Twisted Systems and the Logic of Imperative
Programs

Lindsay Errington
October 28, 1998

Abstract

Following Burstall, a flow diagram can be represented by a pair
consisting of a graph and a functor from the free category to the
category of sets and relations. A program is verified by incorporating
the assertions of the Floyd-Naur proof method into a second functor
and exhibiting a natural transformation to the program.

A broader range of properties is obtained by substituting spans for
relations and introducing oplaxness into both the functors representing
programs and the natural transformations in the morphisms between
programs. The apparent complexity of this generalization is overcome
by the observation that an oplax functor J—o—Sp(C) is essentially the
same as a functor J— C where J is the twisted arrow category of J.

Thus, a program is a presheaf F(G)— Set as are the properties of
the program.

By analogy with categorical models of first-order logic, a program
and the properties which pertain to it are subobjects of a suitably
chosen base object. In this setting safety and liveness properties are
dual in a fibre of subobjects.

1 Introduction

In [Bur72] Rod Burstall describes how a flow-chart can be represented by a
functor from a free category to the category of sets and partial functions, or
more generally, sets and relations. A program is a diagram or system in the
sense used by Goguen [Gog91] consisting of a pair:

(G, F(G) -2 Rel)

where G is a graph and F(G) is the free category. Diagram 1 illustrates
this with the factorial program. The vertices of G are the states or program
points. The vertex a is the start state and paths in G' are computation paths.
The image of each vertex is a cartesian product with a component for each
variable in scope. Tuples in a product are the possible variable assignments
at a particular program point. Transitions are labelled with relations. In the
example we use terms from a typed A-calculus extended with predicates to
denote partial functions.

a fact(n:N) : N
var x,y : N
f z:=1
y:=1
dox<n —
b z=z+1
Yy:=xxy
g N end
return y
¢ An.(n,1,1)
N x N x N
An,z,y)e <n.(nz+1l,zxy An,z,y).x > ny
N
Diagram 1.1.

A morphism of programs:
(G, F(G)-%Rel)— (H, F(H) = Rel)

is a pair (P, n) where P : G— H is a graph homomorphism and n: S=To
F(P) is an injective natural transformation. A morphism is a simulation
when the components of 1 are inclusions.

Less explicit in Burstall’s paper is that such a functor is not only a repre-
sentation of the program, but also its operational semantics. Operationally,
each action is a conditional rewrite rule which can “fire” only for those tuples
which satisfy the precondition.

As a specification of the operational semantics of a program, this rep-
resentation has some advantages over a conventional structural operational
semantics. First, variables are typed and the product at each program point
correctly reflects the locality and scoping of variables. Equally important

is that a system preserves the coherence of the program. By this we mean
that it faithfully expresses the program as a schedule of operations. A con-
ventional operational semantics is a relation between states. A state is a
pair (C, s) where C' is a program fragment and s is a particular variable as-
signment. The relation does not record the fact that some transitions are
instances of the same action in the program. Thus a considerable amount of
information concerning the structure of the program is lost. In this respect
a functor like the above is more intensional and more faithfully represents
the structure of the program. Preserving this information may prove to be
significant within the context of model checking as a way of avoiding the
state explosion problem.

Burstall goes on to cast the Floyd-Naur proof method into categorical
terms. Given a program (G,S : F(G)—Rel) and assertions P, for each
vertex a € G, he constructs a second functor S’ : F/(G) — Rel by restricting
the relations in S to the sets satisfying the assertions at each vertex. Veri-
fying a program via the Floyd-Naur proof method amounts to exhibiting a
simulation n : S'=S.

Subsequently Goguen developed the theory further [Gog74] (See also
Goguen and Meseguer [GMS83]). Amongst other contributions, he allows
a more general class of morphisms, (P, 7n), whereby P : F(G)— F(H) can
be a functor (rather than a graph homomorphism). In this way it becomes
possible to relate programs having different shapes and paths of different
length.

This paper considers the relationship between programs and properties
by analogy with categorical models of predicate logic. Given a context of
variables, I' = [z : Xy,... ,x, : X,,], then a formula ¢ in the context T’
is interpreted by a subobject of the product interpreting I'. Similarly, a
program and the properties which pertain to it are subobjects of a suitably
chosen base object. In this setting, safety and liveness properties are dual
to one another in a fibre of subobjects. A program has a safety property
when it factors through the property. Conversely, a program has a liveness
property when the property factors through the program.

Unfortunately, the range of properties which can be expressed using the
categories proposed by Burstall and Goguen is limited. The constraints im-
posed by functorality and naturality are too strong. For instance, suppose
f:a—0b € F(G) is a transition and Sf and Tf are relations associated
with f from a program and safety property respectively. Naturality implies
that Sf and T f must be the same for all x € Sa and that Sf can only be a

restriction of T'f to the smaller domain and codomain.

Sa lla Ta
Sf Tf
Sh B b

This amounts to an over specification since is means that the relations
in a property can specify little more than the input/output relation of the
corresponding steps in the program. The relations in a property cannot
be made arbitrarily larger than those in the program. It is not possible,
therefore, to express only the postcondition of a transition. Nor can one
assert a property concerning a single program variable from the many which
may be in scope.

Functorality implies that it is not possible to specify the property of a
composite transition without imposing constraints for the steps along the
path. For example, one cannot assert that a particular computation path
must realize some input/output relation without also specifying how that
relation is realized.

To address these issues we move to a more general setting. Intuitively we
substitute spans in place of relations. Then, in place of functors, we use oplax
functors and in place of natural transformations we use oplax map natural
transformations. Thus, a system is a pair

(G, F(G)-~5Sp(C))

in which S is oplax and a morphism is pair (P,) where 7 is an oplax map
natural transformation. These terms will be defined shortly.

Bicategories, oplax functors and oplax natural transformations are all
subject to coherence conditions so it may seem like we have introduced a
considerable degree of complexity for a relatively modest improvement in
expressiveness. However, the functor category just outlined has a surprisingly
simple characterization in which the coherence conditions are not needed. An
oplax functor J——=Sp(C) is essentially “the same” as a functor J— C where
1 is the twisted arrow category of J. This gives twisted systems, ie. pairs:

(J,J—C)
In particular, a program with shape G is a presheaf F'(G)—Set as are the
properties of that program. Oplax map natural transformations become sim-
ply natural transformations. Thus, by introducing twisted arrow categories,

we not only obtain a richer range of properties, but we also find ourselves
working in a presheaf topos.

The question of what is a suitable logic for describing properties of pro-
grams is not addressed in this paper. However, the theory ensures that
properties can be combined using the standard propositional connectives.
Moreover, it becomes possible to quantify over both local and global pro-
gram variables, recursive instances of variables or individual occurrences of
variables.

Twisted systems also appear in [Err96] where they are used to construct
categories of processes. The thesis [Err| gives categorical semantics to a
message passing parallel language which is an extension of the sequential
language defined later in this paper.

The remainder of the paper is structured as follows. In the next section
we review results concerning the relationship between twisted arrow cate-
gories and spans. This includes some basic results concerning twisted arrow
categories. The reader is referred to [Err] for proofs and further details. Next
we introduce categorical transition systems and twisted systems. From the
latter we construct a rudimentary bicategory of algorithms which is then used
to give a categorical (and compositional) semantics to a simple imperative
language. We digress briefly to outline the relationship between the categor-
ical semantics and a conventional structural operational semantics. Finally
we consider programs and properties (both safety and liveness) in a setting
akin to categorical models of predicate logic.

2 Bicategories, spans and oplaxness
The following is adapted from Borceux [Bor94|. See also Benabou [Bén67].

DEFINITION 2.1 A bicategory B consists of the following data:
(i) a collection of objects A, B,C,... called 0-cells.
(ii) for each pair of objects, A and B, a small category B(A, B). The objects
of B(A, B) are called morphisms or 1-cells of B and the morphisms of
B(A, B) are the 2-cells.
(111) For each triple of objects A, B and C, a composition functor

CABC B(A, B) X B(B,C)_’B(A, C)

where we write g o f for the composition of 1-cells f : A— B and
g: B—C.
(iv) for each object A, an identity arrow id, : A— A.
The usual axioms for identity and associativity are relaxed to isomorphisms:

(v) Associativity: for each quadruple A, B, C, and D a natural isomor-
phism

assoCapcp * Cacp © (cape X ldep)=capp o (Idap X cpep)
(vi) Unit: for each pair of objects A and B, two natural isomorphisms

unitlgp : Idap=caap o ida X Idsp

unitryg : Idap==capp o Idap X idp

These must satisfy coherence conditions which we omit.

