Heuristic Algorithms for the Triangulation of
Graphs*

Andrés Cano and Serafin Moral

Departamento de Ciencias de la Computacién e [LA.
Universidad de Granada
18071 - Granada - Spain

Abstract. Different uncertainty propagation algorithms in graph-
ical structures can be viewed as a particular case of propagation
in a joint tree, which can be obtained from different triangulations
of the original graph. The complexity of the resulting propagation
algorithms depends on the size of the resulting triangulated graph.
The problem of obtaining an optimum graph triangulation is known
to be NP-complete. Thus approximate algorithms which find a good
triangulation in reasonable time are of particular interest. This work
describes and compares several heuristic algorithms developed for
this purpose.

1 Introduction

A number of different algorithms for the propagation of uncertainty in gra-
phical structures have been developed in recent years. The main effort has
been devoted to the study of probabilistic propagation. Original algorithms
were proposed on a directed acyclic graph without loops by Kim and Pearl
[12, 17]. Different propagation algorithms have been described for the general
case [13, 18, 19, 6, 21, 15, 16].

Sachter, Andersen and Szolovits [20] have shown that the different exact
algorithms described in the literature are all particular cases of a single gen-
eral algorithm, called the clustering algorithm. This algorithm shows that the
essence of the efficiency achieved in the original propagation algorithms, comes
from the factorization of the global probability distribution which is obtained
from the independence relationships among the variables of the problem. This
factorization gives rise to the cluster tree, where all the computations are car-
ried out. If we define the size of the cluster tree like the sum of the sizes of
the cliques then the efficiency of the computations depends on the size of the
associated cluster tree; in other words, efficiency is a polynomial function of size.

* This work was supported by the Commission of the European Communities

under project DRUMS2, BRA 6156

The key point in the construction of the cluster tree is the triangulation of
the undirected graph expressing the independences of the problem. Through this
process, the most efficient exact algorithms can be obtained by considering the
optimum triangulation (the triangulation with a minimum size of the associated
clusters). However, the construction of the optimal triangulation is known to be
an NP-complete problem [1].

Kjeerulff [9] has studied different heuristic methods and a simulated annealing
algorithm in order to obtain efficient triangulations within a reasonable amount
of time. One heuristic was shown to be the best, with similar results to the sim-
ulated annealing algorithm, which is much more time consuming.

In this work we propose new heuristics and compare them with Kjaerulff’s
best heuristic, by using different randomly generated graphs. It is shown that
these heuristics can improve the optimality of the resulting cluster trees.

The obtained results are applicable to other uncertainty formalisms. Shafer
and Shenoy [21] and Cano, Delgado Moral [2] have shown that propagation al-
gorithms can be applied in order to propagate other uncertainties represented
by other methodologies in which combination and marginalization are defined
as elementary operations, verifying a set of axioms. The efficiency of the calcu-
lations will be also much related to the size of the associated cluster tree.

This work is organized in the following way: in the second section, we briefly
give the fundamental concepts related to the problem of triangulation of a graph
and the construction of the associated cluster tree. In the third section, we
describe the different heuristics, that will be compared and evaluated in the
fourth section. Finally, in the fifth section, we present the conclusions.

2 Graph Triangulation

Let us assume an n-dimensional variable (X1, ..., X,,), each variable, X; taking
values on a finite set U;. A usual way of expressing independences among vari-
ables 1s by means of a directed acyclic graph in which each node represents a
variable, X; (see Fig. 2) [16].

From a directed acyclic graph we can build its associated undirected graph,
also called the moral graph. This graph is constructed by adding undirected links
between two parents of the same node and ignoring the direction of the links in
the directed graph (see Fig. 2) [13].

An undirected graph is said to be chordal or triangulated if, and only if, every
cycle of length four or more has an arc between a pair of nonadjacent nodes.
To build a tree of clusters in which to carry out the computations we need a
triangulated undirected graph. Graphs in Fig. 2 and 3 are triangulated and non
triangulated graphs, respectively.

