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Abstract

We consider the problem of supporting compacting garbage
collection in the presence of modern compiler optimizations.
Since our collector may move any heap object, it must ac-
curately locate, follow, and update all pointers and values
derived from pointers. To assist the collector, we extend the
compiler to emit tables describing live pointers, and vaues
derived from pointers, at each program location where col-
lection may occur. Significant results include identification
of anumber of problems posed by optimizations, solutionsto
those problems, a working compiler, and experimental data
concerning tabl esizes, table compression, and time overhead
of decoding tables during collection. While gc support can
affect the code produced, our sample programs show no sig-
nificant changes, the table sizes are a modest fraction of the
size of the optimized code, and stack tracing is a small frac-
tion of total gc time. Since the compiler enhancements are
also modest, we conclude that the approach is practical.

1 Introduction

As part of ongoing efforts to implement orthogona persis-
tence [1] and garbage collection for Modula-3 [2], we have
designed and implemented compiler techniques to assist the
garbage collector and the persistent memory manager. Our
work has been donein the context of Modula-3, but is appli-
cable to other statically typed languages.® In the remainder
of this section we describe the requirements we had to meet
to support garbage collection in our context.

*This project is supported by National Science Foundation Grant CCR-
8658074, Digital Equipment Corporation, Apple Computer, and GTE
Laboratories.

tThe authors can be reached electronically via Internet addresses
{diwan,moss,hudson}@cs.umass.edu.

1The Modula-3 type system allows some dynamism, but type safety of
al constructs (except those permitted only in UNSAFE modules) can be
checked at compile time.

With regardsto persistence, our scheme must allow objects
to be moved, and possibly removed from main memory al-
together, for buffer management [3, 4] purposes. Moreove,
since orthogonality allows any object to become persistent,
all objects need to be movable. This requirement isaso es-
sentia for fully compacting garbage collection (cf. [5, 6]),
which yields good locality and fast object allocation time.

Portability to a wide variety of hardware and software
platforms is one of the key goas for Persistent Modula3.
Therefore our scheme must not rely on any special hardware
support (such as hardware pointer tags).

Our scheme must have minimal impact on run-time per-
formance. Our work isbeing donein the context of ahighly-
optimizing compiler.? Thus we must not defeat or disallow
any compiler optimizations. This is a chalenge since the
compiler and optimizer are not bound by the rules of the
source language and may introduce complex pointer manip-
ulations. We also want to avoid tagging objects except when
explicitly required by the language.

In a statically typed language, the compiler knows which
global variables contain pointers. It also knows which stack
locations and registers contain pointersat any pointin apro-
gram. In the following sections we describe atechnique that
exploits this compile-time knowledge to assist the garbage
collector in locating and updating pointersin the stack and in
the registers, and at the same time meets our reguirements:
the ability to move objects, portability, and minimal impact
on performance. After describing the scheme, we present
some experimental results.

2 Basic Problems

Unambiguous full copying collection (cf. [8, 5, 6]) must be
able to determine if an object is reachable from other live
objects or from the roots. Moreover, the garbage collector
must be ableto find al pointersto a given object so that they
may be updated when the aobject is moved. These require-
mentstrand ate to a number of low level requirementson the
collector: (i) it must be able to determine the size of heap
allocated objects, so that they can be copied; (ii) it must be

20ur compiler isbasedongcc 2. 0 and usesits optimizer [7].



ableto locate pointers contained in heap objects, so they they
can be both traced and updated; (iii) it must be able to locate
pointersin global variables; (iv) it must be able to find all
references in the stack and in the registersat any point in the
program at which collection may occur; (v) it must be ableto
find objects that are referred to by values created as a result
of pointer arithmetic; (vi) and it must be able to update these
values when the objects involved are moved.

Modula-3 requires type descriptorsin heap objects which
makes it straightforward to determine the size of heap allo-
cated objectsand to find pointerswithinthem. Thusit iseasy
to trace the heap. Since Modula-3 is a statically typed lan-
guage, compile-time location of pointersin global variables
isalso simple. Locating pointersin the stack and in registers
ismoredifficult, because the stack layout and register assign-
ments may vary even within a procedure. We must also be
able to handle compiler temporaries containing pointers, in
the stack and in registers.

