
The Complexity and Viability ofDNA Computations(Extended draft)CTAG-97001Martyn Amos Alan Gibbons Paul E. DunneDepartment of Computer Science, University of Liverpool, L69 3BX, England

AbstractIn this paper we examine complexity issues in DNA computation. We believethat these issues are paramount in the search for so-called \killer applications",that is, applications of DNA computation that would establish the superiorityof this paradigm over others in particular domains. An assured future for DNAcomputation can only be established through the discovery of such applica-tions. We demonstrate that current measures of complexity fall short of reality.Consequently, we de�ne a more realistic model, a so-called strong model ofcomputation which provides better estimates of the resources required by DNAalgorithms. We also compare the complexities of published algorithms withinthis new model and the weaker, extant model which is commonly (often implic-itly) assumed.

1 IntroductionFollowing the inital promise and enthusiastic response to Adleman's seminalwork [1] in DNA computation, progress towards the realisation of worthwhilecomputations in the laboratory has become stalled. One reason for this is thatthe computational paradigm employed by Adleman, and generalised by thetheoretical work of others [13, 16], relies upon �ltering techniques to isolatesolutions to a problem from an exponentially sized initial solution of DNA. Thisvolume arises because all possible candidate solutions have to be encoded inthe initial solution. As Hartmanis points out in [12], the consequence is that,although laboratory computations should work for the smallest problem sizes,the experiments do not realistically scale because vast amounts of DNA arerequired to initiate computations with even modest problem size. For example,Hartmanis shows that a mass of DNA greater than that of the earth would berequired to solve a 200-city instance of the Hamiltonian Path Problem.If practitioners of DNA computation insist on this mode of computation,there can be no hope of discovering so-called killer applications, that is, applica-tions of DNA computation that would establish the superiority of this paradigmover others in particular domains. An assured future for DNA computation canonly be established through the discovery of such applications.It is not inherently the case that exponentially sized volumes of DNA needbe used in DNA computation. Indeed, polynomially sized computations havebeen (at least in theory) described (e.g., in [14]). Clearly, if exponentially sizedvolumes are to be avoided, then an alternative algorithmic paradigm to that em-ployed by Adleman in [1] is required. Such a successful paradigm is always likelyto emulate traditional computations which construct individual solutions ratherthan sift them out of a vast reservoir of candidates. It might still be arguedthat the \exponential-curse" could not, even then, be avoided for the so-calledNP -complete problems [9]. If an exact solution is required for any of these,then (employing any extant algorithm) exponential sequential running time isrequired. A DNA computation, in seeking to reduce this to sub-exponentialparallel running time, will certainly require an exponential volume of DNA.However, in general, no-one sensibly seeks exact solutions to the NP -completeproblems. In traditional computation, we either employ heuristics to obtainapproximate answers or use randomised methods to obtain exact solutions withhigh probability. These revised algorithmics lead to solutions within polynomialsequential time. Such a view should also be taken for these problems withinDNA computation, that is, we should use algorithms which do not inherentlyrequire exponential resources.It is unlikely to be enough, in the quest for killer applications, to simplyhave polynomial-volumed computations. We ought, at the same time, to ensurethat the vast potential for parallelism is employed to obtain rapid computa-tions. The view taken by the silicon-based parallel computing community [10]is that e�cient parallel algorithms, within the so-called Parallel Random Access1

