
Twisted Systems and the Logic of ImperativeProgramsLindsay ErringtonOctober 28, 1998AbstractFollowing Burstall, a
ow diagram can be represented by a pairconsisting of a graph and a functor from the free category to thecategory of sets and relations. A program is veri�ed by incorporatingthe assertions of the Floyd-Naur proof method into a second functorand exhibiting a natural transformation to the program.A broader range of properties is obtained by substituting spans forrelations and introducing oplaxness into both the functors representingprograms and the natural transformations in the morphisms betweenprograms. The apparent complexity of this generalization is overcomeby the observation that an oplax functor J Sp(C) is essentially thesame as a functor eJ C where eJ is the twisted arrow category of J.Thus, a program is a presheaf F̂ (G) Set as are the properties ofthe program.By analogy with categorical models of �rst-order logic, a programand the properties which pertain to it are subobjects of a suitablychosen base object. In this setting safety and liveness properties aredual in a �bre of subobjects.1 IntroductionIn [Bur72] Rod Burstall describes how a
ow-chart can be represented by afunctor from a free category to the category of sets and partial functions, ormore generally, sets and relations. A program is a diagram or system in thesense used by Goguen [Gog91] consisting of a pair:(G;F (G) S Rel)1

where G is a graph and F (G) is the free category. Diagram 1 illustratesthis with the factorial program. The vertices of G are the states or programpoints. The vertex a is the start state and paths in G are computation paths.The image of each vertex is a cartesian product with a component for eachvariable in scope. Tuples in a product are the possible variable assignmentsat a particular program point. Transitions are labelled with relations. In theexample we use terms from a typed �-calculus extended with predicates todenote partial functions.abc
fgh

fact(n : N) : Nvar x; y : Nx := 1y := 1do x < n !x := x+ 1y := x� yendreturn yNN �N �NN
�n:(n; 1; 1)�(n; x; y):x � n:y�(n; x; y):x < n:(n; x+ 1; x� y)Diagram 1.1.A morphism of programs:(G;F (G) S Rel) (H;F (H) T Rel)is a pair (P; �) where P : G H is a graph homomorphism and � : S T �F (P) is an injective natural transformation. A morphism is a simulationwhen the components of � are inclusions.Less explicit in Burstall's paper is that such a functor is not only a repre-sentation of the program, but also its operational semantics. Operationally,each action is a conditional rewrite rule which can \�re" only for those tupleswhich satisfy the precondition.As a speci�cation of the operational semantics of a program, this rep-resentation has some advantages over a conventional structural operationalsemantics. First, variables are typed and the product at each program pointcorrectly re
ects the locality and scoping of variables. Equally important2

is that a system preserves the coherence of the program. By this we meanthat it faithfully expresses the program as a schedule of operations. A con-ventional operational semantics is a relation between states. A state is apair hC; si where C is a program fragment and s is a particular variable as-signment. The relation does not record the fact that some transitions areinstances of the same action in the program. Thus a considerable amount ofinformation concerning the structure of the program is lost. In this respecta functor like the above is more intensional and more faithfully representsthe structure of the program. Preserving this information may prove to besigni�cant within the context of model checking as a way of avoiding thestate explosion problem.Burstall goes on to cast the Floyd-Naur proof method into categoricalterms. Given a program (G; S : F (G) Rel) and assertions Pa for eachvertex a 2 G, he constructs a second functor S 0 : F (G) Rel by restrictingthe relations in S to the sets satisfying the assertions at each vertex. Veri-fying a program via the Floyd-Naur proof method amounts to exhibiting asimulation � : S 0 S.Subsequently Goguen developed the theory further [Gog74] (See alsoGoguen and Meseguer [GM83]). Amongst other contributions, he allowsa more general class of morphisms, (P; �), whereby P : F (G) F (H) canbe a functor (rather than a graph homomorphism). In this way it becomespossible to relate programs having di�erent shapes and paths of di�erentlength.This paper considers the relationship between programs and propertiesby analogy with categorical models of predicate logic. Given a context ofvariables, � = [x1 : X1; : : : ; xn : Xn], then a formula � in the context �is interpreted by a subobject of the product interpreting �. Similarly, aprogram and the properties which pertain to it are subobjects of a suitablychosen base object. In this setting, safety and liveness properties are dualto one another in a �bre of subobjects. A program has a safety propertywhen it factors through the property. Conversely, a program has a livenessproperty when the property factors through the program.Unfortunately, the range of properties which can be expressed using thecategories proposed by Burstall and Goguen is limited. The constraints im-posed by functorality and naturality are too strong. For instance, supposef : a b 2 F (G) is a transition and Sf and Tf are relations associatedwith f from a program and safety property respectively. Naturality impliesthat Sf and Tf must be the same for all x 2 Sa and that Sf can only be a
3

restriction of Tf to the smaller domain and codomain.Sa TaSb TbSf Tf�a
�bThis amounts to an over speci�cation since is means that the relationsin a property can specify little more than the input/output relation of thecorresponding steps in the program. The relations in a property cannotbe made arbitrarily larger than those in the program. It is not possible,therefore, to express only the postcondition of a transition. Nor can oneassert a property concerning a single program variable from the many whichmay be in scope.Functorality implies that it is not possible to specify the property of acomposite transition without imposing constraints for the steps along thepath. For example, one cannot assert that a particular computation pathmust realize some input/output relation without also specifying how thatrelation is realized.To address these issues we move to a more general setting. Intuitively wesubstitute spans in place of relations. Then, in place of functors, we use oplaxfunctors and in place of natural transformations we use oplax map naturaltransformations. Thus, a system is a pair(G;F (G) S Sp(C))in which S is oplax and a morphism is pair (P; �) where � is an oplax mapnatural transformation. These terms will be de�ned shortly.Bicategories, oplax functors and oplax natural transformations are allsubject to coherence conditions so it may seem like we have introduced aconsiderable degree of complexity for a relatively modest improvement inexpressiveness. However, the functor category just outlined has a surprisinglysimple characterization in which the coherence conditions are not needed. Anoplax functor J Sp(C) is essentially \the same" as a functor eJ C whereeJ is the twisted arrow category of J. This gives twisted systems, ie. pairs:(J;eJ C)In particular, a program with shape G is a presheaf]F (G) Set as are theproperties of that program. Oplax map natural transformations become sim-ply natural transformations. Thus, by introducing twisted arrow categories,4

we not only obtain a richer range of properties, but we also �nd ourselvesworking in a presheaf topos.The question of what is a suitable logic for describing properties of pro-grams is not addressed in this paper. However, the theory ensures thatproperties can be combined using the standard propositional connectives.Moreover, it becomes possible to quantify over both local and global pro-gram variables, recursive instances of variables or individual occurrences ofvariables.Twisted systems also appear in [Err96] where they are used to constructcategories of processes. The thesis [Err] gives categorical semantics to amessage passing parallel language which is an extension of the sequentiallanguage de�ned later in this paper.The remainder of the paper is structured as follows. In the next sectionwe review results concerning the relationship between twisted arrow cate-gories and spans. This includes some basic results concerning twisted arrowcategories. The reader is referred to [Err] for proofs and further details. Nextwe introduce categorical transition systems and twisted systems. From thelatter we construct a rudimentary bicategory of algorithms which is then usedto give a categorical (and compositional) semantics to a simple imperativelanguage. We digress brie
y to outline the relationship between the categor-ical semantics and a conventional structural operational semantics. Finallywe consider programs and properties (both safety and liveness) in a settingakin to categorical models of predicate logic.2 Bicategories, spans and oplaxnessThe following is adapted from Borceux [Bor94]. See also Benabou [B�en67].Definition 2.1 A bicategory B consists of the following data:(i) a collection of objects A;B;C; : : : called 0-cells.(ii) for each pair of objects, A and B, a small category B(A;B). The objectsof B(A;B) are called morphisms or 1-cells of B and the morphisms ofB(A;B) are the 2-cells.(iii) For each triple of objects A, B and C, a composition functorcABC : B(A;B)� B(B;C) B(A;C)where we write g � f for the composition of 1-cells f : A B andg : B C.(iv) for each object A, an identity arrow idA : A A.The usual axioms for identity and associativity are relaxed to isomorphisms:5

