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The key point in the construction of the cluster tree is the triangulation ofthe undirected graph expressing the independences of the problem. Through thisprocess, the most e�cient exact algorithms can be obtained by considering theoptimum triangulation (the triangulation with a minimum size of the associatedclusters). However, the construction of the optimal triangulation is known to bean NP-complete problem [1].Kj�rul� [9] has studied di�erent heuristic methods and a simulated annealingalgorithm in order to obtain e�cient triangulations within a reasonable amountof time. One heuristic was shown to be the best, with similar results to the sim-ulated annealing algorithm, which is much more time consuming.In this work we propose new heuristics and compare them with Kj�rul�'sbest heuristic, by using di�erent randomly generated graphs. It is shown thatthese heuristics can improve the optimality of the resulting cluster trees.The obtained results are applicable to other uncertainty formalisms. Shaferand Shenoy [21] and Cano, Delgado Moral [2] have shown that propagation al-gorithms can be applied in order to propagate other uncertainties representedby other methodologies in which combination and marginalization are de�nedas elementary operations, verifying a set of axioms. The e�ciency of the calcu-lations will be also much related to the size of the associated cluster tree.This work is organized in the following way: in the second section, we brie
ygive the fundamental concepts related to the problem of triangulation of a graphand the construction of the associated cluster tree. In the third section, wedescribe the di�erent heuristics, that will be compared and evaluated in thefourth section. Finally, in the �fth section, we present the conclusions.2 Graph TriangulationLet us assume an n-dimensional variable (X1; : : : ; Xn), each variable, Xi takingvalues on a �nite set Ui. A usual way of expressing independences among vari-ables is by means of a directed acyclic graph in which each node represents avariable, Xi (see Fig. 2) [16].From a directed acyclic graph we can build its associated undirected graph,also called the moral graph. This graph is constructed by adding undirected linksbetween two parents of the same node and ignoring the direction of the links inthe directed graph (see Fig. 2) [13].An undirected graph is said to be chordal or triangulated if, and only if, everycycle of length four or more has an arc between a pair of nonadjacent nodes.To build a tree of clusters in which to carry out the computations we need atriangulated undirected graph. Graphs in Fig. 2 and 3 are triangulated and nontriangulated graphs, respectively.



����X1 ����X2����X3@@@R ���	 ����X4����X5 ���	 ����X6@@@R ���	@@@RFig. 1. A Directed Acyclic Graph����X1 ����X2����X3@@@ ��� ����X4����X5 ��� ����X6@@@ ���@@@Fig. 2. The Moral GraphA triangulated graph can be obtained from a general undirected graph byadding links. Di�erent triangulations are obtained from di�erent permutations ofthe nodes, � : f1; : : : ; ng �! f1; : : : ; ng. Given a permutation, � the associatedtriangulation is built according to the following procedure.{ For i=1 to n{ Add links between the pairs of nodes adjacent to X�(i). Let Li the setof added links.{ Remove node X�(i) and all the links connecting X�(i) with other nodesof the graph.{ To obtain the triangulated graph from the original graph, add all the linksin the sets Li (i = 1; : : : ; n).����X1 ����X2����X4@@@ ��� ����X5����X3 ���@@@����X6 ��� ����X7@@@ ���@@@Fig. 3. A non chordal undirected graph



The permutation � is called a deletion sequence. If we consider the deletionsequence (�(1); �(2); �(3); �(4); �(5); �(6); �(7)) = (3; 2; 7; 4;1; 5; 6) in the graphin Fig. 3, we obtain the triangulated graph in Fig. 4.����X1 ����X2����X4@@@ ��� ����X5����X3 ���@@@����X6 ��� ����X7@@@ ���@@@aaaaaaaaaa!!!!!!!!!!Fig. 4. Associated triangulated graph under �The clusters of a triangulated graph are cliques: maximal complete (all thenodes are adjacent) subgraphs. In the graph in Fig. 4 the cliques are fX1; X3; X6g;fX1; X4; X5; X6g; fX2; X4; X5g; fX4; X5; X7g:The size of a clique fXigi2I is the number of elements of the cartesian prod-uct of the sets in which each Xi takes its values. That is the number of elementsof �i2IUi, which is equal to the product of the number of elements of each Ui.From a triangulated graph we can construct the cluster tree, also called thejunction tree [14]. This can be done by the maximumcardinality search algorithm[23]. The graph in Fig. 5 is one of the possible tree of clusters associated to thetriangulated graph in Fig. 4. fX2 ;X4; X5g�� ��fX1 ;X4; X5;X6g�� ������HHHHfX1 ;X3; X6g�� �� fX4 ;X5; X7g�� ��Fig. 5. The tree of cliquesThe size of a tree of cliques is the sum of the sizes of each one of its cliques.To obtain e�cient computations of this tree it is essential that its size be assmall as possible.



