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Metrics and Connections for Rigid Body KinematicsMilo�s �Zefrany, Vijay Kumary and Christopher CrokezyGeneral Robotics and Active Sensory Perception (GRASP) LaboratoryzDepartment of MathematicsUniversity of PennsylvaniaAbstractThe set of rigid body motions forms the Lie group SE(3), the special Euclidean groupin three dimensions. In this paper we investigate Riemannian metrics and a�ne connectionson SE(3) that are suited for kinematic analysis and robot trajectory planning. In the �rstpart of the paper, we study metrics whose geodesics are screw motions. We prove thatno Riemannian metric can have such geodesics and we show that metrics whose geodesicsare screw motions form a two-parameter family of semi-Riemannian metrics. In the secondpart of the paper we investigate a�ne connections which through the covariant derivativegive the expression for the acceleration of a rigid body that agrees with the expression usedin kinematics. We prove that there is a unique symmetric connection with this property.Further, we show that there is a family of Riemannian metrics that are compatible with sucha connection. These metrics are products of the bi-invariant metric on the group of rotationsand a positive de�nite constant metric on the group of translations.1 IntroductionThe con�guration space plays a central role in design, analysis, and control of robot mechanisms.In many applications the focus is on the robot end-e�ector and its con�guration space. Formally,this space consists of all possible displacements of the end-e�ector and is known as the specialEuclidean group, SE(3). This group admits the structure of a di�erentiable manifold and istherefore a Lie group [4, 5]. The tangent space of SE(3) at the identity endowed with the Liebracket operation has the structure of a Lie algebra and is denoted by se(3). The Lie algebrase(3) is isomorphic to the set of twists [9].It is customary to consider the con�guration space to be a subset of a Euclidean space.However, this often complicates the geometric analysis since the results may depend on theway the con�guration space is parameterized (embedded in the Euclidean space). Alternatively,the intrinsic geometric properties of the con�guration space can be studied abstractly usingdi�erential geometry. In this case, many notions that are well de�ned in a Euclidean space haveto be properly generalized to SE(3).In this paper we focus on how to di�erentiate vectors on SE(3) and measure their length.In the language of di�erential geometry, we study a�ne connections and Riemannian metricson the group SE(3). We are primarily motivated by applications in motion planning, but theresults are also applicable to control and design of robots.A Riemannian metric is everywhere positive de�nite and it provides a notion of length ofcurves on the manifold. In contrast, a metric which is non-degenerate but inde�nite is called asemi-Riemannian metric [1] and in this case it is more appropriate to speak about the energy of acurve. Curves that minimize the energy between two given points are of particular interest. Such1



curves are called geodesics and can be considered a generalization of straight lines in Euclideanspace IRn to Riemannian manifolds.Screw motions have been often used in robotics for trajectory planning [12, 15, 16]. SinceChasles's theorem guarantees the existence of a screw motion between any two points on SE(3),a natural question to ask is whether there exists a metric for which every geodesic is a screwmotion. The �rst important result of this paper is that there is no Riemannian metric with sucha property. We further prove that all metrics which have screw motions as geodesics belong toa two-parameter family of semi-Riemannian metrics.Instead of endowing SE(3) with a metrical structure, we can give it a weaker structureby de�ning an a�ne connection. An a�ne connection leads to the de�nition of the covariantderivative of a vector �eld along a general curve. In the context of kinematics, the motion ofa rigid body is a curve on SE(3) and the velocity at any point is the tangent vector to thecurve at that point. We need the de�nition of a covariant derivative before we can talk aboutthe acceleration of the rigid body. The second key result of the paper concerns a connectionthat through the covariant derivative of the velocity yields the acceleration used in kinematics1.We derive the family of connections having this property. Further, we show that among thesethere is a unique symmetric connection. Finally, we prove that this symmetric connection iscompatible with a family of Riemannian metrics that are products of a bi-invariant metric onthe group of rotations and a positive de�nite constant metric on the group of translations.The paper is organized as follows. In Section 2, we briey review some basics of di�erentialgeometry and Lie groups needed for the rest of the paper. A reader familiar with di�erentialgeometry can skip this section. In Section 3, we discuss Chasles's theorem, screw motionsand screw displacements. We then prove the �rst main result of this paper, Theorem 3.5,which identi�es metrics for which screw motions are geodesics. In Section 4, we study a�neconnections that yield the acceleration used in rigid body kinematics. By requiring symmetryof the connection, we show in Proposition 4.1 that such a connection is unique. The second keyresult of the paper, Theorem 4.7, identi�es the family of Riemannian metrics that are compatiblewith this connection.2 Kinematics and di�erential geometry2.1 The Lie group SE(3)Consider a rigid body moving in free space. Assume any inertial reference frame F �xed inspace and a frame M �xed to the body at point O0 as shown in Figure 1. At each instance, thecon�guration (position and orientation) of the rigid body can be described by a homogeneoustransformation matrix, A, corresponding to the displacement from frame F to frameM . The setof all such matrices forms the Lie group SE(3), the special Euclidean group in three-dimensions:SE(3) = (A j A = " R d0 1 # ; R 2 IR3�3; d 2 IR3; RTR = I;det(R) = 1) :On a Lie group, the tangent space at the identity has the structure of a Lie algebra. TheLie algebra of SE(3), denoted by se(3), is given by:se(3) = (" 
 v0 0 # j 
 2 IR3�3; v 2 IR3;
T = �
) : (1)1This notion will be made precise in Section 4.1 2
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Figure 1: The inertial (�xed) frame and the moving frame attached to the rigid bodyA 3 � 3 skew-symmetric matrix 
 can be uniquely identi�ed with a vector ! 2 IR3 [9]. Eachelement S 2 se(3) can be thus identi�ed with a vector pair f!; vg.Given a curve A(t) : [�a; a] ! SE(3), an element S(t) of the Lie algebra se(3) can beassociated to the tangent vector _A(t) at an arbitrary point t by:S(t) = A�1(t) _A(t): (2)A curve on SE(3) physically represents a motion of the rigid body. If f!(t); v(t)g is the vectorpair corresponding to S(t), then ! physically corresponds to the angular velocity of the rigidbody while v is the linear velocity of the origin O0 of the frame M , both expressed in the frameM . In kinematics, elements of this form are called twists [8] and se(3) is thus isomorphic to thespace of twists.Since se(3) is a vector space, we can choose a basis and identify any element with a 6 � 1vector. The standard basis for se(3) is:L1 = 26664 0 0 0 00 0 �1 00 1 0 00 0 0 0 37775 L2 = 26664 0 0 1 00 0 0 0�1 0 0 00 0 0 0 37775 L3 = 26664 0 �1 0 01 0 0 00 0 0 00 0 0 0 37775L4 = 26664 0 0 0 10 0 0 00 0 0 00 0 0 0 37775 L5 = 26664 0 0 0 00 0 0 10 0 0 00 0 0 0 37775 L6 = 26664 0 0 0 00 0 0 00 0 0 10 0 0 0 37775The twists L1, L2 and L3 represent instantaneous rotations about and L4, L5 and L6 instan-taneous translations along the Cartesian axes x, y and z, respectively. In this basis, the vectorcorresponding to a twist S 2 se(3) is given precisely by the velocity pair f!; vg.Given two elements S1; S2 2 se(3), we can de�ne another element [S1; S2] 2 se(3) called theLie Bracket by: [S1; S2] = S1S2 � S2S1:Since the Lie bracket belongs to se(3), it can be expressed as a linear combination of the basisvectors. The coe�cients Ckij corresponding to the Lie brackets of the basis vectors are calledstructure constants of the Lie algebra [13]:[Li; Lj ] =Xk CkijLk: (3)3



