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Abstract
Component-based software, open systems, and
document-based user interfaces are about to

revolutionise most areas traditionally addressed
by the software engineer. We claim that many
traditional software engineering methods, from
life-cycle models to programming languages to
system architectures are at least insufficient when
facing the new trends. In this paper we present
the main points of criticism and state a few
unavoidable facts of life: extensible systems are
in principle modular, have no final form or final
integration phase, cannot be subjected to final total
analysis, cannot be exhaustively tested, and have
to allow for mutual independence of extension
We also hint at possible solutions

In particular, we

providers.
for part of the problem set.
investigate the problem of dependence on global
analysis, the effects of Cartesian Products in the
design space, and the resulting design constraints
on programming languages as the eremplary and
most important tool of the software engineer. The
relevance of the observations will be underlined
by several examples drawn from contemporary
programming languages and methods that got it

wrong.

Keywords Independent Fxtensibility, Carte-
sian  Products, Global Analysis, Component-
Orientation.

1 Introduction

A wave of new software technology is about to take
over: component-based software executing in open
systems. The promise is exciting: on the grounds of
the very general document-based paradigm, users
see the services provided as being directly repre-
sented as document parts. Document parts in turn
are supported by software components, and there
is no need for a user to even own components that
support document parts that are never needed.
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On the other hand, since documents form the
basis of information interchange, a document-based
system has to expect that another user’s document
does contain parts that require support from ad-
ditional components. These are components that
either need to be retrieved and integrated into the
running system, or that need to be compensated
for in case of their unavailability.

Traditional systems catered for needs of exten-
sibility by admitting the addition of new applica-
tions. Currently, we can observe a strong trend
in the industry to move towards extensibility at a
much finer level of granularity. Tnstead of adding
applications, there is a desire to add small com-
ponents that work together to replace the notion
of isolated applications. The leading examples are
Microsoft’s OLE 2.0 [1] (Object Linking and Em-
bedding) and Component Tntegration Laboratory’s
OpenDoc. The underlying component models are
Microsoft’s COM (Compound Object Model) and
TBM’s SOM (System Object Model).

Tt can be expected that this trend will continue
to grow in strength and over time replace most of
the traditional application technology. This will
happen fastest on client computers running off-the-
shelf code with intensive use of graphical user in-
terfaces. Tt will be followed by customised client
software, and server-based software will be last.
This is a natural evolution and correlates well with
the policy found in many industrial organisations
to consider client software to be far less long-lived
or stable than server software (server data bhases in
particular).

The trend towards a software component in-
dustry will have many advantages. Component
manufacturers can concentrate their efforts on their
local strengths and users can expect a much richer
software space. Component integration and con-
figuration will spawn an entire industry of its own,
replacing today’s off-the-shelf monster packages by
off-the-shelf standard configurations that will still
be open to fine tuning by the more demanding
user. In any case, it can be expected that times
are over for “featurism”; there will no longer be
a point in constructing a single component that



can do it all. Reduction of the feature space to
what is really needed by the individual user will re-
duce training costs and improve productivity. How-
ever, a good handle on the requirements for making
systems truly extensible is required to fulfill the
promise of component software.

The remainder of the paper is organised as fol-
lows. Tn the next section the essential ingredients
of extensible systems are investigated. As it turns
out, object-oriented programmingis almost ideal to
support extensible programming, but  as outlined
in Section 3 it is not sufficient, leading to the
definition of the more specific notion of exrtensi-
bly object-oriented in Section 4. The particularly
important generic problems of global analysis and
Cartesian products are introduced in Sections 4
and b, respectively. Section 6 covers a wide range of
established approaches that have problems in con-
junction with extensibility. Section 7 presents two

particular solutions and hints at open problems.

2 The Essential Ingredients

A system that allows for components to be plugged
into the running system when needed is called exr-
tensible. This is not a technical definition and it
is not likely that on this general ground such a
definition could be provided. Nevertheless, let us
try and challenge the definition: what does ex-
tensibility really mean? After all, even assembly
programs are extensible; in a sense even better so
than anything else! Also, extending an operating
system by loading an application is quite an old
achievement. Hence, on the one hand, if arbitrary
code manipulations are allowed, arbitrary exten-
sions are easy. On the other hand, if extensions are
limited to a single level using a fixed interface (OS
extended by applications) and a restricted model of
extension interaction (applications operate on OS-
provided files that are managed by the user), things
are also easy, or at least well understood.