(v) Associativity: for each quadruple A, B, C, and D a natural isomor-phismassocABCD : cACD � (cABC � IdCD) cABD � (IdAB � cBCD)(vi) Unit: for each pair of objects A and B, two natural isomorphismsunitlAB : IdAB cAAB � idA � IdABunitrAB : IdAB cABB � IdAB � idBThese must satisfy coherence conditions which we omit.One can quotient the morphisms of a bicategory to obtain a category.Following B�enabou, the category obtained by identifying all 1-cells whichare 2-isomorphic and forgetting the 2-cells is the classifying category . Wewrite B[for the classifying category of B.Given a category C with pullbacks, the bicategory of spans Sp(C) has as0-cells the objects of C. A 1-cell f : A B is a span; a diagram in C of theform: PfA B�f �fwhere �f and �f are respectively the left and right legs and Pf is the apex off . Composition of 1-cells is by pullback. A 2-cell � : f g is a morphismin C such that the two triangles commute:PfA BPg�
Some familiar 2-categories are obtained by restricting the choice of mor-phisms in spans and quotienting by 2-isomorphisms. For example, requiringthat �f be monic for all f yields the 2-category Part(C) of partial maps overC. Note that the 2-cells in Part(C) are all monomorphisms. See Robinsonand Rosolini [RR88] for other notions of categories of partial maps.Choosing C to be a regular category and requiring that �f and �f arejointly monic yields the category Rel(C) of relations over C. The composite of6

f and g in Rel(C) is de�ned by �rst constructing gf in Sp(C) and then takingthe image factorization of (�gf ; �gf) as a regular epimorphism followed by ajointly monic pair. As with Part(C), the 2-cells in Rel(C) are monomorphisms.See Freyd and Scedrov [FS90].The following is taken from Carboni et al [CKS84].Definition 2.2 A morphism f : A B in a bicategory B is a map whenit has a right adjoint f � : B A.Lemma 2.3 A morphism f : A B in Sp(C) is a map if and only if �f isan isomorphism in C.The lemma holds in Rel(C) and Part(C) as well. Restricting to mapsyields a sub-bicategory of Sp(C) in which the only 2-cells are isomorphisms.Quotienting by these 2-cells yields a category isomorphic to C. Clearly eachequivalence class has a canonical representative, namely the span whose back-ward leg is an identity. For further results concerning maps in bicategories ofspans and relations see Carboni et al [CKS84] and Freyd and Scedrov [FS90].In the same way that bicategories relax the associativity and unit ax-ioms, one can relax the axioms for functors between bicategories and naturaltransformations. Below we de�ne oplax functors and oplax natural transfor-mations in the particular case where the source bicategory is trivial (the only2-cells are identities) and the target is Sp(C).Definition 2.4 Let J be a trivial bicategory. An oplax functor F : J Sp(C)consists of the following data:(i) For every object a 2 J, an object Fa 2 Sp(C).(ii) for every pair of objects a; b 2 J, a functorFab : J(a; b) Sp(C)(Fa; Fb)(iii) for every triple, a; b; c 2 J, a natural transformation
abc:J(a; b)� J(b; c) J(a; c)Sp(C)(Fa; Fb)� Sp(C)(Fb; F c) Sp(C)(Fa; Fc)
cabcFab � Fbc cFa;Fb;Fc Fac
abc

(iv) for every object a 2 J, a natural transformation �a:7

1 J(a; a)1 Sp(C)(Fa; Fa)
ua

uFa Faa�aThe natural transformations must satisfy coherence conditions which weomit.The f; g component of
abc is shown in diagram 2.1. If the target is Rel(C)or Part(C) then
f;g is monic giving the inequality F (gf) � Fg � Ff . Notethat the naturality of
f;g and �a is vacuous as there are only identity 2-cellsin J.
Fa Fb FcPFf PFgPFg �Fb PFgPF (gf)
f;g

Diagram 2.1.Definition 2.5 An oplax functor J Sp(C) is normalized if for each objecta 2 J, �a is the identity natural transformation.When F is normalized then it follows that for all f : a b in J,
ida;f =unitlFf and
f;idb = unitrFf .Definition 2.6 Let F;G : J Sp(C) be oplax functors. A oplax naturaltransformation � : F G consists of the following data:(i) for every object a in J a morphism �a : Fa Ga in Sp(C).(ii) for each pair of objects a; b 2 J a natural transformation �ab:J(a; b) Sp(C)(Fa; Fb)Sp(C)(Ga;Gb) Sp(C)(Fa;Gb)
FabGab cFa;Ga;Gb(�a;�) cFa;Fb;Gb(�; �b)�ab

8

where cFa;Ga;Gb(�a;�) and cFa;Fb;Gb(�; �b) are the functors obtained by�xing �a or �a in the bifunctors of composition. Once again we omitthe coherence conditions.Diagram 2.2 shows oplax naturality for f : a b in J where �f is thef component of the natural transformation �ab. The de�nition translates tothe requirement that the pentagons � and � must commute. The di�erencebetween this and a naturality diagram is simply that in the latter �f isthe identity. For functors in Rel(C), �f is monic yielding the inequality:�b � Ff � Gf � �a. Fa Ga
Fb Gb

� �
�a
�b

Ff Gf�f
Diagram 2.2.We write L(J; Sp(C)) for the bicategory with objects the functors J Sp(C)and morphisms the oplax natural transformations. Similarly, write LL(J; Sp(C))for the bicategory which is the same as above except that objects are nor-malized oplax functors J Sp(C) (rather than functors).Lemma 2.7 L(J; Sp(C)) and LL(J; Sp(C)) are bicategories.Lemma 2.8 A morphism � is a map in L(J; Sp(C)) and LL(J; Sp(C)) if andonly if the 1-cells components of � are maps in Sp(C).Now write LM(J; Sp(C)) and LLM(J; Sp(C)) for the sub-bicategories ofL(J; Sp(C)) and LL(J; Sp(C)) respectively in which morphisms are restrictedto be maps. As with Sp(C), the map restriction implies that the only 2-cells in LM(J; Sp(C)) and LLM(J; Sp(C)) are isomorphisms. Moreover, eachequivalence class in the corresponding classifying categories, LM[(J; Sp(C))and LLM[(J; Sp(C)) has a canonical representative, namely the oplax naturaltransformation � such that for each 1-cell component �a, ��a = idFa. Ine�ect, morphisms in these two categories are families of arrows of C indexedby the morphisms of J. This will become clear shortly.9

3 Twisted arrow categoriesAn oplax functor F : J Sp(C) selects not only a collection of objectsand arrows in Sp(C) but indirectly a collection of objects and arrows in C.This suggests that rather than oplax functors into Sp(C), we incorporate thespans into the domain and work with functors into C. This requires a shapeeJ derived from J and a functor F � : eJ C which selects the same or anequivalent collection of objects and morphisms as F . The shape must besuch that for every morphism in J there is a \span" in eJ. These is obtainedby taking eJ to be the twisted arrow category of J (see chapter IX, x6, exercise3 of Mac Lane [Mac71]):Definition 3.1 An object ef of a twisted arrow category eJ is an arrow f ofJ. A morphism ef eg is a pair of morphisms (l; m) in J such that f = mgl.1A CB Df l
m gThe composition of (l; m) : ef eg and (p; q) : eg eh is (pl;mq) : ef eh.An example of a category and its \twist" is shown in diagram 3.1 where,in the twisted category, we have written a in place of ida. The collection ofobjects ea of eJ associated with identity morphisms of J are referred to as theJ objects in eJ.The twisted arrow category eJ displays the factorization structure of J.There is a morphism ef eg for each factorization of f involving g. The rela-tionship between spans and twists rests on the property that each morphismf : a b in J determines a span ea (a;f) ef (f;b) eb in eJ.The following are easily veri�ed.Lemma 3.2 (eJ)op = R (Jop � J hom Set)This implies that eJ is �bered over Jop � J for which there are projections:!�; : eJ J and � : eJ Jop :!�(ef :a b) = a!�(l; m) = l �(ef :a b) = b �(l; m) = m1This is the opposite of the category appearing in [Mac71].10

a
b
c
3

ea
eb
ec

ef
eg eh
e3

f
g h

(a; f)(f; b)(b; g)(g; c)
(a; g)(f; c)(f; g)

(a; h)
(h; c)

Diagram 3.1.Lemma 3.3 (e�) : Cat Cat is a functor.Proof Given F : J K, de�ne eF : eJ eK by:eF ef = fFfeF (l; m) = (F l; Fm)which is clearly functorial. utLemma 3.4 If J is a discrete category then J �= eJ.Lemma 3.5 (e�) : Cat Cat preserves all limits.Proof We show that the twist of a limiting cone in Cat is isomorphic tothe limit of the twisted diagram. As is standard, it su�ces to consider theterminal object (the empty diagram), products and equalizers.By lemma 3.4 the terminal object is preserved. The situation for productsis shown below. On the left is a product diagram in Cat and on the right isthe twist of the same diagram together and a second product.
11