For se(3), the nonzero structure constants are:C312 = C231 = C123 = C615 = C426 = C534 = C642 = C453 = C561 = 1C321 = C213 = C132 = C651 = C462 = C543 = C624 = C435 = C516 = �12.2 Left invariant vector �elds and exponential mappingA di�erentiable vector �eld is a smooth assignment of a tangent vector to each element of themanifold. An example of a di�erentiable vector �eld, X, on SE(3) is obtained by left translationof an element S 2 se(3). The value of this vector �eld at an arbitrary point A 2 SE(3) is givenby: X(A) = AS; (4)and the vector �eld is called a left invariant vector �eld. To denote that a left invariant vector�eld was obtained by left translating the Lie algebra element S, we will also use the notation Ŝ.By construction, the space of left invariant vector �elds is isomorphic to the Lie algebra se(3)[2]. In particular: [bLi; bLj ] = d[Li; Lj ] =Xk Ckij bLk: (5)Since the vectors L1; L2; : : : ; L6 are a basis for the Lie algebra se(3), the vectors bL1(A); : : : ;bL6(A) form a basis of the tangent space at any point A 2 SE(3). Therefore, any vector �eld Xcan be expressed as X = 6Xi=1Xi bLi; (6)where the coe�cients Xi vary over the manifold. If the coe�cients are constants, then X is leftinvariant. By de�ning: ! = [X1;X2;X3]T ; v = [X4;X5;X6]T ;we can associate a vector pair of functions f!; vg to an arbitrary vector �eld X. If a curveA(t) describes a motion of the rigid body and V = dAdt is the vector �eld tangent to A(t), thevector pair f!; vg associated with V corresponds to the instantaneous twist (screw axis) for themotion. In general, the twist f!; vg changes with time. Motions for which the twist f!; vg isconstant are known in kinematics as screw motions. If the vector pair f!; vg is interpreted asPl�ucker coordinates of a line in space, it is not di�cult to see that the screw motion physicallycorresponds to rotation of the rigid body around this line with a constant angular velocity andconcurrent translation of the body along the line with a constant translational velocity.On SE(3), one can de�ne the exponential map exp : se(3) ! SE(3) using the standardmatrix exponential [9]. This map relates the screw motion A(t) and the corresponding twist S:exp(tS) = A(t): (7)2.3 Riemannian metrics on Lie groupsIf a smoothly varying, positive de�nite, bilinear, symmetric form < :; : > is de�ned on thetangent space at each point on the manifold, such a form is called a Riemannian metric andthe manifold is Riemannian2 [2]. If the form is non-degenerate but inde�nite, it is called a2Under very mild assumptions a di�erentiable manifold always admits a Riemannian metric.4



