
Independently Extensible Systems|Software Engineering Potential and Challenges|Clemens SzyperskiSchool of Computing ScienceQueensland University of TechnologyBrisbane, Australiac.szyperski@qut.edu.auAbstractComponent-based software, open systems, anddocument-based user interfaces are about torevolutionise most areas traditionally addressedby the software engineer. We claim that manytraditional software engineering methods, fromlife-cycle models to programming languages tosystem architectures are at least insu�cient whenfacing the new trends. In this paper we presentthe main points of criticism and state a fewunavoidable facts of life: extensible systems arein principle modular, have no �nal form or �nalintegration phase, cannot be subjected to �nal totalanalysis, cannot be exhaustively tested, and haveto allow for mutual independence of extensionproviders. We also hint at possible solutionsfor part of the problem set. In particular, weinvestigate the problem of dependence on globalanalysis, the e�ects of Cartesian Products in thedesign space, and the resulting design constraintson programming languages as the exemplary andmost important tool of the software engineer. Therelevance of the observations will be underlinedby several examples drawn from contemporaryprogramming languages and methods that got itwrong.Keywords Independent Extensibility, Carte-sian Products, Global Analysis, Component-Orientation.1 IntroductionA wave of new software technology is about to takeover: component-based software executing in opensystems. The promise is exciting: on the grounds ofthe very general document-based paradigm, userssee the services provided as being directly repre-sented as document parts. Document parts in turnare supported by software components, and thereis no need for a user to even own components thatsupport document parts that are never needed.Proceedings of the 19th Australasian ComputerScience Conference, Melbourne, Australia, Jan-uary 31{February 2, 1996.

On the other hand, since documents form thebasis of information interchange, a document-basedsystem has to expect that another user's documentdoes contain parts that require support from ad-ditional components. These are components thateither need to be retrieved and integrated into therunning system, or that need to be compensatedfor in case of their unavailability.Traditional systems catered for needs of exten-sibility by admitting the addition of new applica-tions. Currently, we can observe a strong trendin the industry to move towards extensibility at amuch �ner level of granularity. Instead of addingapplications, there is a desire to add small com-ponents that work together to replace the notionof isolated applications. The leading examples areMicrosoft's OLE 2.0 [1] (Object Linking and Em-bedding) and Component Integration Laboratory'sOpenDoc. The underlying component models areMicrosoft's COM (Compound Object Model) andIBM's SOM (System Object Model).It can be expected that this trend will continueto grow in strength and over time replace most ofthe traditional application technology. This willhappen fastest on client computers running o�-the-shelf code with intensive use of graphical user in-terfaces. It will be followed by customised clientsoftware, and server-based software will be last.This is a natural evolution and correlates well withthe policy found in many industrial organisationsto consider client software to be far less long-livedor stable than server software (server data bases inparticular).The trend towards a software component in-dustry will have many advantages. Componentmanufacturers can concentrate their e�orts on theirlocal strengths and users can expect a much richersoftware space. Component integration and con-�guration will spawn an entire industry of its own,replacing today's o�-the-shelf monster packages byo�-the-shelf standard con�gurations that will stillbe open to �ne tuning by the more demandinguser. In any case, it can be expected that timesare over for \featurism"; there will no longer bea point in constructing a single component that



can do it all. Reduction of the feature space towhat is really needed by the individual user will re-duce training costs and improve productivity. How-ever, a good handle on the requirements for makingsystems truly extensible is required to ful�ll thepromise of component software.The remainder of the paper is organised as fol-lows. In the next section the essential ingredientsof extensible systems are investigated. As it turnsout, object-oriented programming is almost ideal tosupport extensible programming, but { as outlinedin Section 3 { it is not su�cient, leading to thede�nition of the more speci�c notion of extensi-bly object-oriented in Section 4. The particularlyimportant generic problems of global analysis andCartesian products are introduced in Sections 4and 5, respectively. Section 6 covers a wide range ofestablished approaches that have problems in con-junction with extensibility. Section 7 presents twoparticular solutions and hints at open problems.2 The Essential IngredientsA system that allows for components to be pluggedinto the running system when needed is called ex-tensible. This is not a technical de�nition and itis not likely that on this general ground such ade�nition could be provided. Nevertheless, let ustry and challenge the de�nition: what does ex-tensibility really mean? After all, even assemblyprograms are extensible; in a sense even better sothan anything else! Also, extending an operatingsystem by loading an application is quite an oldachievement. Hence, on the one hand, if arbitrarycode manipulations are allowed, arbitrary exten-sions are easy. On the other hand, if extensions arelimited to a single level using a �xed interface (OSextended by applications) and a restricted model ofextension interaction (applications operate on OS-provided �les that are managed by the user), thingsare also easy, or at least well understood.A more precise de�nition of extensibility has totake the interaction of mutually independent exten-sions into account. We call a system independentlyextensible, if it can cope with the late additionof extensions without requiring a global integritycheck. (From now on, we only consider indepen-dent extensibility.) It is easy to see that this is auseful de�nition. Let us consider the case wherea base system gets extended by two di�erent ven-dors. Of course, a client expects that in most casesthe two individually purchased extensions would gotogether. Naturally, some independent extensionsmay exclude each other, for example by providingalternative solutions to the same problem. Such acon
ict and therefore the need to make a choicemust be obvious to the client however.The oldest extensible systems are operating sys-tems. Loading a new application extends the func-