J J� K K eJ Ĵ� K eKeJ� eK
�1 �2 e�1 e�2�1 �2FG

Here F universal and G is de�ned such that given morphisms (l; m) :ef eg 2 eJ and (p; q) : eh ek 2 eK then:G�(ef;eh) ((l;m);(p;q)) (eg;ek)� = �](f; h) ((l;p);(m;q))](g; k)�This extends to a functor and clearly an isomorphism (the inverse of F).With respect to equalizers, consider the diagram below showing an equal-izer diagram and its twist.L J K eL eJ eKM
E FG eEH eFeG

Let M H eJ be the equalizer following the twist. The categories M and eLare isomorphic by the following:(l; m) : ef eg 2 M() eF (l; m) = eG(l; m) ^ eF ef = eG ef ^ eFeg = eGeg ^ f = mgl() (F l; Fm) = (Gl;Gm) ^ Ff = Gf ^ Fg = Gg ^ f = mgl() F l = Gl ^ Fm = Gm ^ Ff = Gf ^ Fg = Gg ^ f = mgl() f = mgl 2 L() (l; m) : ef eg 2 eL utThe category eJ has some important limits.Lemma 3.6 (Lamarche) If a f b g c is a composable pair in J then thefollowing diagram is a pullback in eJ: 12

ebef egfgf
(f; b) (b; g)(a; g) (f; c)(f; g)

Proof Let k = mbfl = qgbp (diagram 3.2). The morphisms a, b and c areall identities which makes (l; q) universal. ut

ebef egfgfek
(f; b) (b; g)(a; g) (f; c)(f; g)

(l; q)(l;m) (p; q)
Diagram 3.2.Pullbacks in eJ which arise in this way are called �-pullbacks. More gen-erally, every �nite string of composable arrows in J gives rise to a limitingcone in eJ. We call these �-limits. In this sense composition in J correspondsto limits in eJ.The purpose of introducing twisted arrow categories was to enable anoplax functor J Sp(C) to be replaced by a functor eJ C. The preciserelationship between spans and twists is expressed in the following theorem.Theorem 3.7 The quotient functor category LLM[(J; Sp(C)) is isomorphicto CeJ.So whereas the we began with the prospect of working with bicategories,oplax functors and oplax natural transformations, theorem 3.7 reduces thisto a well understood universe. In particular, when the target category is Set,then LLM[(J; Sp(Set)) is isomorphic to the category of presheaves SeteJ andhence a topos. 13

Corollary 3.8 The functor category LM[(J; Sp(C)) is isomorphic to thesubcategory of CeJ consisting of those functors which preserve �-limits.Corollary 3.9 The functor category LLM[(J;Part(C)) is isomorphic to thesubcategory of CeJ consisting of those functors with the property that for allmorphisms f : a b in J, the image of (a; f) : ef ea is monic.It is worth mentioning that the analogous correspondence for relationsdoes not hold. That is, it is not the case that the functor category LLM[(J;Rel(C))is isomorphic to the subcategory of CeJ of functors where for all f : a bin J, the image of (a; f) : ef ea and (f; b) : ef eb is a monic pair. Thisis because composition is Rel(C) is such that, given gf in J and an oplaxfunctor J Rel(C), the 2-cell
f;g does not determine morphisms from theapex Pgf to Pf and Pg.4 Algorithmic functorsIn this section we restrict our attention to twisted functors which correspondto algorithms in a very general sense.Definition 4.1 A twisted functor eJ Set is algorithmic if it preserves �-limits in eJ.By Corollary 3.8, the requirement that an algorithmic functor F : eJ Setpreserve �-limits means that it corresponds to a functor J Sp(C). In fact topreserve �-limits, it su�ces that the functor preserve �-pullbacks. The reasonfor the name algorithmic stems from the fact that, given a computation pathf = a0 f1 � � � fn an in J, then the e�ect of following the path is given bythe composite span Fa (a0;f) F ef (f;an) Fan.Write SeteJalg for the subcategory of algorithmic functors. This categoryhas useful structure. First, since limits commute with limits and since Setis distributive, then, like SeteJ, it is complete and cocomplete. Also, SeteJalgis well-complete. Intersections are formed from pullbacks. Unions can beconstructed from coproducts and image factorizations. The following twolemmas ensure that these constructions yield algorithmic functors.Lemma 4.2 If F;G : eJ Set are algorithmic then F +G is algorithmic.Proof It is straightforward to show that the sum of a pair of pullbacks inSet is again a pullback. Alternatively the lemma is an instance of a more14

general result concerning the interchange of limits and colimits in categorieslike Set. See Borceux [Bor94]. utLemma 4.3 Let F;G : eJ Set be algorithmic. If � = F � Q � G is anepi-mono factorization of �, then Q is algorithmic.Proof We shall prove a more general case when the target is any regularcategory rather than Set. Let a f b g c be a pair of morphisms in J. Con-sider the image factorization of the components of � between the induced�-pullbacks as shown in diagram 4.1. Assume Q ef p X q Qeg is the pull-back as shown. There are universal maps h : Ffgf X, k : X Ffgf Xand l : Qfgf X where the latter is necessarily monic.
Fb
F ef Feg

Ffgf
Qb
Q ef Qeg

Qfgf
Gb
G ef Geg

GfgfXF (a; g)F (f; b) F (b; g)
G(a; g) G(f; c)G(b; g)

�gf�g�b
�gf�g�b

�f �f
Diagram 4.1.First we show that k is a monomorphism. Let Y uv X be a parallel pair.Then: ku = kv =) G(a; g)ku = G(a; g)kv ^G(f; c)ku = G(f; c)kv=) �fpu = �fpv ^ �gqu = �gqv=) pu = pv ^ qu = qv=) u = vLet Z wz Ffgf be the parallel pair for which �gf is the coequalizer. There-fore h = l�gf also coequalizes w and z. This gives a universal monomorphismX Qfgf and therefore an isomorphism from which we conclude that Q isalgorithmic. utRecall that for any functor F : J Set, there is a standard discrete�bration over J, � : (R F) J. Objects in the category of elements, R F , arepairs (a; x) where a is an object in J and x 2 Fa. A morphism (a; x) (b; y)is a morphism f : a b such that (Ff)(x) = y. In the case of algorithmicfunctors, there is an alternative �bration over J rather than eJ.15

Definition 4.4 (Lamarche) Let F : eJ Set be an algorithmic functor.De�ne the category of twisted elements, HJ F , by:(i) objects are pairs (a; x) where a is an object of J and x 2 Fea.(ii) a morphism (a; x) (b; y) is a pair (f; z) where f : a b is a mor-phism of J and z is an element of F ef such that F (a; f)(z) = x andF (f; b)(z) = y.2(iii) Given (a; u) (f;x) (b; v) (g;y) (c; w), then x 2 F ef; y 2 Feg; v 2 Feb; F (f; b)(x) =v, and F (b; g)(y) = v. F preserves �-pullbacks, hence there exists aunique z 2 Ffgf such that F (a; g)(z) = x and F (f; c)(z) = y and(f; z) : (a; u) (c; w) is the composite.Given HJ F and HJG, a morphism HJ F HJG is a functor � making thefollowing commute: IJ F IJGJ��F �GThe twisted elements construction can be made functorial such that, given� : F G, HJ � is the functor:(IJ �)(a; x) = �ax(IJ �)(f; z) = �fzNext, let � : (H F) J be the evident projection functor. This functorhas the following property.Lemma 4.5 (Lamarche) If r is a morphism in H F such that h = �r, theneach factorization of h = gf in J, uniquely determines a factorization ofr = ts in H F where g = �t and f = �s.Proof Given (h; z) : (a; u) (c; w) in H F where h = gf then (f; F (a; g)(z)) :(a; u) (b; F (f; g)(z)) and (g; F (f; c)(z)) : (b; F (f; g)(z)) (c; w) are mor-phisms in H F which compose to (h; z). Since F associates a �-pullback withh = gf , the factorization is unique. utThis makes � : (H F) J a �bration in the sense of Conduch�e. SeeJohnstone [Joh77].Finally, the categories R F and H F are related as follows.2A similar construction was introduced by Abramsky and Pavlovi�c [AP97] for functorsJ Sp(C). 16

