
Convergence of slice sampler Markov chainsbyGareth O. Roberts* and Je�rey S. Rosenthal**(July 1997; last revised September 10, 1998.)In this paper, we analyse theoretical properties of the slice sampler. We �nd thatthe algorithm has extremely robust geometric ergodicity properties. For the caseof just one auxiliary variable, we demonstrate that the algorithm is stochasti-cally monotone, and deduce analytic bounds on the total variation distance fromstationarity of the method using Foster-Lyapunov drift condition methodology.
1. Introduction.This paper considers the use of slice samplers to sample from a complicated d-dimensional probability distribution. Slice samplers are a form of auxiliary variable tech-nique, which introduces auxiliary random variables Y1; : : : ; Yk to facilitate the design of animproved Markov chain Monte Carlo (MCMC) sampling algorithm.The idea of using auxiliary variables for improving MCMC was introduced for theIsing model by Swendsen and Wang (1987). Edwards and Sokal (1988) generalised theSwendsen-Wang technique, and since then, their use in statistical problems has graduallyincreased, partly as a result of Besag and Green (1993). In recent years there has been alarge amount of activity on this topic, including a very clear discussion of auxiliary variabletechniques by Higdon (1996), a variety of examples of uses of auxiliary variable techniquesin statistical problems by Damien et. al. (1997), and some theoretical progress by Miraand Tierney (1997) and Fishman (1996). The slice sampler is a particularly interesting* Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, U.K. Internet:G.O.Roberts@statslab.cam.ac.uk. Supported in part by EPSRC of the U.K.** Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.Internet: jeff@utstat.toronto.edu. Supported in part by NSERC of Canada.1



algorithm from a practical point of view, since it frequently allows very straightforwardimplementation (see for example Damien et. al., 1997, and Neal, 1997).However, except for the original Swendsen-Wang method (which has been shown tobe superior to more naive Gibbs methods for sub-critical Ising models), rather little isknown about the theoretical properties of auxiliary variable algorithms. In this paper, weconcentrate on the slice sampler, an important special case of an auxiliary variable method.We give a number of results that demonstrate that the algorithms have extremely goodtheoretical properties.In Section 2, we introduce the algorithm, demonstrate that apparently more generalversions of the algorithm can be reduced to the problem of sampling from a uniform densityon a particular region. For the simplest case where the number of auxiliary variables isone (the simple slice sampler), this can be seen as sampling from the uniform density inthe region bounded above by the density of interest (see Figure 2.1). In Section 3 we provethat the Markov chain induced by the algorithm has other useful invariance properties,and also that the simple slice sampler is stochastically monotone under an appropriateordering on its state space.In Section 4, we shall show that the simple slice sampler is nearly always geometri-cally ergodic using Foster-Lyapunov drift condition techniques. This result is interestingthough rather surprising considering the fact that very few other MCMC algorithms ex-hibit comparably robust properties (see especially Roberts and Rosenthal, 1997 in thiscontext).Moreover, the stochastic monotonicity properties of the algorithm allow us to giveuseful rigorous quantitative bounds on the total variation distance from stationarity aftera given number of iterations. Results of this type are described in Section 5, including arather general statement that all distributions satisfying (5.4) (this condition is similar torequiring log-concavity of the density) converge to stationarity in less than 530 iterations(Theorem 12). The techniques used in Section 5 involve quantitative bounds recentlydeveloped by Roberts and Tweedie (1998).In Section 6, we consider further properties of the so-called product slice sampler,corresponding to k � 2 above. We give conditions which ensure geometric ergodicity2



of the algorithm in this case. The conditions given here are su�cient, but we suspectfar from necessary. Certainly, further work is required here to understand further thecombined e�ect of a collection of auxiliary variables.Finally in Section 7, a special case of the product slice sampler (the opposite slicesampler) is analysed, and conditions given for its geometric ergodicity.2. Slice samplers: de�nitions and preliminaries.Suppose that � : Rd ! [0;1) is a density (i.e., a non-negative measurable functionwhich is not a.e. 0) with respect to d-dimensional Lebesgue measure. Such a density givesrise to a probability measure ��(�), by��(A) = RA �(x)dxRRd �(x)dx ; A � Rd :Typically, � is a complicated function, and d is reasonably large. The slice sampler thenprovides a Markov chain algorithm which can be used to sample from ��(�).Speci�cally, suppose � can be written as �(x) = Qki=0 fi(x), for some functions fi :Rd ! [0;1). The f0-slice sampler, Pf0 , proceeds as follows. Given Xn, we sample k inde-pendent uniform random variables Yn+1;1; Yn+1;2; : : : ; Yn+1;k, with Yn+1;i � U (0; fi(Xn)).We then sample Xn+1 from the truncated probability distribution having density propor-tional to f0(�)1L(Yn+1)(�), whereL(y) = �x 2 Rd ; fi(x) � yi ; i = 1; 2; : : : ; k	 :As a motivating example, consider the following. Suppose �(x) = expf�kxk2=2g �(1 + kx� x0k4)� (1 + kx� x1k2) for constants x0 and x1 2 Rd. The form of � suggeststhe following decomposition: f0(x) = expf�kxk2=2g, f1(x) = 1 + kx� x0k4 and f2(x) =1 + kx � x1k2, that is set up for an f0-slice sampler with k = 2. This is a particularlyappealing factorisation since each of the functions f1 and f2 are invertible, so that thesets fL(y); y 2 R2g are easy to identify. Implementation of the algorithm is thereforestraightforward by iterating between 3