tionality of the overall system, and yet there is noneed to check the combination of several concur-rently loaded applications and the operating sys-tem itself. Of course, in the real world there arestill many problems, mostly in terms of complex in-stallation and con�guration procedures. However,extending systems by adding new application to anoperating system works well.There are a few points that can be noted whenlooking at how an operating system achieves exten-sibility (of the overall system, not of itself):� There are units of extension.� The presence of one extension does not pre-clude or a�ect the availability of another ex-tension.� There is a polymorphic base.� There is a late linking mechanism.� There is a centralised and automatic manage-ment of resources.� There is an abstract interface to operating sys-tem services.In the case of (modern) operating systems extendedby applications, all these points hold. Applica-tions are the units of extension and there can bemany applications in use at once. Operating sys-tems provide at least a simple polymorphic base bymeans of untyped �le systems and untyped pro-cess identi�ers|all applications share this commonbase despite their varying nature. Late linkingof extensions is performed by the loader, and theoperating system uses mechanisms like cleanup onprocess termination to provide a centralised andautomatic management of resources.These points are quite general and we claimthey form the minimal basis, ie the \essential in-gredients", of any extensible system.3 OOP gets close : : :The dream of a software component industryis old and so far has largely remained a dream.Object-oriented programming promises to be afoundation technology for a component industry.Nevertheless, pure object-oriented programmingis not enough. (Recall a recent BYTE covertitle ComponentWare|Object-oriented computinghas failed. But component software [: : : ] issucceeding. [17])The claim that object-oriented computing hasfailed is overdoing the point. Nevertheless, a fun-damental problem is the often mistaken emphasison software reuse. The e�ective reuse of source



code in a class hierarchy1 can increase productivitywhen controlled carefully. However, source codereuse across small project groups is less productiveand reuse across organisations can even be fatal.Current technology allows to describe interfaces, egusing an Interface De�nition Language (IDL), butnot the intricate self-recursion patterns2 injectedinto code inheriting from another class. As a re-sult, the inherited code itself is the only completedocumentation.With current technology, it is impossibleto fully document classes that are used toinherit code from. This is admitted by classlibrary vendors by routinely passing on to theirclients the source of their libraries. However,if the class implementation is its only completedocumentation, then the decoupling of clients andproviders via a clearly de�ned interface has failed.In particular, evolution of class libraries easilyleads to disaster. \Programming by contract",designed to lift interfaces beyond signatures byadding pre- and post-conditions, would help ifit could fully cover the self-recursion patterns.However, with current technology this is not thecase.At this point it is useful to step back and havea second look at the idea of component softwareand compare it to well established component in-dustries in other engineering disciplines. Code in-heritance from class libraries is similar to copy andpaste applied to blueprints. This is not the wayhow component industries work! While componentproviders do rely on reuse of blueprints internally,they rarely sell their designs. Instead they sell com-ponents. In other words, it is objects not classesthat get sold. However, for components from dif-ferent vendors to interact nicely, there needs tobe standards. These standards state the generalinterfaces for the speci�c components to comply to.A standard is a type not a class.Besides code inheritance, object-oriented pro-gramming introduces dynamic polymorphism (in-clusion polymorphism, subtyping), i.e. the capa-bility of a typed variable to reference objects ofthat type or a subtype thereof. This is one of themost important concepts|perhaps the most im-portant one|found in object-oriented languages.(Note that languages like Smalltalk do not haveexplicit types. Nevertheless, Smalltalk is fully poly-morphic: any variable can hold references to allpossible objects.)Traditional coding practice copes with variantsby using explicit case analysis. Obviously, this is1Object-oriented programming either relies on code in-heritance or on delegation to build new objects out of oldones that are \close" to what is required of the new ones.For this discussion it is irrelevant whether code inheritanceor delegation is used.2See Section 8.1 for a brief explanation of self-recursion.