semi-Riemannian metric[1]. On a n dimensional manifold, the metric is locally characterized bya n� n matrix of C1 functions gij =< Xi;Xj > where Xi are basis vector �elds.On a Lie group, an inner product on the Lie algebra (given in a chosen basis by a positivede�nite symmetric matrix W ) can be extended to a Riemannian metric over the manifold usingleft (or right) translation. If V1 and V2 are tangent vectors at an arbitrary group elementA 2 SE(3), the inner product < V1; V2 >jA in the tangent space TASE(3) can be de�ned by:< V1; V2 >jA = < A�1V1; A�1V2 >���I : (8)The metric obtained in such a way is said to be left invariant [2] since left translation by anyelement A is an isometry.2.4 A�ne connection and covariant derivativeThe motion of a rigid body can be represented by a curve on SE(3). The velocity at an arbitrarypoint is the tangent vector to the curve at that point. In order to obtain the acceleration weneed to be able to di�erentiate a vector �eld along the curve. A derivative of a vector �eldalong a curve A(t) is de�ned using the concept of parallel transport. Let X be a vector �eldde�ned along A(t), and let X(t) stand for X(A(t)). Denote by Xt0(t) the parallel transport ofthe vector X(t) to the point A(t0). The covariant derivative of X along A(t) is:DXdt ����t0 = limt!t0 Xt0(t)�X(t0)t : (9)By taking covariant derivatives along integral curves of a vector �eld Y , we obtain a covariantderivative of the vector �eld X with respect to the vector �eld Y . This derivative is also denotedby rYX: rYXjA0 = DXdt ����t0 ; (10)and the operator r is called the a�ne connection.The covariant derivative of a vector �eld is another vector �eld so it can be expressed as alinear combination of the basis vector �elds. The coe�cients �kji of the covariant derivative of abasis vector �eld along another basis vector �eld,rbLi bLj =Xk �kji bLk; (11)are called Christo�el symbols3. Note the reversed order of the indices i and j.The velocity, V (t), of the rigid body describing the motion A(t) is given by the tangentvector �eld along the curve: V (t) = dA(t)dt :The acceleration, A(t), is the covariant derivative of the velocity along the curveA = Ddt �dAdt � = rV V: (12)Note that the acceleration depends on the choice of the connection.3Di�erent de�nitions for the Christo�el symbols can be found in the literature. Some texts (e.g. [2]) reservethe term for the case of the coordinate basis vectors. We follow the more general de�nition from [14] in which thebasis vectors can be arbitrary. 5



Given a Riemannian manifold, there exists a unique connection [2] which is compatible withthe metric: X <Y;Z>=<rXY;Z> + <Y;rXZ> 4 (13)and symmetric: rXY �rYX = [X;Y ]: (14)This connection is called the Levi-Civita or Riemannian connection.2.5 GeodesicsGiven a Riemannian metric < :; : > on SE(3) we can de�ne the length, L(A), of a smooth curveA : [a; b]! SE(3) by: L(A) = Z ba < dAdt ; dAdt > 12 dt (15)Among all the curves connecting two points, we are usually interested in the curve of minimallength. It is not di�cult to see [2] that a curve of minimal length also minimizes the energyfunctional: E(A) = Z ba < dAdt ; dAdt > dt: (16)If a curve minimizes a functional, it must be also a critical point. Critical points of the energyfunctional E satisfy the following equation [2]:r dAdt dAdt = 0; (17)where r is the Riemannian connection, and are called geodesics. According to Equation (12),the expression r dAdt dAdt is the acceleration of motion described by A(t). Motion along a geodesictherefore produces zero acceleration.3 Metrics and screw motionsOne of the fundamental results in rigid body kinematics [8] was proved by Chasles at thebeginning of the 19th century:Theorem 3.1 (Chasles) Any rigid body displacement can be realized by a rotation about anaxis combined with a translation parallel to that axis.Note that a displacement must be understood as an element of SE(3) while a motion isa curve on SE(3). In Chasles's theorem, the rotation can be performed at constant angularvelocity and the translation at constant translational velocity. Hence, we conclude that anyrigid body displacement can be realized through a screw motion.Another family of curves of interest on a Lie group is the set of the one-parameter subgroups.A curve A(t) is a one-parameter subgroup, if A(t1 + t2) = A(t1)A(t2). The one-parametersubgroups on SE(3) are given by [2]: A(t) = exp(t S) (18)4Note that formally, a vector �eld X is a derivation operator which, given a di�erentiable function, returnsits derivative along the integral curves of X. The expression X <Y;Z > is therefore a derivative of the function<Y;Z> along the integral curves of X. 6



where S is an element of se(3). Comparing with Equation (7), we conclude that the one param-eter subgroups are exactly the screw motions which pass through the identity. The followingproposition follows from the Lie group structure of SE(3) and is directly related to Theorem3.1:Proposition 3.2 If A1 and A2 are two distinct elements of SE(3), then:(1) There exists a one-parameter subgroup, L(t) = exp(t SL), which when left translated byA1 contains A2: AL(t) = A1 exp(t SL); A2 = AL(1) = A1 exp(SL):(2) There exists a one-parameter subgroup, R(t) = exp(t SR), which when right translated byA1 contains A2: AR(t) = exp(t SR)A1; A2 = AR(1) = exp(SR)A1:(3) AL(t) and AR(t) are the same screw motion and SL in (1) is related to SR in (2) by:SR = A1SLA�11 :3.1 Screw motions as geodesicsGiven that any two elements of SE(3) can be connected with a screw motion, it is natural toask whether screw motions are geodesics (minimum energy curves) for any metric. In [11], Parkand Brockett proposed a left invariant Riemannian metric on SE(3) given by:W = " �I 00 �I # (19)where � and � are positive scalars. Park [10] showed that the geodesics for this metric areproducts of the geodesics for the bi-invariant metric on SO(3) and geodesics in the Euclideanspace IR3. It is not di�cult to show that a screw motion is a geodesic for the metric (19) if andonly if it is obtained by a left translation of a one-parameter subgroup for which the screw axispasses through the origin of the inertial frame F . The question now becomes whether there isa metric for which every screw motion is a geodesic.Suppose that the screw motions are geodesics. Since a left or a right translation of a screwmotion produces another screw motion (Proposition 3.2), we might be led to conclude thatany metric for which the screw motions are geodesics must be invariant under left and righttranslations and therefore bi-invariant. Such reasoning is awed since a map which preservesgeodesics does not necessarily preserve the metric (is not necessarily an isometry). For example,a�ne transformations in IR3 map lines into lines (that is, they map geodesics into geodesics),but in general, they do not preserve lengths of vectors. Di�eomorphisms that take geodesicsto geodesics (but make an a�ne change of parameter) are called a�ne maps. They are rare,except for isometries, a�ne maps on Euclidean spaces, and products of such. They have beenstudied in [7, Chapter IV]. We will not limit our search to left or right invariant metrics, norwill we need the results of [7]. 7