One can quotient the morphisms of a bicategory to obtain a category.
Following Bénabou, the category obtained by identifying all 1-cells which
are 2-isomorphic and forgetting the 2-cells is the classifying category. We
write B® for the classifying category of B.

Given a category C with pullbacks, the bicategory of spans Sp(C) has as
0-cells the objects of C. A 1-cell f: A— B is a span; a diagram in C of the
form:

A B

where Ay and py are respectively the left and right legs and Py is the apex of
f. Composition of 1-cells is by pullback. A 2-cell a : f=¢ is a morphism
in C such that the two triangles commute:

Py

A «Q B

/ \
\P/'

g

Some familiar 2-categories are obtained by restricting the choice of mor-
phisms in spans and quotienting by 2-isomorphisms. For example, requiring
that Ay be monic for all f yields the 2-category Part(C) of partial maps over
C. Note that the 2-cells in Part(C) are all monomorphisms. See Robinson
and Rosolini [RR88] for other notions of categories of partial maps.

Choosing C to be a regular category and requiring that A; and p; are
jointly monic yields the category Rel(C) of relations over C. The composite of

f and g in Rel(C) is defined by first constructing ¢ f in Sp(C) and then taking
the image factorization of (A,r, pyr) as a regular epimorphism followed by a
jointly monic pair. As with Part(C), the 2-cells in Rel(C) are monomorphisms.
See Freyd and Scedrov [FS90].

The following is taken from Carboni et al [CKS84].

DEFINITION 2.2 A morphism f: A— B in a bicategory B is a map when
it has a right adjoint f* : B— A.

LEMMA 2.3 A morphism f: A— B in Sp(C) is a map if and only if \; is
an isomorphism in C.

The lemma holds in Rel(C) and Part(C) as well. Restricting to maps
yields a sub-bicategory of Sp(C) in which the only 2-cells are isomorphisms.
Quotienting by these 2-cells yields a category isomorphic to C. Clearly each
equivalence class has a canonical representative, namely the span whose back-
ward leg is an identity. For further results concerning maps in bicategories of
spans and relations see Carboni et al [CKS84] and Freyd and Scedrov [FS90].

In the same way that bicategories relax the associativity and unit ax-
ioms, one can relax the axioms for functors between bicategories and natural
transformations. Below we define oplax functors and oplax natural transfor-
mations in the particular case where the source bicategory is trivial (the only
2-cells are identities) and the target is Sp(C).

DEFINITION 2.4 LetJ be a trivial bicategory. An oplax functor F' : J——Sp(C)
consists of the following data:

(i) For every object a € J, an object Fa € Sp(C).

(ii) for every pair of objects a,b € J, a functor

Fu : J(a,b)—Sp(C)(Fa, Fb)

(1i1) for every triple, a,b,c € J, a natural transformation Yap.:

J(a,b) x J(b,c) Cabe Ja,)

Yabe
Fab X Fb(: Farz

Sp(C)(Fa, Fb) x Sp(C)(Fb, Fe)

Sp(C)(Fa, Fc)

—_—
CFa,Fb,Fc

(iv) for every object a € J, a natural transformation o,:

1 J(a,a)
2k
1 Sp(C)(Fa, Fa)

UFa
The natural transformations must satisfy coherence conditions which we
omit.

The f, g component of v, is shown in diagram 2.1. If the target is Rel(C)
or Part(C) then v, is monic giving the inequality F(¢gf) C Fgo Ff. Note
that the naturality of v, and J, is vacuous as there are only identity 2-cells
in J.

Prgyp)

Vf.g

Pry xpy Ppy
~
/ \

PFf PFg

NN

Fa Fb Fe

Diagram 2.1.

DEFINITION 2.5 An oplaz functor J-o—=Sp(C) is normalized if for each object
a € J, 6, is the identity natural transformation.

When F'is normalized then it follows that for all f : a—bin J, viq4, 5 =
unitlp¢ and vy g, = unitrp;.

DEFINITION 2.6 Let F,G : J-~Sp(C) be oplaz functors. A oplax natural
transformation « : F'==G consists of the following data:

(i) for every object a in J a morphism o, : Fa— Ga in Sp(C).

(ii) for each pair of objects a,b € J a natural transformation T:

Fab

J(a,b) Sp(C)(Fa, F'b)

Tab
Gap - CFa,Fb,Gb(—,)

Sp(C)(Ga, Gb) Sp(C)(Fa,Gb)

CFa,Ga,Gb (aa: _)

8

where cpaGa,cr(Qa;s —) and cpa po.ar(—, ap) are the functors obtained by
firing ag or oy in the bifunctors of composition. Once again we omit
the coherence conditions.

Diagram 2.2 shows oplax naturality for f : a—b in J where 74 is the
f component of the natural transformation 7,,. The definition translates to
the requirement that the pentagons # and ¢ must commute. The difference
between this and a naturality diagram is simply that in the latter 74 is
the identity. For functors in Rel(C), 7, is monic yielding the inequality:
apo Ff CGfoay.

Fa o Ga
9 \
)
TF
\
\ y
Fb O: Gb
b
Diagram 2.2.

We write L(J, Sp(C)) for the bicategory with objects the functors J— Sp(C)
and morphisms the oplax natural transformations. Similarly, write LL(J, Sp(C))
for the bicategory which is the same as above except that objects are nor-
malized oplax functors J——Sp(C) (rather than functors).

LEmMMA 2.7 L(J,Sp(C)) and LL(J,Sp(C)) are bicategories.

LEMMA 2.8 A morphism o is a map in L(J,Sp(C)) and LL(J,Sp(C)) if and
only if the 1-cells components of o are maps in Sp(C).

Now write LM(J,Sp(C)) and LLM(J,Sp(C)) for the sub-bicategories of
L(J,Sp(C)) and LL(J, Sp(C)) respectively in which morphisms are restricted
to be maps. As with Sp(C), the map restriction implies that the only 2-
cells in LM(J,Sp(C)) and LLM(J,Sp(C)) are isomorphisms. Moreover, each
equivalence class in the corresponding classifying categories, LI\/Ib(J, Sp(Q))
and LLM’(J,Sp(C)) has a canonical representative, namely the oplax natural
transformation « such that for each 1-cell component «,, Ao, = idp,. In
effect, morphisms in these two categories are families of arrows of C indexed
by the morphisms of J. This will become clear shortly.

3 Twisted arrow categories

An oplax functor F' : J-—=Sp(C) selects not only a collection of objects
and arrows in Sp(C) but indirectly a collection of objects and arrows in C.
This suggests that rather than oplax functors into Sp(C), we incorporate the
spans into the domain and work with functors into C. This requires a shape
J derived from J and a functor F* : J— C which selects the same or an
equivalent collection of objects and morphisms as F'. The shape must be
such that for every morphism in J there is a “span” in J. These is obtained
by taking J to be the twisted arrow category of J (see chapter I1X, §6, exercise
3 of Mac Lane [MacT71]):

DEFINITION 3.1 An object]T of a twisted arrow category 1 is an arrow f of
J. A morphism f—q is a pair of morphisms (I, m) in J such that f = mgl.!

A—L ¢
f g
B<—7m—0D

The composition of (I,m) : f—>§ and (p,q) : @’—J} is (pl, mq) : f_,},'

An example of a category and its “twist” is shown in diagram 3.1 where,
in the twisted category, we have written a in place of id,. The collection of
objects a of J associated with identity morphisms of J are referred to as the
J objects in J. N

The twisted arrow category J displays the factorization structure of J.
There is a morphism f—¢ for each factorization of f involving g. The rela-

tionship between spans and twists rests on the property that each morphism

(a,f) ;; (f:b) gin]

f :a—0bin J determines a span a
The following are easily verified.

LemMa 3.2 ()7 = [(J% x J 2" Set)

This implies that Jis fibered over J x J for which there are projections:
— ~ +~—
m,:J—Jand 7w :J—J°:

-, % —, %

m(f:a—b) = a w(f:a—b) = b

7(l,m) = I 7(l,m) = m

IThis is the opposite of the category appearing in [Mac71].