not extensible. Adding new variants later requiresupgrading all points in the system that analysecases. Dynamic polymorphism is simply requiredto solve this problem in a reasonable way. In a poly-morphic program, the more speci�c can be substi-tuted for the more general. In turn, extensions canbe plugged in where only some general behaviouris expected.Clearly, the notion of subtyping as manifestin todays object-oriented languages is too weak.The concept of substitutability is not supportedexplicitly|programmer's can be encouraged tolimit subtyping to those cases that truly allow forsubstitution of the special for the general, but therequired behavioural compatibility is usually notenforceable. Recent research tries to close thisgap, eg Liskov and Wing [7].Another aspect is the granularity of extensions.An extension almost always comprises more thana single object. Usually, an extension adds a sub-system. Proper language support for modules andsubsystems can be very helpful to resolve con�gura-tion problems. One of the most important aspectsis isolation or encapsulation of an entire subunitso that interference with other units from othervendors can be controlled statically, i.e. withoutinspecting the actual merger.While most traditional languages fail to sup-port dynamic polymorphism, many of the object-oriented languages fail to support static encapsu-lation of units that comprise of several classes andobjects. Since classes are not the units of extension,the latter languages fail to provide any semanticalguarantee for coherence of the actual units of ex-tension that need to be gathered with extra-lingualmeans.Finally, and most subtle, extensibility on thebase of �ne-grained components leads to the in-teraction between components on the level of refer-ences to individual objects. In an extensible systemthere is no way for an individual component toknow when an object can be released again. Thereis no way around it: to be extensible, a systemneeds to support garbage collection and a languageshould not support explicit deallocation of objectsbelonging to a foreign component (or, even better,fully rely on garbage collection). (COM and tosome extend SOM use reference counting undercontrol of the programmer to get around this|this approach is not safe; simple mistakes can leadto the known problems with dangling references ormemory leaks.3)3An additional problem of reference counting is that itcannot cope with cyclic references: Two components mu-tually referring to each other mutually keep their referencecounts above zero, although no other component might stillbe referring to any of the two. Resolving cyclic referencecon
icts is fully left to the programmer.



4 Extensible Object-Orientation &The Global Analysis ProblemThe de�nition of \object-oriented" given by Weg-ner [18] does neither prevent nor enforce the con-struction of extensible systems4. Extensibility isa separate design dimension that needs to be con-sidered carefully, leading to the term of Extensi-ble Object-Orientation or EOO for short, Szyper-ski [15, 13].The one added requirement for a system to beEOO should be obvious by now: the system needsto be extensible in multiple dimensions withoutextensions interfering with each other. However,this requirement is di�cult to reduce to a hardtechnical de�nition.Surprisingly, there is a simple necessary (butnot su�cient) condition: to enable EOO, the de-sign and implementation languages must be sepa-rately compilable in principle. This does not pre-clude the use of global analysis or run-time com-pilation to improve performance. However, it doesrequire a language5 to provide for units of separatecompilation that can be used to check the system inincrements. The key requirement is that a checkedand unmodi�ed unit shall under no circumstancebe invalidated merely by adding another unit tothe system.An extensible system is never complete. Meth-ods that require inspection of all parts6 of a sys-tem, ie global analysis, cannot be applied to in-dependently extensible systems. Section 6 belowpresents a series of examples of such methods re-quiring global analysis.In an extensible system, interfaces gain adominant rôle. In traditional systems an interfacehides the implementation and thus separatesclients from the implementation of the provider.However, the interface and its implementationusually correspond one-to-one for a given system.In an extensible system, the interface may actuallybe implemented by a number of providers, andsome of these implementations may only becomeavailable while the system is already running.Thus, interfaces between units of extensionin an extensible system are fully distinct fromboth, the interface provider and the interfaceclient. Interfaces exist in their own right andcannot be fully reconstructed by inspecting anyone particular provider.In consequence, interfaces are a strong barrierfor analysis aiming at system correctness. In princi-4Wegner's de�nition essentially requires the notions ofobjects, classes of objects sharing a common implementa-tion, and inheritance relations between classes (traditionalcode inheritance) or objects (delegation).5In a multi-lingual environment, all languages need to beconsidered that cross individual components.6More precisely: all parts falling into a certain category,such as all types.