Since the twist associated with a screw motion (t) is constant, the tangent vector �eldV = ddt = V i bLi is a left invariant vector �eld and the components V i are constant. If  solvesEquation (17), we have:0 = rV V =Xj dV jdt bLj +Xi;j V iV jrbLi bLj =Xi;j V iV jrbLi bLj : (20)The above equation is satis�ed for an arbitrary screw motion (arbitrary choice of the componentsV i) if and only if: rbLi bLi = 0 1 � i � 6;rbLi bLj +rbLj bLi = 0 1 � i < j � 6:Since r is a metrical connection, it is symmetric (Equation 14):rbLi bLj �rbLj bLi = [bLi; bLj ]:It immediately follows from the above equations that:rbLi bLj = 12[bLi; bLj ]: (21)(Note that [bLi; bLi] = 0.) Further, r must be compatible with the metric (Equation 13), so wehave: bLk < bLi; bLj >=< rbLk bLi; bLj > + < bLi;rbLk bLj > : (22)Letting gij =< bLi; bLj >, the last equation implies:bLk(gij) = 12 �< [bLk; bLi]; bLj > + < bLi; [bLk; bLj] >� : (23)By expressing the Lie brackets from Equation (3), we �nally obtain:bLk(gij) = 12Xl (C lkiglj + C lkjgli): (24)Note that the coe�cients Ckij are constant over the manifold (Equation 5). The above derivationcan be summarized in the following proposition:Proposition 3.3 Screw motions satisfy the geodesic equation (17) for a Riemannian metricgiven by the matrix of coe�cients G = [gij ] if and only if the coe�cients gij satisfy Equation(24).The metric coe�cients gij are symmetric by de�nition. Since SE(3) is a 6 dimensionalmanifold, there are 21 independent coe�cients fgij j 1 � i � j � 6g. Given that there are 6basis vector �elds, Equation (24) expands to a total of 126 partial di�erential equations. Thecomplete set of equations is given in Equation (58) in Appendix A.The following lemma will be useful in deriving the solution for the system of equations (24):Lemma 3.4 Given a set of partial di�erential equationsX(f) = g1 (25)Y (f) = g2 (26)Z(f) = g3 (27)8



where X, Y , and Z are vector �elds such that Z = [X;Y ], f is twice di�erentiable, and g1, g2and g3 are di�erentiable (real valued) functions, the solution exists only ifX(g2)� Y (g1) = g3: (28)
Proof: By applying X on Equation (26), Y on Equation (25) and subtracting the two resultingequations, we get: X Y (f)� Y X(f) = X(g2)� Y (g1): (29)But the left-hand side is by de�nition [X;Y ](f), which is by assumption equal to Z(f). Equation(28) then follows from Equation (27). 2We next state the �rst key theorem of this section:Theorem 3.5 A matrix of coe�cients G = [gij ] satis�es the system of partial di�erential equa-tions (24) if and only if it has the formG = " � I3�3 � I3�3� I3�3 03�3 # ; (30)where � and � are constants.
Proof: To �nd the metric coe�cients, we start with the following subset of (58):bL1(g11) = 0 bL2(g11) = �g13 bL3(g11) = g12: (31)First, we observe that [bL1; bL2] = bL3. By application of Lemma 3.4, the following equation musthold: �bL1(g13) = g12: (32)But from (58) we also have: bL1(g13) = �12g12;which implies that g12 = 0. We next observe that g12 = 0 implies bLi(g12) = 0; 1 � i � 6. Fromthe system (58) we obtain: g13 = 0 g23 = 0 g11 = g22g16 = 0 g26 = 0 g14 = g25: (33)From these equations and (58) we further obtain:g15 = 0 g24 = 0 g11 = g33g34 = 0 g35 = 0 g14 = g36g44 = 0 g45 = 0 g46 = 0g55 = 0 g56 = 0 g66 = 0: (34)Next observation is that bLi(g11) = 0; 1 � i � 6. This, together with Equations (33) and (34)implies: g11 = g22 = g33 = �;where � is an arbitrary constant. Similarly, we obtaing14 = g25 = g36 = �;for an arbitrary constant �. In this way we have obtained all 21 independent values of G. Thereader can easily check that the above values satisfy the system of equations (58). 29



Corollary 3.6 There is no Riemannian metric whose geodesics are screw motions.
Proof: A matrix of the form G = " � I3�3 � I3�3� I3�3 03�3 # ;has two distinct real eigenvalues�1 = 12(�+q�2 + 4�2) �2 = 12(��q�2 + 4�2);which both have multiplicity 3. For any choice of � and �, the product of the eigenvalues is�1�2 = ��2 � 0. Therefore, G is not positive de�nite as required for a Riemannian metric. 23.2 Geodesics of the family of metrics (30)Analogous to the Riemannian case, we could de�ne the length of a curve A(t) between twopoints A(t1) and A(t2) on SE(3) by:L(A; t1; t2) = Z t2t1 < dAdt ; dAdt > 12 dt: (35)But members of the family (30) are not positive de�nite, so the length of a curve would be ingeneral a complex number. It is therefore more useful to de�ne the measure of the energy of acurve: E(A; t1; t2) = Z t2t1 < dAdt ; dAdt > dt: (36)For a metric in the family (30) the energy of a curve can be in general negative. There arealso non-trivial curves (that is, curves that are not identically equal to a point) which have zeroenergy.Two special cases of metric (30) are of particular interest. With � = 0 and � = 1 we obtainthe metric: G = " 03�3 I3�3I3�3 03�3 # :This metric, taken as a quadratic form on se(3), is known as the Klein form [5]. The eigenvaluesfor the metric are f1; 1; 1;�1;�1;�1g and the form is therefore non-degenerate. For a screwmotion A(t) = A0 exp(t S) where S = f!; vg 2 se(3), the energy of the segment t 2 [0; 1] isgiven by E(A) = 2 !T v. If ! 6= 0, the quantity:h = !T vj!j2 (37)is called the pitch of the screw motion [6]. The pitch measures the amount of translationalong the screw axis during the screw motion. Zero energy screw motions therefore eitherhave zero pitch (the motion is pure rotation) or in�nite pitch (! = 0, the motion is puretranslation). Screw motions with positive energy are those with positive pitch. Trajectories forsuch motions correspond to right-handed helices and the motions are thus called right-handedscrew motions. Similarly, screw motions with negative energy are left-handed screw motions.Since pure rotations and pure translations are zero-energy motions, it is always possible to �nd azero energy curve between two arbitrary points by breaking the motion into a segment consistingof a pure rotation followed by a segment of a pure translation.10