Fig.2. The Moral Graph

A triangulated graph can be obtained from a general undirected graph by
adding links. Different triangulations are obtained from different permutations of
the nodes, o : {1,...,n} — {1,...,n}. Given a permutation, o the associated
triangulation is built according to the following procedure.

— Fori=1ton
— Add links between the pairs of nodes adjacent to X,(;). Let L; the set
of added links.
— Remove node X, ;) and all the links connecting X,(;) with other nodes
of the graph.
— To obtain the triangulated graph from the original graph, add all the links
in the sets L; (i =1,...,n).

Fig.3. A non chordal undirected graph

The permutation ¢ is called a deletion sequence. If we consider the deletion
sequence (o(1),0(2),0(3),0(4),0(5),0(6),0(7)) = (3,2,7,4,1,5,6) in the graph
in Fig. 3, we obtain the triangulated graph in Fig. 4.

Fig.4. Associated triangulated graph under o

The clusters of a triangulated graph are cliques: maximal complete (all the
nodes are adjacent) subgraphs. In the graph in Fig. 4 the cliques are { X, X3, X5},
{Xl,X‘la X5a X6}’ {Xza X4a X5}’ {X4a X5a X7}

The size of a clique {X; }ies is the number of elements of the cartesian prod-
uct of the sets in which each X; takes its values. That 1s the number of elements
of II;¢rU;, which is equal to the product of the number of elements of each U;.

From a triangulated graph we can construct the cluster tree, also called the
junction tree [14]. This can be done by the maximum cardinality search algorithm
[23]. The graph in Fig. 5 is one of the possible tree of clusters associated to the
triangulated graph in Fig. 4.

{X2aX4aX5}
{XlaXSaX(S} {XlaX4aX5aX6})
{X4aX5aX7}

Fig.5. The tree of cliques

The size of a tree of cliques is the sum of the sizes of each one of its cliques.
To obtain efficient computations of this tree it is essential that its size be as
small as possible.

3 Heuristic Algorithms

Olmsted [10], Kong [11], Kjaerulff [9] proposed the following heuristic in order
to obtain a good deletion sequence:

H1 In each case, select the variable among the set of non-deleted vartables pro-
ducing a clique of minimal size and then delete this variable.

This heuristic produces exceptional results in the general case. It attempts
to minimize the sum of the sizes of the cliques by minimizing, in each step, the
size of each of the cliques that are being created. This does not guarantee that
the size of the tree of cliques is optimal; selecting a variable producing a minimal
clique can force us to produce bigger cliques when deleting the other variables,
but in general it produces relatively manageable trees.

The main idea underlying the new heuristics introduced in this work, is that
when we delete a variable we are creating a clique with a size that should be
minimized. However, at the same time, we are removing this variable and all the
corresponding links; thereby simplifying the resulting graph. The simplification
obtained in the resulting graph can also be a hepful guide in order to obtain
efficient triangulations.

Following this idea we introduce the next heuristic algorithms to find a dele-
tion sequence:
If X; is a possible variable to be deleted then,

— S(7) will be the size of the clique created by deleting this variable.

— FE(4) will be the number of elements of Uj;.

M (%) will be the maximum size of the cliques of the subgraph given by X;

and its adjacents nodes.

— (%) will be the sum of the size cliques of the subgraph given by X; and its
adjacent nodes.

The heuristic algorithms follow the following rules,

H2 In each case select a variable, X;, among the set of possible variables to
be deleted with minimal S(7)/FE (7). This heuristic is similar to H1, but H2
computes the size of the environment of X; (size of the clique to be pro-
duced deleting X;) only with the adjacent nodes of X;. In this way, we not
only delete the variables with a less complex environment, but also make it
possible to delete a variable with a big U;.

H3 In each case select a variable, X;, among the set of possible variables to be
deleted with minimal S({)— M (é). M (7) is the size of the biggest clique where
X; 1s included. After deleting X; the biggest clique where X; 1s included will
have the size S(¢). With H3 we try to minimize the increment in the size of
the biggest clique where each variable is included.