ple, a system could perform certain global analysesat run-time once a binding of client and providerhas been established. Relying on such late globalanalysis to verify correctness properties is equiv-alent to dynamic type checking|the detection oferrors is likely to occur too late. Since the �nalintegration of components in an extensible systemis left to the customer, errors caused by assump-tions based on global properties that cannot bestatically enforced are likely to occur after product(ie component) delivery.As noted above, a particular implementationstrategy may still perform late global analysis toimprove overall performance or resource utilisation.All extensible systems have to face the designand implementation problem of limited scopes ofanalysis. A possible solution will be presented inSection 7.2. Before that, let us have a look at asecond major problem.5 The Cartesian Product ProblemDespite the general setting, there is a key problemthat a designer of an extensible system must face:the avoidance of Cartesian products of individuallyextensible aspects of the system7. It is surprisingthat hunting for this single phenomenon turns outto catch many (not all) technical obstacles prevent-ing independent extensibility.For example, consider a text editor that canbe extended by installing di�erent text models, iedi�erent implementations of the text abstraction.Let us assume that the text abstraction merelyconsists of the following operations:� new : ! Text� append : Text � Text ! Text� write: Text � Character ! Text� read : Text � Position ! Character [ EOTThe nullary operation new creates a new emptytext. The append operation takes two texts andreturns the �rst modi�ed to have the second ap-pended. The write operation writes a characterto the end of a text. Finally, read returns thecharacter in a text at a given position8, or a specialEnd-Of-Text symbol.Obviously, there is no problem when using onlyone implementation of texts. However, as soon asthe system enables the installation of several textimplementations to coexist, some problems occur.7A Cartesian product of n sets is the set of n-tuplesrepresenting all possible combinations of the elements of thegiven sets. A Cartesian product can be depictedas a discreten-dimensional space of points.8We assume some indexing scheme, the details are of norelevance.



The new operation needs to know which imple-mentation to use when creating a new text. Also,append poses a tricky problem. How can a textfragment be extracted from one text and appendedto another if the implementation of the two mayvary, and in fact, if the list of possible text imple-mentations is open?The new problem can be solved by providinga con�guration mechanism that allows clients toindirectly call one of the implementation-speci�cnew operations. A typical approach is the use offactory or directory objects, Szyperski [15].The append problem remains. Indeed, thetwo separately extensible argument types ofappend span a Cartesian product. As depicted inFigure 1, a complete implementation of appendwould need to consider the entire matrix ofpairs of two text objects, each from a possiblyseparate implementation. It is reasonable toassume that all extensions know their base typeand that all extensions support a homogeneousoperation|these are the cases marked \�" inthe �gure. However, it is not reasonable that anextension knows about all other extensions|thecorresponding heterogeneous non-base cases aremarked \?" in the �gure. Generally, all pairs(Ti; Tj); i > 0; j > 0; i 6= j fall into the lattercategory.
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1 2Figure 1: Cartesian product created by independentextensions. The �gure shows the combinations oftypes that need to be considered when implementinga binary operation over objects of extensible type.The Ti(i > 0) are independent extensions of acommon base type T0. Note that any number ofsuch extensions may exist. Then, the CartesianProduct Problem is that no one can be expected toprovide an implementation for a binary operationthat speci�cally caters for all heterogeneous non-base cases, marked \?" in the �gure.For a closed system9, there are a numberof ways to approach Cartesian products. The9Some authors, such as Cardelli [2], distinguish closedand sealed systems, where a closed system can still beextended but only by explicit declaration, while a sealedsystem cannot be extended anymore. Within this paperthis distinction is not made and closed systems are alreadyconsidered non-extensible.