By letting � = 1 and � = 0, we get the semi-de�nite metric:G = " I3�3 03�303�3 03�3 # :This metric, as a form on se(3), is called the Killing form [5]. Its eigenvalues are f1; 1; 1; 0; 0; 0ghence it is degenerate. The energy of a screw motion with S = f!; vg is equal to !T! so itis always non-negative. Pure translations are zero-energy motions while any motion involvingrotation has positive energy.In the general case, � 6= 0 and � 6= 0, the energy of a screw motion A(t) = A0 exp(t S) whereS = f!; vg and t 2 [0; 1], is !T (�! + 2� v). Pure translations (! = 0) thus have zero energy.For a general screw motion (! 6= 0), the energy of the segment t 2 [0; 1] is j!j2(� + 2�h). Thesign of the energy of a general motion therefore depends on � and �.Remark 3.7 The Klein form and the Killing form on SE(3) are known to be bi-invariant [5].Since every metric in the family (30) is a linear combination (with constant coe�cients) of thesetwo forms, it is clear that all these metrics are bi-invariant.4 A�ne connections on SE(3)There is no natural choice of a metric on SE(3). In the previous section, we chose a particularfamily of curves (screw motions) and found the metric G for which these curves were geodesics.Through the metric connection, a metric also provides a natural way to di�erentiate vector�elds.In this section, our primary objective is to �nd a connection which produces an accelerationvector that is physically meaningful. We therefore start by introducing a connection on SE(3)which allows us to compute the covariant derivative and obtain the acceleration. By requiringthat the acceleration computed with the covariant derivative agrees with the acceleration asde�ned in kinematics using principles of vector calculus (see below), we obtain a family ofpossible a�ne connections. We then show that there is a unique symmetric connection in thisfamily. Finally, we determine the class of Riemannian metrics which are compatible with thissymmetric a�ne connection.4.1 Kinematic connectionLet A(t) be a curve describing a motion of a rigid body. The velocity vector �eld, V (t), is given bythe tangent vector at each point on the curve, V (t) = dAdt . We can write V (t) = V i bLi and de�nef!(t); v(t)g to be the corresponding vector of components. The velocity pair S(t) = f!(t); v(t)gis the instantaneous twist associated with the motion, expressed in the moving frame M �xedto the rigid body. More precisely, ! represents the angular velocity of the rigid body while vis the linear velocity of the origin O0 of the body �xed reference frame M (see Figure 1). It isimportant to note the di�erence between the twist S(t) used to obtain Equation (38) and thevelocity vector �eld V (t) = V (A(t)): the twist S(t) belongs to se(3), while V (t) belongs to thetangent space TA(t) SE(3). We now turn our attention to the acceleration vector. In kinematics,the acceleration is represented by a vector pair f�; ag, where � is the angular acceleration ofthe rigid body and a is the acceleration of the point O0, both expressed in the frame M . Thisacceleration vector pair can be written in the form:f�; ag = f _!; _vg+ f0; ! � vg: (38)11



The �rst term is simply the derivative of the components of the angular velocity and the linearvelocity of the pointO0 expressed in the frameM . This term is also called the spatial acceleration[3]5. However, angular and linear velocities are expressed in the body �xed frame M , whichrotates as the body moves. We must therefore add the second term, a convective term thatdescribes the contribution of this rotation to the acceleration of the rigid body. This term is anartifact of expressing the velocities in a frame that rotates.On the other hand, geometrically, the acceleration, A, of the rigid body is given by thecovariant derivative of the velocity vector �eld V = dAdt along A(t):A = rV V: (39)According to Equation (38), the a�ne connection that produces a physically meaningful accel-eration must satisfy: rV V = f _!; _vg+ f0; ! � vg: (40)In components, rV V can be rewritten as:rV V =Xk dV kdt bLk +Xk X1�i;j�6V iV j�kji bLk; (41)where �kji are the Christo�el symbols (which de�ne the a�ne connection) for the basis bLi:rbLi bLj =Xk �kji bLk: (42)Comparing the right hand side of (40) and (41), it is clear that the �rst terms are the sameregardless of the choice of the a�ne connection. In both, (40) and (41), the second term on theright hand side depends on the products of velocity components. Recalling that the �rst threecomponents of V correspond to ! and the last three components correspond to v, we can writethe second term of (40) in the form:f0; ! � vg =Xk Xi�j akijV iV j bLk; (43)where akij are constants that are all zero except for:a624 = �1 a534 = 1 a615 = 1a435 = �1 a516 = �1 a426 = 1: (44)Equating the right hand sides of (40) and (41) gives the following relationships:�kii = akii 1 � i � 6�kij + �kji = akij 1 � i < j � 6: (45)The system (45) does not contain enough equations to solve for �kij if i 6= j (but we get �kii =0; 1 � i; k � 6). Therefore, there is a family of a�ne connections on SE(3) that produce theacceleration used in kinematics. acceleration.5Featherstone [3] considers the acceleration in a �xed (inertial) frame and demonstrates that it has the formshown in (38). While the \convective term" is present in his derivation, the physical interpretation is di�erent.12