3 Heuristic AlgorithmsOlmsted [10], Kong [11], Kj�rul� [9] proposed the following heuristic in orderto obtain a good deletion sequence:H1 In each case, select the variable among the set of non-deleted variables pro-ducing a clique of minimal size and then delete this variable.This heuristic produces exceptional results in the general case. It attemptsto minimize the sum of the sizes of the cliques by minimizing, in each step, thesize of each of the cliques that are being created. This does not guarantee thatthe size of the tree of cliques is optimal; selecting a variable producing a minimalclique can force us to produce bigger cliques when deleting the other variables,but in general it produces relatively manageable trees.The main idea underlying the new heuristics introduced in this work, is thatwhen we delete a variable we are creating a clique with a size that should beminimized. However, at the same time, we are removing this variable and all thecorresponding links, thereby simplifying the resulting graph. The simpli�cationobtained in the resulting graph can also be a hepful guide in order to obtaine�cient triangulations.Following this idea we introduce the next heuristic algorithms to �nd a dele-tion sequence:If Xi is a possible variable to be deleted then,{ S(i) will be the size of the clique created by deleting this variable.{ E(i) will be the number of elements of Ui.{ M (i) will be the maximum size of the cliques of the subgraph given by Xiand its adjacents nodes.{ C(i) will be the sum of the size cliques of the subgraph given by Xi and itsadjacent nodes.The heuristic algorithms follow the following rules,H2 In each case select a variable, Xi, among the set of possible variables tobe deleted with minimal S(i)=E(i). This heuristic is similar to H1, but H2computes the size of the environment of Xi (size of the clique to be pro-duced deleting Xi) only with the adjacent nodes of Xi. In this way, we notonly delete the variables with a less complex environment, but also make itpossible to delete a variable with a big Ui.H3 In each case select a variable, Xi, among the set of possible variables to bedeleted with minimal S(i)�M (i). M (i) is the size of the biggest clique whereXi is included. After deleting Xi the biggest clique where Xi is included willhave the size S(i). With H3 we try to minimize the increment in the size ofthe biggest clique where each variable is included.



H4 In each case select a variable, Xi, among the set of possible variables to bedeleted with minimal S(i) � C(i). This heuristic is similar to H3, but thedi�erence is computed with C(i), that is the sum of the sizes of the cliqueswhere Xi is included.H5 In each case select a variable, Xi, among the set of possible variables to bedeleted with minimal S(i)=M (i).H6 In each case select a variable, Xi, among the set of possible variables to bedeleted with minimal S(i)=C(i).When we have two or more equally good variables to delete the next, we chooserandomly one of that variables. We think that it would be possible to �nd abetter tie-breaking.The heuristics H5 and H6 are similar to H3 and H4 respectively, but ratherthan computing a di�erence, we compute the factor in the increment of thecliques. The complexity of H2 is equal to the complexity of H1. The idea ofsimplying the resulting graph is only partially considered by H2: the cause ofdeleting a variable Xi is the size of the created clique, S(i). It is consideredthat the resulting graph is simpler if we delete a variable with more cases. Bydividing S(i) by the number of cases, E(i), we balance the cost of deleting avariable with the simplicity of the obtained graph. However, E(i) is not a veryprecise indicator of the simplicity of the graph; more precise indicators of thissimplicity are considered in the heuristics H3, H4, H5 and H6. The intuitivebasis of this rules are the following: if we delete variable Xi, the arcs of theold graph, and not present in the new graph, are the arcs linking Xi with itsadjacents nodes. C(i) and M (i) aim to measure the complexity of the subgraphgiven by these arcs. But these rules are more complex than H1 and H2 becausewe must compute the cliques of a graph, although this graph will generally besmall because it is the graph given by a node and its adjacent nodes.4 Evaluation of the Heuristic AlgorithmsWe have implemented the di�erent heuristic algorithms in C language in a SUNWorkstation. To evaluate them, we have generated 500 graphs of each one of thefollowing groups, and we are triangulated each one of the graphs with the sixheuristics.a) The graphs have 50 nodes which are are enumerated from 1 to 50. Eachnode has 2 cases, a number of parents chosen from the set f0; : : : ; 5g, andgenerated according to an uniform distribution of mean 2.5, rounding to theclosest integer. The parents are the nodes immediately preceding the givennode (this produces chain-like graphs).b) The same as a), but now the parents are selected randomly among the pre-ceding nodes. The nearest nodes have a higher probability of being chosenas parents.