Lemma 4.6 Given an algorithmic functor F : eJ Set, thenZ F �= (̂I F)Proof For objects, note that if f : a b is a morphism in J, then:(ef; u) 2 Z F () u 2 F ef ^ F (a; f)(u) 2 Fa ^ F (f; b)(u) 2 Fb() (f; u) : (a; F (a; f)(u)) (b; F (f; b)(u)) 2 I F()](f; u) 2 (̂I F)In the case of morphisms, if (l; m) : (ef; x) (eg; y) is a morphism in R F ,then f = m � g � l and F (l; m)(x) = y. By lemma 4.5 there exists uniqueu, v and w such that (l; u); (g; v) and (m;w) are morphisms in H F , (f; x) =(m;w)�(g; v) � (l; u) and y = v. This implies �(m;w); (l; u)� :](f; x)](g; y)is a morphism in (̂H F). The uniqueness of w and u ensures the argumentreverses. ut5 Twisted SystemsA transition system labelled in an alphabet L is a diagram in Grph of theform: 1 O J f GLThe graph J is the shape of the transition system. The vertices of J arestates and the edges are transitions. The graph GL has a single vertex andan edge for each label in L. The morphism O selects the start state.Categorical transition systems (or simply systems) generalize this in twoways. First we abandon the requirement that shapes be graphs. A universe ofshapes is a category Shp such that each shape, J , determines a category �(J),via a functor: � : Shp Cat. Second, a shape is labelled in a category ratherthan an alphabet or term algebra. Thus, a categorical transition system, S,is a pair consisting of a shape and a functor:(J; �(J) S C)Abandoning graphs o�ers the opportunity of choosing shapes more suit-able for modelling concurrent and asynchronous computation. For example,17

higher-dimensional automata [Gla91, Pra91, GJ92, Gou95] are a reasonablechoice. Goubault's de�nition of hda is similar to that for simplicial sets.But, whereas simplicial sets deal with collections of unoriented n-triangles,an hda is a collection of oriented hypercubes. One way to obtain a categoryfrom an hda is by a construction similar to the fundamental groupoid for atopological space.Labelling a shape in a category means that transitions can have morestructure. Actions can be functions, machine instructions or even processes.See [Err] for further motivation and details concerning categorical transitionsystems and concurrency.Twisted systems are a particular class of systems in which the domain ofthe functor is twisted. (J;]�(J) S C)They form a category gCTS(Shp;C) where a morphism f is a pair(f; �) : (J;]�(J) S C) (K;]�(K) T C)such that f : K J is a morphism in Shp and � : S �g�(f) T is a naturaltransformation. J]�(J) CK]�(K) STf g�(f) �
This category arises as an instance of the Grothendieck construction:(gCTS(Shp;C))op = Z (Shpop �op Catop g(�)op Catop (C(�))op CAT)A consequence of this is that results due to Gray [Gra66] and Tarlecki et al[TBG91] concerning the existence of limits and colimits apply.Note that the functor and natural transformation in a morphism areopposed. The \semi-dual" category in which the functor and natural trans-formation are in the same direction is easily de�ned. The latter is used forinterpreting processes in [Err96, Err].18

6 A bicategory of algorithmsThe next objective is to construct systems like that for the factorial programin a compositional manner. Note that a system with a start and end stateis an algorithm typed in C. If OS and MS are the start and end states inS = (J;]�(J) S C), then S accepts input of type SOS and produces outputof type SMS. This suggests constructing a simple category with the sameobjects as C and where morphisms are algorithms. Composing algorithmssequentially means gluing one system on to the end of the other. This canbe done using the general theory advocated by Goguen [Gog91]. We will usesimilar construction which is marginally simpler in this instance.For the remainder of this paper we �x the target category to be Set.With respect to shapes, let FGrCat be the Kleisli category for the monadFU : Cat Cat where U : Cat Grph and F : Grph Cat is the familiaradjunction. Objects are freely generated from graphs and morphisms arearbitrary functors. The category of shapes are bipointed free categories:FGrCat�� = 1+ 1 # FGrCat. A system S is a pair of the form:(1+ 1 [OS;MS] J;eJ S Set)Often we will write simply (J; S : eJ Set) and only refer to the start andend states when necessary.Now de�ne the bicategory of algorithms, Alg, as follows. Objects are sets.A morphism A B is a system S such that SOS = A and SMS = B. Givena second system T = (1 + 1 [OT ;MT] J;eJ T Set) such that SMS = TOT .Then T � S is the system(1+ 1 J+1 K; Ĵ+1 K Q Set)The shape of T � S is the pushout on the left in diagram 6.1.1
K

J
J+1 K

1 �= e1
eK

eJĴ+1 KeJ+1 eK
MSOT p q eMSeOT epeq rsDiagram 6.1.19

To de�ne the functor Q, �rst twist the pushout on the left and form asecond pushout as shown on the right. To illustrate the di�erence betweenĴ+1 K and eJ+1eK, consider the example in diagram 6.2 where J = K = 2. Theleft side shows the e�ect of taking the pushout followed by twisting. On theright, the shapes are twisted �rst followed by the pushout. Constructing thecolimit �rst may introduce new composable pairs of morphisms which mustbe added. This is the case on the left with the new morphism is labelled h.When the twist comes �rst, there are no morphisms to be added by colimitsidentifying J objects. Let E : eJ+1 eK Ĵ+1 K be the universal arrow whichis necessarily an injection.
eh

2+1 2 = 3 2̂+1 2 = e3 e2+1 e2
OSMS = OTMT

eOSeMS = eOTeMTh
Diagram 6.2.Since SMS = TOT , there is a universal morphism [S; T]1 : eJ +1 eK Set.To de�ne Q requires extending [S; T]1 to the objects and morphisms in Ĵ+1 Kwhich do no appear in either eJ or eK. We take Q = RanE[S; T]1 (see diagram6.3). In the example, Qeh is the apex of the zig-zag diagram in Set determinedby f and g. This implies that if S and T are algorithmic systems, then T�Sis algorithmic. Ĵ+1 KeJ+1 eK SetE [S; T]1Q
Diagram 6.3.20

7 An imperative languageThis section introduces a version of Dijkstra's guarded command language[Dij75]. The next section gives an interpretation in Alg.The basic types and expressions in the language are provided by an alge-braic theory Th(�). This will be left unspeci�ed but it is assumed to containtypes and standard constants for the natural numbers and booleans. The col-lection of well-formed terms in the algebra are generated in the usual way byrules containing judgments or terms in context of the form t :X [�]. Here t isa term, X a sort and � = [x1 :X1; : : : ; xn :Xn] is a context containing a list oftyped variables including the free variables in t. As is standard, the algebracomes with an equational theory and determines a syntactic category (alsocalled Th(�)). It is assumed there is semantic functor [[�]] : Th(�) Set.For example, [[t :X [�]]] = [[�]] [[t]] [[X]]where [[�]] = [[X1]]� � � � � [[Xn]].The syntax of the programming language is de�ned on top of the algebra.The grammar is as follows:gc ::= nil j x := t j var x :X in gcj gc ; gc j if alt j do altalt ::= b! gc : : : b! gcHere, b is a predicate on the state, x is a typed variable and t is a term allof which come from the underlying algebra. Often we will write i�n(bi ! gci)in place of b1 ! gc1 � � � bn ! gcn.The rules for well-formed programs are given in diagram 7.1. A judgmentgc [�] means that the program gc is a well-formed program in the context,�. A context in a judgment gc [�] serves two purposes. Like in the algebra,it assigns types to the variables free in gc. Contexts also keep track of thevariables currently in scope. Note that the variables in scope before and aftera command are the same and a judgment gc [�] implies a type assignmentgc : � �.The informal meaning of conditionals and repetitions are as follows. Givena variable assignment s, the if is evaluated by choosing non-deterministicallyone of the guarded commands from those whose guard is satis�ed by s. Ifnone of the guards are satis�ed the program deadlocks. In the case of do,the selection of a guarded command is repeated until no guard is satis�edwhereupon the loop terminates successfully.21