(1) sampling from the truncated normal distribution, N(0; Id) conditioned on being in theset L(Y1; Y2) = fx; (1 + jx� x0j4) � Y1; (1+ jx� x1j4) � Y2g (perhaps done by rejectionsampling); and(2) sampling new values Yi from U (0; fi(X)) independently, i = 1; 2.Returning to the general case, the algorithm gives rise to a Markov chain fXng1n=0,having transition probabilities Pf0(x; A) � P(Xn+1 2 A jXn = x). This Markov chain has��(�) as a stationary distribution. To see this, just note that the Markov chain (X;Y) is aGibbs sampler on the distribution with density f0(x) with respect to Lebesgue measure onthe region f(x;y); x 2 L(y)g. By conditional independence of the elements of Y given X,X is also a Markov chain, and by integrating out y, its marginal stationary distribution is��(�). Figure 2.1 illustrates a typical sample path for the case d = k = 1.
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Figure 2.1 The simple slice sampler. This carries out a Gibbs sampleron the area beneath the curve of the density of �.Furthermore, it is easily seen that the Markov chain induced by the slice sampler is��-irreducible and aperiodic. Thus, from standard Markov chain theory (see e.g. Tierney,1994) it follows that from ��-almost every starting point, the law of Xn will converge to��(�) as n!1.The algorithms as they have been described in this section are all constructed fordensities with respect to Lebesgue measure. There are no complications in extending thealgorithm to discrete distributions. This was shown by Fishman (1996), who goes on togive characterisations for the eigenvalues of the Markov chain. This can, in turn, be usedto give guidelines as to the construction of slice samplers. Other work on trying to choose4



particularly e�ective slice samplers appears in Mira and Tierney (1997), where some resultson the best way of choosing the factorisation �(x) =Qki=1 fi(x) are given.3. Characterising the convergence properties.It turns out that as far as analysing the Markov chains induced by these algorithms,it is su�cient to consider the case where f0 is constant. See the appendix for a formal jus-ti�cation of this. All the statements we make from now on have corresponding statementsfor the case where f0 is not constant.As a result of this, we concentrate from now on on the uniform slice sampler, i.e. onthe case when f0 takes on only the values 0 and 1. In this case, we shall write the slicesampler Markov chain transition probabilities as Pssl (for \simple slice") when k = 1, andas Ppsl (for \product slice") when k � 2.For Pssl we shall write L(y) = fx 2 Rd ; �(x) � yg, and shall write Q(y) for m(L(y)),where m is d-dimensional Lebesgue measure. The algorithm then proceeds by alternatelyupdating Yn+1 � U [0; �(Xn)], and Xn+1 � U(L(Yn+1)). Therefore by integrating out thedistribution of Yn+1 we can write down the transition probabilities of X asP (�(Xn+1) < z j �(Xn) = y) = 1y yZ0 max�1� Q(z)Q(w) ; 0� dw : (3:1)Note that the behaviour of the simple slice sampler is completely determined by the functionQ; indeed, two di�erent densities which gave rise to the same function Q would haveidentical simple-slice-sampler convergence properties. This is also true for constant scaling,as the following proposition records.Proposition 1. Let � and e� be two di�erent densities, of dimension d and ed respectively.Suppose there exists a > 0 such that their corresponding functions Q and eQ satisfy Q(y) =eQ(ay), for all y > 0. Then the convergence properties of the (uniform) simple slice samplerPssl for � and for e� are identical. Speci�cally, we haveP (�(Xn+1) < z j �(Xn) = y) = P�e�(eXn+1) < az j e�(eXn) = ay� ; y; z > 0 :5



Proof. Substituting into (3.1) y by ay, and z by az, and Q by eQ, and �nally rescalingthe integrated variable w by aw, the result follows.
Remarks.1. This proposition shows that, for theoretical purposes, an arbitrary simple slice sam-pler is equivalent to the one-dimensional simple slice sampler on the density f(x) =inffw > 0;Q(w) � xg for x > 0 (with f(x) = 0 for x � 0), since such a density has theappropriate value for Q(y). This is often a helpful way to think about slice samplers.2. This proposition clearly also applies if f0 is not uniform, provided we use the moregeneral de�nition Q(y) = RL(y) f0(z)dz instead of the uniform-speci�c de�nition Q(y) =m(L(y)). However, it does require that we are in the simple slice sampler case k = 1;in general we will need a k-dimensional function Q to completely specify the slicesampler convergence properties in this case.To continue, we de�ne a partial ordering on Rd based on values of �. That is, we saythat x1 � x2 if and only if �(x1) � �(x2), and that x1 � x2 if and only if �(x1) < �(x2).Now, recall (Daley, 1968) that a Markov chain X on a partially ordered space is said tobe stochastically monotone if for all �xed z, we have that P(X1 � zjX0 = x1) � P(X1 �zjX0 = x2) whenever x1 � x2, or equivalently that P(X1 � zjX0 = x1) � P(X1 � zjX0 =x2) whenever x1 � x2. (Stochastically monotone chains are usually easier to analyse thanmore general classes of chains.) We haveProposition 2. With the ordering on Rd given above, Pssl is stochastically monotone.Proof. We see (as in the previous proof) that for i = 1; 2, setting z = �(z), we havefrom (3.1) P(X1 � z jX0 = xi) = P(�(X1) < z jX0 = xi)= 1�(xi) �(xi)Z0 max�1� Q(z)Q(w) ; 0� dw ;6



