occurs positively, and wvice versa. We can avoid this by switching to a simulta-
neous definition of two relations =2 ((for acceptance) and =¢ (for rejection),
while taking care that the definition does not involve polarity switches between
premises and conclusion.

1.
e VA
a=ta 5T
2.
a= 3 B=2y Vo : if @ =, 0 then § =0 v
=5
3.
a=,f B=3
o=y
4’.

VB : if a = B then =0y
=7




No further principles for handling negation are necessary, since there are no
polarity switches in the rules.

To define a denotational semantics for this format, let an assignment for
grammar G with nonterminal set Vy be a pair of functions i, : Vo — Vj,
ir 1 VN = V. Extension to i}, : (VnUVy)* = P(V}), i : (VNUVE)* = P(VY)
as before. Let [G] : I? — I? now be given by [G](ia,ir) = (ja,jr), Where jq, j,
are the assignments given by:

Ja(A) = U{w €i.(a) | A— aaruleof G,
and for all A —,. 3 rules of G,w € i..(8)},
jr(A) = U{w €i,(a) | A=, aarule of G}

U(wein(B)| A= 3| A= Baruleof G}.

Defining C on I? pointwise in terms of C on I, we see that (L, 1) is the
bottom element of I? and that the function [G] : I? — I? is monotonic and
continuous. This means [G] has a fixpoint for every reject grammar G, and
we can define the language generated by G as i,(S), where (iq,4,) is the least
fixpoint of G. We may conclude that our alternative definition of the language
works for any reject grammar. What this means is that we have succeeded in
giving a modular definition of reject grammars. Moreover, it is not difficult
to check that the new definition coincides with the original definition in all
non-vicious cases.

5 A Logic Programming Perspective

A slightly different way to look at the rules of a context free grammar is as
constraints on the interpretation of the grammar, where the interpretation of a
(terminal or non-terminal) A is the language G 4. Therule A — A, --- A, gives
rise to the constraint G4 D G4, ...G4, . The interpretation of the grammar G
is the ‘smallest’ assignment to the non-terminals for which all the constraints
are satisfied.

To specify the constraints imposed by CF rules, we can use a translation into
first order logic, by considering every non-terminal symbol A as a one-placed
predicate over strings, and every terminal symbol a as a string. Then the rule
S — ab gives rise to the first order formula S(ab), and the rule S — aSb to the
first order formula Vz(S(z) — S(axb)) (read this as: ‘if = is a string of type S,
then axb is a string of type S as well’), and so on.

Leaving out the universal quantifiers and writing A — B as B :1 A, we
arrive at the following logic programming style notation for grammar (3):

S(azb) :L S(x),
S(ab).

Thus, CF rules correspond to definite clauses of a logic programming language
with built-in concatenation. Now, how to extend this perspective to reject



grammars? According to the original definition, we should translate every
accept rule A — A;--- A, as:

A(zy -+ ) L Ap(x1) yAn (), A" (x1 -+ - ),
and every reject rule A —, By --- B,, as:

A"(x1 - ) L Bi(x1),. .., Bm(xm).

PR

The logic programming interpretation of this translation will run into trouble
in all cases where the negation as failure computation for negated atoms leads
to floundering. (See Apt and Bol [1] or Doets [2].) Presumably, these are
precisely the cases where the reject language definition gives rise to a vicious
circle.
According to the modified definition, we should proceed as follows. First,
for every terminal a of the grammar, put the following clauses:
a(z) L z=a,
a"(z) L =z#a.
Next, add the following epsilon rules:
e(x) L x=e¢
€(z) L z#e
If A is a non-terminal, assume that the list of accept rules for A looks like this:
A — A11 s A1n1
A — A21 s A2n2

A 5 Ay Ag,.

Pick new predicate symbols A7, ..., A7, and add the following clauses:
AT(TlTTH) L A;l(Tl)a 7A1£n1(mn1)7

Ag(TlTnz) L AS](Tl)a :Agnl (mn2)7

Ap(zr-wp,) L Ap(m1),...  AD,, (Ta,),

A"(w) L Af(w),..., Aj(w).

In case there are no reject rules for A, translate every accept rule A — A -+ A,
as:

Az - my) L Ar(x1) Ap(zy).

If there are reject rules for A, we may assume the set of reject rules for A to
look like this:

A —, Bii--Bim,
A =, Bsi---Bop,

A —, B Bim,,



In that case, first add the following clauses:

AT(.’L‘l Tml) L Bll(ﬂfl),... ;Blml(mml)
AT(ZE] ZL‘mQ) L BQ] (;U]),... =B2m2(wm2)

A™(z1 - xm,,) L Bri(z1),... , Bemg (Tm,)-
Next, pick new predicate names By, ..., By, and add:

Blr(Tlel) L Bfl(ml)a"- :Br (mml)

Tma

B;(;U] $m2) L B;](ah)w'- :B5m2($m2)

BZ(Tlek) L BZ](m1)7'-' 7B£m1(mmk)
Finally, translate every accept rule A — A, --- A, as:
A(zy -+ xy) L Ar(z), ... Ap(zy), Bi(z1 - xn), ..., Bp(z1 - xy).

Let us check how this recipe works out for example grammars (1) and (2). The
logic program corresponding to grammar (1), after removal of some redundan-
cies:

Aa).
A(b).

The logic program corresponding to grammar (2):

S(z) L a(z),A"(x).
S™(x) L a"(x).

A(z) L S(z).

a(z) L z=a.
a"(z) L xz#a.

6 Rejects Versus Simple Movement

The clauses resulting from the translation instruction of the last section satisfy
some special properties:

e Every variable occurring in the RHS of a clause occurs in the LHS,

e No variable occurs more than once in the LHS of a clause.