nil [�] t :X [�; x :X]x := t [�; x :X] gc1 [�] gc2 [�]gc1 ; gc2 [�]8i � n bi :bool [�] gci [�]if i�n(bi ! gci) [�] 8i � n bi :bool [�] gci [�]do i�n(bi ! gci) [�]gc [�; x :X]var x :X in gc [�] x 62 � gc [�]gc [�; x :X] x 62 �Diagram 7.1.The structural operational semantics for the language is given in dia-gram 7.2. Note that the evaluation of guards is done by appealing to thealgebraic theory rather than assuming an interpretation. Also note that thesyntax does not require new variables to be initialized. Instead, the semanticsbranches for every possible assignment of a new variable.8 Categorical operational semanticsA categorical semantics of the language is de�ned inductively as follows.Empty program The system for the program nil [�] is:(1+ 1 1; 1 [[�]] Set)Sequential composition This is categorical composition in Alg.Assignment Assume � = [�; x :X;�] and let 2 be the graph 0 1. Themeaning of x := t [�] is the system S = (1 + 1 [0;1] 2;e2 S Set) where Slabels the transition with the span [[�]] id [[�]] h��;[[t]];��i [[�]].Local variables Let S be the interpretation of gc in var x :X in gc [�].To introduce a new variable, S is pre�xed by a simple program A in whichthe variable is allocated and su�xed by the reciprocal program, A�, wherethe variable is discarded. The program which allocates the variable is A =22

hgc; si hgc0; s0ihnil ; gc; si hgc0; s0i hx := t; si hnil; s[x 7! (s t)]ihgc1; si hgc01; s0ihgc1 ; gc2; si hgc01 ; gc2; s0i`A (s bi) = truehif i�n(bi ! gci); si hgci; si`A (s bi) = truehdo i�n(bi ! gci); si hgci ; do i�n(bi ! gci); si`A Vi�n(s bi) = falsehdo i�n(bi ! gci); si hnil; si`A t :Xhvar x :X in gc; si hgc; s[x 7! t]iDiagram 7.2.(1+ 1 [0;1] 2;e2 Q Set) with a single transition labelled by Q with the span[[�]] � [[�; x :X]] id [[�; x :X]]. The meaning of the program in context isA� � S �A. Note that variables are universally quanti�ed (uninitialized)when introduced.Alternation Before looking at conditionals and loops we consider alter-nation. Let S be the interpretation of gc in the single guarded commandb ! gc [�]. A predicate b :bool [�] determines a subobject of [[�]] by pullingback against the classifying arrow in Set:
23

X [[�]]1 2 = [[bool]]s
true [[b]]

Construct the system B with a single transition labelled by the span[[�]] s X s [[�]]This is a transition which can be taken only for tuples satisfying the predicate[[b]]. The meaning of the single guarded command is S �B.Now consider the family of guarded commands (bi ! gci)i�n [�] where themeaning of each member is given by Si = (1 + 1 [Oi;Mi] Ji;eJi Si Set). Themeaning of the family is obtained by identifying respectively the elements ofthe sets (Oi)i�n and (Mi)i�n. This yields a system (1 + 1 [O;M] J;eJ S Set)where the shape J is the colimit on the left of diagram 8.1. The functor S :eJ C is obtained by exchanging the order of the colimit and the twist as insequential composition. In the diagram on the right, K is the colimit followingthe twist andD is the induced universal arrow. De�ne S = RanD[S1; : : : ; Sn].
J11+ 1 JJn

[O1;M1][On;Mn]
eJ11+ 1 eJ KeJn Set

^[O1;M1]^[On;Mn] D [S1; : : : ; Sn]RanD[S1; : : : ; Sn]Diagram 8.1.Conditional The meaning of a conditional if i�n(bi ! gci) [�] is theprocess for the alternation as de�ned above.24

Loops Let A be the interpretation of the alternation in do i�n(bi !gci) [�]. Recall that the intended semantics of do is that the loop exitswhen none of the guards are satis�able. De�ne exit to be the program whichexits when all the other guards fail:exit = :(î�n bi)! nil [�]Using the scheme outlined above, this is interpreted by the system E havinga single transition which can be taken precisely when the other guards fail.Take A and E to be the systems:A = (1+ 1 [Oa;Ma] J;eJ A Set) E = (1+ 1 [Oe;Me] K; eK E Set)To interpret the do loop requires combining A and E in such a way that theloop is closed but can exit when the alternation fails. This is achieved by iden-tifying three points: the start and end points of the alternation (closing theloop) and the start point of E. This yields a system (1+1 [O;M] L;eL S Set).The functor S is computed by the now familiar exchange of colimits andtwists. The shape L is the colimit on the left in diagram 8.2, M is the colimitfollowing the twist, and D is universal. De�ne S = RanD[A;E].1 J LK
OaMaOe pq e1 eJ eLeK M Set

eOaeMaeOe epeq [A;E]D S = RanD [A;E]
Diagram 8.2.Figure 8.3 shows the factorial program, the graph shape generated by thescheme outlined above and the assignment of types and spans to the verticesand edges of the graph.Lemma 8.1 The semantics of a program by the scheme outlined above is analgorithmic system.Proof This is a straightforward structural induction. The shapes generatedby the semantics are graphs. Since arrows freely added when joining shapeswith colimits are labelled by means of a right Kan extension, then �-limitsin a twisted shape are always mapped to limits in Set. ut25

e1 N3 id N3 �(n;x;y):(n;1;y) N3e2 N3 id N3 �(x;x;y):(n;x;1) N3e3 N3 �(n;x;y):(n;x;y) X �(n;x;y):(n;x;y) N3e4 N3 id N3 �(n;x;y):(n;x+1;y) N3e5 N3 id N3 �(n;x;y):(n;x;x�y) N3e6 N3 �(n;x;y):(n;x;y) Y �(n;x;y):(n;x;y) N3e7 N3 id N3 �(n;x;y):(x;x;y) N3X f(n; x; y) 2 N3 j x < ngY f(n; x; y) 2 N3 j x � ng

x := 1 f1y := 1 f2do x < n! f3x := x+ 1 f4y := x� y f5n := x f7 [n : N; x : N; y : N]e1e2e3e4 e5 e6e7
Diagram 8.3.

26

9 ProceduresA notable omission from the language are user de�ned procedures and func-tions. We have relied solely on the underlying algebraic theory for operationsand expressions. Procedures can be accommodated in the framework, how-ever, it is di�cult to give a compositional semantics. Below we sketch ascheme for handling procedures.First the syntax of the language is extended such that now, in additionto local variable declarations, there are Pascal-like procedure/function dec-larations:proc p (x1 :X1; : : : ; xn :Xn) :Y wheregc1return tin gc2This creates a new scope and declares a procedure p of type X1 � � � � �Xn Y . The body of the procedure is gc1 and the scope of the procedureis gc2. The identi�ers x1; : : : ; xn are the formal parameters. Any variablein scope when the procedure is declared is in scope within the procedure.Procedures may have side-e�ects and parameters are passed by value. De�nethe context � = [�; x1 :X1; : : : ; xn :Xn]. Then a well-formed declaration mustsatisfy the following rule:gc1 [�] t :Y [�] gc2 [�; p :X1 � � � � �Xn Y]proc p (x1 :X1; : : : ; xn :Xn) :Y where gc1 return t in gc2 [�]We further extend the syntax with procedure calls in assignments:x := p(t1; : : : ; tn)It follows that procedure calls may not be nested within terms of the under-lying algebra. Calls must satisfy the following rule:ti :Xi [�; x :Y; p :X1 � � � � �Xn Y]x := p(t1; : : : ; tn) [�; x :Y; p :X1 � � � � �Xn Y]One way to de�ne the semantics of procedures is to construct a system forthe procedure and then substitute a copy of that system at every call. This,however, makes recursion di�cult. An alternative is to handle procedures asthey are handled by a compiler. This has the advantage that only one copyof the system is needed. We �rst construct the system for the body of the27

procedure. Intuitively the imperative state of this system is then augmentedwith a \variable" r : R. The set R has an element for each reference tothe procedure in the program. It represents the set of return addresses. Acall to the procedure is a transition to the procedure which sets the returnaddress according to the location where the call is made. A call from thei'th reference sets the variable r to i. The return to the i'th reference is atransition back to the program which is taken only when r = i.The two methods for de�ning the semantics of procedures are related.Assume again that there are R references to the procedure. Then followingthe �rst scheme, there areR copies of the procedure. If we form the coproductof the R copies, we obtain a system isomorphic to the system described in thesecond scheme in which the imperative state is augmented by R. This followssince `RX �= R�X in Set . Setting the return address to i corresponds tothe i'th injection into the coproduct.We illustrate the construction with an example. Diagram 9.1 shows thesystem for a simple program de�ned in a context � = [x :N ; y :N]. The set2 = f0; 1g.To simplify the example we have assumed that no variables are introducedbetween the declaration of p and the references to p. This can happen asfollows:proc p (x1 :X1; : : : ; xn :Xn) :Y wheregc1;return tin var x :Y in: : :x := p(t1; : : : ; tn)In such situations it is necessary to weaken the context in which p isdeclared to incorporate variables introduced between the declaration andthe call. If p is referenced from di�erent contexts then it must be weakenedto the most general context.The same construction applies to recursive procedures. If we consider theunfolding of a recursive procedure, then with each unfolding new variablescorresponding to the formal parameters are introduced. Following the argu-ment above, the context of the procedure must be weakened to include thevariables for each unfolding. This naturally introduces a stack discipline.Diagram 9.2 shows a system for a recursive factorial program. We write~x to denote an in�nite vector of variables (x0; x1; : : : ; xi; : : :) and ~x ji t for thevector (x0; : : : ; xi�1; t; xi+1; : : :) which is the same as ~x except with the term28