simplest is an explicitly programmed nestedcase analysis. To avoid some of the maintenanceproblems, one could use more advanced approachessuch as operator overloading as in Ada [10] ormultiple dispatch methods (\generic functions")as in CLOS, DeMichiel and Gabriel [6]. However,all these approaches rely on someone inspectingthe entire space of combinations, ie the Cartesianproduct, and deciding how to deal with eachindividual case. In the case of an extensiblesystem with an unbounded number of potentialalternatives, this is not feasible. Along similarlines, many other traditional approaches breakdown when considering extensible systems (cfSection 6 below).In an extensible system it is unavoidable to facethe problem: bridging the gap of incompatibilitybetween two independent and mutually unawareextensions. In the next section we will examinea series of approaches that all are in danger ofcolliding with either the Global Analysis Problemor the Cartesian Product Problem. (Note that theCartesian Product Problem can be seen as a specialcase of the Global Analysis Problem. However,since Cartesian products are such a common phe-nomenon, a separate treatment seems appropriate.)6 Endangered SpeciesWith the goal of extensibility and the pitfall ofCartesian products in mind, let us now examine awide range of established approaches from di�erentareas of software engineering.Simple Life-Cycle Models. The idea of start-ing with a speci�cation and ending with a prod-uct has to be rethought. An extensible systemcan never be fully speci�ed|the challenge is quitethe opposite: to leave open as much as possible.The known problems with the design of frameworksindicate that traditional engineering models fail:many tedious revisions are required to extract auseful common ground, a framework, out of a moreor less unrelated (and necessarily incomplete!) setof cases. The currently emerging design a little,code a little, test a little approach follows the samedirection. However, it has the major drawback ofnot emphasising design in the large. Also, as men-tioned before, the life-cycle phases of integrationand testing need to be re-thought, as �nal inte-gration now takes place after delivery|too late toallow for testing and therefore excluding traditionalintegration testing beyond individual components.Type Systems. In general, one of the most valu-able tools of the software engineer are well-craftedtype systems and as such they are not \endangeredspecies". Type Systems can be used to captureimportant parts of the speci�cation in a way thatenables automatic checking. However, several ofthe more advanced approaches in type systems fail



to support extensible systems. Some of the prob-lematic approaches are detailed below. Work onexistential quanti�cation to capture abstract typesis promising, though (cf Section 7.1).Non-local Type Inferencing. For a closed (non-extensible) program it is possible and under cer-tain conditions even practically useful to perform aglobal analysis to reconstruct type information, orto reject a program if such a reconstruction fails. Inan extensible system type inferencing has to stop atextension interfaces: these necessarily exist beforetheir implementations and the full set of di�erentimplementations of the same interface will neverbe available. Hence, relying on type inferencing toestablish aspects of global correctness for a partic-ular composition of components does not work wellfor extensible systems. In particular, it needs to beapplied at system integration time, ie at run-time,and therefore would report errors to the end-userrather than the developer.Covariant Subtyping and System-level TypeChecking. A particular approach called \system-level type checking", following along the linesof system-wide type inferencing, has been usedto \�x" the language Ei�el, Meyer [8]. In theoriginal speci�cation, the language could expresstype-unsafe programs10, Cook [5]. The problemis quite simple to explain: assume an operationlike the above de�ned append. Ei�el allows suchan operation to be expressed as a method of onetext, ie the �rst Text-typed parameter becomesthe receiver of the method. Additionally, thesecond Text-typed parameter can be an argumentof the method and be declared to have type LIKECURRENT. This is called covariant subtyping: thereceiver and one of its method arguments areco-subtyped.To further investigate the problem of covariantsubtyping, consider a class B that forms a subtypeof a class A. If an argument of a method in Bthat is also present in A can be forced to be of asubtype of that de�ned in A, then this argument iscovariantly subtyped. This is type-unsafe. To seewhy, consider a client that knows nothing aboutB, but relies on the de�nition of A. Such a clientcould call an object of class B via the interfacede�ned for A, since B is a subtype of A. If theclient passes an argument of the type speci�ed forA's method argument, rather than of the subtyperequired in B, then the code in B's method is likelyto break. There are two known ways around thisproblem: (a) forbid covariant (or any) subtyping ofarguments|this is the case in most OO languages;10A construction is type-unsafe when type checking es-tablishes an assertion that a certain variable is of certaintype and this assertion turns out to be wrong for certainexecution runs. When compiler and run-time essentially relyon such a type assertion, its failure can lead to severe andarbitrary program malfunctioning.