Updating and following pointersiscomplicated if pointers
do not always point directly to objects. We say a pointer
is tidy if it points at the object header (or some standard
fixed offset from the header). Untidy pointersmay be intro-
duced by language features or by compiler optimizations. In
Modula-3, pointers to the interior of objects are created by
the VAR parameter passing mechanism, by the W TH state-
ment, and by SUBARRAY expressions. Here are examples of
optimizationsthat create untidy pointers:®

Strength Reduction: The body

Ali]l = 13;
INC (i);

of an array initialization loop can be turned into
*p++ = 13, withp appropriately initiaized.

Virtual Array Origin: If A is an array of type ARRAY
[7..13] OF | NTEGER, the obvious method of ac-
cessingAli ] is
*(&A[7] + (i - 7) * sizeof (int))

The subtraction can be avoided by creating an (untidy)
pointer to Al 0] and using it to index into the array.

Common Subexpression Elimination: The code

AliLjl
Ali, K]

10;
20;

may be compiled into

t = &AlI];
*(t + ] * sizeof (int)) = 10;
*(t + k * sizeof (int)) = 20;

if the optimizer can determinethat t isbeing computed
twiceand thati isnot updated.

3In our examples we present source code in Modula-3 and com-
piler/optimizer output in C. Note, though, that our M odula-3 compiler gen-
erates assembly code.

Double Indexing: The code

Ali]
Bli]

1,
2;

may be optimized to

tl = &A[0] + (i * sizeof(int));
t2 = &B[0] - &A[0];
*t1l = 1;

*(t1 +t2) = 2

whichisuseful on machinesthat have addressing modes
with two or more index registers, such as the SPARC.

We use the term derived value for any value created by
pointer arithmetic, and the term base value for any vaue
participating in the derivation. Note that a derived value
may be an untidy pointer to the interior of an object (strength
reduction example), an untidy pointer that points outsidethe
object to which it refers (virtua array origin example), or
even a non-pointer value (double indexing example), and
the exampl es given above may not exhaust the possibilities.
In Section 3, we describe a scheme that handles a broad
class of pointer arithmetic, which includes al optimizations
performed by gcc.

3 Solutions

We construct tables at compile time to assist the collector
in locating and updating all pointersin the stack and in the
registers. We construct one set of tables per gc-point. A
gc-point is a program point where a collection might occur.*
An dternative isto use tags or type descriptorsin the stack.
We decided against tagging stack allocated objects because
the stack layout isrelatively static, and thus amenable to tab-
ular description, and stack frames are created and destroyed
at a high rate, so the overhead of maintaining any kind of
descriptorsin the stack is likely to be unacceptable.

We construct three kinds of tables for each gc-point in
a procedure: stack pointers, register pointers, and deriva-
tions. The stack pointers table encodes the locations in the
procedure's stack frame that contain livetidy pointersat the
gc-point. Likewise, the register pointers table encodes the
registers that contain livetidy pointers at that gc-point. The
derivations table describes the derivation of all derived val-
ues live at the gc-point. In this section we concentrate on
the conceptual contents and usage of the tables, and defer
consideration of implementation issues to Section 5.

At garbage collection time, the first task is to locate the
tables for each frame on the stack. Thisis done by extract-
ing return addresses from frames and using them to search
a table that maps gc-points to gc tables. We can use the
stack pointerstabledirectly. Using theregister pointerstable
requires additional information about which registers were

4We give details on choosing these pointsin Section 5.



Base Location Relation
a -
bl +
b2 -
b3 +

Figure 1: Derivationstablefor a at program point p

saved at each call point, so that the register contents can be
reconstructed as of the time of the call.

The derivations tables are needed for updating derived
valueswhen their base values change. At each gc-point, each
livederived location is associated with a table that describes
itsderivation at that point. For example, Figure 1 shows the
derivation table for avariable a whose valueis derived as:

a:=bl + b3 - b2 +E

where E is someinteger expression that does not use pointers
or derived values.