Moreover, the following property is easy to achieve by adding extra predicate
symbols:

e Arguments in the RHSs of clauses are always single variables.

To impose this third constraint, the only thing we have to do is replace every

clause of the form
A(zy -+ ) L Ap(x1)

PR PR

by a suitable clause set, employing new predicate symbols C7, Cy:

Ci(zy - xn) L Ai(x),...,An(zn)
Cy(w) L  Bi(w),...,Bp(w)

A(’LU) L C] (’LU)7CQ ('LU)

3

In Groenink [5] a grammar satisfying the three just mentioned constraints
is called a simple literal movement grammar (SLMG). Groenink proves that
the simple literal movement grammars correspond precisely with the index
least, fixpoint grammars (ILFPs) of Rounds [8], which in turn are precisely the
grammars that can be parsed in polynomial time (in O(n®), where n is the size
of the input string, and c is some constant).

Now it turns out that our definite clause translations of reject grammars
can be massaged to satisfy a fourth constraint:

e all predicates are unary.

The only predicates that do not satisfy this constraint are the predicates for
string equality and string inequality employed in the clauses for the terminal
predicates a,a”, €,e". These can be replaced by the following:

a”(bx) for all b € Vi with b # a,
e(e),

€ (ax) for all b € V.
A final simplification is to replace every clause of the form

Az - my) L Ar(x1) An(zy)

by a set of clauses employing fresh predicate letters A5,... , Al _,, as follows:

A(zy) L Ai(z), A5(y),
Ay(zy) L Ax(x), A3(y),

Alnfl(wy) L Anfl ($)=An(y)7

and every clause of the form

A(w) L By(w),..., By (w)



by a set of clauses

A(w) L By(w), By(w),

3

By(w) L By(w), By(w),

B!, (w) :L  Bp_i(w), Bm(w).

As Groenink remarks, it is not difficult to translate SLMG clauses with monadic
predicates into CF” format, the key being that reject rules can be used to define
intersections (Groenink [4]). Indeed, all clauses except for the intersection rules
translate into CF rules. An intersection rule S(w) :1 A(w), B(w) translates
into the following reject grammar (assuming a terminal set {a,b}, and taking
care to employ fresh rewrite symbols where appropriate):

4 S = A|B

S —, C

c - A

c - B
A =, A
B -, B

A" = e|aA' | bA
B" — ¢€|aB' | bB

Here A’ generates the complement of L4, B’ the complement of Lg. C gen-
erates the union of those complements, and S, finally, the complement of this
union.

It should be noted that the correspondence between reject grammars and
unary SLMGs only holds under the modified definition of reject grammars
proposed above.

The correspondence between reject grammars and unary simple literal move-
ment grammars shows that reject languages are among the tractable languages,
i.e., the languages that can be parsed in polynomial time. Next on the agenda
should be the attempt to put a reasonable bound on the constant ¢ in O(n°)
(see Groenink [5] for some hints), the definition of suitable partitions of the
class of CF" languages, and an attempt to get still more precise bounds for
CF" grammars satisfying appropriate extra constraints. For instance, if a re-
ject grammar has the property that its reject rules cannot occur nested, what
does this tell us about the value of ¢ in O(n®)? And what if the grammar is
such that its reject chains have a bound k?

An example of a reject grammar generating the non-CF language a™b"c"”
was given in Van Eijck [3] (see Visser [9]). The example can easily be extended
to show that all n-counting languages (languages of the form a™b™--- k", for
an arbitrary list of terminals a,... , k) are in CF".

10



An example of a very simple language that can be generated by a binary
SLMG is a®":

S(xy) L S(x), 2=y,
S(a).

This uses the binary equality predicate. It seems a reasonable conjecture that
this language cannot be defined without the equality predicate (or another
binary predicate that serves essentially the same purpose), but I have no formal
proof of this. To prove such a negative claim one needs a pumping lemma for
reject grammars (or equivalently, for unary SLMGs), and such a lemma is still
lacking. So let’s put that also on our research agenda.

At present, to my knowledge, we do not have examples of languages that are
in binary SLML but not in unary SLML (or CF"), nor do we have examples
of languages in CS, but not in CF”. A CS grammar for a®" is part of the
formal language folklore (see Révész [7], exercise 1.5), but we have no proof
that a®" ¢ CF". The difficulty here is that it is not completely clear how the
Chomsky hierarchy relates to the complexity hierarchy proposed in Rounds [8]
and Groenink [5].

The following closure properties of CF” languages are easy to establish:

closure properties of CF" languages

closed under union yes
closed under concatenation yes
closed under Kleene-star yes
closed under yes
closed under homomorphic image no
closed under reversal yes
closed under intersection with CF language | yes
closed under intersection yes
closed under complement yes.

The reason for the single ‘no’ in the table is the classical result that a formalism
that can generate homomorphic images of intersections of CF languages can
generate every r.e. language.

7 Reject Rules for Natural Language Analysis

Groenink shows in his thesis that SLMG (but with binary predicates) is a
suitable formalism for tackling some hairy constructs in natural language syn-
tax, such as cross-serial dependencies in Dutch. It remains an open question
whether such natural language constructs can also be tackled with reject rules,
as proposed by Visser. To settle that question, we have to know whether the
inclusion between reject languages and binary SLM languages is proper or not.
My conjecture is that it is, and that it will turn out that reject rules are not
powerful enough for handling the full complexity of natural language syntax.
Still, I hope to have illustrated that the two PhD theses resulting from the
dual SION project Visser/Groenink, the first supervised by Paul Klint and the
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second by myself, are closely related. Paul and I were quite right, five years ago,
when we told the Dutch computer science funding agency SION that parsing of
natural languages and parsing of programming languages have a lot in common,
and that money to explore those common aspects would be well spent. T am
very glad we did get that grant.
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