H4 In each case select a vartable, X;, among the set of possible vartables to be
deleted with minimal S(i) — C(7). This heuristic is similar to H3, but the
difference is computed with C(7), that is the sum of the sizes of the cliques
where X; 1s included.

H5 In each case select a vartable, X;, among the set of possible vartables to be
deleted with minimal S(i)/M(1).

H6 In each case select a vartable, X;, among the set of possible vartables to be

deleted with minimal S(i)/C(4).

When we have two or more equally good variables to delete the next, we choose
randomly one of that variables. We think that it would be possible to find a
better tie-breaking.

The heuristics H5 and H6 are similar to H3 and H4 respectively, but rather
than computing a difference, we compute the factor in the increment of the
cliques. The complexity of H2 is equal to the complexity of H1. The idea of
simplying the resulting graph is only partially considered by H2: the cause of
deleting a variable X; is the size of the created clique, S(¢). Tt is considered
that the resulting graph is simpler if we delete a variable with more cases. By
dividing S(¢) by the number of cases, E(i), we balance the cost of deleting a
variable with the simplicity of the obtained graph. However, E(¢) is not a very
precise indicator of the simplicity of the graph; more precise indicators of this
simplicity are considered in the heuristics H3, H4, H5 and H6. The intuitive
basis of this rules are the following: if we delete variable X;, the arcs of the
old graph, and not present in the new graph, are the arcs linking X; with its
adjacents nodes. C'(7) and M(¢) aim to measure the complexity of the subgraph
given by these arcs. But these rules are more complex than H1 and H2 because
we must compute the cliques of a graph, although this graph will generally be
small because 1t is the graph given by a node and its adjacent nodes.

4 Evaluation of the Heuristic Algorithms

We have implemented the different heuristic algorithms in C language in a SUN
Workstation. To evaluate them, we have generated 500 graphs of each one of the
following groups, and we are triangulated each one of the graphs with the six
heuristics.

a) The graphs have 50 nodes which are are enumerated from 1 to 50. Each
node has 2 cases, a number of parents chosen from the set {0,... 5}, and
generated according to an uniform distribution of mean 2.5, rounding to the
closest integer. The parents are the nodes immediately preceding the given
node (this produces chain-like graphs).

b) The same as a), but now the parents are selected randomly among the pre-
ceding nodes. The nearest nodes have a higher probability of being chosen
as parents.

¢) The same as a), but now the parents are selected randomly among all of the
preceding nodes. All the nodes have the same probability of being chosen as
parents.

The same as a), but now the number of cases for
according to a Poisson distribution of mean 2 with a
The same as b), but now the number of cases for
according to a Poisson distribution of mean 2 with a
The same as c¢), but now the number of cases for
according to a Poisson distribution of mean 2 with a
The same as a), but now the number of cases for
according to a Poisson distribution of mean 3 with a
The same as b), but now the number of cases for
according to a Poisson distribution of mean 3 with a
The same as c¢), but now the number of cases for
according to a Poisson distribution of mean 3 with a
The same as a), but now the number of cases for
according to a Poisson distribution of mean 4 with a
The same as b), but now the number of cases for
according to a Poisson distribution of mean 4 with a
Same as ¢), but now the number of cases for each node is selected according

each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.
each node is selected
minimum of 2.

to a Poisson distribution of mean 4 with a minimum of 2.

The mean size and standard deviation of sizes of the tree of cliques obtained
by using each of the heuristic algorithms are given in tables 1 and 2.