There are two steps to updating the derived values. The
first step occurs immediately after all the tables have been
located. In this step, the value of E is calculated and stored
ina. To caculate E we adjust a by applying the inverse
operation for each base value of a:

a:=a- bl- b3 + b2

Note that the order in which derived vaues are updated is
crucial: a derived value must be updated before any of its
base values. Thus, if a base value is a derived vaue itsdlf,
thenitsvalue must beadjusted after that of any valuesderived
from it and before any values from which it is derived. We
take two measures to ensure thisordering. First, wevisit the
derivationstable of a callee before that of its caller. Second,
the derivations tables for a given gc-point are ordered such
that the derivations table of a derived value comes before
the derivations tables of its base values. Note that circular
dependencies cannot occur because derivations are aways
made from previoudly calcul ated base values.

The second step of the update occurs after garbage collec-
tion has completed. Its purposeis to reconstruct the derived
values from the updated bases. This step uses the new base
valuesto re-derive a. In the above example the new values
of b1 and b3 are added to a whilethat of b2 is subtracted.
Once again the order in which updates occur is important;
a value needs to be updated before any vaues derived from
it. This order is exactly the reverse of that required in the
previous step.

We have made two assumptionsin thedesign of thederiva
tions table. First, we assume that the base values are live
whenever values derived from them are live. Thisis nec-
essary for us to be able to update the derived values. In

Section 4 we show how we ensure this property. As aside
effect of this requirement, we never need to follow derived
values to find reachable objects. Thisis because we require
the lifetime of a base value to include that of its derived
values. Hence, any object reachable via a derived value is
also reachable via a non-derived value. Second, we assume
that the operations used in the derivation (+ and — in this
example) have inverses. Invertibility allows us to use the
technique outlined above to adjust a derived valueif one (or
more) of its base vaues change as a result of collection. In
the above example, invertibility allowed usto update a given
only the base values; no information about E was needed.
Our current implementation handles two kinds of operations
in aderivation (+ and —),° but it can easily be extended to
handleother invertibleoperationsaswell. Thus, wecurrently
handle al deriving expressions of the form:

dopi=D 4 +E
4 J

where p; and ¢; are pointers or derived values, and E does
not involveeither pointersor derived values. To handle non-
commutative operations, we would need to be careful about
the order of the base values in the table for each derivation.
To handle non-invertible operations the tableswould have to
be redesigned to alow the entire deriving expression to be
recomputed at run time.

4 Some Complications

Thejob of the compiler would be simpleif it could correctly,
gtatically, and unambiguously identify the base values for
each derived value a any given point in the program. Un-
fortunately, thisis not the case for at least three scenarios:
(i) when a base value dies before a value derived from it,
(if) when multiple derivations of a value reach a gc-point,
and (iii) when indirect references are used asbase valuesin a
derivation. Inthissectionwe describe each of these problems
and present our solutionsto them.

Thefollowing exampleillustratesthe Dead Base problem:

SOURCE
A. REF ARRAY [1..10] OF | NTECGER
FORi :=1 TO LAST (A") DO
s :=s + AJi]l;
END;
OPTIMIZED

for (i =1; i <= 10; i++) {
S = S + *A++;
<gc- poi nt >

}

5These are the only operations exploited by the gcc optimizer.




If data flow analysis can determine that A is dead after the
loop, then the compiler may use Ato efficiently step through
the array. In this code, A's base value (the origina value of
A) isnot available to the collector inside the loop. Hence, if
collection istriggered at gc- poi nt then the collector will
be unable to update A.

We solve this problem by making our compiler consider a
useof aderived valueasause of each of itshasevalues.® This
forces the compiler to retain the base values for the lifetime
of the valuesderived from them. Whilethiscan affect perfor-
mance by increasing the lifetime of variables, which in turn
can increases register pressure, we try to minimize itsimpact
by careful selection of base values. When multiple copies
of a base value are available, we give preference to stack
allocated base values over register alocated ones (to reduce
register pressure), and to values in user declared variables
over values in compiler temporaries (to shorten temporary
lifetimes).