Machine (P-RAM) model of computation, should have polylogarithmic runningtime (and use a polynomial number of processors). Problems for which suchsolutions exist de�ne the complexity class NC. If DNA computation is to com-pete within this domain, then we should clearly also look for polylogarithmicrunning times within polynomially-volumed computations.At the present time, no-one has described (even theoretically) DNA compu-tations which run in polylogarithmic time using a polynomial volume of DNA.The discovery of such solutions might well provide candidates for \killer appli-cations". Regardless of the problem considered, it is unlikely to provide a \killerapplication" unless the computational resources required for a DNA computa-tion (the product of the running time and volume of DNA required) match thoseneeded for a conventional computation (the product of the running time andthe number of processors used). For such a combination of resources, the DNAcomputation might well provide feasible solutions for problem sizes far greaterthan can be achieved by conventional computation.It is clearly crucial, especially when judging the candidacy of a proposedDNA computation for the role of \killer application", to have a �rm grasp ofthe computational resources that it requires. In this paper we review claims thathave been made concerning the complexity of DNA algorithms. We concludethat these claims are often unrealistic, or simply not true. It also the case thatthere is not an agreed model of computation in the literature within which wemay agree what the required resources are for any particular computation. Thispaper attempts to address these issues in a realistic way.Traditional computational complexity theory [2, 9] is concerned with quan-tifying the resources (generally time and space) needed to solve computationalproblems. Meaningful analysis of the complexity of algorithms may only takeplace in the context of an agreed model of computation, or machine model.Many di�erent machine models have been proposed in the past, including theDeterministic Turing Machine, Boolean circuit [6, 11] and P-RAM [8, 10]. Thenascent �eld of DNA computing also su�ers from the problem of proliferationof machine models. Several models have been proposed, within which we mayconstruct algorithms for the solution of computational problems. However, com-plexity analyses of algorithms within di�erent models of DNA computation aremeaningless, since there are no uniform de�nitions of the concepts of time andspace. Furthermore, if we are to compare a DNA-based model with a more tra-ditional machine model, we require a way of demonstrating equivalence betweenthe two.In this paper we analyse the complexities of algorithms within a commonlyemployed model of DNA computation. We argue that this model, which wecall the weak model, is actually inadequate from the point of view of obtainingrealistic complexity results. This leads us to de�ne a new strong model withinwhich we reassess some claims that have been made concerning complexity ofcomputations. 2

The paper is organised as follows. In Section 2 we recall the weak modelof DNA computation �rst explicitly described in [4] although not so namedthere. We explain the shortcomings of this model and introduce the strongmodel, allowing us to make meaningful comparisons between DNA-based andmore traditional models of DNA computation. In Section 3 we compare timecomplexities of extant algorithms within both the weak and strong models. InSection 4 we discuss the complexity of one extant Turing-complete model ofDNA computation in the context of the strong model. In Section 5 we reviewthe current search for the \killer application"; the one application that willestablish a niche for DNA-based models of computation. We argue that thebasis for such a quest is awed, and suggest a potentially more fruitful line ofenquiry in the light of the strong model.2 Weak and strong modelsAttempts have been made to characterise DNA computations using traditionalmeasures of complexity, such as time and space. Such attempts, however, aremisleading due to the nature of the laboratory implementation of the compu-tation. We �rst examine these algorithms from a time complexity standpoint.Most extant models quantify the time complexity of DNA-based algorithms bycounting the number of \biological steps" required to solve the given problem.Such steps include the creation of an initial library of strands, separation ofsubsets of strands, sorting strands on length, chopping and ligating strands.Within these models, operations such as those described above are con-sidered to be atomic actions performed in constant time. This assumption ispatently false. In this section we rigorously de�ne the time complexity of vari-ous laboratory operations, so that an accurate assessment of various DNA-basedalgorithms may be made.2.1 The weak modelHere we recall [4] the basic legal operations on sets within what we now refer toas the weak model. The operation set described here is constrained by biologicalfeasibility, but all operations are currently realisable with current technology.� remove(U; fSig). This operation removes from the tube U , in parallel,any string which contains at least one occurrence of any of the substringsSi.� union(fUig; U). This operation, in parallel, creates the tube U which isthe set union of the tubes Ui.� copy(U; fUig). In parallel, this operation produces a number of copies, Ui,of the tube U . 3