O

M

proc p (u :N ; v :N) :N whereu := u+ v e4return 2u e5in x := 1 e1x := p(x; 3) e6; e8y := x e2y := p(x; y) e7; e9y := y2 e3e1 N2 id N2 �(x;y):(1;y) N2e2 N2 id N2 �(x;y):(x;x) N2e3 N2 id N2 �(x;y):(x;y2) N2e4 2�N4 id 2�N4 �(r;x;y;u;v):(r;x;y;u+v;v) 2�N4e5 2�N4 id 2�N4 �(r;x;y;u;v):(r;x;y;2u) 2�N3e6 N2 id N2 �(x;y):(0;x;y;x;3) 2�N4e7 2�N3 �(r;x;y;u):(0;x;y;u) N3 �(x;y;u):(u;y) N2e8 N2 id N2 �(x;y):(1;x;y;x;y) 2�N4e9 2�N3 �(x;y;u):(1;x;y;u) N3 �(x;y;u):(x;u) N2

e1
e2
e3

e4e5
e6

e7e8e9
Diagram 9.1.

29

t at position i. The stack has been simpli�ed with respect to the schemediscussed above. In a pair (i; ~x), ~x is the stack and i is the stack pointer.10 The relationship with conventional seman-ticsFor Burstall, the denotation of a program is the input/output relation itcomputes. For a program (G;F (G) S Rel), this is the union of the relationsfSf j f 2 (F (G))(O;M)g. A similar construction can be made here. LetS = (1+1 [O;M] J;eJ S Set) be the meaning of a program obtained from thescheme outline earlier. Then the \denotation" of the program is the sum ofthe spans: fSO S(O;f) S ef S(f;M) SM j f 2 J(O;M)gThe legs of the sum span are universal. See diagram 10.1.Somewhat more interesting is that the categorical semantics for the guardedcommand language is closely related to a conventional structural operationalsemantics. Consider the category of twisted elements H S. An object is apair consisting a program point and a variable assignment at that point.Morphisms are transitions. It is easy to show that for every transition in theoperational semantics there is a corresponding transition in H S. The con-verse does not hold. In part this is because there are identity and compositetransitions in H S. This suggests comparing H S with the re
exive transitiveclosure of the transition relation. Alternatively, note that since J is a freecategory, then by lemma 4.5, H S is also a free category. Therefore we cancompare the transition relation with the graph generating H S. However,there are still more states and transitions in the categorical semantics thanin the transition relation. This arises because, for example, in the categoricalsemantics evaluating a guard involves a transition which is absent from thetransition relation.11 Systems as predicatesThe systems used to give meaning to programs are algorithmic. Also thespan associated with each transition is a partial map; for each f : a bin J, the morphism S(a; f) is monic. For the remainder of the paper weinvestigate systems as speci�cations of program properties. This makes useof the generality of spans (relative to partial maps) and also the underlying30

OM
proc fact (x :N) :N whereif x > 0! e1var y :N iny := fact(x� 1) e3; e6x := x� y e5x = 0! e2x := 1 e4return xin z := fact(3) e7; e8
e1 N �N! �(i;~x):(i;~x) W �(i;~x):(i;~x) N �N!e2 N �N! �(i;~x):(i;~x) X �(i;~x):(i;~x) N �N!e3 N �N! id N �N! �(i;~x):(i+1;~x ji+1 (xi�1)) N �N!e4 N �N! �(i;~x):(i;~x) Y �(i;~x):(i;~x ji 1) N �N!e5 N �N �N! id N �N �N! �(i;y;~x):(i;~x ji xi�y) N �N!e6 N �N! id N �N! �(i;~x):(i�1;xi;~x) N �N �N!e7 1 ! N �N! �(i;~x);(0;~x j0 3) N �N!e8 N �N! �(i;~x):(i;~x) Z �(i;~x):x0 NW f(i; ~x) 2 N �N! j xi > 0gX f(i; ~x) 2 N �N! j xi = 0gY f(i; ~x) 2 N �N! j i > 0gZ f(i; ~x) 2 N �N! j i = 0g

e1e2
e5e4

e3
e6

e7
e8

Diagram 9.2.
31

SO SMS ef1S efn
aS efiS(O; f1)S(O; fn) S(fn;M)Diagram 10.1.oplaxness arising from twisting shapes. To motivate the generality we beginby considering spans in isolation.First, spans provide a simple and symmetric way of dealing with predicatetransformers. When a program fragment is represented by a span, then theprecondition for the fragment is the image factorization of the backward leg.XA BA0Similarly the post condition is the image factorization of the forward leg.Given a predicate � B on the codomain, the weakest precondition is theprecondition for the span A X 0 B formed by the pullback:XA X 0 B�The dual construction gives the strongest postcondition. See also [Ple96,Vic95].Spans are generalized relations and, as with relations, 2-cells provide away to relate programs and properties. Consider the programx := x� 2; y := 4 [x :N ; y :N]and the postcondition \x is even" where no constraints are placed on y. In thediagram below the program is represented by the upper span and the propertyby the lower span where f = �(x; y):(2x; 4) and g = �((x; y); (x0; y0)):(2x0; y0).N �NN �N N �N(N �N)2id f�1 g32

The program has the property when there is a 2-cell between the spans whichis an inclusion. When it exists, then standard results for image factorizationsensure that there is also a monic from the image (postcondition) of f tothe image of g. The same method can express when a program satis�es aninput/output relation. An advantage of spans over relations is that propertiescan be expressed in terms of variables which are not in scope at the beginningand end of the block.These principles extend to oplax functors J Sp(Set) related by oplaxmap natural transformations. The 2-cells in an oplax map natural trans-formation serve the same purpose as the 2-cells above. An oplax functorassociates a span with each transition. Each span asserts pre- or postcon-ditions of a transition and relates the values of variables between programpoints. The oplaxness means it is possible to associate a stronger propertywith the transition gf than is associated with f and g alone. More gener-ally, it is possible to express that a computation path must compute someinput/output relation without imposing constraints on how that relation isrealized.In practice we work with twisted systems rather than oplax functor cat-egories. To relate programs and properties we shall follow the example ofcategorical models of �rst-order logic which we review below.3Brie
y, if � = [x1 : X1; : : : ; xn : Xn] is a context, then the meaning ofa formula in context � [�] in a category C is a subobject of the product[[�]] = [[X1]] � � � � � [[Xn]]. Write Sub(X) for the lattice of subobjects ofX. It is a Heyting algebra where the ordering corresponds to satisfactionsuch that if � ` � [�] then [[� [�]]] factors through [[� [�]]] in the �bre over[[�]]. Conjunction is meet and disjunction is join in the �bre. To translateproperties between �bres, let f : X Y be a morphism in C and writef � : Sub(Y) Sub(X) for the functor which maps a subobject of Y to itspullback against f .Weakening of contexts is modelled by pulling back against projectionmaps: [[� [�; x :X]]] = ��1([[� [�]]])where �1 : [[�; x : X]] [[�]]. Given such a projection map, then universalquanti�cation is the right adjoint to the pullback functor ��1. Existentialquanti�cation is the left adjoint. These functors satisfy the Beck-Chevallycondition and Frobenius reciprocity.3The handbook chapter by Pitts [Pit] is a good introduction to categorical models ofpredicate logic and a source for other references. Our notation has been adapted fromPitts. 33