A more precise definition of extensibility has to
take the interaction of mutually independent exten-
sions into account. We call a system independently
extensible, if it can cope with the late addition
of extensions without requiring a global integrity
check. (From now on, we only consider indepen-
dent extensibility.) Tt is easy to see that this is a
useful definition. TLet us consider the case where
a base system gets extended by two different ven-
dors. Of course, a client expects that in most cases
the two individually purchased extensions would go
together. Naturally, some independent extensions
may exclude each other, for example by providing
alternative solutions to the same problem. Such a
conflict and therefore the need to make a choice
must be obvious to the client however.

The oldest extensible systems are operating sys-
tems. Loading a new application extends the func-

tionality of the overall system, and yet there is no
need to check the combination of several concur-
rently loaded applications and the operating sys-
tem itself. Of course, in the real world there are
still many problems, mostly in terms of complex in-
stallation and configuration procedures. However,
extending systems by adding new application to an
operating system works well.

There are a few points that can be noted when
looking at how an operating system achieves exten-
sibility (of the overall system, not of itself):

e There are units of extension.

e The presence of one extension does not pre-
clude or affect the availability of another ex-
tension.

e There is a polymorphic base.
e There is a late linking mechanism.

e There is a centralised and automatic manage-
ment of resources.

e There is an abstract interface to operating sys-
tem services.

Tn the case of (modern) operating systems extended
by applications, all these points hold. Applica-
tions are the units of extension and there can be
many applications in use at once. Operating sys-
tems provide at least a simple polymorphic base by
means of untyped file systems and untyped pro-
cess identifiers  all applications share this common
base despite their varying nature. TLate linking
of extensions is performed by the loader, and the
operating system uses mechanisms like cleanup on
process termination to provide a centralised and
automatic management of resources.

These points are quite general and we claim
they form the minimal basis, ie the “essential in-

gredients”, of any extensible system.

3 OOP gets close ...

The dream of a software component industry
is old and so far has largely remained a dream.
Object-oriented programming promises to be a
foundation technology for a component industry.
Nevertheless, pure object-oriented programming
(Recall a recentt BYTE cover
title Component Ware
has failed. But component software [...] is
succeeding. [17])

is not enough.
Object-oriented computing

The claim that object-oriented computing has
failed is overdoing the point. Nevertheless, a fun-
damental problem is the often mistaken emphasis

on software reuse. The effective reuse of source



code in a class hierarchy' can increase productivity
when controlled carefully. However, source code
reuse across small project groups is less productive
and reuse across organisations can even be fatal.
Current technology allows to describe interfaces, eg
using an Interface Definition Language (TDT), but
not the intricate self-recursion patterns® injected
into code inheriting from another class. As a re-
sult, the inherited code itself is the only complete
documentation.

With technology, it is
to fully document

current, impossible
classes that are used to
This is admitted by class

library vendors by routinely passing on to their

inherit code from.
clients the source of their libraries. However,
if the class implementation is its only complete
documentation, then the decoupling of clients and
providers via a clearly defined interface has failed.
In particular, evolution of class libraries easily
leads to disaster. “Programming by contract”,
designed to lift interfaces beyond signatures by
adding pre- and post-conditions, would help if
it could fully cover the self-recursion patterns.
However, with current technology this is not the
case.

At this point it is useful to step back and have
a second look at the idea of component software
and compare it to well established component in-
dustries in other engineering disciplines. Code in-
heritance from class libraries is similar to copy and
paste applied to blueprints. This is not the way
how component industries work! While component
providers do rely on reuse of blueprints internally,
they rarely sell their designs. Instead they sell com-
ponents. In other words, it is objects not classes
that get sold. However, for components from dif-
ferent. vendors to interact nicely, there needs to
be standards. These standards state the general
interfaces for the specific components to comply to.
A standard is a type not a class.

Besides code inheritance, object-oriented pro-
gramming introduces dynamic polymorphism (in-
clusion polymorphism, subtyping), i.e. the capa-
bility of a typed variable to reference objects of
that type or a subtype thereof. This is one of the
most important concepts perhaps the most im-
portant one found in object-oriented languages.
(Note that languages like Smalltalk do not have
explicit types. Nevertheless, Smalltalkis fully poly-
morphic: any variable can hold references to all
possible objects.)

Traditional coding practice copes with variants
by using explicit case analysis. Obviously, this is

" Object-oriented programming either relies on code in-
heritance or on delegation to build new objects out of old
ones that are “close” to what is required of the new ones.
For this discussion it is irrelevant whether code inheritance
or delegation is used.