(b) apply system-level type checking. The idea ofsystem-level type checking is to use a conservativecheck at the �nal system integration time to makesure that, although type-unsafe, the actual pro-gram can never reach a state in which the problempops up. As should be obvious by now, system-leveltype checking is incompatible with extensibility: itis based on a global analysis of the �nal system.Incremental Program Validation. It has beenproposed to use incremental program validation todeal with extensions, Wills [19]. This is obviouslythe right way to go. Unfortunately, the same pro-posal presents a way of \vertical extensions" (calledcapsules) where an extension is allowed to modifyevery part of the extended system. This neatlycaptures the standard approach of Smalltalk devel-opment, but ignores the problem of recombiningtwo separately extended systems.Multi-Methods. The Cartesian product prob-lem is actually quite common. Probably the old-est example are arithmetic expressions over a widerange of algebraic structures with various de�nedhomomorphisms. Since the times of Algol this hasbeen dealt with by using various forms of operatoroverloading: multiplication of two integers is ex-pressed using the same operator symbol as is usedfor multiplication of two reals, an integer and a real,etc.In languages that treat all abstractions asclasses and therefore all entities as objects, thisbecomes rather more involved. DeMichiel andGabriel [6] introduced multi-methods to addressthis problem. In Cecil, Chambers [3] appliesmulti-methods to object-oriented programming.A multi-method gets dispatched on multiplearguments: the actual type of more than oneargument is inspected to select the methodimplementation that is supposed to handle thespeci�c argument combination at hand. Of course,this is just elegant sugar for an explicit coding ofa Cartesian product. Hence, parts of systems thatrely on multi-methods are not extensible.7 Some Solutions7.1 Existentially Quanti�ed TypesThe notion of extensibility is strongly related tothe ideas of abstract types and abstract subtypes.Whenever an interface requires extensions to han-dle two abstract types (with possible abstract sub-types) at the same time, the Cartesian Productproblem occurs.As described by Mitchell and Plotkin [9], ab-stract types can be modelled accurately using exis-tential quanti�cation. An interesting consequenceof this approach is that interfaces requiring oper-ations based on two or more abstract types forman abstract type that itself cannot be implemented.



For a good explanation in relation to programminglanguages, see Cardelli [2].While not solving the problems of CartesianProducts in interfaces, the use of existentiallyquanti�ed types helps to prevent in the �rst placethe design of interfaces that would be subject tothe problem.7.2 Units of AnalysisModules. The simplest approach to attack theglobal analysis problem is the use of a staticsubdivision of programs into atomic units ofanalysis and extension, ie units providing acon�ned context of analysis for the enclosedprogram parts.A particularly useful language feature to doso|although by no means new|are modules.Unfortunately, modules got mixed up with classesand as a result are missing in many current object-oriented languages, cf Szyperski [14]. A module isa natural unit of separate compilation (in the senseof static checking), as it can|and should|containall parts of a system that are interrelated in a waythat prevents separate checking of these parts.Modules can and should form the minimal units ofextension in a system. Of course, it is quite likelythat modules again are clustered into higher-orderbuilding blocks, such as subsystems. Still, theyremain the atoms of replacement and extension.(As an aside, modules and possibly subsystemsalso help to tidy up name spaces, an importantaspect when considering extensibility.)Modula-2's modules (Wirth [20]) or Ada's pack-ages can well serve this purpose. Oberon (Reiserand Wirth [12]) restricts the module system to asimple 
at module space. This is clearly along thelines of providing atoms instead of nested struc-tures with partially static interconnections, as wasthe case with nested modules in Modula-2 or nestedpackages in Ada. Ada95 adds module hierarchiesin the form of parent and child packages, where achild package can be public or private to its parentpackage, without being textually nested.A simple design guide line is to put allthose things together into one module that needcoupling beyond mutually known interfaces. Suchstrong coupling usually takes the form of partialimplementations encapsulated by a module,embodying and enforcing semantics beyond whatcould possibly be stated by a typed interface.This approach has been followed successfully toconstruct the extensible object-oriented operatingsystem Ethos, Szyperski [15], and the commercialframework Oberon/F [11]. Clearly, more work isneeded to provide more detailed guide lines andto fully explore the potential of module constructsfor building extensible systems.