To further restrict the choice of the connection, we might ask if any of the connections thatsatisfy Equation (45) are symmetric. In other words, we require that the connection satis�esEquation (14): rXY �rYX = [X;Y ]:It immediately follows that for the basis bLi, the symmetry of the connection implies:�kji � �kij = Ckij : (46)where Ckij are the structure constants for se(3) (Equation 4). Equations (45) and (46) togetheruniquely determine the Christo�el symbols �kji and therefore the connection. We call this sym-metric a�ne connection the kinematic connection. The non-zero Christo�el symbols for thekinematic connection can be easily seen to be:�321 = �213 = �132 = 12 ; �312 = �231 = �123 = �12�651 = �462 = �543 = 1; �642 = �453 = �561 = �1 (47)We can therefore state the following proposition to summarize the derivations in this section.Proposition 4.1 On SE(3), there exists a unique symmetric a�ne connection, called the kine-
matic connection, that produces the acceleration as de�ned in kinematics. The Christo�el symbolsfor the kinematic connection with respect to the basis vector �elds bLi are given in Equation (47).4.2 Metrics compatible with the kinematic connectionIn Section 2.4 we de�ned a connection to be Riemannian if it is symmetric and compatible withthe metric. Since we explicitly required that the kinematic connection be symmetric, we cantry to �nd a metric which is compatible with the connection. In general, such a metric may notexist.If a metric is compatible with the connection, then:Z <X;Y >=<rZX;Y > + <X;rZY >; (48)where X, Y and Z are arbitrary vector �elds. By substituting the basis vector �elds bLi, bLj andbLk for X, Y and Z, the compatibility condition becomes:bLk(gij) =Xl (�likglj + �ljkgli) (49)where the Christo�el symbols �kji were computed above. Equation (49) generates a system of126 partial di�erential equations for the 21 metric coe�cients fgij j 1 � i � j � 6g. Note thatfor k > 3, �jik = 0, so bLk(gij) = 0. The system of equations obtained from Equation (49) fork � 3 is given in Equation (59) in Appendix B. The �rst step in �nding the solution of thissystem of equations is proving the following lemma.Lemma 4.2 If the coe�cients of a Riemannian metric G satisfy Equation (49), the metric hasthe form: G = " �I 00 Gp # ; (50)where � is a constant and Gp is an arbitrary positive de�nite symmetric matrix that smoothlyvaries from point to point. 13



Proof: We use Lemma 3.4 again. Take the following subset of equations of the system (59):bL1(g11) = 0 bL2(g11) = �g13 bL3(g11) = g12 (51)According to Lemma 3.4 the following equality holds:�bL1(g13) = g12:By substituting for bL1(g13) from (59), we obtain 12g12 = g12, which gives g12 = 0. Substitutingin the system (59), we next obtain:g13 = 0 g23 = 0 g11 = g22 g11 = g33 (52)It is easy to see that these equations imply bLi(g11) = 0; 1 � i � 6, which together withEquation (52) results in: g11 = g22 = g33 = �;where � is a constant. Therefore, the upper-left 3�3 block in the matrix G is of the form �I3�3,where I is the identity matrix.By taking equations:bL1(g14) = 0 bL2(g14) = �12g34 � g16 bL3(g14) = 12g24 + g15; (53)and again using Lemma 3.4, we get g24 = 0. By substituting this in the system (59) it is easy tosee that all the entries in the upper-right 3� 3 block of the matrix G (and due to the symmetryof G also in the lower-left 3 � 3 block) are equal to 0, proving that G must be of the form(50). Since we are interested in Riemannian metrics, the matrix G must be positive de�nite andsymmetric. The form of G then implies that also Gp must be positive de�nite and symmetric.2Proposition 4.3 A left invariant metric is compatible with the kinematic connection if andonly if the matrix of metric coe�cients G = [gij ] is of the form:G = " �I 00 �I # ; (54)where � and � are arbitrary constants.
Proof: If a metric is left invariant then the matrix G is constant. But if gij = const:, thenbLi(gij) = 0. It is then easy to check that the system of equations (59) implies the form of G in(54). 2Remark 4.4 Note that the metric (54) is exactly the same as the metric (19).To determine whether there are other solutions to the system (59), it helps to investigate whatis common to metrics that have the same metrical connection. The geometric entity determinedfrom the connection are geodesics (Equation 17). Two metrics with the same connection thushave the same geodesics. By reasoning similar to that which led to the kinematic connectionwe can prove that also the converse is true: the family of geodesics uniquely determines thesymmetric connection. To �nd other solutions of the system (59), we therefore try to �ndmetrics which have the same geodesics as metric (54). Alternatively, this process can be viewed14