2See Section 8.1 for a brief explanation of self-recursion.

not extensible. Adding new variants later requires
upgrading all points in the system that analyse
cases. Dynamic polymorphism is simply required
to solve this problem in a reasonable way. Tn a poly-
morphic program, the more specific can be substi-
tuted for the more general. Tn turn, extensions can
be plugged in where only some general behaviour
is expected.

Clearly, the mnotion of subtyping as manifest
in todays object-oriented languages is too weak.
The concept of substitutability is not supported
explicitly programmer’s can be encouraged to
limit subtyping to those cases that truly allow for
substitution of the special for the general, but the
required behavioural compatibility is usually not
Recent research tries to close this
gap, eg Liskov and Wing [7].

enforceable.

Another aspect is the granularity of extensions.
An extension almost always comprises more than
a single object. Usually, an extension adds a sub-
system. Proper language support for modules and
subsystems can be very helpful to resolve configura-
tion problems. One of the most important aspects
is isolation or encapsulation of an entire subunit
so that interference with other units from other
vendors can be controlled statically, i.e. without
inspecting the actual merger.

While most traditional languages fail to sup-
port dynamic polymorphism, many of the object-
oriented languages fail to support static encapsu-
lation of units that comprise of several classes and
objects. Since classes are not the units of extension,
the latter languages fail to provide any semantical
guarantee for coherence of the actual units of ex-
tension that need to be gathered with extra-lingual
means.

Finally, and most subtle, extensibility on the
base of fine-grained components leads to the in-
teraction between components on the level of refer-
ences to individual objects. Tn an extensible system
there is no way for an individual component to
know when an object can be released again. There
is no way around it: to be extensible, a system
needs to support garbage collection and a language
should not support explicit deallocation of objects
belonging to a foreign component (or, even better,
(COM and to

some extend SOM use reference counting under

fully rely on garbage collection).

control of the programmer to get around this
this approach is not safe; simple mistakes can lead
to the known problems with dangling references or
memory leaks.?)

3 An additional problem of reference counting is that it
cannot cope with cyclic references: Two components mu-
tually referring to each other mutually keep their reference
counts above zero, although no other component might still
be referring to any of the two. Resolving cyclic reference

conflicts is fully left to the programmer.



4 Extensible Object-Orientation &
The Global Analysis Problem

The definition of “object-oriented” given by Weg-
ner [18] does neither prevent nor enforce the con-

struction of extensible systems*.

Extensibility is
a separate design dimension that needs to be con-
sidered carefully, leading to the term of Frtensi-
ble Object-Orientation or EQO for short, Szyper-
ski [15, 13].

The one added requirement for a system to be
FEOO should be obvious by now: the system needs
to be extensible in multiple dimensions without
extensions interfering with each other. However,
this requirement is difficult to reduce to a hard
technical definition.

Surprisingly, there is a simple necessary (but
not sufficient) condition: to enable EOO, the de-
sign and implementation languages must be sepa-
rately compilable in principle. This does not pre-
clude the use of global analysis or run-time com-
pilation to improve performance. However, it does
require a language® to provide for units of separate
compilation that can be used to check the system in
increments. The key requirement is that a checked
and unmodified unit shall under no circumstance
be invalidated merely by adding another unit to
the system.

An extensible system is never complete. Meth-
ods that require inspection of all parts® of a sys-
tem, ie global analysis, cannot be applied to in-
dependently extensible systems. Section 6 below
presents a series of examples of such methods re-
quiring global analysis.

In an extensible system, interfaces gain a
dominant réle. In traditional systems an interface
hides the
clients from the implementation of the provider.
However, the interface and its implementation

implementation and thus separates

usually correspond one-to-one for a given system.
In an extensible system, the interface may actually
be implemented by a number of providers, and
some of these implementations may only become
available while the system is already running.
Thus, interfaces between units of extension
in an extensible system are fully distinct from
both,

client.

the interface provider and the interface
Interfaces exist in their own right and
cannot be fully reconstructed by inspecting any
one particular provider.
In consequence, interfaces are a strong barrier
for analysis aiming at system correctness. In princi-

4“Wegner’s definition essentially requires the notions of
objects, classes of objects sharing a common implementa-
tion, and inheritance relations between classes (traditional
code inheritance) or objects (delegation).

5Tn a multi-lingual environment, all languages need to be
considered that cross individual components.