The problem of AmbiguousDerivationsoccurs when mul-
tiple derivations of a derived value reach a program point.
Thisisillustrated in the following example:

SOURCE
i =1
VWHI LE (cond)
IF (inv) THEN
PRINT (P[i]);
ELSE
PRINT (Qi]);
END;
INC (i);
END;

OPTIMIZED
i =1
if (inv)
t = &[0] + 1;
el se
t = &JO0] + 1;
whi | e (cond)
PRINT (*(t + i++));

If i nv isinvariant in the loop, the optimizer may hoist the
conditiona out of the loop causing t 's derivation to be am-
biguousinside the loop; t is derived from either &P[ 0] or
&J 0].

We solve this problem by introducing path variables for
each ambiguously derived value. The path variable encodes
which one of the possiblederivationsactually happened. The
following code segment illustratesit for the example above:

6We needto do thisonly if the derived valueislive at somelater gc-point.

i =1,

if (inv) {
t’ = <path 1 taken>
t = &P[0] + 1;

}

el se {
t’ = <path 2 taken>
t = &JO] + 1;

}

whil e (cond)

PRINT (*(t + i++));

When our compiler detects an ambiguousderivation, it emits
tables for each possible derivation; the appropriate deriva-
tions table is chosen at run time based on the value of the
path variable.

An aternative sol utionto the ambiguous derivations prob-
lem isto use Path Splitting similar to Chambers and Ungar
[9]. Figure 2 demonstrates this technique. In Figure 2, the
body of the loop is duplicated such that the derivation of t
in each copy of the loop body is unambiguous.

Currently we usethe path variabl e scheme to disambiguate
derivations. Both solutions have overheads. The path vari-
able technique adds assignments to the program; the path
splitting technique increases the code size and is aso more
complicated than the path variable scheme. We selected the
path variable scheme becauseitissimpler and webelieveam-
biguousderivations are rare, and thus the run-time overhead
is not significant.

The problem of Indirect References occurs when the loca
tion of a base value is not known at compiletime. This can
happen if the base value is obtained by an indirect reference.

SOURCE
a: REF ARRAY [1..5] OF

REF ARRAY [5..9] OF | NTEGER
foo (a"[2]"[6]);

COMPILED
foo ( *(a + sizeof (int))
+ sizeof (int))

In the example, if the parameter to f 0o is passed by ref-
erence, then the expression pushed on the stack is derived
fromthe valuein memory locationa + si zeof (int).
Hence, we cannot determine the location of the base value
at compile time. We solve this problem by preserving the
intermediatereference in astack slot or register, thuscausing
the derivation to refer to a value in a compile-time known
location. Indirect references pose a problem only for ma
chines with complicated addressing modes. We expect that
this problem will not arise for |oad/store architectures.



' '

t=&P[0] +1 t=&Q[0] +1

S

PRINT (*t + i++)

' '

t=&P[0] +1 t=&Q[0] +1

Y Y

PRINT (*t + i++) PRINT (*t + i++)

N

Figure 2: Disambiguating derivations by path splitting

5 Implementation Issues

The organization of the tables and the selection of gc-points
might have a significant impact on the performance of our
scheme. The tables should be as small as possible but at the
sametimethecollector must beableto extract theinformation
it needs efficiently; compactly encoded tables are likely to
have higher decoding overhead. Since tables are emitted
at each gc-point, the number of ge-points affects the space
overhead of our scheme. Selection of gc-pointsisespecially
relevant in apre-emptive multi-threaded environment. Since
athread switch can occur a any time, we must be prepared
to handle a collection when athread isnot a a gc-point. In
Sections 5.1, 5.2, and 5.3, we survey some possible solutions
to these concerns and justify the choi ces we have made.

5.1 Table Organization

Storing alist of all live tidy pointersin the stack at each gc-
pointinaprocedureislikely to be expensive. We expect that
the variation in stack layout at different gc-pointsis usually
small and thuswe consider using delta tables at gc-points. A
delta table encodes how the information at a given gc-point
differs from the information in some other table (caled its
ground table). Our implementation uses a scheme called
§-main.