i.e. is an average of the function f(w) = max�1� Q(z)Q(w) ; 0�, averaged over the interval[0; �(xi)]. But clearly f is non-increasing. Hence, if �(x1) � �(x2), then P(X1 � z jX0 =x1) � P(X1 � z jX0 = x2), as required.
Although the Markov chain f�(Xn); n 2 Ng is a non-trivial simpli�cation of fXn; n 2Ng, the convergence properties of the two chains are identical, since by the constructionof the algorithm, the conditional distribution of Xn given that �(Xn) = y is uniformlydistributed, for all n � 1.To end this section, we mention a result which is presented in Mira and Tierney (1997),using a theorem of Peskun (1973; see also Tierney, 1995, Section 3). We therefore omitthe proof.Proposition 3. Suppose � is bounded and supp(�) has �nite Lebesgue measure. ThenPssl is uniformly ergodic, with principal eigenvalue being bounded above by the rate ofconvergence of the independence sampler with uniform proposal distribution.4. Geometric ergodicity of slice samplers.In this section, we consider the geometric ergodicity of slice samplers. We concentrateon the case Pssl, i.e. on the case where f0 is an indicator function and k = 1. For some ofour results, we shall further assume that � is a bounded function. In that case, since theslice-sampler is scale-invariant (Proposition 1), it su�ces to assume that � � 1, i.e. that �is bounded by 1.Recall (see e.g. Nummelin, 1984; Meyn and Tweedie, 1993) that a Markov chain P (x; �)on a state space X , having stationary distribution �(�), is geometrically ergodic if there is� < 1 and a �-a.e.-�nite function V : X ! [1;1], such thatkP(Xn 2 � jX0 = x)� �(�)k � supA�X jP(Xn 2 A jX0 = x)� �(A)j � V (x)�n ; x 2 X :Recall further that this is equivalent to the existence of a �-a.e. �nite function V : X ![1;1], a subset C � X , a probability measure �(�) on X , and constants � > 0, � < 1,7



and b < 1, such that (a) P (x; �) � ��(�) for all x 2 C (i.e., the set C is small); and(b) PV (x) � �V (x) + b1C(x) for all x 2 X (i.e., V satis�es a drift condition). We shallexamine these two conditions separately.Condition (a) above is fairly straightforward. Indeed, we have the following.Proposition 4. Consider the slice sampler Pssl on a density �. For any �xed y� > y� > 0,de�ne the subset C � Rd byC = �x 2 Rd ; y� � �(x) � y�	 :Then we have Pssl(x; �) � y�y��(�) ; x 2 C ;where �(A) = y�1� y�Z0 m(A \ L(y))Q(y) dy :That is, the set C is small with � = y�=y�. In particular, if � is bounded (without loss ofgenerality by 1 say), then L(y�) is small with � = y�.Proof. If we start the slice sampler at some Xn 2 C, then we clearly haveL(Yn+1 jXn) � y�y� U([0; y�]):But since L(Xn+1 jYn+1) = U (L(Yn+1)), the result follows immediately.
To continue, we need to establish a drift condition (i.e., condition (b) above) forPssl. This is somewhat more di�cult. We shall need the following well known stochasticapproximation result (the \FKG inequality"), which we state in a way relevant to ourcurrent context. Briey, it states that ifM1 has non-decreasing Radon-Nikodym derivativewith respect toM2, then any non-decreasing function will have larger conditional expectedvalue with respect toM1 than with respect toM2. For a similar application to conditionalexpectations, and discussion of the result, see Roberts (1991).8



Lemma 5. Suppose that M1 and M2 are two probability measures on R, such thatthere is a version of the Radon-Nikodym derivative R(x) = M2(dx)=M1(dx), which is anon-decreasing function. Suppose also that f is a non-decreasing function from R intoR+. Let Ei, i = 1; 2 denote expectations with respect to the two measures Mi, i = 1; 2.Then for any set A for which the following conditional expectations exist,E1[f(X)jX 2 A] � E2[f(X)jX 2 A] :Using this lemma, we are now able to establish a drift condition for Pssl.Proposition 6. Consider the slice sampler Pssl on a density � � 1. Suppose itscorresponding function Q(y) = m(L(y)) is di�erentiable, and that there exists a constant� > 1 such that Q0(y)y1+ 1� is non-increasing, at least for y � Y . Then, for any � with0 < � < min ���1� ; 1��, and for any y� 2 (0; Y ), we havePsslV (x) � �V (x) + b1L(y�)(x) ;x 2 Rd ;where V (x) = �(x)��, and where� � 1(1� �)(1 + ��) + ��(y�=Y )�1 + ��and b = Y ��(1 + ��(1� �))(1� �)(1 + ��) � � :(Since (1� �)(1 +��) > 1 for 0 < � < ��1� , it follows that by choosing y� > 0 su�cientlysmall, we can insure that � < 1.) Furthermore, if Y = 1 then the formula for b may besimpli�ed to b = ��(1� y�� )(1 + ��)9