6More precisely: all parts falling into a certain category,
such as all types.

ple, a system could perform certain global analyses
at run-time once a binding of client and provider
has been established. Relying on such late global
analysis to verify correctness properties is equiv-
the detection of
errors is likely to occur too late. Since the final
integration of components in an extensible system

alent to dynamic type checking

is left to the customer, errors caused by assump-
tions based on global properties that cannot be
statically enforced are likely to occur after product
(ie component) delivery.

As noted above, a particular implementation
strategy may still perform late global analysis to
improve overall performance or resource utilisation.

All extensible systems have to face the design
and implementation problem of limited scopes of
analysis. A possible solution will be presented in
Section 7.2. Before that, let us have a look at a
second major problem.

5 The Cartesian Product Problem

Despite the general setting, there is a key problem
that a designer of an extensible system must face:
the avoidance of Cartesian products of individually
extensible aspects of the system?. Tt is surprising
that hunting for this single phenomenon turns out
to catch many (not all) technical obstacles prevent-
ing independent extensibility.

For example, consider a text editor that can
be extended by installing different text models, ie
different implementations of the text abstraction.
Let us assume that the text abstraction merely
consists of the following operations:

o new: — Text
e append: Text x Text — Text
o write: Text x Character — Text

o read: Text x Position = Character U EQT

The nullary operation new creates a new empty
The append operation takes two texts and
returns the first modified to have the second ap-

text.

pended. The write operation writes a character
to the end of a tfext.
character in a text at a given position®, or a special
Fnd-Of-Text symbol.

Obviously, there is no problem when using only

Finally, read returns the

one implementation of texts. However, as soon as
the system enables the installation of several text
implementations to coexist, some problems occur.

7A Cartesian product of n sets is the set of n-tuples
representing all possible combinations of the elements of the
given sets. A Cartesian product can be depicted as a discrete
n-dimensional space of points.

8We assume some indexing scheme, the details are of no
relevance.



The new operation needs to know which imple-
mentation to use when creating a new text. Also,
append poses a tricky problem. How can a text
fragment be extracted from one text and appended
to another if the implementation of the two may
vary, and in fact, if the list of possible text imple-
mentations is open?

The new problem can be solved by providing
a configuration mechanism that allows clients to
indirectly call one of the implementation-specific
new operations. A typical approach is the use of
factory or directory objects, Szyperski [15].
Indeed, the

types of

The append problem remains.

two separately extensible argument
append span a Cartesian product. As depicted in
Figure 1, a complete implementation of append
would need to consider the entire matrix of
pairs of two text objects, each from a possibly
separate implementation. Tt is reasonable to
assume that all extensions know their base type
and that all extensions support a homogeneous
operation these are the cases marked “x” in
the figure. However, it is not reasonable that an
the
corresponding heterogeneous non-base cases are

LLO?”

extension knows about all other extensions

marked in the figure. Generally, all pairs
(T;,T3),0 > 0,5 > 0,8 # j fall into the latter
category.

T, ? X
T, X ?
To

Figure 1: Cartesian product created by independent
extensions. The figure shows the combinations of
types that need to be considered when implementing
a binary operation over objects of extensible type.
The T;(i > 0) are independent extensions of a
common base type Ty. Note that any number of
Then, the Cartesian

Product Problem is that no one can be expected to

such ertensions may erist.

provide an implementation for a binary operation
that specifically caters for all heterogeneous non-
base cases, marked “?” in the figure.

there are a number

The

For a closed system?,
of ways to approach Cartesian products.

?Some authors, such as Cardelli [2], distinguish closed
and sealed systems, where a closed system can still be
extended but only by explicit declaration, while a sealed
Within this paper
this distinction is not made and closed systems are already

system cannot be extended anymore.

considered non-extensible.

simplest is an explicitly programmed nested
case analysis. To avoid some of the maintenance
problems, one could use more advanced approaches
such as operator overloading as in Ada [10] or
multiple dispatch methods (“generic functions”)
as in CLOS, DeMichiel and Gabriel [6]. However,
all these approaches rely on someone inspecting
the entire space of combinations, ie the Cartesian
product, and deciding how to deal with each
individual case. In the case of an extensible
system with an unbounded number of potential
alternatives, this is not feasible. Along similar
lines, many other traditional approaches break
down when considering extensible systems (cf
Section 6 below).

In an extensible system it is unavoidable to face
the problem: bridging the gap of incompatibility
between two independent and mutually unaware
extensions. In the next section we will examine
a series of approaches that all are in danger of
colliding with either the (Global Analysis Problem
or the Cartesian Product Problem. (Note that the
Cartesian Product Problem can be seen as a special
case of the Global Analysis Problem. However,
since Cartesian products are such a common phe-

nomenon, a separate treatment seems appropriate.)