10

Diagram 3.1.

LeEMMA 3.3 (—): Cat— Cat is a functor.
PrROOF Given F : J— K, define F : J—K by:
Ff=Ff
F(l,m) = (Fl, Fm)
which is clearly functorial. O

LEMMA 3.4 If J is a discrete category then J = J.

LEMMA 3.5 (=) : Cat— Cat preserves all limits.

Proor We show that the twist of a limiting cone in Cat is isomorphic to
the limit of the twisted diagram. As is standard, it suffices to consider the
terminal object (the empty diagram), products and equalizers.

By lemma 3.4 the terminal object is preserved. The situation for products
is shown below. On the left is a product diagram in Cat and on the right is
the twist of the same diagram together and a second product.

11

1

IxK—"2 . JM

P1 G F p2
;

Jx K

Here F universal and G is defined such that given morphisms (I,m) :
f—g€Jand (p,q): h—k € K then:

((t;m),(p.q)) ((Lp)y(myq))

G((f,h) @.5) = ((f.h) (9.7)

This extends to a functor and clearly an isomorphism (the inverse of F).
With respect to equalizers, consider the diagram below showing an equal-
izer diagram and its twist.

Let M~2~J be the equalizer following the twist. The categories M and L
are isomorphic by the following:

(Im): f—geM
= ﬁ(l,m)zé(l,m)/\ﬁfr é’f/\fﬁzéfq’/\f:mgl
<~ (FI,Fm)=(Gl,Gm)\NFf=Gf NFg=GgA f=mgl
— FI=GINFm=GmANFf=GfANFg=GgAN f=mgl
— f=mglel
— (l,m):f—ﬁjet

The category J has some important limits.

LEMMA 3.6 (LAMARCHE) Ifa—f>b—g>c 1s a composable pair in J then the
following diagram is a pullback in J:

12

9f
(y ' w
f (f,9) J

b

PROOF Let k = mbfl = qgbp (diagram 3.2). The morphisms a, b and ¢ are
all identities which makes (I, ¢) universal. O

(1. m) (n.q)

e
i (f,9) q

Diagram 3.2.

Pullbacks in J which arise in this way are called o-pullbacks. More gen-
erally, every finite string of composable arrows in J gives rise to a limiting
cone in J. We call these o-limits. In this sense composition in J corresponds
to limits in J.

The purpose of introducing twisted arrow categories was to enable an
oplaz functor J-o—=Sp(C) to be replaced by a functor J— C. The precise
relationship between spans and twists is expressed in the following theorem.

THEOREM 3.7 The quotient functor category LLI\/Ib(J,Sp(C)) is isomorphic
to C.

So whereas the we began with the prospect of working with bicategories,
oplax functors and oplax natural transformations, theorem 3.7 reduces this
to a well understood universe. In particular, when the target category is Set,
then LLM"(J,Sp(Set)) is isomorphic to the category of presheaves Set’ and
hence a topos.

13

COROLLARY 3.8 The functor category Ll\/lb(J,Sp(C)) is isomorphic to the
subcategory of C' consisting of those functors which preserve o-limits.

COROLLARY 3.9 The functor category LLM’(J, Part(C)) is isomorphic to the

subcategory of cJ consisting of those functors with the property that for all
morphisms f : a—0b in J, the image of (a, f) : f—a is monic.

It is worth mentioning that the analogous correspondence for relations
does not hold. That is, it is not the case that the functor category LLM’(J, Rel(C))
is isomorphic to the subcategory of C! of functors where for all f : a—b
in J, the image of (a, f) : f—a and (f,b) : f—0b is a monic pair. This
is because composition is Rel(C) is such that, given ¢gf in J and an oplax
functor J——Rel(C), the 2-cell v;, does not determine morphisms from the
apex Py to Py and P,.

4 Algorithmic functors

In this section we restrict our attention to twisted functors which correspond
to algorithms in a very general sense.

DEFINITION 4.1 A twisted functor J—Set is algorithmic of it preserves o-
limits in J.

By Corollary 3.8, the requirement that an algorithmic functor F' : J— Set
preserve o-limits means that it corresponds to a functor J— Sp(C). In fact to

preserve o-limits, it suffices that the functor preserve o-pullbacks. The reason

for the name algorithmic stems from the fact that, given a computation path

f= agL e i>an in J, then the effect of following the path is given by

the composite span Fa (20.J) Ff V) Fa,.

Write Setilg for the subcategory of algorithmic functors. This category

has useful structure. First, since limits commute with limits and since Set
is distributive, then, like Set’, it is complete and cocomplete. Also, Setilg
is well-complete. Intersections are formed from pullbacks. Unions can be
constructed from coproducts and image factorizations. The following two

lemmas ensure that these constructions yield algorithmic functors.

LemMmA 4.2 If F.G : J— Set are algorithmic then F + G is algorithmic.

PrRoOOF 1t is straightforward to show that the sum of a pair of pullbacks in
Set is again a pullback. Alternatively the lemma is an instance of a more

14

general result concerning the interchange of limits and colimits in categories
like Set. See Borceux [Bor94]. O

LEMMA 4.3 Let F,G : J—Set be algorithmic. If n = F==6->Q>-L>G 1S an
epi-mono factorization of n, then Q) is algorithmic.

Proor We shall prove a more general case when the target is any regular

category rather than Set. Let a—f>b—g>c be a pair of morphisms in J. Con-
sider the image factorization of the components of n between the induced
o-pullbacks as shown in diagram 4.1. AssumeAQf<p—X—q>QZj is the pull-
back as shown. There are universal maps h: Fgf — X, k: X —Fgf—X
and [: Qgf— X where the latter is necessarily monic.

F(a,g) Fof . /ngf ung() i
L X vl
pF l € ij/\ \\} () Gf G(f,¢)
F(f.0 Fg .| Z - @
Ab, q9) ‘ / ‘ %g)
A - Qb i Gb

Diagram 4.1.

First we show that &k is a monomorphism. Let Y?:}:X be a parallel pair.
Then:

ku=kv = G(a,g)ku = G(a,g)kv N G(f,c)ku = G(f,c)kv

= UPUu = [PV N [LgQU = [LgqU
— pu=puvAqu=qu
— U=

Let ZiF{f]\]/c be the parallel pair for which €, is the coequalizer. There-
fore h = leys also coequalizes w and z. This gives a universal monomorphism
X —Qgf and therefore an isomorphism from which we conclude that @) is
algorithmic. 0

Recall that for any functor F' : J—Set, there is a standard discrete
fibration over J, 7 : ([F)—J. Objects in the category of elements, [F, are
pairs (a,z) where a is an object in J and x € Fa. A morphism (a, z) — (b, y)
is a morphism f : a—0b such that (Ff)(z) = y. In the case of algorithmic
functors, there is an alternative fibration over J rather than 7.

15

DEFINITION 4.4 (LAMARCHE) Let F : J—Set be an algorithmic functor.
Define the category of twisted elements, fJ F, by: -

(i) objects are pairs (a,z) where a is an object of J and x € Fa.

(ii) a morphism (a,x)— (b,y) is a pair (f,z) where f : a—b is a mor-

phism of J and z is an element of F [such that F(a, f)(z) = z and
F(f.0)(z) =y

(111) Given (a,u) o) (b,v) 9:4) (c,w), thenz € Ff,ye Fjuve Fb, F(f,b)(z) =
v, and F(b,g)(y) = v. F preserves o-pullbacks, hence there exists a

unique z € Fgf such that F(a,g)(z) = z and F(f,c¢)(z) = y and
(f,2): (a,u)— (c,w) is the composite.

Given ¢, F and ¢ G, a morphism ¢, F'— § G is a functor # making the
following commute:
fre e
J J

N /o

The twisted elements construction can be made functorial such that, given
n:F=—G, ¢ 1 is the functor:

(f n)la) = s
(fjn) (f; Z) =Nz

Next, let 7 : (§ F')—J be the evident projection functor. This functor
has the following property.

LEMMA 4.5 (LAMARCHE) Ifr is a morphism in § F such that h = wr, then
each factorization of h = gf wn J, uniquely determines a factorization of
r=ts in § F where g =nt and f = 7s.