Proof. We note that if x 2 Rd is such that �(x) � Y , thenPsslV (x) = 1�(x) Z �(x)0 1Q(y) ZL(y) �(z)��dz dy= 1�(x) Z �(x)0 1Q(y) Z 1y w��(�Q0(w))dw dy= 1�(x) Z �(x)0 �R Yy + R1Y �w��(�Q0(w))dw�R Yy + R1Y � (�Q0(w))dw dy� 1�(x) Z �(x)0 R Yy w��(�Q0(w))dwR Yy (�Q0(w))dw dy� 1�(x) Z �(x)0 R Yy w�(1+�+��1)dwR Yy w�(1+��1)dw dy= 11 + �� 1�(x)  Z �(x)0 y��dy + Z �(x)0 Y ���1(y�� � Y ��)y���1 � Y ���1 dy!� V (x)(1� �)(1 + ��) + ��Y ��1 + ��Here the �rst equality follows simply from writing out the de�nition of PV (x), and thesecond equality then follows from rewriting the inner integral with respect to the measure�Q0(w)dw. The �rst inequality follows from the fact that w�� is a non-increasing function.The second inequality follows from Lemma 5 with M2(dy) / y�(1+��1)dy and M1(dy) /(�Q0(y))dy. The third inequality follows from the fact that (y���Y ��)=(y���1�Y ���1)is a non-decreasing function of y 2 (0; Y ), at least when �� < 1 as we've stipulated; thiscan be checked by di�erentiating with respect to y and then maximising over Y . Hencean upper bound for this function is obtained by taking the limit as y ! Y .For �(x) � Y , we note that by stochastic monotonicity (Proposition 2), it follows thatPsslV (x) is non-increasing according to the ordering � on Rd. Therefore, if x is such that�(x) � Y , then we must have PsslV (x) � PsslV (x0) where �(x0) = Y . Hence, from theabove bound on PsslV (x0), we have thatPsslV (x) � Y �� 1 + ��(1� �)(1 + ��)(1� �) ; �(x) � Y :Now let � and b be as in the statement of the proposition. Then it is easily veri�ed10



(by considering separately the cases �(x) < y�, y� < �(x) < Y , and �(x) > Y ) thatPsslV (x) � �V (x) + b1L(y�)(x), as required.The �nal statement of the proposition follows because, if Y = 1, then there is nocase �(x) > Y to consider. Hence, in this case it is easily veri�ed that we still havePsslV (x) � �V (x) + b1L(y�)(x) with the new, simpler formula for b.
Putting Propositions 4 and 6 together, and using the standard Markov chain theorydiscussed at the beginning of this section, we obtainTheorem 7. Consider the slice sampler Pssl on a bounded density �. Suppose itscorresponding function Q(y) = m(L(y)) is di�erentiable, and that there exists a constant� > 1 such that Q0(y)y1+ 1� is non-increasing, at least on an open set containing 0. ThenPssl is geometrically ergodic.Remarks.(1) These conditions are really rather weak. For instance, for X = R the condition onQ0(y)y1+ 1� can be loosely stated as saying that � has tails that are at least as light asx��. A couple of examples illuminate this.(i) Suppose that X = R+ and that � is a positive continuous density. Supposealso that � / e�x, at least in the right hand tail. Then for small y, L(y) =(0; log(y�1)=+constant). Therefore Q0(y)y1+ 1� = �y 1� which is non-increasingfor all values of � (because of the minus sign).(ii) Again suppose X = R+ and that � is continuous and positive. Now suppose that� / x��, at least in the right hand tail. For small y, L(y) = (0; y���1�constant).Q0(y)y1+ 1� / y��1���1 , so the condition holds for � � �.(2) The existence of the derivative of Q has been assumed in this theorem. This conditioncan certainly be weakened slightly by expressing the key condition on Q0(y)y1+ 1� interms of a suitable Radon-Nikodym derivative for the measure R de�ned by R((a; b]) =Q(a)�Q(b).(3) The condition � < 1=� will be slightly restrictive for us in Section 5, when we consider11



quantitative bounds. Indeed, for exponentially-decreasing densities � we have thatQ0(y)y1+ 1� is non-increasing for any � > 0, however Proposition 6 unfortunately doesnot allow us to use � larger than 1=�. Now, it is possible to get around this restrictionin the proof of that proposition; for example, if �� = M 2 N and Y = 1, thenwe can instead compute the integral �(x)R0 Y ���1 (y���Y ��)y���1�Y ���1 dy exactly, by recalling thaty���1y���1�1 = 1+y���1+y�2��1+ : : :+y�(M�1)��1 . It is not di�cult to carry out thesecalculations; however, they do not appear to substantially improve the quantitativebounds that we study in Section 5. Therefore, we do not pursue this idea further.Finally, we consider the case where �(�) is unbounded. In this case, we have Q(y) > 0for arbitrarily large values of y, and it is important how quickly Q(y) ! 0 as y ! 1.To examine this, we consider the function Q�1(w) � inffy > 0;Q(y) � wg. By applyingProposition 6 twice, we obtain the following.Theorem 8. Consider the slice sampler Pssl on a density �. Suppose � is unboundedwith in�nite support, but that there exists a constant � > 1 such that Q0(y)y1+ 1� isnon-increasing for y in an open set containing 0, and furthermore that (Q�1)0(w)w1+ 1� isnon-increasing for w in an open set containing 0. Then Pssl is geometrically ergodic.Proof. It is no longer true that L(y) is small for any y, though by Proposition 4, setson which � is bounded above and away from zero are still small. Geometric excursionsinto either tail (�(X) close to 0 or 1) are now possible. The tail �(X) � 0 can be dealtwith as in Proposition 6, and an identical calculation deals with the tail �(X) � 1 (usingdrift function (Q(�(X)))��). Therefore, by using Proposition 6 twice, we see that Psslhas geometric drift away from any �xed neighbourhood of X =1 and also away from any�xed neighbourhood of X = 0. The result now follows similarly to Theorem 7.
12