6 Endangered Species

With the goal of extensibility and the pitfall of
Cartesian products in mind, let us now examine a
wide range of established approaches from different
areas of software engineering.

Simple Life-Cycle Models. The idea of start-
ing with a specification and ending with a prod-
uct has to be rethought.
can never be fully specified

An extensible system
the challenge is quite
the opposite: to leave open as much as possible.
The known problems with the design of frameworks
indicate that traditional engineering models fail:
many tedious revisions are required to extract a
useful common ground, a framework, out of a more
or less unrelated (and necessarily incomplete!) set
of cases. The currently emerging design a little,
code a little, test a little approach follows the same
direction. However, it has the major drawback of
not emphasising design in the large. Also, as men-
tioned before, the life-cycle phases of integration
and testing need to be re-thought, as final inte-
gration now takes place after delivery too late to
allow for testing and therefore excluding traditional
integration testing beyond individual components.

Type Systems. Tn general, one of the most valu-
able tools of the software engineer are well-crafted
type systems and as such they are not “endangered
species”. Type Systems can be used to capture
important, parts of the specification in a way that
enables automatic checking. However, several of
the more advanced approaches in type systems fail



to support extensible systems. Some of the prob-
lematic approaches are detailed below. Work on
existential quantification to capture abstract types
is promising, though (cf Section 7.1).

Non-local Type Inferencing. For a closed (non-
extensible) program it is possible and under cer-
tain conditions even practically useful to perform a
global analysis to reconstruct type information, or
to reject a program if such a reconstruction fails. In
an extensible system type inferencing has to stop at
extension interfaces: these necessarily exist before
their implementations and the full set of different
implementations of the same interface will never
be available. Hence, relying on type inferencing to
establish aspects of global correctness for a partic-
ular composition of components does not work well
for extensible systems. In particular, it needs to be
applied at system integration time, ie at run-time,
and therefore would report errors to the end-user
rather than the developer.

Covariant Subtyping and System-level Type
Checking. A particular approach called “system-
level type checking”, following along the lines
of system-wide type inferencing, has been used
to “fix” the language Fiffel, Meyer [8]. Tn the
original specification, the language could express
type-unsafe programs'®, Cook [5]. The problem
is quite simple to explain: assume an operation
like the above defined append. FEiffel allows such
an operation to be expressed as a method of one
text, ie the first Text-typed parameter becomes
Additionally, the
second Text-typed parameter can be an argument
of the method and be declared to have type LIKE
CURRENT. This is called covariant subtyping: the
receiver and one of its method arguments are

the receiver of the method.

co-subtyped.

To further investigate the problem of covariant
subtyping, consider a class B that forms a subtype
of a class A. TIf an argument of a method in B
that is also present in A can be forced to be of a
subtype of that defined in A, then this argument is
covariantly subtyped. This is type-unsafe. To see
why, consider a client that knows nothing about
B, but relies on the definition of A. Such a client
could call an object of class B via the interface
defined for A, since B is a subtype of A. If the
client passes an argument of the type specified for
A’s method argument, rather than of the subtype
required in B, then the code in B’s method is likely
to break. There are two known ways around this
problem: (a) forbid covariant (or any) subtyping of

arguments thisis the case in most OO languages;

10 A construction is type-unsafe when type checking es-
tablishes an assertion that a certain variable is of certain
type and this assertion turns out to be wrong for certain
execution runs. When compiler and run-time essentially rely
on such a type assertion, its failure can lead to severe and
arbitrary program malfunctioning.

(b) apply system-level type checking. The idea of
system-level type checking is to use a conservative
check at the final system integration time to make
sure that, although type-unsafe, the actual pro-
gram can never reach a state in which the problem
pops up. Asshould be obvious by now, system-level
type checking is incompatible with ertensibility: it
is based on a global analysis of the final system.

Tt has been
proposed to use incremental program validation to

Incremental Program Validation.

deal with extensions, Wills [19]. This is obviously
the right way to go. Unfortunately, the same pro-
posal presents a way of “vertical extensions” (called
capsules) where an extension is allowed to modify
every part of the extended system. This neatly
captures the standard approach of Smalltalk devel-
opment, but ignores the problem of recombining
two separately extended systems.