PRrROOF Given (h, z) : (a,u)— (¢, w) in § F where h = gf then (f, F(a, 9)(2)) :
(@, u) — (b, F'(f, 9)(2)) and (g, F(f, c)(2)) : (b, F(f, 9)(2)) — (¢, w) are mor-
phisms in ¢ F' which compose to (h, z). Since F' associates a o-pullback with
h = gf, the factorization is unique. O
This makes m : (§ F)—J a fibration in the sense of Conduché. See
Johnstone [Joh77].
Finally, the categories [F' and § F' are related as follows.

2A similar construction was introduced by Abramsky and Pavlovi¢ [AP97] for functors

J—5Sp(C).

16

LEMMA 4.6 Given an algorithmic functor F :]—>Set, then

—_

/Fg(]{F)

ProOOF For objects, note that if f : a—0 is a morphism in J, then:

(Fu) e /F s ue FfAF(a,f)(u) € Fan F(f,b)(u) € Fb

= (f,u): (a, F(a, f)(u)— (b, F(f,0)(u)) € %F

%F

In the case of morphisms, if (I,m) : (f,z)— (7, y) is a morphism in [F,
then f = mogol and F(I,m)(x) = y. By lemma 4.5 there exists unique
u, v and w such that (I, u), (g,v) and (m,w) are morphisms in SKF (f, T)

(m, w)o(g,v) o (I, u) and y = v. This implies ((m, w), (I, u)) : (f,2)—(g.9)

is a morphism in (§ F'). The uniqueness of w and u ensures the argument
reverses. O

5 Twisted Systems

A transition system labelled in an alphabet L is a diagram in Grph of the
form:

f
l_v’,]_’GL

The graph J is the shape of the transition system. The vertices of J are
states and the edges are transitions. The graph G, has a single vertex and
an edge for each label in L. The morphism V selects the start state.

Categorical transition systems (or simply systems) generalize this in two
ways. First we abandon the requirement that shapes be graphs. A universe of
shapes is a category Shp such that each shape, .J, determines a category x(J),
via a functor: k : Shp— Cat. Second, a shape is labelled in a category rather
than an alphabet or term algebra. Thus, a categorical transition system, S,
is a pair consisting of a shape and a functor:

(J, k(J) == C)

Abandoning graphs offers the opportunity of choosing shapes more suit-
able for modelling concurrent and asynchronous computation. For example,

17

higher-dimensional automata [Gla91, Pra91, GJ92, Gou95] are a reasonable
choice. Goubault’s definition of hda is similar to that for simplicial sets.
But, whereas simplicial sets deal with collections of unoriented n-triangles,
an hda is a collection of oriented hypercubes. One way to obtain a category
from an hda is by a construction similar to the fundamental groupoid for a
topological space.

Labelling a shape in a category means that transitions can have more
structure. Actions can be functions, machine instructions or even processes.
See [Err| for further motivation and details concerning categorical transition
systems and concurrency.

Twisted systems are a particular class of systems in which the domain of
the functor is twisted.

(J,5(J) ==)
They form a category (ﬁJS(Shp, C) where a morphism f is a pair

S T
(fsm): (4, k() = C) — (K, x(K) —C)
such that f : K —J is a morphism in Shp and 1 : So f@f(\f) —T'is a natural
transformation.

J k(J)
S
f w(f) un\c
|
K k(K)

This category arises as an instance of the Grothendieck construction:

)" ("

Cat™

(CTS(Shp, C))” = / (Shp™ = Cat™ CAT)

A consequence of this is that results due to Gray [Gra66] and Tarlecki et al
[TBGI1] concerning the existence of limits and colimits apply.

Note that the functor and natural transformation in a morphism are
opposed. The “semi-dual” category in which the functor and natural trans-
formation are in the same direction is easily defined. The latter is used for
interpreting processes in [Err96, Err].

18

6 A bicategory of algorithms

The next objective is to construct systems like that for the factorial program
in a compositional manner. Note that a system with a start and end state
is an algorithm typed in C. If Vg and Ag are the start and end states in

S = (J, /1(,])—5>C), then S accepts input of type SVg and produces output
of type SAgs. This suggests constructing a simple category with the same
objects as C and where morphisms are algorithms. Composing algorithms
sequentially means gluing one system on to the end of the other. This can
be done using the general theory advocated by Goguen [Gog91]. We will use
similar construction which is marginally simpler in this instance.

For the remainder of this paper we fix the target category to be Set.
With respect to shapes, let FGrCat be the Kleisli category for the monad
FU : Cat— Cat where U : Cat— Grph and F' : Grph— Cat is the familiar
adjunction. Objects are freely generated from graphs and morphisms are
arbitrary functors. The category of shapes are bipointed free categories:
FGrCat,, =1+ 1] FGrCat. A system S is a pair of the form:

[VS,AS}

(1+1 1,12 Set)
Often we will write simply (J, S : J— Set) and only refer to the start and
end states when necessary.

Now define the bicategory of algorithms, Alg, as follows. Objects are sets.
A morphism A— B is a system S such that SVg = A and SAs = B. Given

[vTa

a second system T = (14 1—Aﬂ>J,jl>Set) such that SAg = TVy.

Then T o S is the system
(14 1—J+1 K, J+ K—2Set)
The shape of T o S is the pushout on the left in diagram 6.1.

As ~ Ag ~

1 J 11 j
_ %
V1 q vr o r
I+ K
V2 e
G L TN KL 71K

Diagram 6.1.

19

To define the functor @), first twist the pushout on the left and form a
second pushout as shown on the right. To illustrate the difference between
J+; Kand]+1 R, consider the example in diagram 6.2 where J = K = 2. The
left side shows the effect of taking the pushout followed by twisting. On the
right, the shapes are twisted first followed by the pushout. Constructing the
colimit first may introduce new composable pairs of morphisms which must
be added. This is the case on the left with the new morphism is labelled A.
When the twist comes first, there are no morphisms to be added by colimits
identifying J objects. Let F : J+1 K=—J 4+ K be the universal arrow which
is necessarily an injection.

ATe U ATe
24,2=3 2+,2=3 242
Diagram 6.2.

Since SAg = T'V, there is a universal morphism [S,T]; :]4—1 K — Set.
To define) requires extending [S, T']; to the objects and morphismsin J +; K
which do no appear in either J or K. We take) = Rang[S,T]; (see diagram

6.3). In the example, Q}; is the apex of the zig-zag diagram in Set determined
by f and ¢. This implies that if S and T are algorithmic systems, then To S
is algorithmic.

J+ KWSet

Diagram 6.3.

20

7 An imperative language

This section introduces a version of Dijkstra’s guarded command language
[Dij75]. The next section gives an interpretation in Alg.

The basic types and expressions in the language are provided by an alge-
braic theory Th(X). This will be left unspecified but it is assumed to contain
types and standard constants for the natural numbers and booleans. The col-
lection of well-formed terms in the algebra are generated in the usual way by
rules containing judgments or terms in context of the form ¢: X [[']. Here ¢ is
aterm, X asort and I' = [z1: Xq,... ,x,:X,] is a context containing a list of
typed variables including the free variables in £. As is standard, the algebra
comes with an equational theory and determines a syntactic category (also
called Th(X)). It is assumed there is semantic functor [—] : Th(X)— Set.
For example,

[t X [1]] = [1] -2~ [X]

where [I'] = [X] x - - x [X,].
The syntax of the programming language is defined on top of the algebra.
The grammar is as follows:

gc == nil |z :=1t|varz:X in gc
| gc; ge | if alt | do alt
alt = b—gcl...1b— gc

Here, b is a predicate on the state, x is a typed variable and £ is a term all
of which come from the underlying algebra. Often we will write <, (b; — gc;)
in place of by — ge, 0---0b, — gc,,.

The rules for well-formed programs are given in diagram 7.1. A judgment
ge [I'] means that the program gc is a well-formed program in the context,
I. A context in a judgment ge [I'] serves two purposes. Like in the algebra,
it assigns types to the variables free in ge. Contexts also keep track of the
variables currently in scope. Note that the variables in scope before and after
a command are the same and a judgment gc [I'] implies a type assignment
gec: I'—1.