� select(U). This operation selects an element of U uniformly at random,if U is the empty set then empty is returned.From the point of view of establishing the parallel time complexities of al-gorithms within the model, these basic operations are assumed to take constanttime. This assumption has been commonly made by many authors in the liter-ature [4, 13, 14]. However, these operations are frequently implemented in sucha way that it is di�cult to sustain this claim. For example, the union operationconsists of pouring a number of tubes into a single tube, and this number isusually, in some way, problem size dependent. Assuming that in general wehave a single laboratory assistant, this implies that such operations run in timeproportional to the problem size.Obviously, in the general case, a single laboratory assistant may not pourn tubes into one tube in parallel, nor may s/he split the contents of one tubeinto n tubes in parallel. This observation, if we are to be realistic in measuringthe complexity of DNA computations, requires us to introduce the followingconstant time atomic operation:� pour(U;U 0). This operation creates a new tube, U , which is the set unionof the tubes U and U 0.As we have observed, the pour operation is a fundamental component ofall compund operations. It therefore follows that more realistic analyses of thetime complexities of algorithms may be obtained by taking this operation intoconsideration.2.2 The strong modelIn what follows we re�ne the weak model just described. We assume that theinitial tube (which takes at most linear time to construct) is already set up.The pour operation is fundamental to all compound operations within ourweak model. We must therefore reassess the time complexity of these operations.The remove operation requires the addition to U of1. i tubes containing primers, and2. A tube containing restriction enzymesThis operation is inherently sequential, since there must be a pause betweensteps 1 and 2 in order to allow the primers to anneal correctly. Therefore, theremove operation takes O(i) time. Creating the union of i tubes is an inherentlysequential operation, since the technician must �rst pour U1 into U , then U2,and so on, up to Ui. Rather than taking constant time, the union operationactually takes O(i) time. It is clear that the copy operation may be thought ofas a reverse-union operation, since the contents of a single tube U are split intomany tubes, fUig. Therefore, copy takes O(i) time.4

3 Complexity comparisons in the weak and strong mod-elsIn this section we compare time complexities for algorithms previously described[4] within both the weak and strong models. In particular, we examine in detailthe problem of generating a set of permutations. This will characterise thegeneral form of comparisons that can be made, so that in the space availablewe merely tabulate comparisons for other algorithms.� Problem: PermutationsGenerate the set Pn of all permutations of the integers f1; 2; : : : ; ng.� Solution� Input: The input set U consists of all strings of the form p1i1p2i2 : : : pninwhere, for all j, pj uniquely encodes \positio n j" and each ij is inf1; 2; : : : ; ng. Thus each string consists of n integers with (possibly)many occurences of the same integer.� Algorithmfor j = 1 to n dobegincopy(U; fU1; U2; : : : ; Ung)for i=1, 2, : : : , n and all k > jremove(Ui; fpj:i; pkig)union(fU1; U2; : : : ; Ung; U)endPn U� Complexity: O(n2) parallel-time.In [4] the authors claimed a time complexity for this algorithm of O(n). Wejustify the new time complexity of O(n2) as follows: at each iteration of thefor loop we perform one copy operation, n remove operations and one unionoperation. The remove operation is itself a compound operation, consisting of2n pour operations. The copy and union operations consist of n pour operations.Similar considerations cause us to reassess the complexities of the algorithmsdescribed in [4], according to the following table:
5