Method H1 H2 H3 H4 HS5 H6
a) 489 489 428 483 428 483
b) 19.965 19.965 18.027 17.564 20.153 15.613
c) 23.378 23.378 22.826 22.660 26.046 22.152
d) 2.700 2.613 2.278 2.301 2.278 2.301
e) 2.158.184 1.606.454 2.199.538 2.091.678 1.691.858 | 1.052.726
f) 4.457.325 2.420.105 2.890.733 2.872.668 1.820.238 | 1.423.942
g) 6.606 6.407 5.548 5.558 5.548 5.558
h) 8.377.588 7.981.114 7.943.450 8.002.658 6.290.989 | 5.197.635
1) 65.147.965 32.137.124 53.160.398 53.028.113 | 28.502.411| 24.144.396
J) 16.825 16.275 14.189 14.196 14.189 14.196
k) 130.974.850 | 128.772.625 | 131.136.043 | 133.913.541 |123.910.850| 77.734.851
1) 1.627.641.198|1.506.177.237(1.605.723.127|1.606.452.599(528.890.374|475.232.064

Table 1. Mean sizes of the tree of cliques

The results are the following:

— The new algorithms, with the exceptions of H3 and H4, are generally better
than the previous known best algorithm, H1.
— The relative improvement increases as a function of the complexity of graphs.
The mean size applying H1 divided by the mean size applying H6 is close

Method H1 H2 H3 H4 HS5 H6
a) 64 64 54 71 54 64
b) 34.332 34.332 27.561 28.929 30.047 23.179
c) 39.452 39.452 38.911 31.731 39.188 32.630
d) 1.097 1.063 956 954 956 954
e) 7.423.401 5.080.951 8.543.176 8.367.031 7.670.390 3.276.971
f) 50.441.890 13.401.449 18.944.797 18.946.028 7.086.978 5.472.380
g) 2.630 2.546 2.188 2.187 2.188 2.187
h) 21.490.256 23.676.980 21.069.018 21.380.543 19.737.130 16.726.049
1) 705.106.339 288.762.073 466.932.003 466.839.764 | 201.002.001 | 209.095.702
J) 7.940 7.636 6.916 6.914 6.916 6.914
k) 344.446.921 451.214.399 360.803.452 380.197.254 | 500.892.991 | 570.893.175
1) 25.081.485.346|24.760.156.861|24.797.026.066|24.796.998.549|4.180.926.330|4.280.997.524

Table 2. Standard Deviations of the sizes of the tree of cliques

to one in the case of the simplest graphs (type a). In the case of the more
complicated graphs (type 1) it is greater than 3.

— The best heuristic is H6. This heuristic has a greater computer cost than
H1. However, H2 has the same cost as H1 and produces, in general, better
results than H1 (sometimes it produces a factor of 2).

— When the parents of a node are chosen among its preceding nodes (cases a, d,
g, and j) the graphs are relatively simple and all of the heuristic algorithms
produce similar results.

— When the nearest nodes have a higher probability of being chosen as parents,
(b, e, h, k), the graphs have a smaller size than when the nodes have the
same probability (¢, f, i, 1), but we obtain larger sizes if we compare with
the sizes of the simple cases (a, d, g, j).

5 Conclusions

In this work, we have presented new heuristic algorithms to triangulate a graph.
The problem of triangulation of graphs is the key point for the efficiency of prop-
agation algorithms in graphical structures.

We have presented new heuristic algorithms which have been tested with
regard to that proposed by Kjerulff [9]. For this we have used 500 randomly
generated graphs for each one of 12 different types of graphs. We have obtained
better triangulations than with Kjeerulff’s heuristic.

Since the problem of obtaining an optimal triangulation 1s NP-hard, some
new heuristics could be considered. More complex procedures could introduce
further improvements, as in the case of simulated annealing algorithms proposed

in [9].

The main problem is what amount of calculation should be devoted to the
triangulation. That is, should we choose very complex triangulation procedures,
giving rise to good trees of cliques, or very fast triangulation procedures, giving

rise to poor triangulations?. In general, the answer will depend on the particular
problem we are trying to solve, but in general, we can say that the good trees
of cliques can save time for a lot of different inference problems: the same tree
will be used for several propagation cases, so, in most of the situations it will be
worthy to spend some reasonable time on the triangulation.

The results of this work are useful for not only probabilistic propagation. The

size of the associated tree of cliques is also fundamental for the propagation of
uncertainty represented by other formalisms, such as belief functions and convex
sets of probabilities.