In the 6-main scheme, each procedure has a main table
which describes all dotsin the frame of that procedure that
contain pointers at some gec-point. Given this, a delta table
merely describes which entries of the main table are valid
at the gc-point. Since the delta table needs to contain only
livenessinformation, only one bit per entry in themain table
is needed per gc-point.

Our current implementation uses the §-main main scheme
for stack alocated non-derived pointers only. The registers
table has 1 bit per hard register; any attempt to compact this
informationfurtherislikely toyieldlittleor no improvement.
Wedo not useadeltascheme for thederivationstabl e because
in our experience derived values are rare; moreover, they
tend to have short lifetimes and thus the information varies

Sign—extended value

T

Continuation

Figure 3: Packing wordsinto bytes.

widely between gc-points. For instance, an important source
of derived values in Modula-3 is call-by-reference, which
creates derived values that are live a only one gc-point (the
cal). We therefore store full information for derived values
at each gc-point.

In our measurements we observed that delta and registers
tables for adjacent gc-points are often identical. Also, many
registers tables, many delta tables, and most derivationsta
bles are empty. We keep a descriptor at each gc-point which
indicatesif any of the tables at that gc-point are empty, or if
they areidentical to the table at the preceding gc-point.

5.2 Compressing the tables

Despite the compact representation provided by the §-main
scheme, we found that the tables were unacceptably large:
about 45% of the size of optimized code (see Section 6.1). In
this section, we describe the packing techniques that we use
to reduce the table sizes to about 16% of the optimized code
size.

The stack tracing tables are generated in two phases. The
first phase produces tables of 32 bit words. Each memory
location is encoded into a word, and the delta tables and
register pointerstables occupy an integral number of words.”
The second phase goes through the table of words and packs

“The number of wordsused for adeltaor aregister pointerstabledepends
on either the number of entries in the ground table or the number of hard
registers.
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Figure4: A ground table entry that fitsinto 1 byte.

them into bytes. The high bit of each byte determinesif itis
thelast byteintheencoding of aword or if thefollowingbyte
isaso part of the word (see Figure 3). The bytes are stored
from most- to least-significant, and the first byte is sign-
extended, since many offset (and hence many word values)
are negative.

Each entry in a ground table encodes a stack location that
is live a some point in the procedure. The low two bits of
the encoding identify the base register (FP, SP, or AP, for the
VAX). The remaining bits are the offset (in words) from the
base register. Most entries in the ground table fit into one
byte each (see Figure 4).

Each entry in a derivation table encodes either a register
or amemory location. This encoding is more involved than
that of the ground table because entries in this table are not
restricted to {FP, SP, AP} + offset. Thus, most entriesin the
derivationstable require 2 bytes.

The register pointerstable contains 1 bit per hard register;
most of these tables compact to 1 or 2 bytes each. The delta
table contains 1 bit per entry in the ground table. Most of
our procedures had fewer than 8 stack allocated pointers, al -
lowing most deltatablesto be compressed to 1 byte. Besides
the above mentioned tables, we have a descriptor a each
gc-point that encodes whether any of thetables at the current
gc-point are empty or are identical to those at the previous
gc-point. Thisinformation packsinto 1 byte per gc-point.

At each gc-point we find the appropriate tables by us-
ing a mapping from program counter values to gc tables.
We compress this by using distances between gc-pointsin
conjunction with the start address of the enclosing module,
instead of using 32 bitsfor the program counter value at each
gc-point. The distances are not available until link time; our
compiler assumes that distances between adjacent gc points
can fit in two bytes. If the distances had been available to
our compiler, we would have been able to compress most
distances to 1 byte, yielding an additional savings of 1 byte
per gc-point.

There is one important consideration that our current im-
plementation does not handle: each pointer contained in an
array is treated as a separate variable. We have no way of
indicating patterns(e.g., starting from address a, the next 200
stack location are pointers). We have a design for compact
descriptions of arrays, and it will be ssimple to add it to the
implementation. Our benchmarks did not use any such ar-
rays, so adding this space optimization would not affect the

result we report here.