The informal meaning of conditionals and repetitions are as follows. Given
a variable assignment s, the if is evaluated by choosing non-deterministically
one of the guarded commands from those whose guard is satisfied by s. If
none of the guards are satisfied the program deadlocks. In the case of do,
the selection of a guarded command is repeated until no guard is satisfied
whereupon the loop terminates successfully.

21

t: X [T, 2: X] gey [T geq [T
nil [[] x:=1t[l z:X] gcq; gey [T

Vi<n b; :bool [T'] ge; [T Vi<n b;:bool [T'] ge; [T

ge[Lom:X] o p ge [I'] c g T
var : X in gc [T] ge [0y x: X]
Diagram 7.1.

The structural operational semantics for the language is given in dia-
gram 7.2. Note that the evaluation of guards is done by appealing to the
algebraic theory rather than assuming an interpretation. Also note that the
syntax does not require new variables to be initialized. Instead, the semantics
branches for every possible assignment of a new variable.

8 Categorical operational semantics

A categorical semantics of the language is defined inductively as follows.
Empty program The system for the program nil [I'] is:

(1+1—1, 1 Set)
Sequential composition This is categorical composition in Alg.

Assignment Assume I' = [A,z: X, ®] and let 2 be the graph 0—1. The

meaning of z := ¢ [I'] is the system S = (1 4+ 1ﬂ2,5—5>5et) where S

labels the transition with the span [I'] <& [I'] maidtl o) [r].

Local variables Let S be the interpretation of gc¢ in var x: X in gc [T].
To introduce a new variable, S is prefixed by a simple program A in which
the variable is allocated and suffixed by the reciprocal program, A° where
the variable is discarded. The program which allocates the variable is A =

22

(ge. 5)— (g,)
(nil ; gc, s)—(gc’, s") (x :=t,s)—(nil, s[z — (s t)])

<gcla S> - <gC’]) S,>
<9(31 ; gcq, 5> - <9611 ; gCq, ="’l>

Fa (s b;) = true
(if Di<n(bs — gc¢;), 8) —(gci, 8)

Fa (s b;) = true
(do Di<n(bi — gc;), 5) — (gc; 5 do Dic,u (bs — gc;), 5)

Fa Aic, (s bi) = false
<d0 ngn(bl - gci)a S) - <ni|7 S)

I_A t: X
(var z: X in gc, s) — (ge, s[x +— t])

Diagram 7.2.

(1+ 1M>2,§£>Set) with a single transition labelled by () with the span

[[F]]j—[[f‘,m:X]]L[[F,m:X]]. The meaning of the program in context is
A° o So A. Note that variables are universally quantified (uninitialized)
when introduced.

Alternation Before looking at conditionals and loops we consider alter-
nation. Let S be the interpretation of gc in the single guarded command
b — gc [T']. A predicate b:bool [I'] determines a subobject of [I'] by pulling
back against the classifying arrow in Set:

23

X—3]

[o]

1)Tué 2= [[bOO']]

Construct the system B with a single transition labelled by the span
[T] Sox [T]

This is a transition which can be taken only for tuples satisfying the predicate
[b]. The meaning of the single guarded command is S o B.
Now consider the family of guarded commands (b; — g¢;)i<, [I'] where the

meaning of each member is given by S; = (1 +1 S Ji, i &l Set). The

meaning of the family is obtained by identifying respectively the elemen‘rq of

the sets (Vi)i<n and (A;)i<n. This yields a system (1 +1——J, 1= Set)
where the shape J is the colimit on the left of diagram 8.1. The functor S
J— C is obtained by exchanging the order of the colimit and the twist as in
sequential composition. In the diagram on the right, K is the colimit following
the twist and D is the induced universal arrow. Define S = Ranp[S, ..., S,].

\

Rann[&, ey Shl

Diagram 8.1.

Conditional The meaning of a conditional if 0i<,(b; — gc;) [I'] is the
process for the alternation as defined above.

24

Loops Let A be the interpretation of the alternation in do i<, (b —
ge;) [T]. Recall that the intended semantics of do is that the loop exits
when none of the guards are satisfiable. Define exit to be the program which
exits when all the other guards fail:

exit = =(/\ b;) — nil [T]

i<n

Using the scheme outlined above, this is interpreted by the system E having
a single transition which can be taken precisely when the other guards fail.
Take A and E to be the systems:

A= (141t g T A gy E = (14120 K K- Set)

To interpret the do loop requires combining A and E in such a way that the
loop is closed but can exit when the alternation fails. This is achieved by iden-

tifying three points: the start and end points of the alternation (closing the

loop) and the start point of E. This yields a system (141 LR L, L=~ Set).

The functor S is computed by the now familiar exchange of colimits and
twists. The shape L is the colimit on the left in diagram 8.2, M is the colimit
following the twist, and D is universal. Define S = Ranp[A, E].

Va - Va ~ 5 .

B — P i——J—P2 .1
Aq . !

: S = RanplA, E]
Ve q 2 AP
/1 X
K K M A E] Set
Diagram 8.2.

Figure 8.3 shows the factorial program, the graph shape generated by the
scheme outlined above and the assignment of types and spans to the vertices
and edges of the graph.

LEMMA 8.1 The semantics of a program by the scheme outlined above is an
algorithmic system.

Proor This is a straightforward structural induction. The shapes generated
by the semantics are graphs. Since arrows freely added when joining shapes
with colimits are labelled by means of a right Kan extension, then o-limits
in a twisted shape are always mapped to limits in Set. O

25

€1

° €9

° €g

€7

€1
€2
€3
€4
€5

€6

o
— =

fi
f2

fs

r:=x+1 fy
y=zxy fs
fr [n:Nz:Ny:N

N3

AMn,z.y).(n,2,y)

A(n,z,y).(n,1,y)

Az.,z,y).(n,z,1)

N3
N3

AMn,z.y).(n,2,y)

NS(iNS
NS(iNS

A(n,z,y).(n,2+1,y)

N3

A(n,z,y).(n.z,2Xy)

A(n,z,y).(n,2,y)

NS

A(n,z.y).(n,2,y)

N3

A(n,z,y).(z,2,y)
_AmEy) ey

N3

NS

N3

< (3

Diagram 8.3.

26

{(n,z,y) € N3 |z < n}
{(n,z,y) € N3 |z >n}

9 Procedures

A notable omission from the language are user defined procedures and func-
tions. We have relied solely on the underlying algebraic theory for operations
and expressions. Procedures can be accommodated in the framework, how-
ever, it is difficult to give a compositional semantics. Below we sketch a
scheme for handling procedures.

First the syntax of the language is extended such that now, in addition
to local variable declarations, there are Pascal-like procedure/function dec-
larations:

proc p (x1:X1,... ,2,:X,):Y where

gcq
return ¢

gCy

This creates a new scope and declares a procedure p of type X; x --- X
X,— Y. The body of the procedure is gc, and the scope of the procedure
is gc,. The identifiers zq,...,x, are the formal parameters. Any variable
in scope when the procedure is declared is in scope within the procedure.
Procedures may have side-effects and parameters are passed by value. Define
the context ® = [[", z1: Xy, ... ,2,: X,]. Then a well-formed declaration must
satisfy the following rule:

gcq (9] t:Y [®] gey [Dyp: Xy x - x X, —Y]
proc p (z1:X4q,...,2,:X,):Y where gc, return ¢ in gc, [[]

We further extend the syntax with procedure calls in assignments:

x = pty,...,t,)

It follows that procedure calls may not be nested within terms of the under-
lying algebra. Calls must satisfy the following rule:
i X; [D,z:Yp: Xy x - x X,, —Y]
x:=pt,... t,) [[,z:Y,p: Xy x -+ x X, —Y]|

One way to define the semantics of procedures is to construct a system for
the procedure and then substitute a copy of that system at every call. This,
however, makes recursion difficult. An alternative is to handle procedures as
they are handled by a compiler. This has the advantage that only one copy
of the system is needed. We first construct the system for the body of the

27

procedure. Intuitively the imperative state of this system is then augmented
with a “variable” r : R. The set R has an element for each reference to
the procedure in the program. It represents the set of return addresses. A
call to the procedure is a transition to the procedure which sets the return
address according to the location where the call is made. A call from the
1'th reference sets the variable r to 7. The return to the ¢'th reference is a
transition back to the program which is taken only when r = 7.