5. Quantitative convergence bounds.In this section we consider quantitative bounds on the convergence of Pssl to its sta-tionary distribution ��(�). We recall that we have veri�ed minorisation and drift conditionsin the previous section. We further recall that we have veri�ed that Pssl is stochasti-cally monotone (Proposition 2). From these ingredients, there are well-known quantitativebounds on the distance of L(Xn) to stationarity. For optimal results, we use the followingrecent result of Roberts and Tweedie (1998), which builds on the analysis in Rosenthal(1995) and Lund and Tweedie (1996). For notation, we write E��^�x(V ) for the expectedvalue of V under the stochastic minorant (with respect to the ordering �) of the stationarydistribution ��(�) and the point mass �x(�). That is,E��^�x(V ) = V (x)��f� � xg+E�� �V 1f��xg� ;so that using the fact that V � 1 for the �rst inequality and Meyn and Tweedie, 1993,Proposition 4.3 (i) for the second:E��^�x(V ) = E��^�x(V � 1) + 1� (V (x)� 1) +E�(V � 1) + 1= V (x) +E�(V )� 1� V (x)� 1 + b1� � : (5:1)Theorem 9. Consider the slice sampler Pssl on a density � � 1. Set V (x) = �(x)��.Then for n log(��1) > log (E��^�x(V )), we havekPnssl(x; �)� �(�)k � supA�Rd jPnssl(x;A)� �(A)j � K(n+ � � �)�n :Here K = e�(1� �)��=�� ;� = log (E��^�x(V ))log(��1) ; � = log��s+b���(1��) �log(��1) ;s = y��, and � = (1� �)��1 , where the values of �, �, and b are as in Propositions 4 and 6.13



Proof. The result follows immediately from Roberts and Tweedie (1997), in light ofProposition 2.
Example 5.1. Let �(x) = e�x1x>0 be the density of the exponential distribution Exp(1).We can take � as large as we like (provided that �� � 1), and can set Y = 1. Nowsuppose for illustration that E��^�x(V ) � 3, and that we choose � = 0:1, � = 1=� = 10,and � = y� = 0:1. Then from Proposition 6, we have � = 0:95272 and b = 0:102836(so that b=(1 � �) = 2:17502). The bound of Theorem 9 then applies. We compute thatK = 0:0548648, � = 6:97809, � = 22:6824, s = 1:25893, and � = 0:985015. We thus obtainthat, for n � 23,kPnssl(x; �)� �(�)k � 0:054865 (0:985015)n(n� 15:7043) :For example, with n = 530, we obtainkP 530ssl (x; �)� �(�)k < 0:0095 :Hence, for this example, just 530 iterations su�ces to make the total variation distanceto stationarity provably less than 1% (a convergence criterion suggested in Cowles andRosenthal, 1996).

Now, it follows immediately from Proposition 1 that this same bound applies when�(x) = e�ax is the (un-normalised) density of the exponential distribution Exp(a) for anya > 0, not just for a = 1. Speci�cally, writing the transition kernel of the simple slicesampler for Exp(a) as Pa, and letting Va(x) = ea�x, we have thatPaVa(x) � �Va(x) + b1Va(x)�y��� (5:2)with the parameters all as given in the above example. The bound from Theorem 9 followsdirectly therefore. 14



However, it is surprising that this same bound applies to any density � such thatyQ0(y) is non-increasing, (5:3)as the following theorem shows. We give the result under the same conditions on initialconditions as in the previous example. Analogous results are clearly possible for all di�erentinitial conditions.Theorem 10. Let � be a bounded density such that its corresponding function Q(y) =m(L(y)) is di�erentiable, and satis�es (5.3). Assume as in the previous example thatE��^�x(V ) � 3. Then the simple slice sampler algorithm for � satis�eskPnssl(x; �)� �(�)k � 0:054865 (0:985015)n(n� 15:7043) ; n � 23 :Proof. By renormalising if necessary, we can (and do) assume that supx2X �(x) = 1.The proof shall proceed by comparing the slice sampler for �, i.e. Pssl, to the slice samplerfor the Exp(1) distribution (as studied in the above example). To that end, let y� and �be as given in the example, and de�ne the function V (�) = �(�)��. By Proposition 4, theset L(y�) is small for Pssl, with � = y�. The proof will be complete if we can show thatthe drift equation PsslV (x) � �V (x) + b1L(y�)(x) is satis�ed by Pssl, for the same valuesof � and b as in the example.Fix x. We can writePsslV (x) = 1�(x) Z �(x)0 R 1y w��(�Q0(w))dwR 1y (�Q0(w))dw dy� 1�(x) Z �(x)0 R 1y w���1dwR 1y w�1dw dy = PaVa(z) :where z and a are positive scalars related via �(x) = e�az . Here the inequality followsfrom Lemma 5 and (5.3). Hence from (5.2) it follows that PsslV (x) � �V (x) + b1L(y�)(x)as required. 15



This theorem leads to the question of what densities � give rise to functions Q(y) suchthat Q0(y)y1+ 1� is non-increasing, for some � > 1. Note that, since Q0(y) � 0, if yQ0(y) isitself non-increasing then this condition is satis�ed for every � > 1.Observe that if Q�1(w) is a (one-dimensional) log-concave function, then it is easilychecked that yQ0(y) is in fact non-increasing. Indeed, this follows since ddw logQ�1(w)equals the reciprocal of Q0(y)y evaluated at y = Q�1(w). Hence, if the former is non-increasing as a function of w, then the latter is non-decreasing as a function of w andtherefore is non-increasing as a function of y (since Q0 � 0).However connections between the condition and more familiar Euclidean concepts aremore complicated in higher dimensions. We give a condition which relates properties of �along one-dimensional rays from its mode, to the condition on yQ0(y).We assume without loss of generality that � has its mode at the origin. We letS = fx 2 Rd; kxk = 1g be the usual L2 unit (d� 1)-sphere in Rd. For � 2 S and y > 0,we let D(y; �) = supft > 0;�(t�) � yg. Note that the condition we impose in Proposition11 is su�cient to guarantee unimodality of �.Proposition 11. Let � be a d-dimensional density such that for all � 2 S,yD(y; �)d�1 @@yD(y; �) is a non-increasing function of y > 0 : (5:4)Then the corresponding Q-function satis�es that yQ0(y) is non-increasing.Proof. We can write Q(y) = ZS D(y; �)dd d� ;where d� is (d� 1)-dimensional Lebesgue measure on the (curved) space S.For d � 2, we note thatyQ0(y) = ZS yD(y; �)d�1 @@yD(y; �)d� :(Here the di�erentiation under the integral sign is justi�ed by e.g. Folland, 1984, Theorem2.27.) The result follows by the condition imposed on the integrand.16