5.3 SelectingGC-Points

Selecting ge-pointsin a single threaded environment is easy:
all calls can be considered gc-points since all alocation is
done viaa call and hence collection will never be triggered
a a non-call point® Of course, some calls do not need
to be gc-points. If the compiler performs inter-procedural
analysis then it can determine that some procedures never
allocate any heap storage and thus calls to them need not be
gc-points. In our current implementation all calls except for
ones to non-allocating procedures are considered gec-points.
The non-allocating procedures are statically determined (for
instance run-time error reporting routines) rather than via
inter-procedural anaysis. We may explore refinements in
futurework.

Selecting gc-points in a multi-threaded environment with
pre-emptive scheduling is more challenging since collection
may be triggered while threads are suspended at non-gc-
points. In our approach, if athread triggerscollection thenthe
suspended threads that are not at gc-points are resumed and
allowed to run until they all reach gc-points. We accomplish
this by ensuring that resumed threads reach (and block on)
a gc-point in a bounded amount of time, and that they do
not do any allocations. Ensuring that a resumed thread does
not allocate any memory beforeit reaches agc-point requires
that most calls be gc-points. To avoid an unbounded wait for
threads to become ready for collection, we insert a gc-point
in all loops that do not have a guaranteed gc-point in them.
A loop has a guaranteed gc-point if an allocating-procedure
or a nested loop is executed at each iteration of the loop,
regardless of the path taken through loop. In addition to
gc-points a calls and in loops, we need gc-points at places
where athread can block.®

6 Results

This paper isnot about afast garbage collection technique. 1t
isabout how garbage collection can be assisted by compile-
time acquisition of information, and have minimum impact
on compiler optimizations. As such, our results are not tim-
ings for the garbage collector; they are measurements of the
sizes of the compile-time tables generated, the effect our
schemes have on compiler optimizations, and the time re-
quired to decode the generated tables. I1n Section 6.1 we give
thetable sizesfor each of our benchmarks, in Section 6.2 we
describe the effects of our scheme on the quality of gener-
ated code, and in Section 6.3 we report the time required to
decode the tables at garbage collection time.

8This will not work if allocation is doneinline, in which case we must
include inline allocations as gc-points.

In most systems these points are call points so they do not need special
treatment.



6.1 Table Sizes

We measured table sizes for 4 Modula3 programs:
t yper eg, Fi el dLi st [10], t akl [11] and destr oy
[12]. t yper eg implements type registration and type com-
parisons using structural equiva ence for our Modula 3 run-
timesystem. Fi el dLi st implementscommand parsingfor
a UNIX shell. We considered t yper eg and Fi el dLi st
to be good programs to use for our measurements for two
reasons. First, they are “real” programs rather than synthetic
benchmarks. Second, they consist of a number of short rou-
tines with frequent calls. Since we consider most calls as
gc-points, we felt that thiswould represent a worst case sce-
nario. Wechoset akl becauseitisawell knownbenchmark.
We chose dest r oy because it is heavily recursive and trig-
gers garbage collection frequently, and thus stresses the code
that decodes the tables at garbage collection time.

In Table 6.1 we list relevant data about each of the bench-
mark programs. (The - opt suffix indicates that compiler
optimizationswere turned on.) In Table 6.1 we give the cor-
responding tablesizes, under both thefull informationand the
6-main schemes, with and without each of byteand identical-
to-previouscompression. Hereisthekey for interpreting the
columns of these tables:

Size Program size in bytes.

NGC Number of gc-pointsthat had non-empty tables.
NPTRS Tota number of pointers.

NDEL Number of delta tables emitted.

NREG Number of register pointerstables emitted.
NDER Number of derivationstables emitted.

Plain Table sizes as a percentage of code size with no com-
pression.

Previous Table sizes as a percentage of code size when a
descriptor is used to indicate that atable isidentica to
that at the previous gc-point.

Packing Table sizes as a percentage of code size when byte
level packing is used.