Multi-Methods.
lem is actually quite common. Probably the old-
est example are arithmetic expressions over a wide

The Cartesian product prob-

range of algebraic structures with various defined
homomorphisms. Since the times of Algol this has
been dealt with by using various forms of operator
overloading: multiplication of two integers is ex-
pressed using the same operator symbol as is used
for multiplication of two reals, an integer and a real,
etc.

In languages that ftreat all abstractions as
classes and therefore all entities as objects, this
becomes rather more involved. DeMichiel and
Gabriel [6] introduced multi-methods to address
this problem. Tn Cecil, Chambers [3] applies
multi-methods to object-oriented programming.
A multi-method gets
arguments:

dispatched on multiple
the actual type of more than one
method
implementation that is supposed to handle the
specific argument combination at hand. Of course,

argument is inspected to select the

this is just elegant sugar for an explicit coding of
a Cartesian product. Hence, parts of systems that
rely on multi-methods are not extensible.

7 Some Solutions

7.1 Existentially Quantified Types

The notion of extensibility is strongly related to
the ideas of abstract types and abstract subtypes.
Whenever an interface requires extensions to han-
dle two abstract types (with possible abstract sub-
types) at the same time, the Cartesian Product
problem occurs.

As described by Mitchell and Plotkin [9], ab-
stract types can be modelled accurately using exis-
tential quantification. An interesting consequence
of this approach is that interfaces requiring oper-
ations based on two or more abstract types form
an abstract type that itself cannot be implemented.



For a good explanation in relation to programming
languages, see Cardelli [2].

While not solving the problems of Cartesian
Products in interfaces, the use of existentially
quantified types helps to prevent in the first place
the design of interfaces that would be subject to
the problem.

7.2 Units of Analysis

Modules.
global analysis problem is the use of a static

The simplest approach to attack the

subdivision of programs into atomic wunits of
analysis and extension, ie units providing a
confined contert of analysis for the enclosed

program parts.

A particularly useful language feature to do
so although by no means new are modules.
Unfortunately, modules got mixed up with classes
and as a result are missing in many current object-
oriented languages, cf Szyperski [14]. A module is
a natural unit of separate compilation (in the sense
of static checking), as it can  and should

all parts of a system that are interrelated in a way

contain

that prevents separate checking of these parts.
Modules can and should form the minimal units of
ertension in a system. Of course, it is quite likely
that modules again are clustered into higher-order
building blocks, such as subsystems. Still, they
remain the atoms of replacement and extension.
(As an aside, modules and possibly subsystems
also help to tidy up name spaces, an important
aspect when considering extensibility.)

Modula-2’s modules (Wirth [20]) or Ada’s pack-
ages can well serve this purpose. Oberon (Reiser
and Wirth [12]) restricts the module system to a
simple flat module space. This is clearly along the
lines of providing atoms instead of nested struc-
tures with partially static interconnections, as was
the case with nested modules in Modula-2 or nested
packages in Ada. Ada9h adds module hierarchies
in the form of parent and child packages, where a
child package can be public or private to its parent
package, without being textually nested.

A simple design guide line is to put all
those things together into one module that need
coupling beyond mutually known interfaces. Such
strong coupling usually takes the form of partial
implementations encapsulated by a module,
embodying and enforcing semantics beyond what
could possibly be stated by a typed interface.
This approach has been followed successfully to
construct the extensible object-oriented operating
system Ethos, Szyperski [15], and the commercial
framework Oberon/F [11]. Clearly, more work is
needed to provide more detailed guide lines and
to fully explore the potential of module constructs

for building extensible systems.

Resolving Modules. The initial design of Cecil
made the design of extensible systems quite impos-
sible unless multi-methods were, by convention, not
used or restricted to single dispatch, ie traditional
00 methods. This problem has been acknowledged
in the meantime and a recent enhancement to Cecil
introduced the notion of resolving modules, Cham-
bers and Teavens [4]. A resolving module is essen-
tially the top of a group of code units that together
provide the definition of a multi-method. No unit
outside the static scope of the resolving module
can contribute further to the multi-methods com-
binatorial space the Cartesian product is closed
off and the number of combinations gets bounded.
Therefore, a Cecil system can statically verify that
for each multi-method (a) a resolving module exists
and b) all combinations of the Cartesian product
are handled by the combined definition of the re-
spective multi-method.

Closed Subsystems. Adding a resolving module
to a subsystem closes off that subsystem with re-
spect to a multi-method. Tn other words, that sub-
system is not extensible with respect to the closed
multi-method, while other parts of the system that
do not rely on multi-methods can remain open and
In particular, the later addition of a
new subsystem with its own new and fully enclosed

extensible.
multi-methods remains possible.