Resolving Modules. The initial design of Cecilmade the design of extensible systems quite impos-sible unless multi-methodswere, by convention, notused or restricted to single dispatch, ie traditionalOO methods. This problem has been acknowledgedin the meantime and a recent enhancement to Cecilintroduced the notion of resolving modules, Cham-bers and Leavens [4]. A resolving module is essen-tially the top of a group of code units that togetherprovide the de�nition of a multi-method. No unitoutside the static scope of the resolving modulecan contribute further to the multi-methods com-binatorial space|the Cartesian product is closedo� and the number of combinations gets bounded.Therefore, a Cecil system can statically verify thatfor each multi-method (a) a resolving module existsand b) all combinations of the Cartesian productare handled by the combined de�nition of the re-spective multi-method.Closed Subsystems. Adding a resolving moduleto a subsystem closes o� that subsystem with re-spect to a multi-method. In other words, that sub-system is not extensible with respect to the closedmulti-method, while other parts of the system thatdo not rely on multi-methods can remain open andextensible. In particular, the later addition of anew subsystem with its own new and fully enclosedmulti-methods remains possible.7.3 Bottleneck InterfacesThe Cartesian Product Problem essentially statesthat there cannot be a reasonable providerfor speci�c operations over combinations ofindependent extensions. Sometimes such\adaptors" are unavoidable: typical examplesare separately emerging coexisting \industrystandards" that force many clients to use specialcross-standard adaptors. For a strictly limited andsmall number of coexisting standards this worksand creates a new industry selling adaptors. If thenumber of alternatives is too large or alternativesare too far apart, the approach breaks down andthe common result are technology islands.For extensible systems, the Cartesian ProductProblem is omnipresent and needs to be dealt withexplicitly. A standard approach to do so is the con-struction of a bottleneck interface, Szyperski [15].Instead of trying to handle each and every combina-tion individually, all cases are reduced to two sep-arate mappings provided by the extensions them-selves.Following the Text example above (Section 5),the two mappings, called down and up, would takethe form|� down: Text! T0� up: T0 ! Text



Text stands for any text type that is identicalto or a subtype of T0, and T0 therefore is the basetype of all texts.Figure 2 illustrates the use of the common bot-tleneck interface mapping to operate across oth-erwise fully independent extensions, in the exam-ple by appending texts of independently extendedtype. Operation append takes two arbitrary textsconforming to the minimal interface for texts (typeT0) and returns the �rst text modi�ed by append-ing the second one. In the �gure, texts t1 and t2are assumed to be of mutually incompatible typesT1 and T2, respectively11. Both, T1 and T2 aresubtypes of T0, though. Hence the bottleneck map-pings down: T2 ! T0 and up: T0 ! T1 can beapplied to reduce the problem to a homogeneousappend: T1 � T1 ! T1. (As an aside: the requiredcovariant typing of the return value of append issafe.) In the �gure, the intermediate text resultingfrom mapping t2 to type T0 is t2 # T0; likewise thatof mapping up to T1 is denoted (t2 # T0) " T1.
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2t’ : T11 (t’   T )   T0 1Figure 2: Using commonly accepted down and upmappings to interconnect arbitrary independent ex-tensions. The �gure uses the example of operationappend on texts of independently extended type bymapping one of the texts �rst to a common basetype (down) and then to the type of the other text(up). As a result, a homogeneous append operationdealing with only one type of text can be used.Recall the de�nitions for an abstract text pre-sented in Section 2 above: down is simply a re-peated application of read over increasing indicesand up is simply a repeated application of write.Hence, in this example, there is no need to add anynew operations.With down and up available, it is possible toimplement append fully generically, that is withoutknowing any of the possible implementations oftexts. Of course, a provider of a new text imple-mentation may take advantage of known other im-plementations by specialising append in these cases.Note that there is no need to use multi-methods forthis: the approach is necessarily intertwined witha single fully accessible implementation, that is the11As usual with updating operations, the objects passedto the operation are primed (eg t01) to distinguish them fromthe modi�ed objects returned by the operation.

new extension. Hence a traditional method inter-face for append would do and the implementation ofappend can explicitly check for the (hopefully few)special cases.A generic use of the bottleneck interface can-not cope with re�ned attributes added by exten-sions that have not been thought of when design-ing the bottleneck interface. In the text examplethis might be font attributes attached to runs ofcharacters. The generic append would drop suchattributes and if the target text had such attributesit would have to provide some default setting. Ingeneral, this problem is unavoidable.In the special case of cooperating with a knownother extension, specialisation can again be usedto improve the situation. As outlined above, aspecialised append would at least preserve font at-tributes when source and target text are of thesame type, but possibly also when the other text isknown to support font attributes and it is knownhow these attributes can be converted into the localrepresentation.Finally, it should be noted that bottleneckinterfaces can also be used when extensionsare formed recursively, that is when extensionsthemselves form the basis for further extensions.Care must be taken not to confuse the bottleneckinterfaces corresponding to the di�erent levels ofextension|chosing the wrong down operation willlead to a too primitive base type and thus toomuch information may be destroyed.8 Open Problems and Future Work8.1 Unrestricted Code InheritanceA problem that is wide open with current OOtechnology is the proper handling of self-recursionsde�ned in classes that other code inherits from.Self-recursion is fundamental to object-orientedprogramming and refers to the invocation offurther methods of the current object (\self") aspart of the implementation of one of its methods.When inheriting code from another class such callsto own methods are inherited as well. The coderesulting from the combination of inherited code,overridden methods, and super calls tends to relyon the self-recursion patterns, ie the order in whichself-recursive calls to methods of an object occur.Self-recursion can be caused by self-references ina class, in an object, or both. As such it is anessential part of the object-oriented programmingparadigm. However, it becomes problematic whenself-recursion crosses boundaries of classes or, inthe case of delegation, boundaries of objects in aparent/child relation.If the inheriting code knows no more than theinterface de�nition of the base class, eg by relyingon the information speci�ed using an Interface Def-