PP Table sizes as a percentage of code size when both Pre-
vious and Packing are used.

None of our benchmarks had any ambiguous derivations
and therefore the compiler introduced no path variables.

From Table6.1it can beseen that storing full information at
each gc-point (with packing) generally produceslarger tables
than those produced by é6-main (with packing). However the
difference is not great. é6-main is based on the assumption
that procedures have many non-empty gc-points and many
livestack alocated pointersat each gc-point. If thisisnot the
case, then storing full information at each gc-point can yield
table sizes comparable to 6-main without the extra run-time

decoding overhead of §-main. However, our measurements
indicate that the run-time overhead of decoding these tables
is smal, so there is little practical benefit to storing full
information at each gc-point (see Section 6.3).

For the 6-main scheme, both Packing and Previous tend
to reduce table sizes. Applying both Packing and Previous
reduces the table size from about 45% of the size of the
optimized code to about 16%.

6.2 Effectson the optimized code

Our schemes have no effect on the optimized code produced
for any of our benchmarks. There are, however, some in-
structions introduced in the unoptimized code. Most of the
differences result from needing to preserve indirect refer-
ences at gc-points. There are 12 cases where this occurs in
t yper eg for theVAX and 32 casesin Fi el dLi st forthe
VAX; hereisatypical case:

Without gc restrictions
addl 2 (r7),r0

With gc restrictions
movl (r7),r1
addl 2 r1,r0

Our solution to thedead base pointer problem addstwo moves
to the unoptimized Fi el dLi st ; both are inserted to pre-
serve a clobbered base value.

Notethat gc-safety, as proposed by Boehm?° [13], encoun-
ters the same requirement, so thisis a basic safety concern
rather than aresult of our approach. Also, thisparticular code
effect isnot likely to occur on load/store architectures.

Compiler support for garbage collection may haveother ef-
fectson thegenerated code besides the ones described above.
In particular, most generational schemesperform storechecks
[14] when pointersmight bewritteninto heap locations. This
isaproperty of thegarbage collection scheme!! and therefore
we do not “charge’ thisoverhead to our scheme.

6.3 Timings

While good compression of the gc tables is important for
our scheme to be practical, the time to decode those tables
must aso be reasonable. We do not yet have a complete
implementation of the garbage collection run-time, but we
have an initia version of stack tracing which we timed on
thedest r oy benchmark. dest r oy buildsa complete tree
of specified branching factor and depth. It then repeatedly
builds a new subtree at some fixed intermediate depth, and

1A ctually, Boehm does not appear to have recognized the indirect ref-
erence problem in the work we cite above. He focused on situations that
extend the lifetime of a derived pointer but did not address cases where the
lifetime of a base pointer might be shortened, e.g., by its being overwritten
in the heap.

1 For instance, page traps could be used instead of store checksto imple-
ment generational schemes.



Program Size | NGC | NPTRS | NDEL | NREG | NDER
typereg 3154 59 87 58 26 3
typereg-opt 2289 52 122 39 41 0
FieldList 4594 51 103 45 18 11
FieldList-opt | 3330 82 319 61 70 11
takl 457 8 11 8 6 0
takl-opt 437 9 18 6 9 0
destroy 1240 12 14 11 2 0
destroy-opt 552 14 18 4 13 0
Table 1: Statistics of each of the benchmark programs
Full Info 6-main
Program Plain | Packing | Plain | Previous | Packing | PP
typereg 455 143 | 35.0 28.2 12.3 | 10.6
typereg-opt 514 172 | 416 355 16.0 | 14.0
FieldList 30.3 111 | 164 14.8 61| 56
FieldList-opt | 64.7 229 | 530 47.6 20.8 | 18.7
takl 51.6 179 | 411 34.1 16.0 | 14.2
takl-opt 55.8 19.7 | 439 375 176 | 15.6
destroy 171 59| 171 15.2 66| 6.1
destroy-opt 46.4 174 | 428 384 18.1 | 165