Remarks.1. In one dimension, (5.4) is weaker than log-concavity. However this is not the case whend � 2. On the other hand, it can be shown that for all log-concave densities, and forall choices of � > 0, there exists a compact (and therefore small) set outside of which �satis�es that y1+ 1�Q0(y) is a non-decreasing function. The results of Proposition 6 andTheorem 7 therefore apply, and moreover quantitative results analogous to Theorem10 are available.2. Since the function Q completely speci�es the slice sampler, and since Q is una�ectedby isometries, it su�ces that � be isometric to a function satisfying (5.4). That is,it su�ces that there exists a mapping T : Rd ! Rd, which preserves d-dimensionalLebesgue measure, such that � � T satis�es (5.4).Putting the previous two results together (and allowing for isometries as in the pre-vious remark), we obtain �nally the following.Theorem 12. Suppose � is a d-dimensional density which is (isometric to) a functionsatisfying condition (5.4) above. Let Pssl be the corresponding simple slice sampler for �.Then Pssl is geometrically ergodic, and in factkPnssl(x; �)� �(�)k � 0:054865 (0:985015)n(n� 15:7043) ; n � 23 ;at least for all x such that E��^�x(V ) � 3.In particular, this Theorem shows that for any density � satisfying (5.4), we havethat kP 530ssl (x; �) � �(�)k < 0:0095, i.e. that the simple slice sampler converges after 530iterations, at least for starting points near the mode.It is natural to ask how condition E��^�x(V ) � 3 translates to a more direct conditionon x itself. From (5.1), and using the values for � and b from Example 5.1 (which are alsovalid in the more general setting of Theorem 12), a straightforward calculation gives thatwe require �(x)�(xmax) � 0:002517



where xmax denotes the mode of �. In fact more careful explicit calculations using theexponential Example 5.1 together with a stochastic comparison argument can considerablyreduce this restriction still further.6. Product slice samplers.In this section, we shall investigate the geometric ergodicity of product slice sam-plers. Suppose �(x) = f1(x)f2(x) : : : fk(x). Recall that the product slice sampler Ppslon (X; Y1; Y2; : : : ; Yk) 2 Rd � R � : : : � R proceeds, given Xn, by updating Yn+1;i �U [0; fi(Xn)] for 1 � i � k conditionally independently, and then updating Xn+1 �U (L(Y)), where L(Y) = L(Y1; f1) \ : : : \ L(Yk; fk) (here L(y; f) = fx 2 Rd; f(x) � yg).We let Q(y) denote m(L(y)), where m is d-dimensional Lebesgue measure.Before we give our �rst result about geometric ergodicity of the product slice sampler,we need the following lemma. The hypothesis of this lemma states, roughly, that all of thefunctions fi are decreasing in the same direction.Lemma 13. Suppose there exists Y > 0 such that for all x1 and x2 such that f1(x1) �f1(x2) � Y , we have fi(x1) � fi(x2) ; 2 � i � k : (6:1)Then there exists a function c : Rd ! R+ such that c(y) � y1 for all y andL(y) \ L(Y; f1)c = fz; c(y) � f1(z) < Y g : (6:2)Proof. Denote the set on the left hand side of (6.2) by S. Now suppose thereexists z1 2 S and z2 2 Sc with f1(z1) � f1(z2) < Y . Then it follows from (6.1)that fi(z1) � fi(z2); 2 � i � k. Since z1 2 S, fi(z1) � yi; 1 � i � k so thatfi(z2) � yi; 1 � i � k and so z2 2 S for a contradiction. Therefore S can be ex-pressed as an interval such as the right hand side of (6.2). The constraint on c follows fromL(y) � L(y1; f1). The result is therefore proved.
We now prove a result about the geometric ergodicity of product slice samplers. Likethe lemma, it requires that the functions fi all be decreasing in the same direction.18



Theorem 14. Suppose that for each i, fi is bounded. Set Q1(y) = m(L(y; f1)), andsuppose that Q1 is di�erentiable with Q01(y)y1+��1 non-increasing, at least in some openset containing 0. Suppose that for all � > 0, the set fz : f1(z) � �g is compact, and foreach 1 � i � k, the function fi is bounded away from zero on compact intervals. Finally,suppose that (6.1) holds for the functions ffig. Then the product slice sampler Ppsl isgeometrically ergodic.Proof. We shall assume without loss of generality that we take Y small enough sothat Q01(y)y1+��1 is non-increasing on (0; Y ). Set V (x) = f1(x)�� . Choose x such thatf1(x) < Y . ThenPV (x) = 1Qki=1 fi(x) Z f1(x)0 : : :Z fk(x)0 1Q(y) ZL(y) f1(z)��dz dy :Now partition L(y) = A(y) [ B(y), where A(y) = L(y) \ L(Y; f1), and B(y) = L(y) \L(Y; f1)c. Now V (z) is greater than or less than or equal to Y �� according as z is in B(y)or A(y) respectively. Therefore we can writePV (x) = 1Qki=1 fi(x) � Z f1(x)0 : : :Z fk(x)0 1Q(y)  ZA(y)+ ZB(y)! f1(z)��dz dy ;� 1Qki=1 fi(x) � Z f1(x)0 : : :Z fk(x)0 1m(B(y)) ZB(y) f1(z)��dz dy ;� 1Qki=1 fi(x) � Z f1(x)0 : : :Z fk(x)0 1m(L(y1; f1)) ZL(y1;f1) f1(z)��dz dy ;= 1f1(x) Z f1(x)0 1m(L(y1; f1)) ZL(y1;f1) f1(z)��dz dy1 : (6:3)The �rst inequality in the above is a straightforward application of the FKG inequality(Lemma 5); and the equality and the second inequality both follow from (6.2) and Lemma5 again. The expression in the right hand side of (6.3) has therefore been reduced to theform of the expressions manipulated in Proposition 6. It follows therefore thatlim supkxk!1 PV (x)V (x) < 119