The two methods for defining the semantics of procedures are related.
Assume again that there are R references to the procedure. Then following
the first scheme, there are R copies of the procedure. If we form the coproduct
of the R copies, we obtain a system isomorphic to the system described in the
second scheme in which the imperative state is augmented by R. This follows
since [[, X = R x X in Set . Setting the return address to i corresponds to
the 7’th injection into the coproduct.

We illustrate the construction with an example. Diagram 9.1 shows the
system for a simple program defined in a context I' = [x: N,y :N|. The set
2 =40,1}.

To simplify the example we have assumed that no variables are introduced
between the declaration of p and the references to p. This can happen as
follows:

proc p (z1:Xq,... ,2,:X,):Y where

ger;
return ¢

var z:Y in

x:=p(tr,... t,)

In such situations it is necessary to weaken the context in which p is
declared to incorporate variables introduced between the declaration and
the call. If p is referenced from different contexts then it must be weakened
to the most general context.

The same construction applies to recursive procedures. If we consider the
unfolding of a recursive procedure, then with each unfolding new variables
corresponding to the formal parameters are introduced. Following the argu-
ment above, the context of the procedure must be weakened to include the
variables for each unfolding. This naturally introduces a stack discipline.

Diagram 9.2 shows a system for a recursive factorial program. We write
7 to denote an infinite vector of variables (zg, z1,... ,2;,...) and Z|;t for the
vector (zg,...,%; 1,t,Tiy1,...) which is the same as & except with the term

28

€4

€5

proc p (u:N,v:N):N where

€1
€2
€3
€4
€5
€6
€7

€g

€9

U= u-+v €4

return 2u es

r:=1 el

v = p(e.3)

Y=z €9

y = p(z,y) er, €9

y =y’ e
N2 id N2 Az.y)-(1y) N2
N2 id N2 Az,y).(z,7) N2
N2 <04 pr2 A(.y).(2,y%) N2
9 % N4L2 y N4 Aryz,y,u,w).(re,y,uto,) 9 % N4
9 % N4<i2 « N4 Aryz,y,u,w).(re,y,2u) 9 % N,;
N2 id N2 Az.y)-(0,2,y,7,3) 92 % N4
9 % N3 A(ryz,y,u).(0,2,y,u) N,; Mz,y,u).(u,y) N2
N2 L A2 Aw.y).(1a,y,7,) 9 % N*
9 % N3 ANz,y,u).(1,2,y,u) e Mz,y,u).(z,u) N2
Diagram 9.1.

29

t at position 7. The stack has been simplified with respect to the scheme
discussed above. In a pair (i, Z), & is the stack and i is the stack pointer.

10 The relationship with conventional seman-
tics

For Burstall, the denotation of a program is the input/output relation it
computes. For a program (G, F(G)—2>Rel), this is the union of the relations
{Sf|f € (F(G))(V,A)}. A similar construction can be made here. Let

S=(1+1 o J, 1= Set) be the meaning of a program obtained from the
scheme outline earlier. Then the “denotation” of the program is the sum of
the spans:

5(9,f) S(f,0)

{Sv St SA|felv,n)}

The legs of the sum span are universal. See diagram 10.1.

Somewhat more interesting is that the categorical semantics for the guarded
command language is closely related to a conventional structural operational
semantics. Consider the category of twisted elements ¢ S. An object is a
pair consisting a program point and a variable assignment at that point.
Morphisms are transitions. It is easy to show that for every transition in the
operational semantics there is a corresponding transition in 35 S. The con-
verse does not hold. In part this is because there are identity and composite
transitions in § S. This suggests comparing § S with the reflexive transitive
closure of the transition relation. Alternatively, note that since J is a free
category, then by lemma 4.5, ¢ S is also a free category. Therefore we can
compare the transition relation with the graph generating ¢ S. However,
there are still more states and transitions in the categorical semantics than
in the transition relation. This arises because, for example, in the categorical
semantics evaluating a guard involves a transition which is absent from the
transition relation.

11 Systems as predicates

The systems used to give meaning to programs are algorithmic. Also the
span associated with each transition is a partial map; for each f : a—b
in J, the morphism S(a, f) is monic. For the remainder of the paper we
investigate systems as specifications of program properties. This makes use
of the generality of spans (relative to partial maps) and also the underlying

30

proc fact (x:N):N where

€1
€9
€3

€4

if
z>0— €1
var y:Nin
y := fact(z — 1) €3, €6 er .
T =T Xy es %
r=0— €9 e/ !

r:=1 €4 v .
return x
z := fact(3) €7, €8 A \ .

€5
€6
(] R
M6, E). (i, i,@).(,Z
N x N@ (,)(,)W (Z)(Z)NXN“’
M6, E). (i, M6, E). (i,

N x N¢ (,)(,)X (')(')NXN“’
N x Ny 5 o 20D ELT i @)y g
N x N¥ A(4,Z).(1,%) v A(4,Z).(4,Z ;1) N x N¥
N x N x No <N x N x No 22DETRm0D oy

W _id w A4, E).(1—1,24,T) w
N x N¥Y<~—N x N N x N x N

! /\(iaf)r(ori ‘0 3)

1<—N x NY———— N x N¥
N x N¥ A(4,Z).(4,%) 7 A(i,Z).xo N

{(i,7) € N x N¥ | z; > 0}
{(i,7) € N x N¥ | z; = 0}
{(i,7) € N x N¥ |i> 0}
{(i,7) € N x N¥ |i =0}

Diagram 9.2.

31

: —[1s7

4y/\\\
v\/

Diagram 10.1.

oplaxness arising from twisting shapes. To motivate the generality we begin
by considering spans in isolation.

First, spans provide a simple and symmetric way of dealing with predicate
transformers. When a program fragment is represented by a span, then the
precondition for the fragment is the image factorization of the backward leg.

X
/A,/ \B

Similarly the post condition is the image factorization of the forward leg.
Given a predicate #>— B on the codomain, the weakest precondition is the
precondition for the span A <— X'— B formed by the pullback:

I

XI

N

0

The dual construction gives the strongest postcondition. See also [Ple96,
Vic95].

Spans are generalized relations and, as with relations, 2-cells provide a
way to relate programs and properties. Consider the program

ri=xx2y:=4[x:Ny:N]

and the postcondition “x is even” where no constraints are placed on y. In the
diagram below the program is represented by the upper span and the property
by the lower span where f = A(z,y).(2x,4) and g = A((z,y), (2',y')).(22", ¢/).
\ /

N x N N x N
(N x N)?

32

The program has the property when there is a 2-cell between the spans which
is an inclusion. When it exists, then standard results for image factorizations
ensure that there is also a monic from the image (postcondition) of f to
the image of g. The same method can express when a program satisfies an
input /output relation. An advantage of spans over relations is that properties
can be expressed in terms of variables which are not in scope at the beginning
and end of the block.

These principles extend to oplax functors J——Sp(Set) related by oplax
map natural transformations. The 2-cells in an oplax map natural trans-
formation serve the same purpose as the 2-cells above. An oplax functor
associates a span with each transition. Each span asserts pre- or postcon-
ditions of a transition and relates the values of variables between program
points. The oplaxness means it is possible to associate a stronger property
with the transition ¢f than is associated with f and ¢ alone. More gener-
ally, it is possible to express that a computation path must compute some
input/output relation without imposing constraints on how that relation is
realized.

In practice we work with twisted systems rather than oplax functor cat-
egories. To relate programs and properties we shall follow the example of
categorical models of first-order logic which we review below.?

Briefly, if I' = [z7: Xq,..., 2, : X,,] is a context, then the meaning of
a formula in context # [I'] in a category C is a subobject of the product
[T] = [Xi1] x --- x [X,]. Write Sub(X) for the lattice of subobjects of
X. It is a Heyting algebra where the ordering corresponds to satisfaction
such that if § = ¢ [['] then [0 [T']] factors through [¢ [[']] in the fibre over
[T']. Conjunction is meet and disjunction is join in the fibre. To translate
properties between fibres, let f : X —Y be a morphism in C and write
f* 0 Sub(Y)— Sub(X) for the functor which maps a subobject of Y to its
pullback against f.