as the study of di�eomorphisms of SE(3) which map geodesics to geodesics (such maps arecalled a�ne maps).We saw earlier that a geodesic for the metric (54) between two points A1 and A2 on SE(3)is a product of a geodesic on SO(3) equipped with a bi-invariant metric (a constant velocityrotation) and a geodesic on Euclidean space IR3 (a straight line). But on IR3, straight lines aregeodesics for any inner product de�ned by a positive de�nite constant matrix. Therefore, anyproduct metric on SO(3) � IR3 with the bi-invariant metric on SO(3) and an inner productmetric on IR3 has the same geodesics as the metric (54). It can be shown [17] that for the basisbLi such a metric has the form: G(R; d) = " �I 00 RT W R # (55)where W is a constant positive de�nite symmetric matrix which de�nes the inner product onIR3. We state this as a lemma:Lemma 4.5 If a metric G has the form (55), then it is a solution of the system of equations(59).Note that the form of G in Lemma 4.5 is consistent with that in Lemma 4.2. It is alsoobvious that the metric (54) can be obtained as a special case of (55) by substituting W = �I.Lemma 4.5 identi�es a family of Riemannian metrics that are compatible with the kinematicconnection. We would like to know whether there are any other metrics which are compatiblewith the kinematic connection. Before we answer this question, we prove the following lemma:Lemma 4.6 Two metrics on SE(3) which have the same Riemannian connection and are equalat a point, are equal everywhere.
Proof: Let G1 and G2 be the two metrics and let A0 be the point where they are equal:G1(A0) = G2(A0). If a connection is compatible with the metric then the parallel transportpreserves the inner product. Take an arbitrary point A 2 SE(3). We can always �nd a curve which connects A0 with A. Since at A0, G1 and G2 are equal, we can choose a basis Xi for thetangent space TA0SE(3) which is orthonormal in both metrics. The two metrics have the sameconnection and we can parallel transport vectors Xi at A0 to vectors X 0i at A along . Sinceboth metrics are compatible with the connection and the parallel transport preserves the innerproduct, vectors X 0i at A are orthonormal in both metrics. But this means that the two metricsare equal at A. Since A was an arbitrary point, the two metrics must be the same everywhere.2We can now state the second major result of the section:Theorem 4.7 A metric G(R; d) is compatible with the kinematic connection given by Equation(45) and (46) if and only if it has the form:G(R; d) = " �I3�3 03�303�3 RT W R # (56)where W is a constant positive de�nite symmetric matrix.15



Proof: The \if" part of the Theorem is just Lemma 4.5. To prove the \only if" direction, let Gbe a metric compatible with the kinematic connection. According to Lemma 4.2, the metric Ghas the form: G = " �I 00 M # ; (57)where M is a positive de�nite, smoothly varying, symmetric matrix. At the identity thereexists a metric G0 of the form (56) with W = M which is equal to G. The two metrics areboth compatible with the kinematic connection, so according to Lemma 4.6, they are the same.Hence, the metric G has the form (56). 2Remark 4.8 All the metrics of the form (56) are isometric. In other words, if G1 and G2 aretwo such metrics, there is an isometry between SE(3) equipped with the metric G1 and SE(3)equipped with the metric G2. (This isometry does not preserve the group structure on SE(3).)The two manifolds are isometric because of the product structure of the metrics and the factthat any two metrics on a Euclidean space IRn obtained from an inner product are isometric.Remark 4.9 Parallel transport along a closed curve  which starts and ends at A 2 SE(3),maps an element X 2 TASE(3) to another element X 0 2 TASE(3). The collection of suchmappings that we obtain by taking all possible closed curves that start and end at A forms agroup called the holonomy group of the connection with the reference point A. The derivation ofTheorem 4.7 would be considerably shorter if we had used the de Rham splitting theorem andthe structure of the holonomy group for the kinematic connection. However, we have elected topresent a proof that only relies on elementary results from di�erential geometry.5 Concluding remarksThere are many papers in kinematics and robotics that advocate the use of screw motions forthe trajectory planning of robot end e�ectors (see for example, [12, 15, 16]). Another body ofliterature studies the trajectory planning problem on SE(3) in the framework of Riemanniangeometry and proposes the trajectories that are optimal with respect to some cost function[10, 18]. The focus of this paper is on how to choose a Riemannian metric and an a�neconnection on SE(3) that are suitable for trajectory planning. To this end we systematicallyinvestigate the possible Riemannian metrics, a�ne connections, and the resulting geodesics(shortest distance trajectories) The key results and their implications for motion planning andkinematic analysis on SE(3) are summarized below:1. Screw motions are left or right translates of one-parameter subgroups (Proposition 3.2).Since one-parameter subgroups are a property of SE(3) and are therefore independentof the choice of �xed or moving reference frames, it is attractive to use screw motionsas the basis for trajectory planning. However, there is no positive de�nite cost functionassociated with the screw motion (Corollary 3.6).2. If it is desirable to use screw motions in a particular application, it may be useful to thinkof the trajectories as extremals for a cost functional derived from the two-parameter familyof semi-Riemannian metrics in Theorem 3.5. The semi-Riemannian metrics (and thereforethe cost function) are bi-invariant. 16



3. When accelerations or higher order derivatives are necessary, either for trajectory plan-ning [18] or for kinematic analysis [3], it is necessary to de�ne a connection on SE(3).Proposition 4.1 identi�es the kinematic connection which through the covariant derivativeyields the acceleration that is used in kinematics.4. Theorem 4.7 identi�es the family of Riemannian metrics that are compatible with thekinematic connection. This result can be used to formulate and solve the minimum accel-eration or minimum jerk problems where functionals involving derivatives of the velocityare minimized to obtain optimal trajectories.5. It is well-known that there is no bi-invariant metric on SE(3) [5, 9]. The only familyof metrics that would seem to make any sense for kinematic computations is thus thefamily de�ned in Theorem 4.7. If left-invariance is desired, Proposition 4.3 shows that thescale dependent left invariant metric of [10] is the only meaningful metric. This metric isindependent of the choice of the �xed (inertial) reference frame6.The results in this paper are of considerable theoretical signi�cance and contribute to adeeper understanding of the trajectory generation problem on SE(3). Further, they are directlyrelevant to applications in robotics, computer animation and computer aided design.AcknowledgmentThe �nancial support for this work has been provided by the NSF grants BCS 92-16691, MSS91-57156, CISE/CDA 88-22719 and DMS 95-05175, ARPA Grant N00014-92-J-1647 and ArmyGrant DAAH04-96-1-0007. The �rst author was also supported in part by a fellowship (NSFgrant SBR 89-20230) from the Institute for Research in Cognitive Science at the University ofPennsylvania.