c) The same as a), but now the parents are selected randomly among all of thepreceding nodes. All the nodes have the same probability of being chosen asparents.d) The same as a), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 2 with a minimum of 2.e) The same as b), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 2 with a minimum of 2.f) The same as c), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 2 with a minimum of 2.g) The same as a), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 3 with a minimum of 2.h) The same as b), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 3 with a minimum of 2.i) The same as c), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 3 with a minimum of 2.j) The same as a), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 4 with a minimum of 2.k) The same as b), but now the number of cases for each node is selectedaccording to a Poisson distribution of mean 4 with a minimum of 2.l) Same as c), but now the number of cases for each node is selected accordingto a Poisson distribution of mean 4 with a minimum of 2.The mean size and standard deviation of sizes of the tree of cliques obtainedby using each of the heuristic algorithms are given in tables 1 and 2.Method H1 H2 H3 H4 H5 H6a) 489 489 428 483 428 483b) 19.965 19.965 18.027 17.564 20.153 15.613c) 23.378 23.378 22.826 22.660 26.046 22.152d) 2.700 2.613 2.278 2.301 2.278 2.301e) 2.158.184 1.606.454 2.199.538 2.091.678 1.691.858 1.052.726f) 4.457.325 2.420.105 2.890.733 2.872.668 1.820.238 1.423.942g) 6.606 6.407 5.548 5.558 5.548 5.558h) 8.377.588 7.981.114 7.943.450 8.002.658 6.290.989 5.197.635i) 65.147.965 32.137.124 53.160.398 53.028.113 28.502.411 24.144.396j) 16.825 16.275 14.189 14.196 14.189 14.196k) 130.974.850 128.772.625 131.136.043 133.913.541 123.910.850 77.734.851l) 1.627.641.198 1.506.177.237 1.605.723.127 1.606.452.599 528.890.374 475.232.064Table 1. Mean sizes of the tree of cliquesThe results are the following:{ The new algorithms, with the exceptions of H3 and H4, are generally betterthan the previous known best algorithm, H1.{ The relative improvement increases as a function of the complexity of graphs.The mean size applying H1 divided by the mean size applying H6 is close



Method H1 H2 H3 H4 H5 H6a) 64 64 54 71 54 64b) 34.332 34.332 27.561 28.929 30.047 23.179c) 39.452 39.452 38.911 31.731 39.188 32.630d) 1.097 1.063 956 954 956 954e) 7.423.401 5.080.951 8.543.176 8.367.031 7.670.390 3.276.971f) 50.441.890 13.401.449 18.944.797 18.946.028 7.086.978 5.472.380g) 2.630 2.546 2.188 2.187 2.188 2.187h) 21.490.256 23.676.980 21.069.018 21.380.543 19.737.130 16.726.049i) 705.106.339 288.762.073 466.932.003 466.839.764 201.002.001 209.095.702j) 7.940 7.636 6.916 6.914 6.916 6.914k) 344.446.921 451.214.399 360.803.452 380.197.254 500.892.991 570.893.175l) 25.081.485.346 24.760.156.861 24.797.026.066 24.796.998.549 4.180.926.330 4.280.997.524Table 2. Standard Deviations of the sizes of the tree of cliquesto one in the case of the simplest graphs (type a). In the case of the morecomplicated graphs (type l) it is greater than 3.{ The best heuristic is H6. This heuristic has a greater computer cost thanH1. However, H2 has the same cost as H1 and produces, in general, betterresults than H1 (sometimes it produces a factor of 2).{ When the parents of a node are chosen among its preceding nodes (cases a, d,g, and j) the graphs are relatively simple and all of the heuristic algorithmsproduce similar results.{ When the nearest nodes have a higher probability of being chosen as parents,(b, e, h, k), the graphs have a smaller size than when the nodes have thesame probability (c, f, i, l), but we obtain larger sizes if we compare withthe sizes of the simple cases (a, d, g, j).5 ConclusionsIn this work, we have presented new heuristic algorithms to triangulate a graph.The problem of triangulation of graphs is the key point for the e�ciency of prop-agation algorithms in graphical structures.We have presented new heuristic algorithms which have been tested withregard to that proposed by Kj�rul� [9]. For this we have used 500 randomlygenerated graphs for each one of 12 di�erent types of graphs. We have obtainedbetter triangulations than with Kj�rul�'s heuristic.Since the problem of obtaining an optimal triangulation is NP-hard, somenew heuristics could be considered. More complex procedures could introducefurther improvements, as in the case of simulated annealing algorithms proposedin [9].The main problem is what amount of calculation should be devoted to thetriangulation. That is, should we choose very complex triangulation procedures,giving rise to good trees of cliques, or very fast triangulation procedures, giving
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