(at least for appropriate choices of �).Geometric ergodicity will follow if we can demonstrate that all compact sets are small(cf. arguments in Roberts and Tweedie, 1996). To see this, note that the transition densityof the Markov chain fXn; n 2 Z+g; p(x; z) say, can be writtenp(x; z) = 1Qki=1 fi(x) � Z f1(x)0 : : :Z fk(x)0 1Q(y)1L(y)(z)dy :Now suppose that C is a compact set and � andM are positive constants with � � fi(w) �M for 1 � i � k, w 2 C. (The existence of these constants is guaranteed by hypothesis.)Then for x; z 2 Cp(x; z) � 1Qki=1 fi(x) � Z f1(x)�=2 : : :Z fk(x)�=2 1Q(y)1L(y)(z)dy= 1Qki=1 fi(x) � Z f1(x)�=2 : : :Z fk(x)�=2 1Q(y)dy� � �2M �k 1m(L(�=2; f1)) > 0 :Therefore all compact sets are small and geometric ergodicity follows.
7. Opposite slice samplersFinally, we consider product slice samplers whose component functions fi are not alldecreasing in the same direction. For simplicity, we restrict ourselves to dimension d = 1,and to a number of component functions k = 2 which are decreasing in opposite directions.Speci�cally, let X � R, and �(x) = f1(x)f2(x), where f1 is a non-decreasing functionand f2 is a non-increasing function. Then we shall call this special form of the productslice sampler the opposite monotone sampler with transitions Poms. We shall assume thatf1 and f2 are invertible, so that we can write Poms as follows. Given Xn, sample Yn+1;ifrom U(0; fi(Xn)) conditionally independently for i = 1; 2. Xn+1 is then sampled fromU(f�11 (Yn+1;1); f�12 (Yn+1;2)).Although in general the product slice sampler is not stochastically monotone, Pomsregains monotonicity properties from the total-orderedness of R. Speci�cally we have20



Proposition 15. Poms is stochastically monotone with respect to the usual ordering onR.
Proof. Given arbitrary x1 � x2, it is enough to show that there is a joint probabil-ity construction of two processes, one started at each of x1 and x2, which almost surelypreserves their order. However, given U1, U2 and U3, all independently U(0; 1), we canproduce the construction as follows. Start the two processes o� at Xj0 = xj , j = 1; 2.Let Y ji = fi(xj)Ui, i; j = 1; 2 (so that j indexes the two processes, and i continues toindex the auxiliary variables). Now set Xj1 = f�11 (Y j1 ) + (f�12 (Y j2 ) � f�11 (Y j1 ))U3. Nowby the respective monotonicity of f1 and f2 it follows that f�1i (Y 1i ) � f�1i (Y 2i ), i = 1; 2.Therefore X11 � X21 and so the result follows.

We turn now to the problem of proving the geometric ergodicity of Poms. The inter-esting case for Poms is the case where one (or both) the functions f1; f2 are unbounded,though � is still bounded. The case of bounded fi is virtually identical to the case of Pssland we omit any formal statement of the result except to note that a very weak decaycondition on the fi's will be needed as in Proposition 7. Instead we shall deal with thecase where both f1 and f2 are unbounded and non-zero.Theorem 16. Suppose X is a (possibly in�nite) interval, (X�;X+) � R, and that f1and f2 are unbounded and non-zero on X , with f1 increasing and f2 decreasing. Let � bea positive constant such that f�1 and f�2 are convex functions. Suppose there exists 0 < < (1 + 2�)�1 such that uf1f�12 (u) and uf2f�11 (u) are both non-decreasing functionsfor u in some neighbourhood of 0. Then Poms is geometrically ergodic.
Proof. Let V1(x) = f1(x)�. Suppose k1 is such that f1f�12 (u) is non-decreasing for21