7.3 Bottleneck Interfaces

The Cartesian Product Problem essentially states
that
for specific

there cannot be a reasonable provider

operations over combinations of

extensions. Sometimes such

typical examples

independent,
“adaptors” are unavoidable:

are separately emerging coexisting “industry
standards” that force many clients to use special
cross-standard adaptors. For a strictly limited and
small number of coexisting standards this works
and creates a new industry selling adaptors. If the
number of alternatives is too large or alternatives
are too far apart, the approach breaks down and
the common result are technology islands.

For extensible systems, the Cartesian Product
Problem is omnipresent and needs to be dealt with
explicitly. A standard approach to do so is the con-
struction of a bottleneck interface, Szyperski [15].
Instead of trying to handle each and every combina-
tion individually, all cases are reduced to two sep-
arate mappings provided by the extensions them-
selves.

Following the Text example above (Section 5),
the two mappings, called down and up, would take

the form

o down: Text — Ty

o up: Ty — Text



Text stands for any text type that is identical
to or a subtype of Ty, and Ty therefore is the base
type of all texts.

Figure 2 illustrates the use of the common bot-
tleneck interface mapping to operate across oth-
erwise fully independent extensions, in the exam-
ple by appending texts of independently extended
type. Operation append takes two arbitrary texts
conforming to the minimal interface for texts (type
To) and returns the first text modified by append-
ing the second one. In the figure, texts #; and o
are assumed to be of mutually incompatible types
Ty and Ty, respectively''. Both, Ty and T, are
subtypes of Ty, though. Hence the bottleneck map-
pings down: Ty — Ty and up: Ty — Ty can be
applied to reduce the problem to a homogeneous
append: Ty x Ty — Ty. (As an aside: the required
covariant typing of the return value of append is
safe.) Tn the figure, the intermediate text resulting
from mapping t5 to type Tq is 15 | To; likewise that
of mapping up to Ty is denoted (12 | To) T Ti.

append: Ty XT, =T, 7?
Ty Xty Ty - s S T = t:T;

ol Ty

up: To =T,

append: T, X T, =T,

t: Ty X (TP AT,

Figure 2: Using commonly accepted down and up
mappings to interconnect arbitrary independent ex-
tensions. The figure uses the example of operation
append on terts of independenitly ertended type by
mapping one of the texts first to a common base
type (down) and then to the type of the other text
(up). As a result, a homogeneous append operation
dealing with only one type of text can be used.

Recall the definitions for an abstract text pre-
sented in Section 2 above: down is simply a re-
peated application of read over increasing indices
and up is simply a repeated application of wrife.
Hence, in this example, there is no need to add any
new operations.

With down and up available, it is possible to
implement append fully generically, that is without
knowing any of the possible implementations of
texts. Of course, a provider of a new text imple-
mentation may take advantage of known other im-
plementations by specialising append in these cases.
Note that there is no need to use multi-methods for
this: the approach is necessarily intertwined with
a single fully accessible implementation, that is the

1 As usual with updating operations, the objects passed
to the operation are primed (eg ¢ ) to distinguish them from
the modified objects returned by the operation.

new extension. Hence a traditional method inter-
face for append would do and the implementation of
append can explicitly check for the (hopefully few)
special cases.

A generic use of the bottleneck interface can-
not cope with refined attributes added by exten-
sions that have not been thought of when design-
ing the bottleneck interface. In the text example
this might be font attributes attached to runs of
characters. The generic append would drop such
attributes and if the target text had such attributes
it would have to provide some default setting. In
general, this problem is unavoidable.

In the special case of cooperating with a known
other extension, specialisation can again be used
to improve the situation. As outlined above, a
specialised append would at least preserve font at-
tributes when source and target text are of the
same type, but possibly also when the other text is
known to support font attributes and it is known
how these attributes can be converted into the local
representation.

Finally, it should be noted that bottleneck
interfaces can also be used when extensions
are formed recursively, that is when extensions
themselves form the basis for further extensions.
Care must be taken not to confuse the bottleneck
interfaces corresponding to the different levels of
extension chosing the wrong down operation will
lead to a too primitive base type and thus too

much information may be destroyed.