The same constructions apply to programs and properties. We will not,however, interpret a logic. For the remainder of this section it is convenientto forget the start and end states. Given a system B = (J;eJ B Set), asubsystem has the same shape as B and a functor which is a subfunctor ofB. As above, properties are objects in Sub(B). A program S has a safetyproperty P when it factors through P in the �bre over B. As the shape is�xed, all this happens in the topos SeteJ.This leaves the issue of choosing a base for the �bre in which to relatea program and the properties of interest. As a rule, a program will inhabitmany �bres. However, each program has a standard base obtained by ignor-ing the actions of the algorithm and considering only the declaration andscoping of variables. The standard base speci�es the shape, the type andscoping of variables and assigns a span to each transition which relates pro-gram variables in the most general way. For a program S = (J;eJ S C), thestandard base is the system B = (J;eJ B C) where the functor B is the rightKan extension shown in diagram 11.1.eJfjJj eJ CE E SB = RanE(S �E)
Diagram 11.1.Since J is a free category, the e�ect of the Kan extension is to map eachef to a product. If f = a0 f1 � � � fn an is a path in J in which Seai = Xi,then B ef = X0 � � � � �Xn. When n = 1 and f is an edge of the underlyinggraph, then B ef = X0�X1. Therefore, any f transition in the �bre must belabelled with a subobject of X0 � X1 (a relation). For n > 1, ef is mappedto the apex of a span which represents an assertion expressed in terms of allthe variables along the path.Weakening between �bres of the same or di�erent shape is de�ned as in�rst-order logic. Natural transformations whose components are projectionscan isolate any combination of program variables and particular occurrencesof variables at arbitrary points in the program. All the propositional con-nectives are available as are the quanti�ers.Consider the following simple example.34

x := x+ 2x := 2� x [x :N]The property we wish to express is that x is even at the end of the sec-ond transition. This requires a base object B, and subobjects S and P forthe program and property respectively. The situation is depicted in dia-gram 11.2. The solid arrows in the diagram depict three systems. All theunlabelled morphisms are projections. The base B is at the bottom. Theprogram S (upper left) is constructed according to the scheme outlined inthe previous section. The system P (upper right) is the largest subobject ofB having the desired property. The dotted arrows are the components of thenatural transformations relating the three functors. All the components aremonomorphisms.Often safety and liveness are duals and this is the case here. To expressliveness the ordering in the �bre is reversed. If S is the system representing aprogram and Q is a liveness property and both are in the �bre of subobjectsover B, then S has property Q when Q factors through S. The program Sis then obliged to compute everything speci�ed by Q.This is often stronger than necessary. Usually it su�ces to express onlythat a particular state is not deadlocked, that a particular transition can�re or that the program can terminate. This can be done by moving to adi�erent �bre. Assume B = (J;eJ B Set) is the base of the �bre. De�neL = (J;eJ L Set) such that L ef = 1 for all f 2 J and de�ne the morphism(Id ; �) where � ef : B ef 1. Forward properties above L assert only thatsome point or points in J are reachable or that some transitions may �re. Thefunctors 8; 9 : Sub(B) Sub(L) (the adjoints of (Id ; �)�) transfer propertiesinto the �bre over L.12 Forward and Backward SystemsA system constructed according the scheme outline in section 8 may fail toexhibit properties which intuitively the program should have. As discussedearlier, tuples in the product Seb represent variable assignments at point b 2 J.The problem is that often there are tuples in Seb which do not correspond to acomputation. That is, there is no initial variable assignment and computationpath to b which computes the tuple. Consider the fragment:x := 2� x;x := x+ 2 [x :N] 35

N
N

N
N2

N2N3N
N

N
N

NN

N
N

N
N2

N2N3

�(x; y):2y
id�x:x + 1 id �x:2x

id �x:x + 1

Diagram 11.2.
36

The value of x is even at then end of the block but this is not re
ected in thepostcondition of the span interpreting the second command. This motivatesthe following de�nition:Definition 12.1 An algorithmic system S is forward if for all objects b 2 J,the collection of arrows fS ef S(f;b) Seb j f 2 J(O; b)gis an epimorphic family.The de�nition means that the forward legs of the spans relating the initialstate to any other state are a covering for the variable assignments at thatstate. Alternatively, every variable assignment at every reachable state isjusti�ed by some initial variable assignment and a computation path to thatstate. We write FS for the full subcategory of systems which are forward.For each algorithmic system S, there is a forward system �!S which isthe most precise description of the behaviour of the program. If S = (1 +1 J;eJ S Set), then �!S has the same shape and a functor �!S which is thelargest forward algorithmic subfunctor of S. It represents the strongest as-sertion which can be made about the program. The name \forward" comesfrom \forward collecting semantics" in the Cousots' framework for abstractinterpretation [CC77]. A forward collecting semantics associates with eachprogram point, the set of all possible variable assignments at that point. Thiscorresponds to the object part of a forward system. If S : eJ Set is thefunctor of a forward system then the composite functor jJj eJ S Set is theforward collecting semantics in the Cousot sense. It follows that a forwardsystem carries considerably more information. It records how each variableassignment at each program point is obtained, what transitions can �re fromeach state, and the relationship (if any) between variable assignments be-tween arbitrary program points.Below we provide two ways of constructing forward systems. In the �rst�!S is the union of forward subobjects. This requires showing that FS iswell-complete.Lemma 12.2 The coproduct of forward systems is forward.Proof Consider the sum S + T with injections inl : S S + T and inr :T S + T and the family of arrows:fS ef + T ef S(f;b)+T (f;b) Seb+ Teb j f 2 J(O; b)g37

Given the pair Seb + Teb hk C and assuming the sets fS(f; b) j f 2 J(O; b)gand fT (f; b) j f 2 J(O; b)g are epimorphic families, then8f 2 J(O; b) : h � (S(f; b) + T (f; b)) = k � (S(f; b) + T (f; b))=) 8f 2 J(O; b) : h � (S(f; b) + T (f; b)) � inl ef = k � (S(f; b) + T (f; b)) � inl ef^ h � (S(f; b) + T (f; b)) � inr ef = k � (S(f; b) + T (f; b)) � inr ef=) 8f 2 J(O; b) : h � inlb � S(f; b) = k � inlb � S(f; b)^ h � inrb � T (f; b) = k � inrb � T (f; b)=) h � inlb = k � inlb ^ h � inrb = k � inrb=) h = k utLemma 12.3 Forwardness is stable under image factorization. Let � : S Tbe a natural transformation where S is the functor of a forward system. If �has an image factorization � = S � M � T , then M is forward.Proof The diagram below shows the factorization of a naturality diagramfor a morphism (l; m) : ef eg 2 eJ. The dotted arrow is uniquely determinedby the factorizations of the components � ef and �eg.S ef M ef T efSeg Meg Teg
�ef �ef
�eg �egS(l;m) M(l;m) T (l;m)

Now consider the naturality diagrams for the morphisms f(f; b) j f 2J(O; b)g for some b 2 J. Let Meb hk C be a parallel pair in Set.8f 2 J(O; b) : h �M(f; b) = k �M(f; b)=) 8f 2 J(O; b) : h �M(f; b) � � ef = k �M(f; b) � � ef=) 8f 2 J(O; b) : h � �eb � S(f; b) = k � �eb � S(f; b)=) h � �eb = k � �eb fS(f; b) j f 2 J(O; b)g is an epimorphic family=) h = k �eb is epimorphic utThe combination of lemmas 12.2 and 12.3 ensures that S [T is forwardwhen S and T are forward. 38

The construction of forward systems extends to a functor�!(�) : gCTS FSas follows. Let S : eJ Set and T : eK Set be systems and (F; �) : S Tbe a morphism. Let � : �!S S be the forward subfunctor of S. Thisdetermines a subfunctor � : R T of T by the image factorization � � � =� � � eF : �!S eF T . By lemma 12.3, R is itself forward and hence � factorsuniquely through the forward subfunctor for T by a natural transformation� : R �!T . This yields a morphism (F; � � �) : �!S �!T .Next we sketch an alternative de�nition of the functor �!(�) : gCTS FSwhich generalizes predicate transformers de�ned earlier for individual spans.Given an algorithmic functor S : eJ Set, then for each object b 2 Jconsider the image factorization of the family of fS(f; b) j f 2 J(O; b)g asshown in diagram 12.1.S ef1S efn Seb S ef1S efn Qb SebS(f1; b)S(fn; b) �b
Diagram 12.1.Let J : jJj eJ be the obvious embedding and de�ne the functor jSj :jJj J eJ S Set. De�ne the system Q : jJj Set such that Qb is the imageas shown in diagram 12.1. This gives two morphisms of systems:(Id ; �) : Q jSj (J; id) : S jSjThe forward system �!S is the pullback:�!S QS jSj

(J; id)(Id ; ") (Id ; �)(J; id)Given systems, S : eJ Set and T : eK Set and a morphism (F; �) :S T, then ���!(F; �) is the universal arrow as shown in diagram 12.2. Thenatural transformation j�j consists of the components of � indexed by theobjects of jJj (rather than jeJj). For the natural transformation �, consider39

T jTj
�!T RS

�!S
jSj
Q

(J; id) (Id ; �)
(F; �) (jF j; j�j)

(jF j; �)���!(F; �)
(K; id) (Id ; �)

Diagram 12.2.