inition Language (IDL), then the inheriting codemust not rely on any self-recursion injected by thebase class|otherwise the base class could no longerbe evolved or replaced by an alternative implemen-tation without risking to break client code. How-ever, since object-oriented programming is state-based, side e�ects in an object due to di�erentorders of self-recursive calls are observable. There-fore, the programmer of a class can actually observethe implementation of a class beyond its interfaceand in fact is likely|after some extensive debug-ging to get things \right"|to actually depend onit. However, current technology (and current IDLs)do not allow for mechanical enforcement of a clientnot relying on its base class implementation.Strictly avoiding code inheritance is one possibleapproach, followed for example in COM. Anotherapproach is admitting the strong coupling causedby code inheritance and therefore carefullyseparating the forming of subtypes and theuse of code inheritance. In Sather (Szyperski,Omohundro and Murer [16]) this has been takento the point where subtyping can only be basedon fully abstract classes (no implementation atall) and where inheritance is indeed de�ned to beequivalent to textual inclusion of source code. Thisadmits that code inheritance is a low-level conceptand essentially reduces it to compiler-performedediting operations.To summarise, if code inheritance is used toimplement extensions for a given base system, theresulting coupling of extension and base goes farbeyond using the base system's interface. The un-fortunate state of the art thus is to deliver classlibraries in source form, basically admitting thatthe documentation and abstract interfaces are notsu�cient.8.2 Granularity of ExtensionsIt should be noted that while the requirementsof independently extensible systems leave manyproven methods behind, these methods still havetheir place, even within the area of extensiblesystems. An extensible system will always becomposed of smallest components|atoms|thatthemselves are not extensible and hence can bedeveloped using traditional approaches.These atoms are closed subsystems of an exten-sible system. The usefulness of traditional methodsfor development of such atoms depends directly onthe size and complexity of the atoms. The size ofthe atoms in turn a�ects the degree of extensibilityof the overall system. In the absense of a guidingtheory the choice of the right atom size remains adi�cult engineering problem.

8.3 Software Engineering ProcessThe software engineering process of extensible sys-tems must be considered an unsolved problem. Itwould seem that methods and processes for devel-opment of object-oriented software would do bet-ter. However, they su�er from the same fundamen-tal problem: it is assumed that analysis and designcan succeed in enumerating the requirements andworking out the details. With extensible systemsthis is questionable.It has been acknowledged that frameworks can-not be developed using a standard process and thatinstead a spiral model is required that takes feed-back from actual use of the framework into ac-count. Object-oriented frameworks are an impor-tant technology for building extensible systems, butthe requirement of independent extensibility addsfurther problems and increases the burden on theengineering process.In a market of software components it wouldseem that traditional processes are at least able tosupport the development of individual componentssince those are integrated before delivery. It is un-known to what extend this is true; for this approachof \understood engineering in the small" to work,the requirement that a component has to extend itsbase system in a proper way needs to be formalised.9 ConclusionsThe emergence of a true software component indus-try is promising indeed. However, the unavoidablemine �eld of independent extensibility has to betackled. An informal treatment of the principlesand challenges of extensible systems is presentedin this paper. Based on the inspection of manyestablished software engineering methods and tech-niques, down to actual programming languages, itcan be concluded that major revisions of our ap-proaches and tools of our trade are required. How-ever, at the same time it should be noted thatthe established methods have their validity whenconstructing individual extensions that themselvesare not supposed to be extensible.The main contribution of this paper is toactually point at an emerging and importantproblem, showing that there is no easy way out,and that many traditionally approaches need tobe rethought. The proposed solutions are a merebeginning, much remains to be done. A formaltheory of independently extensible systems, theirrequirements, and their precise potential is stillmissing.AcknowledgmentsThe anonymous reviewers provided many helpfulhints that helped to improve this paper. In partic-ular, one of the reviewers pointed at the relevance
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