Table 2: Table sizes as a percentage of code size

replaces arandomly chosen subtree of the same height with
the new subtree. Weran dest r oy inour Smalltalk system,
which uses the accurate scavenging scheme [15] we plan to
install in the Modula-3 run-time. We found that collections
averaged 280 ms of eapsed time. We coded the benchmark
in Modula-3 as similarly as possible, and caused “collec-
tions’ at approximately the same points. To determine stack
tracing costs, we ran two versions of the Modul a3 program,
onewith*“collection” being astack trace, the other with “col-
lection” being anull call, and calcul ated stack tracing to take
470 us per collection. However, the difference between the
runswas small, and the variance significant even with many
repetitions in a system running in single-user mode, so the
90% confidence limitisthat stack tracingtakeslessthan 1710
us per collection for this program. The corresponding num-
bers per stack frametraced are 27 us and 98 us, respectively.
We ran these tests on a VAX Station 3500, which isgenerally
rated at 3to 5 VAX MIPS, suggesting that our current code
executes on the order of 100 to 400 VAX instructions per
frame traced. We believe we can tighten this up measurably.

Whether one uses the 470 us per collection figure or the
1710 us one, there are two additional factors to take into
account in comparing stack tracing overhead with overall
gc time. First, the dest r oy benchmark is unusualy gc
intensive. Programs that create a lot of objects, but where
most do not surviveto the next collection, exhibit something
likefivetimeslower gc cost. Also, aModula-3 collector may

be faster than a Smalltalk collector since for Modula-3 we
can generate type-specific routines for tracing heap objects,
and avoid Smalltalk’s object and pointer decoding overhead.
We will be generous and alow a factor of two speed up for
M odula-3, thoughwe doubt theadvantageisreally that great.
Thus, in less gc-intensive Modula-3 programs, we estimate
theratio of stack tracing timeto tota gc timeto be less than
1710/28000 = 6% (470/28000 = 1.7%). We conclude that
stack tracing overhead is only a small part of gc time, even
in a high performance scavenging collector.

7 Related Work

Algol-68implementationswere thefirst to produce compiler
generated routines to assist in garbage collection. In the
Branquart and Lewi scheme [16], tables are produced that
map stack locations to the appropriate garbage collection
routine. Unlike our scheme, these tables have to be updated
every time areference to the heap is created on the stack.

Goldberg's compiler [17] produces stack tracing routines.
The return address in a cal is used to locate a routine that
knows how to trace the frame of the caller. Hiswork is not
done in the context of an optimizing compiler and thus he
does not address many of the issueswe handle.

Boehm [13, 18] is currently incorporating garbage collec-
tion support in aC compiler. Heisusing an ambiguousroots



collector and his main concern is ensuring that al live ob-
jects have at least one pointer to their headers (i.e., there are
no live objects that are reachable only from derived values).
Thisproblemis similar to our dead base pointer and indirect
references scenarios described in Section 4. Since he never
moves objects he does not need to deal with the issuesin
updating derived values.

Exception handling implementationsin CLU, Trellis, and
M odula-3 also use compiler generated tables. Inour Modula-
3 implementation [19] tables are generated for each point
where an exception may be raised. The tables contain the
addresses of handlers for the exceptions that can be raised at
that point.

Zurawski and Johnson [20] emit compile-time tables to
allow them to construct the unoptimized state of the program
from the optimized state. Like us, they have to deal with
the effects of pointer arithmetic introduced by the optimizer.
Their focus, however, is on debugging; some optimizations
are disallowed to make debugging possible. Thereisa gen-
eral similarity between the simpler kinds of information we
need for garbage collection and what is needed for symbolic
debugging in the presence of optimization. Debuggers do
not need to update values or handle the derived value cases
that we do, however.

8 Conclusions

We have described and evaluated compiler techniques for
supportingfully compacting garbage collectionin a statically
typed language. We started with the foll owing requirements:
the ability to move any object, portability, and low run-time
overhead. We met these requirements by making extensive
use of the information available to the compiler. While we
are not the first to recognize the availahility of the compile-
timeinformation, we believe that we are thefirst to exploit it
so thoroughly in a highly optimizing compiler.
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