S eF ef1
S eF efn

�!S eFbSeg1
Segm

X S eFeb
S eFeb

T ef1
T efn �!T b Teb

S(g1; F b)S(gm; F b)

S(Ff1; F b)S(Ffn; F b) k
T (f1; b)T (fn; b) �b�ef1

�efn
h

� eFb

j�jbl
Diagram 12.3.40

the image factorization of the three families of arrows as shown in diagram12.3.The lower plane shows the factorization for �!T b. In the middle is thefactorization of the family:fS eF efi S(Ffi;F b) S eFb j fi 2 K(O; b)gThis is a subset of the family of arrows:fSegi S(gi;F b) S eFb j gi 2 J(O; F b)gwhich appear at the top level and whose image factorization is�!S (Fb). Hencethere is a unique h such that � eFb factors via h through k. The morphism l isthe unique arrow determined between the two image factorizations. De�ne�b = l � h.Lemma 12.4 FS is a re
ective subcategory of gCTS.gCTS FS�!(�)>All the de�nitions and lemmas for forward systems have duals.Definition 12.5 An algorithmic system S is backward if for all objectsb 2 J, the collection of arrowsfSeb S(b;f) S ef j f 2 J(b;M)gis an epimorphic family.Intuitively, if S is backward, then for each object b in the shape J, atuple in Sb represents a variable assignment for which there exists a termi-nating computation. Naturally there is a category of backward systems BSand a functor �(�) : gCTS BS. Backward system correspond to backwardcollecting semantics in abstract interpretation.A system can be both forward and backward. Let FBS be the category ofalgorithmic systems which are both forward and backward. If S is forward,then �S remains forward. The easily seen by considering the second con-struction of forward systems. Pullbacks are computed pointwise and Set is aregular, epimorphisms (and epimorphic families) are stable under pullback.The converse is also true, if S is backward, then �!S remains backward. Thefollowing lemma follows directly.Lemma 12.6 �!(�) � �(�) �= �(�) � �!(�) : gCTS FBS41

Finally there are constructions analogous to forward and backward sys-tems for categories of twisted elements. Given a system S : eJ Set thenH S is forward when all the objects in H S are reachable from an object inthe �bre above OJ. The category �!H S is obtained by discarding unreachableobjects. The dual holds for �H S.13 ConclusionsWe have show that the operational semantics of a program can be expressedusing twisted systems, and moreover, that the system representing the pro-gram can be constructed compositionally. The functor obtained in this wayis closely related to the transition relation of a operational semantics viathe category of twisted elements. Procedures are accommodated though itshould be said that the semantics of procedures is less precise than it shouldbe.We have also shown that both programs and properties of programs canbe structured in a manner analogous to categorical models of predicate logic.We hope to �nd program logics or perhaps �rst-order modal or temporal log-ics which can be interpreted in this framework. Related to this is possibilityof presenting Cousots theory of abstract in categorical terms.There is considerable structure available which has yet to be exploited.We have not made use of the �brational structure of the category of twistedsystems, and only limited use of the \bi�brations" produced by the categoryof twisted elements. Nor have we made use of the fact that category ofprograms and properties of a particular shape form a presheaf topos.Finally, twisted arrow categories have featured prominently in this pa-per. To the best of our knowledge the relationship between twists and spanssummarized here is novel. The connection is also exploited in [Err96, Err] inthe context of communicating processes. We expect further applications oftwisted arrow categories in computing will follow.AcknowledgementsI wish to thank three successive o�ce mates: Francois Lamarche, DuskoPavlovi�c and Till Plewe. What category theory I know, I learned from themor with their help. Francois is directly responsible for some of the materialwhich appears in this paper and I have attached his name to those construc-tions and results for which he is wholly responsible.42

I also wish to thank David Clark and my supervisor Prof. Chris Hankinfor their support and advice, both technical and otherwise.References[AP97] Samson Abramsky and Dusko Pavlovi�c. Specifying interaction cat-egories. In E. Moggi et al., editor, Category Theory and ComputerScience '97, Lecture Notes in Computer Science, page 14. SpringerVerlag, 1997. to appear.[B�en67] Jean B�enabou. Introduction to bicategories. Lecture Notes in Math-ematics, 47, 1967.[Bor94] Francis Borceux. Handbook of Categorical Algebra 1, Basic Cate-gory Theory. Encyclopedia of Mathematics and its Applications.Cambridge University Press, 1994.[Bur72] Rod Burstall. An algebraic description of programs with assertions,veri�cation and simulation. In J. Mack Adams, John Johnston,and Richard Stark, editors, Conference on Proving Assertions aboutPrograms, pages 7{14. ACM, 1972.[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: Auni�ed lattice model for static analysis of programs by constructionor approximation of �xpoints. In Fourth ACM POPL, pages 238{252, 1977.[CKS84] Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategoriesof spans and relations. Journal of Pure and Applied Algebra, 33:259{267, 1984.[Dij75] E.W. Dijkstra. Guarded commands. Communications of the ACM,18(8):453{457, 1975.[Err] Lindsay Errington. Categorical Transition Systems. PhD thesis,Imperial College, In preparation.[Err96] Lindsay Errington. Categories of processes with state. In ThirdTheory and Formal Methods Workshop. IC Press, 1996.[FS90] Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39of North-Holland Mathematical Library. North-Holland, Amster-dam, 1990. 43

[GJ92] Eric Goubault and Thomas Jensen. Homology of higher-dimensionalautomata. In CONCUR '92, Lecture Notes in Computer Science.Springer Verlag, 1992.[Gla91] R.J. van Glabbeek. Bisimulations for higher dimensional au-tomata. Email message, July 7, 1991, 1991. Available athttp://theory.stanford.edu/~rvg/hda.[GM83] Joseph Goguen and Jos�e Meseguer. Correctness of recursive parallelnon-deterministic
ow programs. Journal of Computer and SystemSciences, 27(2):268{290, 1983.[Gog74] Joseph Goguen. On homomorphisms, correctness, termination, un-foldments and equivalence of
ow diagram programs. Journal ofComputer and System Sciences, 8:333{365, 1974.[Gog91] Joseph A. Goguen. A categorical manifesto. Mathematical Struc-tures in Computer Science, 1(1):49{67, 1991.[Gou95] Eric Goubault. G�eom�etrie du Parall�elisme. PhD thesis, �Ecole Poly-technique, 1995.[Gra66] J.W. Gray. Fibred and co�bred categories. In S. Eilenberg, D.K.Harrison, S. MacLane, and H. R�ohrl, editors, Conference on Cate-gorical Algebra, pages 21{83. Springer Verlag, 1966.[Joh77] Peter T. Johnstone. Topos Theory. Academic Press, 1977.[Mac71] Saunders Mac Lane. Categories for the Working Mathematician.Springer-Verlag, Berlin, 1971.[Pit] Andrew M. Pitts. Categorical logic. In S. Abramsky, D. Gabbay, andT.S.E. Maibaum, editors, Handbook of Logic in Computer Science.Oxford University Press. To appear.[Ple96] Till Plewe. Speci�cations as spans of geometric morphisms. In ThirdTheory and Formal Methods Workshop. IC Press, 1996.[Pra91] V.R. Pratt. Modeling concurrency with geometry. In Proc. 18thAnn. ACM Symposium on Principles of Programming Languages,pages 311{322, January 1991.[RR88] E. Robinson and G. Rosolini. Categories of partial maps. Informa-tion and Computation, 79:95{130, 1988.44

[TBG91] Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some funda-mental algebraic tools for the semantics of computation, part 3: In-dexed categories. Theoretical Computer Science, 91:239{264, 1991.[Vic95] S.J. Vickers. Geometric logic as a speci�cation language. In Pro-ceedings of the 1994 Theory and Formal Methods Section Workshop.Imperial College Press, 1995.

45