Weakening of contexts is modelled by pulling back against projection
maps:

[0, = X]] = =7 ([0 [T]])

where 7 : [[',z: X]—[I']. Given such a projection map, then universal
quantification is the right adjoint to the pullback functor 7. Existential
quantification is the left adjoint. These functors satisfy the Beck-Chevally
condition and Frobenius reciprocity.

3The handbook chapter by Pitts [Pit] is a good introduction to categorical models of
predicate logic and a source for other references. Our notation has been adapted from
Pitts.

33

The same constructions apply to programs and properties. We will not,
however, interpret a logic. For the remainder of this section it is convenient

to forget the start and end states. Given a system B = (J,J—2>Set), a
subsystem has the same shape as B and a functor which is a subfunctor of
B. As above, properties are objects in Sub(B). A program S has a safety
property P when it factors through P in the fibre over B. As the shape is
fixed, all this happens in the topos Set’.

This leaves the issue of choosing a base for the fibre in which to relate
a program and the properties of interest. As a rule, a program will inhabit
many fibres. However, each program has a standard base obtained by ignor-
ing the actions of the algorithm and considering only the declaration and
scoping of variables. The standard base specifies the shape, the type and
scoping of variables and assigns a span to each transition which relates pro-

gram variables in the most general way. For a program S = (J,j—s> C), the

standard base is the system B = (J,ji C) where the functor B is the right
Kan extension shown in diagram 11.1.

—

Diagram 11.1.

Since J is a free category, the effect of the Kan extension is to map each

f to a product. If f = aOL e i>an is a path in J in which Sa; = X;,

then Bf = Xg x --- x X;,. When n =1 and f is an edge of the underlying
graph, then Bf = X, x X;. Therefore, any f transition in the fibre must be
labelled with a subobject of Xy x X; (a relation). For n > 1, f is mapped
to the apex of a span which represents an assertion expressed in terms of all
the variables along the path.

Weakening between fibres of the same or different shape is defined as in
first-order logic. Natural transformations whose components are projections
can isolate any combination of program variables and particular occurrences
of variables at arbitrary points in the program. All the propositional con-
nectives are available as are the quantifiers.

Consider the following simple example.

34

T =+ 2
r:=2xz [x:N]

The property we wish to express is that x is even at the end of the sec-
ond transition. This requires a base object B, and subobjects S and P for
the program and property respectively. The situation is depicted in dia-
gram 11.2. The solid arrows in the diagram depict three systems. All the
unlabelled morphisms are projections. The base B is at the bottom. The
program S (upper left) is constructed according to the scheme outlined in
the previous section. The system P (upper right) is the largest subobject of
B having the desired property. The dotted arrows are the components of the
natural transformations relating the three functors. All the components are
monomorphisms.

Often safety and liveness are duals and this is the case here. To express
liveness the ordering in the fibre is reversed. If S is the system representing a
program and Q is a liveness property and both are in the fibre of subobjects
over B, then S has property Q when Q factors through S. The program S
is then obliged to compute everything specified by Q.

This is often stronger than necessary. Usually it suffices to express only
that a particular state is not deadlocked, that a particular transition can
fire or that the program can terminate. This can be done by moving to a

different fibre. Assume B = (J,J—2-Set) is the base of the fibre. Define

L = (JJLSet) such that Lf: 1 for all f € J and define the morphism

(Id,n) where U Bf—1. Forward properties above L assert only that
some point or points in J are reachable or that some transitions may fire. The
functors V, 3 : Sub(B)— Sub(L) (the adjoints of (Id,n)*) transfer properties
into the fibre over L.

12 Forward and Backward Systems

A system constructed according the scheme outline in section 8 may fail to
exhibit properties which intuitively the program should have. As discussed
earlier, tuples in the product Sb represent variable assignments at point b € J.
The problem is that often there are tuples in Sb which do not correspond to a
computation. That is, there is no initial variable assignment and computation
path to b which computes the tuple. Consider the fragment:

T =2 X
r:=x+2 [1:N]

35

Diagram 11.2.

36

The value of x is even at then end of the block but this is not reflected in the
postcondition of the span interpreting the second command. This motivates
the following definition:

DEFINITION 12.1 An algorithmic system S is forward if for all objects b € J,
the collection of arrows

(S72Y 55 | e 3w b))

1s an epimorphic family.

The definition means that the forward legs of the spans relating the initial
state to any other state are a covering for the variable assignments at that
state. Alternatively, every variable assignment at every reachable state is
justified by some initial variable assignment and a computation path to that
state. We write FS for the full subcategory of systems which are forward.

For each algorithmic system S, there is a forward system S which is
the most precise description of the behaviour of the program. If S = (1 +

1—>J,j—5> Set), then S has the same shape and a functor 'S which is the
largest forward algorithmic subfunctor of S. It represents the strongest as-
sertion which can be made about the program. The name “forward” comes
from “forward collecting semantics” in the Cousots’ framework for abstract
interpretation [CC77]. A forward collecting semantics associates with each
program point, the set of all possible variable assignments at that point. This
corresponds to the object part of a forward system. If S : J— Set is the

functor of a forward system then the composite functor |J| — J—2>Set is the
forward collecting semantics in the Cousot sense. It follows that a forward
system carries considerably more information. It records how each variable
assignment at each program point is obtained, what transitions can fire from
each state, and the relationship (if any) between variable assignments be-
tween arbitrary program points.

Below we provide two ways of constructing forward systems. In the first

is the union of forward subobjects. This requires showing that FS is
well-complete.

LeEMMA 12.2 The coproduct of forward systems is forward.

Proor Consider the sum S + T with injections inl : S— S + T and inr :
T— S + T and the family of arrows:

b)+T

(Sf +Tf 2N qpTh | f e 3(v,0)}

37

Given the pair Sb + Tb_’C and assuming the sets {S(f,b) | f € J(V,b)}
and {T(f,b) | f € J(Vv, b)} are epimorphic families, then

VF € (9,8 ho (S(f,8) + T(f,8)) = ko (S(f,) + T(f.5))

VT € U8 ho (S(,D) + T(f.B) oinly = ko (S(7,0) + T(.b)) o nlz
A ho (S(f,6) + T(F.b) olinrr = k o (S(f,5) + T(f.b)) o inr

= Vf € J(V,b).hoinlyo S(f,b) =koinl,oS(f,b)
A hoinryoT(f,b) =koinr,oT(f,b)

= hoinly==Ekoinly, A hoinry,=koinr

— h=k

O

LEMMA 12.3 Forwardness is stable under image factorization. Letn: S="T

be a natural transformation where S is the functor of a forward system. If n
. . . € 8

has an image factorization n = S== M>="T, then M is forward.

PROOF The diagram below shows the factorization of a naturality diagram
for a morphism (I, m) : f—¢ € J. The dotted arrow is uniquely determined
by the factorizations of the components Ny and 7g.

- €7 -~ M7 ~
Sf—L—Mf—L 1]
S(1,m) (1,m)’ T(1,m)
Sj—e— Mg Ty

Now consider the naturality Igliagrams for the morphisms {(f,b)|f €
J(v,b)} for some b € J. Let Mb==C be a parallel pair in Set.

Vfel(v,b).hoM(f,b)=FkoM(fDb)
= Vf€eJ(V,b).hoM(f,b)oes=koM(fb)o
— Vf e J(V,b).hoeoS(f,b) =koeoS(f,b)
— hog =rFkog {S(f,b)| f € J(v,b)} is an epimorphic family
— h=k € is epimorphic

7

O
The combination of lemmas 12.2 and 12.3 ensures that S U T is forward
when S and T are forward.

38

The construction of forward systems extends to a functor (Tj : CTS—FS
as follows. Let S : J— Set and T : K— Set be systems and (F,7) : S— T
be a morphism. Let v : S =S be the forward subfunctor of S. This
determines a subfunctor p : R==T of T by the image factorization poe =
novk : SE—T. By lemma 12.3, R is itself forward and hence p factors
uniquely through the forward subfunctor for T bl a natural transformation
§: R— T . This yields a morphism (F,d0¢€): S —T

Next we sketch an alternative definition of the functor (Tj : CTS—FS
which generalizes predicate transformers defined earlier for individual spans.

Given an algorithmic functor S : J— Set, then for each object b € J
consider the image factorization of the family of {S(f,b)|f € J(V,b)} as
shown in diagram 12.1.