Algorithm Weak StrongThree colouring O(n) O(n2)Hamiltonian path O(1) O(n)Subgraph isomorphism O(n) O(n2)Maximum clique O(n) O(n2)Maximum independent set O(n) O(n2)Table 1: Time comparison of algorithms within the Weak and Strong modelsAlthough we have concentrated here on adjusting time complexities of algo-rithms described in [4], similar adjustments can be made to other work. Exam-ples are given in the following section.4 Fully-algorithmic DNA computationsSeveral authors [5, 14, 16] have described models of DNA computation whichare Turing-complete. In other words, they have shown that any process thatcould naturally be described as an algorithm can be realised by a DNA computa-tion. Papers [5] and [16] essentially show how any Turing Machine computationmay be simulated by the addition of a splice operation to the models alreadydescribed in this paper. In [14], Ogihara and Ray describe the simulation ofBoolean circuits within a model of DNA computation. The complexity of thesesimulations is therefore of general interest. Here space permits us only to ex-amine one such simulation. We choose that of Ogihara and Ray [14].The authors of [14] claim real-time simulation of the class NC1 [15] in timeproportional to the depth of the circuit. Recall that NC1 de�nes the classof problems of size n solved by bounded fan-in circuits of O(logn) depth andpolynomial size. We point out that, with a single laboratory assistant, this es-timate of the time complexity should be proportional to the size of the circuit.Thus, the claim of polylogarithmic running time (with, incidentally, a polyno-mial volume of DNA) in the weak model translates to polynomial running timein the strong (realistic) model. Essentially, the simulation does not harness themassive potential for parallelism that DNA o�ers. We now justify this claim.The simulation proceeds as follows. An n-input, m-output Boolean networkis modelled as a directed acyclic graph, S(V;E), in which the set of verticesV is formed from two disjoint sets: Xn, the inputs of the network (of whichthere are exactly n); and G, the gates (of which exactly m are distinguished asoutput gates). Each input vertex has in-degree 0 and is associated with a singleBoolean variable, xi. Each gate has in-degree 2 and is associated with someBoolean operation � from a set of basis operations
. The m distinguishedoutput gates - t1; t2; : : : ; tm - are conventionally regarded as having out-degreeequal to 0. An assignment of Boolean variables from < 0; 1 >n to the inputsXn ultimately induces Boolean values at the output gates < t1; : : : ; tm >. Ann-input, m-output Boolean network, S, is said to compute an n-input, m-output6

Boolean function,f(Xn) :< 0; 1 >n!< 0; 1 >m=def< f (i)(Xn) :< 0; 1 >n! f0; 1g : 1 � i � m >if 8� 2< 0; 1 >n 81 � i � m ti(�) = f (i)(�).The two standard complexity measures for Boolean networks are size anddepth: the size of a network, S, denoted C(S), is the number of gates in S; itsdepth, denoted by D(S), is the number of gates in the longest directed pathconnecting an input vertex to an output gate.For each i, 1 � i � m, a pattern �[i] of DNA is �xed. The presence of �[i]signi�es that Gi evaluates to 1. We now describe how the gates G are simulated.We begin with a description of the simulation of the gates at level 0 (i.e., thecreation of an initial tube, U , containing strands representing the value andform of the inputs Xn). For each input Xi do the following:� If the node computes the positive form of some xj , pour(U; �[i]) if xj=1.� If the node computes the negative form of some xj , pour(U; �[i]) if xj=0.Ogihara and Ray claim that \this requires only one step". Given the in-herent sequentiality of the pour operation, this statement is clearly false. Ann-input Boolean circuit with O(1) set-up time requires n technicians. We nowconsider the simulation of gates at level l > 0. We omit detailed discussion ofthe implementation, and concentrate purely on the number of pour operationsrequired at each level. Let i1; i2; : : : ; ia be the indices of gates at level l � 1,and j1; j2; : : : jb those of the gates at level l. After amplifying the contents ofthe working tube, for each s, 1 � s � b the operation pour(U; �[js]) is executed.This takes s time. Now U contains many copies of the strand representing eachgate at level l. In order to simulate the operation of some gate Gs, two \linker"strands, representing the inputs to Gs are poured. This takes 2s time. Ogiharaand Ray claim that they only require D(S) ligation steps during the course ofthe simulation. However, we believe that in the general case it is more mean-ingful to talk in terms of O(C(S)) pour operations, even if we discount set-uptime.Despite these remarks, Ogihara and Ray's work is important because itestablishes the Turing-completeness of DNA computation. This follows from thework of Fischer and Pippenger [7] and Schnorr [17], who described simulationsof Turing Machines by combinational networks. Although a Turing Machinesimulation using DNA has previously been described by Reif [16], Ogihara andRay's method is simpler, if less direct.5 ConclusionsIn this paper we have emphasised the rôle that complexity considerations arelikely to play in the identi�cation of \killer applications" for DNA computation.7