References

10.

11.

12.

13.

14.

. Arnborg S., D.G. Corneil, A. Proskurowski (1987) Complexity of finding

embeddings in a k-tree. SIAM Jour. Alg. Discr. Meth. 8, 277-284.

Cano J.E., M. Delgado, S. Moral (1993) An axiomatic framework for the
propagation of uncertainty in directed acyclic graphs. International Journal
of Approximate reasoning 8 253-280.

. Chin H.L., G.F. Cooper (1989) Bayesian network inference using simula-

tion. In: Uncertainty in Artificial Intelligence, 3 (Kanal, Levitt, Lemmer, eds.)
North-Holland, 129-147.

Cooper G.F. (1988) Probabilistic inference using belief networks is NP-hard.
Technical Report KSL-87-27, Stanford University, Stanford, California.
Cooper G.F. The computational complexity of probabilistic inference using
bayesian belief networks is NP-hard. Artificial Intelligence 42, 393-405.

. D’Ambrosio B. (1991) Symbolic probabilistic inference in belief nets. De-

partment of Computer Science, Oregon State University.

Geman S., D. Geman (1984) Stochastic relaxation, Gibbs distributions, and
the bayesian restoration of images. IEFE Transactions on Pattern Analysis and
Machine Intelligence 6, 721-741.

Henrion M. (1986) Propagating uncertainty by logic sampling in Bayes’
networks. Technical Report, Department of Engineering and Public Policy,
Carnegie-Mellon University.

. Kjeerulff U. (1990) Triangulation of graphs-algorithms giving total state

space. R 90-09, Department of Mathematics and Computer Science, Insti-
tute for Electronic Systems, Aalborg University.

Olmsted, S.M.(1983). On representing and solving decision problems. Ph.D.
thesis, Department of Engineering-Economic Systems, Stanford University,
Stanford, CA.

Kong, A. (1986). Multivariate belief functions and graphical models. Ph.D.
dissertation, Department of Statistics, Harvard University, Cambridge, MA.
Kim J.H., J. Pearl (1983) A computational model for causal and diagnostic
reasoning in inference engines, Proceedings 8th IJCAI Karlsruhe, Germany.
Lauritzen S.L., D.J. Spiegelharter (1988) Local computation with probabil-
ities on graphical structures and their application to expert systems. J. of
the Royal Statistical Society, B 50, 157-224.

Jensen F. V. Junction trees and decomposable hypergraphs, Research report,
Judex Datasystemer A/S, Aalborg, Denmark.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Pearl J. (1986) A constraint-propagation approach to probabilistic reason-
ing. In: Uncertainty in Artificial Intelligence (L.N. Kanal, J.F. Lemmer, eds.)

North-Holland, 357-370.

Pearl J. (1986) Fusion, propagation and structuring in belief networks. Ar-
tificeal Intelligence 29 241-288.

Pearl J. (1988) Probabilistic Reasoning in Intelligent Systems. Morgan & Kauf-

man, San Mateo.

Shachter R.D. (1986) Evaluating influence diagrams. Operations Research 34,
871-882.

Shachter R.D. (1988) Probabilistic inference and influence diagrams. Opera-
tions Research 36, 589-605.

Shachter R.D., S.K. Andersen, P. Szlovits (1991) The equivalence of exact
methods for probabilistic inference on belief networks. Submitted to Artificial
Intelligence.

Shafer G., P.P. Shenoy (1990) Probability Propagation. Annals of Mathemat-
tcal and Artificial Intelligence 2, 327-351.

Shenoy P.P., G. Shafer (1990) Axioms for probability and belief-functions
propagation. In: Uncertainty in Artificial Intelligence, 4 (R.D. Shachter, T.S.

Levitt, L.N. Kanal, J.F. Lemmer, eds.) North-Holland, Amsterdam, 169-198.
Tarjan R.E., M. Yannakakis (1984) Simple linear-time algorithm to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal of Computing 13 566-579.