Sh Sh

! S(f1,6) X

. Sb .
_—— o

Sfn

Diagram 12.1.

Let J : |JJ—J be the obvious embedding and define the functor |S| :

J|-2-J—2-Set. Define the system Q : [J|— Set such that Qb is the image
as shown in diagram 12.1. This gives two morphisms of systems:

(1d,¢): Q—IS| (Jid): S— S|

The forward system S is the pullback:

§>_I (J,id) Q
(1d,) (14, 6)
S~ S

Given systems, S : J—Set and T : K— Set and a morphism (F,n) :
S— T, then (F,n) is the universal arrow as shown in diagram 12.2. The
natural transformation |n| consists of the components of 7 indexed by the
objects of [J| (rather than [J]). For the natural transformation p, consider

39

N
.-._.(.F,n Vm)
T R
- (1d,6)
s L) S| (14,)
(F.n) <|F|,®\
T "

Diagram 12.2.

g L R
. S(gy, Fb
S (51, FP)
h
SF W
- X k SED
SFfi
l [l
Tfn T(fub)
S ?b)T Th
~° T(flab)
TT

Diagram 12.3.

40

the image factorization of the three families of arrows as shown in diagram
12.3.

The lower plane shows the factorization for ?b. In the middle is the
factorization of the family:

S(Ff; Fb

(SFF, L SFb| f; € K(V,b)}

This is a subset of the family of arrows:

S(gi,Fb)

{S7; SFb|g; € J(v,Fb)}

which appear at the top level and whose image factorization is ?(Fb) Hence
there is a unique h such that 6, factors via h through k. The morphism [is
the unique arrow determined between the two image factorizations. Define
py =1oh.

LEMMA 12.4 FS is a reflective subcategory OfCAJTS.

O
CTS_ 1 FS

All the definitions and lemmas for forward systems have duals.

DEFINITION 12.5 An algorithmic system S is backward if for all objects
b € J, the collection of arrows

{Sh—LE-5F | 1 e (b, a))
1s an epimorphic family.

Intuitively, if S is backward, then for each object b in the shape J, a
tuple in Sb represents a variable assignment for which there exists a termi-
nating computation. Naturally there is a category of backward systems BS
and a functor (—) : CTS— BS. Backward system correspond to backward
collecting semantics in abstract interpretation.

A system can be both forward and backward. Let FBS be the category of
algorithmic systems which are both forward and backward. If S is forward,
then remains forward. The easily seen by considering the second con-
struction of forward systems. Pullbacks are computed pointwise and Set is a
regular, epimorphisms (and epimorphic families) are stable under pullback.
The converse is also true, if S is backward, then S remains backward. The
following lemma follows directly.

LEMMA 12.6 @oﬁ;ﬁo@:c’?séﬂas

41

Finally there are constructions analogous to forward and backward sys-
tems for categories of twisted elements. Given a system S : J— Set then
¢ S is forward when all the objects in ¢ S are reachable from an object in

the fibre above V. The category ﬁ is obtained by discarding unreachable
i
objects. The dual holds for § S.

13 Conclusions

We have show that the operational semantics of a program can be expressed
using twisted systems, and moreover, that the system representing the pro-
gram can be constructed compositionally. The functor obtained in this way
is closely related to the transition relation of a operational semantics via
the category of twisted elements. Procedures are accommodated though it
should be said that the semantics of procedures is less precise than it should
be.

We have also shown that both programs and properties of programs can
be structured in a manner analogous to categorical models of predicate logic.
We hope to find program logics or perhaps first-order modal or temporal log-
ics which can be interpreted in this framework. Related to this is possibility
of presenting Cousots theory of abstract in categorical terms.

There is considerable structure available which has yet to be exploited.
We have not made use of the fibrational structure of the category of twisted
systems, and only limited use of the “bifibrations” produced by the category
of twisted elements. Nor have we made use of the fact that category of
programs and properties of a particular shape form a presheaf topos.

Finally, twisted arrow categories have featured prominently in this pa-
per. To the best of our knowledge the relationship between twists and spans
summarized here is novel. The connection is also exploited in [Err96, Err] in
the context of communicating processes. We expect further applications of
twisted arrow categories in computing will follow.

Acknowledgements

I wish to thank three successive office mates: Francois Lamarche, Dusko
Pavlovi¢ and Till Plewe. What category theory I know, I learned from them
or with their help. Francois is directly responsible for some of the material
which appears in this paper and I have attached his name to those construc-
tions and results for which he is wholly responsible.

42

I also wish to thank David Clark and my supervisor Prof. Chris Hankin
for their support and advice, both technical and otherwise.

References

[AP97]

[Bén67]

[Bor94|

[Bur72]

[CCT7)

Samson Abramsky and Dusko Pavlovié. Specifying interaction cat-
egories. In E. Moggi et al., editor, Category Theory and Computer
Science '97, Lecture Notes in Computer Science, page 14. Springer
Verlag, 1997. to appear.

Jean Bénabou. Introduction to bicategories. Lecture Notes in Math-
ematics, 47, 1967.

Francis Borceux. Handbook of Categorical Algebra 1, Basic Cate-
gory Theory. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1994.

Rod Burstall. An algebraic description of programs with assertions,
verification and simulation. In J. Mack Adams, John Johnston,
and Richard Stark, editors, Conference on Proving Assertions about
Programs, pages 7 14. ACM, 1972.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Fourth ACM POPL, pages 238
252, 1977.

[CKS84] Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategories

[Dij75]

[Err]

[Err96]

[FS90]

of spans and relations. Journal of Pure and Applied Algebra, 33:259
267, 1984.

E.W. Dijkstra. Guarded commands. Communications of the ACM,
18(8):453 457, 1975.

Lindsay Errington. Clategorical Transition Systems. PhD thesis,
Imperial College, In preparation.

Lindsay Errington. Categories of processes with state. In Third
Theory and Formal Methods Workshop. 1C Press, 1996.

Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39
of North-Holland Mathematical Library. North-Holland, Amster-
dam, 1990.

43

(GJ92]

(Gla91]

[GMS3]

(GogT4]

[Gog91]

[Gou95]

[Gra66]

[Joh77]

[MacT71]

[Ple96]

[Pragi]

[RRSS)]

Eric Goubault and Thomas Jensen. Homology of higher-dimensional
automata. In CONCUR ’92, Lecture Notes in Computer Science.
Springer Verlag, 1992.

R.J. van Glabbeek. Bisimulations for higher dimensional au-
tomata. Email message, July 7, 1991, 1991. Available at
http://theory.stanford.edu/ "rvg/hda.

Joseph Goguen and José Meseguer. Correctness of recursive parallel
non-deterministic flow programs. Journal of Computer and System
Sciences, 27(2):268-290, 1983.

Joseph Goguen. On homomorphisms, correctness, termination, un-
foldments and equivalence of flow diagram programs. Journal of
Computer and System Sciences, 8:333-365, 1974.

Joseph A. Goguen. A categorical manifesto. Mathematical Struc-
tures in Computer Science, 1(1):49-67, 1991.

Eric Goubault. Géométrie du Parallélisme. PhD thesis, Ecole Poly-
technique, 1995.

J.W. Gray. Fibred and cofibred categories. In S. Eilenberg, D.K.
Harrison, S. MacLane, and H. Rohrl, editors, Conference on Cate-
gorical Algebra, pages 21-83. Springer Verlag, 1966.

Peter T. Johnstone. Topos Theory. Academic Press, 1977.

Saunders Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, Berlin, 1971.

Andrew M. Pitts. Categorical logic. In S. Abramsky, D. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science.
Oxford University Press. To appear.

Till Plewe. Specifications as spans of geometric morphisms. In Third
Theory and Formal Methods Workshop. 1C Press, 1996.

V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th
Ann. ACM Symposium on Principles of Programming Languages,
pages 311 322, January 1991.

E. Robinson and G. Rosolini. Categories of partial maps. Informa-
tion and Computation, 79:95 130, 1988.

44

[TBGI1] Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some funda-

[Vic95]

mental algebraic tools for the semantics of computation, part 3: In-
dexed categories. Theoretical Computer Science, 91:239-264, 1991.

S.J. Vickers. Geometric logic as a specification language. In Pro-
ceedings of the 199/ Theory and Formal Methods Section Workshop.
Imperial College Press, 1995.

45