We have examined how time complexities have been estimated currently withinthe literature. We have shown that these are often likely to be inadequate froma realistic point of view. In particular, many authors implicitly assume that ar-bitrarily large numbers of laboratory assistants are available for the mechanicalhandling of tubes of DNA. This has often led to serious under-estimates of theresources required to complete a computation.We have proposed a so-called strong model of DNA computation, which webelieve allows realistic assessment of the time complexities of algorithms withinit. This model, if the splice operation is trivially included, not only providesrealistic estimates of time complexities, but is also Turing-complete.We believe that success in the search for \killer applications" is the onlymeans by which there will be sustained interest in DNA computation. Successis only a likely outcome if DNA computations can be described which will requirecomputational resources of similar magnitude to those required by conventionalsolutions. At present, we believe that no realistic estimates of time complexi-ties of DNA computations have been made, despite the claims of some authors.However, if, for example, we were to establish polylogarithmic time computa-tions using only a polynomial volume of DNA, then this would be one scenarioin which \killer applications" might well ensue. In this case, we might imaginethat the vast potential for parallelisation would yield feasible solutions to verymuch larger problem sizes than could be achieved using existing, silicon-basedparallel machines.We hope that this paper will stimulate and focus interest in what we believeare very important issues for the future of DNA computation.References[1] Leonard Adleman. Molecular computation of solutions to combinatorialproblems. Science, 266:1021{1024, 1994.[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis ofcomputer algorithms. Addison-Wesley, 1974.[3] American Mathematical Society. Proceedings of the Second Annual Meetingon DNA Based Computers, DIMACS: Series in Discrete Mathematics andTheoretical Computer Science., June 1996. To appear.[4] Martyn Amos, Alan Gibbons, and David Hodgson. Error-resistant imple-mentation of DNA computations. In Proceedings of the Second AnnualMeeting on DNA Based Computers [3]. To appear.[5] Erzs�ebet Csuhaj-Varj�u, R. Freund, Lila Kari, and Gheorghe P�aun. DNAcomputation based on splicing: universality results. In Lawrence Hunterand Teri Klein, editors, Biocomputing: Proceedings of the 1996 Paci�cSymposium. World Scienti�c Publishing Co., Singapore, January 1996.8

[6] Paul E. Dunne. The Complexity of Boolean Networks. Academic Press,1988.[7] M. Fischer and N.J. Pippenger. Relations among complexity measures.Journal of the ACM, 26:361{381, 1979.[8] Steven Fortune and James Wyllie. Parallelism in random access machines.In Conference Record of the Tenth Annual ACM Symposium on Theory ofComputing, pages 114{118, San Diego, California, 1978.[9] Michael R. Garey and David S. Johnson. Computers and Intractability: AGuide to the Theory of NP-Completeness. W. H. Freeman and Company,New York, 1979.[10] A. Gibbons and W. Rytter. E�cient Parallel Algorithms. CambridgeUniversity Press, 1988.[11] M.A. Harrison. Introduction to switching and automata theory. McGraw-Hill, 1965.[12] Juris Hartmanis. On the weight of computations. Bulletin of the EuropeanAssociation For Theoretical Computer Science, 55:136{138, 1995.[13] Richard J. Lipton. DNA solution of hard computational problems. Science,268:542{545, 1995.[14] Mitsunori Ogihara and Animesh Ray. Simulating Boolean circuits on aDNA computer. Technical Report 631, University of Rochester, August1996.[15] N. Pippenger. On simultaneous resource bounds. In 20th Annual Sym-posium on Foundations of Computer Science, pages 307{311, Long Beach,Ca., USA, October 1979. IEEE Computer Society Press.[16] John H. Reif. Parallel molecular computation: Models and simulations. InProceedings of the Seventh Annual ACM Symposium on Parallel Algorithmsand Architectures (SPAA), Santa Barbara, June 1995.[17] C.P. Schnorr. The network complexity and Turing machine complexity of�nite functions. Acta Informatica, 7:95{107, 1976.
9