6If right invariance is desired, or in other words, if we desire our metric to be independent of the choice of themoving (body-�xed) reference frame, an argument similar to the proof of Proposition 4.3 can be used to developthe appropriate right invariant metric. 17



A Equations de�ning metric with screw motions as geodesicsIn Section 3.1 we concluded that Equation (24):bLk(gij) = 12Xl (C lkiglj + C lkjgli);must be satis�ed by the metric if screw motions are geodesics. The coe�cients Ckij are the struc-ture constants of the Lie algebra se(3). We evaluated this equation in Mathematica to obtain asystem of 126 partial di�erential equations that have to be solved for the metric coe�cients gij .In the equations we use the abbreviation Gkij def= bLk(gij).G111 = 0 G211 = �g13 G311 = g12G411 = 0 G511 = �g16 G611 = g15G112 = 12g13 G212 = �12g23 G312 = 12(g22 � g11)G412 = 12g16 G512 = �12g26 G612 = 12(g25 � g14)G113 = �12g12 G213 = 12 (g11 � g33) G313 = 12g23G413 = �12g15 G513 = 12 (g14 � g36) G613 = 12g35G114 = 0 G214 = 12 (�g34 � g16) G314 = 12(g24 + g15)G414 = 0 G514 = �12g46 G614 = 12g45G115 = 12g16 G215 = �12g35 G315 = 12(g25 � g14)G415 = 0 G515 = �12g56 G615 = 12g55G116 = �12g15 G216 = 12 (g14 � g36) G316 = 12g26G416 = 0 G516 = �12g66 G616 = 12g56G122 = g23 G222 = 0 G322 = �g12G422 = g26 G522 = 0 G622 = �g24G123 = 12 (g33 � g22) G223 = 12g12 G323 = �12g13G423 = 12 (g36 � g25) G523 = 12g24 G623 = �12g34G124 = 12g34 G224 = �12g26 G324 = 12(g25 � g14)G424 = 12g46 G524 = 0 G624 = �12g44G125 = 12 (g35 + g26) G225 = 0 G325 = 12(-g15 � g24)G425 = 12g56 G525 = 0 G625 = �12g45G126 = 12 (g36 � g25) G226 = 12g24 G326 = �12g16G426 = 12g66 G526 = 0 G626 = �12g46G133 = �g23 G233 = g13 G333 = 0G433 = �g35 G533 = g34 G633 = 0G134 = �12g24 G234 = 12 (g14 � g36) G334 = 12g35G434 = �12g45 G534 = 12g44 G634 = 0G135 = 12 (g36 � g25) G235 = 12g15 G335 = �12g34G435 = �12g55 G535 = 12g45 G635 = 0

(58)
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G136 = 12(-g26 � g35) G236 = 12(g16 + g34) G336 = 0G436 = �12g56 G536 = 12g46 G636 = 0G144 = 0 G244 = �g46 G344 = g45G444 = 0 G544 = 0 G644 = 0G145 = 12g46 G245 = �12g56 G345 = 12(g55 � g44)G445 = 0 G545 = 0 G645 = 0G146 = �12g45 G246 = 12(g44 � g66) G346 = 12g56G446 = 0 G546 = 0 G646 = 0G155 = g56 G255 = 0 G355 = �g45G455 = 0 G555 = 0 G655 = 0G156 = 12(g66 � g55) G256 = 12g45 G356 = �12g46G456 = 0 G556 = 0 G656 = 0G166 = �g56 G266 = g46 G366 = 0G466 = 0 G566 = 0 G666 = 0
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B Equations for the metric compatible with the kinematic con-nectionIn Section 4 we concluded that a metric compatible with the kinematic connection must satisfyEquation (49): bLk(gij) =Xl (�likglj + �ljkgli):The Christo�el symbols �kij specify the kinematic connection and are listed in (47). For k > 3,the Christo�el symbols �jik are 0, and therefore bLk(gij) = 0. For this reason, we only listequations for k � 3. The equations were generated in Mathematica and are listed below. In theequations, Gkij stands for bLk(gij).G111 = 0 G211 = �g13 G311 = g12G112 = 12g13 G212 = �12g23 G312 = 12g22 � 12g11G113 = �12g12 G213 = 12g11 � 12g33 G313 = 12g23G114 = 0 G214 = �12g34 � g16 G314 = 12g24 + g15G115 = g16 G215 = �12g35 G315 = 12g25 � g14G116 = �g15 G216 = g14 � 12g36 G316 = 12g26G122 = g23 G222 = 0 G322 = �g12G123 = 12g33 � 12g22 G223 = 12g12 G323 = �12g13G124 = 12g34 G224 = �g26 G324 = g25 � 12g14G125 = 12g35 + g26 G225 = 0 G325 = �12g15 � g24G126 = 12g36 � g25 G226 = g24 G326 = �12g16G133 = �g23 G233 = g13 G333 = 0G134 = �12g24 G234 = 12g14 � g36 G334 = g35G135 = g36 � 12g25 G235 = 12g15 G335 = �g34G136 = �12g26 � g35 G236 = 12g16 + g34 G336 = 0G144 = 0 G244 = �2g46 G344 = 2g45G145 = g46 G245 = �g56 G345 = g55 � g44G146 = �g45 G246 = g44 � g66 G346 = g56G155 = 2g56 G255 = 0 G355 = �2g45G156 = g66 � g55 G256 = g45 G356 = �g46G166 = �2g56 G266 = 2g46 G366 = 0

(59)
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