u � f2(k1). Then for x � k1,PomsV1(x) = 1�(x) Z f1(x)0 Z f2(x)0 1f�12 (y2)� f�11 (y1) Z f�12 (y2)f�11 (y1) V1(z) dz dy1 dy2= Z 10 Z 10 1f�12 (f2(x)u2)� f�11 (f1(x)u1) Z f�12 (f2(x)u2)f�11 (f1(x)u1) f1(z)� dz du1 du2� 12 Z 10 Z 10 hf1(x)�u�1 + f1(f�12 (u2f2(x)))�du1 du2i= f1(x)�2(1 + �) + 12 Z 10 f1(f�12 (u2f2(x)))�du2 ; (7:1)the inequality following from the convexity condition on f�1 . Now,f1(f�12 (v)) � (f2(x))f1(x)=vfor v � f2(x), so that the second term in (7.1) may be bounded by12 Z 10 f1(x)�u� du = f1(x)�2(1� �)since  < (1 + 2�)�1 implies that � < 1. Hence, for x � k1,PomsV1(x) � V1(x)2 � 11 + � + 11� �� � �V1(x)say, where � < 1, because  < (1 + 2�)�1. Furthermore, by stochastic monotonicity,PomsV1(x) � �V1(k1) for x � k1.Similarly we can prove that if V2(x) = f2(x)�, there exists k2 such that PomsV2(x) ��V2(x) for x � k2 with PomsV2(x) � �V2(k2) for x � k2.Geometric drift now follows with drift function V (x) = V1(x) + V2(x). Indeed, fromthe above bounds on PomsV1(x) and PomsV2(x), it follows that for large enough M > 0,we will have PomsV (x) � �0V (x) whenever jxj > M , for some �0 < 1. Furthermore the set[�M;M ] is easily seen to be small for Poms. Hence, the result follows just as in Theorem7.
Unfortunately, in general, although Poms is stochastically monotone, it is not possibleto calculate bounds on convergence using Theorem 9 if (X�;X+) = R since it is not true22



that either (�1; x) or (x;1) are small for any x. Computable bounds are still possiblefrom the calculations in the proof of Theorem 16 (see Roberts and Tweedie, 1997) but willnot be as tight as those in Theorem 10. However if either X� or X+ are �nite, then it willbe possible to use the techniques of Theorem 9. The example below is an illustration ofthis.Note that some of the estimates in the proof of Theorem 16 are fairly crude. Variousre�nements are possible and the conditions imposed on f1 and f2 can be signi�cantlyweakened, especially in more speci�c contexts. We do not pursue this in here, but contentourselves with a simple example to illustrate its application.Example 7.1. Suppose we consider the Gamma density where f1(x) = x� and f2(x) =e�x, both densities on (0;1). We'll assume that � > 0. Now f1(f�12 (u)) = (logu�1)� andf2(f�11 (u)) = expf�u1=�g. It is easy to check that for all  > 0, and for small enoughu, both functions uf1(f�12 (u)) and uf2(f�11 (u)) are non-decreasing. Moreover, we canjust take � � ��1 to ensure convexity of f1(x)� and f2(x)�. Therefore by Theorem 16 thealgorithm is geometrically ergodic.8. Discussion and conclusions.In this paper, we have studied theoretical properties of slice samplers. We have shownthat under some rather general hypotheses, these samplers have some very nice convergenceproperties.In particular, we have proved geometric ergodicity for all simple slice samplers ondensities with asymptotically polynomial tails. This covers virtually all distributions ofinterest. We have also extended this result to product slice samplers, albeit under morerestrictive conditions.We have also proved quantitative bounds on the convergence of these samplers, forcertain classes of densities. In particular, for all multi-dimensional densities satisfying ourcondition (5.4) herein, which includes all one-dimensional log-concave densities, we haveestablished a uniform bound of 530 iterations required to achieve 1% accuracy in totalvariation distance. Previous rigorous quantitative bounds for MCMC samplers have gen-erally been established only for very speci�c models (Meyn and Tweedie, 1994; Rosenthal,23



1995) or have involved large undetermined constants (Polson, 1996). Indeed, we know ofno comparable result which gives a reasonable uniform bound on the convergence rate ofa realistic sampling algorithm, over such a broad class of distributions.Of course, it may not always be easy to implement a slice sampler for a particularproblem. For example, the sets L(y) and the measures Q(y) may be di�cult or impossibleto compute. However, the results of this paper suggest that, if it is possible to run aslice sampler algorithm on a given density, then the sampler will probably have excellentconvergence properties.AppendixAs de�ned in Section 2, the f0-slice sampler involves sampling from a density propor-tional to f0(�)1L(Yn+1)(�). Throughout the paper, we have assumed that f0 is constantthereby reducing all the simulations to uniform distributions on various shaped regions.In this appendix, we demonstrate that there is no loss of generality in doing this, sinceby a suitable transformation, the general f0-slice sampler can be written in terms of thealgorithms considered in the statements of our main results.As a consequence of the following proposition therefore, all previous results in thepaper have corresponding statements for the f0-slice sampler.Proposition 17. Let T : Rd ! Rd be a di�erentiable injective transformation. Let Jbe its Jacobian (assumed to be positive everywhere). Then Pf0(x;A) = Pf0=J (T (x); T (A)).That is, the f0-slice sampler on f0(x)f1(x) : : : fk(x) behaves identically to the (f0�T�1=J �T�1)-slice sampler on �f0(T�1(x))=J(T�1(x))� f1(T�1(x)) : : : fk(T�1(x)) (where we takef0(T�1(x)) = 0 if x is not in the range of T ). Furthermore, it is always possible to �ndsuch a transformation T for which the quotient f0=J is equal to the indicator function ofa (possibly in�nite) subset of Rd.Proof. The �rst statement follows directly from the multi-dimensional change of variableformula (see e.g. Marsden, 1974, Section 9.3); speci�cally, sampling T (x) from the density�f0(T�1(�))=J(T�1(�))�1T (L(Y))(�) is equivalent to sampling x from the density f0(�)1L(Y).For the �nal statement, we de�ne T1(x) = R x10 f0(t; x2; : : : ; xd)dt. We further de�neTi(x) = xi for i � 2. We then set T = (T1; T2; : : : ; Td). It is easily veri�ed that this gives24



J(x) = f0(x), so that f0(T�1(x))=J(T�1(x)) is equal to the indicator function of the rangeof T .
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