8 Open Problems and Future Work

8.1 Unrestricted Code Inheritance

A problem that is wide open with current OO
technology is the proper handling of self-recursions
defined in classes that other code inherits from.
Self-recursion is fundamental to object-oriented
programming and refers to the invocation of
further methods of the current object (“self”) as
part of the implementation of one of its methods.
When inheriting code from another class such calls
The code

resulting from the combination of inherited code,

to own methods are inherited as well.

overridden methods, and super calls tends to rely
on the self-recursion patterns, ie the order in which
self-recursive calls to methods of an object occur.
Self-recursion can be caused by self-references in
a class, in an object, or both. As such it is an
essential part of the object-oriented programming
paradigm. However, it becomes problematic when
self-recursion crosses boundaries of classes or, in
the case of delegation, boundaries of objects in a
parent /child relation.

If the inheriting code knows no more than the
interface definition of the base class, eg by relying
on the information specified using an Interface Def-



inition Language (TDT), then the inheriting code
must not rely on any self-recursion injected by the
base class  otherwise the base class could no longer
be evolved or replaced by an alternative implemen-
tation without risking to break client code. How-
ever, since object-oriented programming is state-
based, side effects in an object due to different
orders of self-recursive calls are observable. There-
fore, the programmer of a class can actually observe
the implementation of a class beyond its interface
and in fact is likely after some extensive debug-
ging to get things “right” to actually depend on
it.

However, current technology (and current TDTs)
do not allow for mechanical enforcement of a client
not relying on its base class implementation.
Strictly avoiding code inheritance is one possible
approach, followed for example in COM. Another
approach is admitting the strong coupling caused
by code carefully
and the
use of code inheritance. Tn Sather (Szyperski,
Omohundro and Murer [16]) this has been taken
to the point where subtyping can only be based
on fully ahstract classes (no implementation at

inheritance and therefore

separating the forming of subtypes

all) and where inheritance is indeed defined to be
equivalent to textual inclusion of source code. This
admits that code inheritance is a low-level concept,
and essentially reduces it to compiler-performed
editing operations.

To summarise, if code inheritance is used to
implement extensions for a given base system, the
resulting coupling of extension and base goes far
beyond using the base system’s interface. The un-
fortunate state of the art thus is to deliver class
libraries in source form, basically admitting that
the documentation and abstract interfaces are not
sufficient.

8.2 Granularity of Extensions

Tt should be noted that while the requirements
of independently extensible systems leave many
proven methods behind, these methods still have
their place, even within the area of extensible
An extensible system will always be
that
themselves are not extensible and hence can be

systems.
composed of smallest components atoms

developed using traditional approaches.

These atoms are closed subsystems of an exten-
sible system. The usefulness of traditional methods
for development of such atoms depends directly on
the size and complexity of the atoms. The size of
the atoms in turn affects the degree of extensibility
of the overall system. In the absense of a guiding
theory the choice of the right atom size remains a
difficult engineering problem.

8.3 Software Engineering Process

The software engineering process of extensible sys-
tems must be considered an unsolved problem. Tt
would seem that methods and processes for devel-
opment of object-oriented software would do bet-
ter. However, they suffer from the same fundamen-
tal problem: it is assumed that analysis and design
can succeed in enumerating the requirements and
working out the details. With extensible systems
this is questionable.

Tt has been acknowledged that frameworks can-
not be developed using a standard process and that
instead a spiral model is required that takes feed-
back from actual use of the framework into ac-
count. Object-oriented frameworks are an impor-
tant technology for building extensible systems, but
the requirement of independent extensibility adds
further problems and increases the burden on the
engineering process.

In a market of software components it would
seem that traditional processes are at least able to
support the development of individual components
since those are integrated before delivery. Tt is un-
known to what extend this is true; for this approach
of “understood engineering in the small” to work,
the requirement that a component has to extend its
base system in a proper way needs to be formalised.

9 Conclusions

The emergence of a true software component indus-
try is promising indeed. However, the unavoidable
mine field of independent extensibility has to be
tackled. An informal treatment of the principles
and challenges of extensible systems is presented
in this paper. Based on the inspection of many
established software engineering methods and tech-
niques, down to actual programming languages, it
can be concluded that major revisions of our ap-
proaches and tools of our trade are required. How-
ever, at the same time it should be noted that
the established methods have their validity when
constructing individual extensions that themselves
are not supposed to be extensible.

The main contribution of this paper is to
actually point at an emerging and important
problem, showing that there is no easy way out,
and that many traditionally approaches need to
be rethought. The proposed solutions are a mere
beginning, much remains to be done. A formal
theory of independently extensible systems, their
requirements, and their precise potential is still
missing.
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